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Abstract The reproductive success of flowering plants, which directly affects crop yield, is sensitive to envi-
ronmental changes. A thorough understanding of how crop reproductive development adapts to climate
changes is vital for ensuring global food security. In addition to being a high-value vegetable crop,
tomato is also a model plant used for research on plant reproductive development. Tomato crops are
cultivated under highly diverse climatic conditions worldwide. Targeted crosses of hybrid varieties have
resulted in increased yields and abiotic stress resistance; however, tomato reproduction, especially
male reproductive development, is sensitive to temperature fluctuations, which can lead to aborted
male gametophytes, with detrimental effects on fruit set. We herein review the cytological features as
well as genetic and molecular pathways influencing tomato male reproductive organ development and
responses to abiotic stress. We also compare the shared features among the associated regulatory
mechanisms of tomato and other plants. Collectively, this review highlights the opportunities and
challenges related to characterizing and exploiting genic male sterility in tomato hybrid breeding
programs.
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INTRODUCTION

Flowering plants are among the most successful living
organisms at least partly because of their morphological
diversity and ability to grow in various ecological
niches, which is primarily because of reproductive
innovations (Chen et al. 2019; Ge et al. 2010). Repro-
ductive development is crucial for the maintenance of
genetic diversity and involves complex processes during
diploid and haploid phases, including male and female
organogenesis, meiosis, gametogenesis, pollination, and

fertilization (Ke et al. 2021; Liu et al. 2021; Ma 2005).
Fruits and seeds are two major components of human
diets; their production depends on reproductive devel-
opment-related activities (Gao et al. 2015; Li et al.
2018b). During plant reproduction, the male reproduc-
tive organ (i.e., anther and filament) undergoes specific
changes, including anther differentiation, functional
pollen production, and anther dehiscence, ultimately
resulting in the release of mature pollen. The failure of
any of these processes may lead to male sterility, limited
reproduction, and decreased crop production. Moreover,
as sessile organisms, plants are highly susceptible to
environmental factors, with the reproductive stage
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(especially male reproduction-related processes) more
sensitive to abiotic stress than the vegetative growth
stage (Zhang et al. 2021). An exposure to abiotic stress
may impair anther and pollen development, resulting in
male sterility and low crop yields. Clarifying plant
responses to abiotic stress during the male gameto-
phytic phase is critical for enhancing crop productivity.
Additionally, male-sterile varieties are valuable resour-
ces, because they may be used to produce hybrids.
Modulating male reproductive development may facili-
tate the efficient use of biotechnology-based male
sterility for the selective breeding and commercial
development of hybrid lines (Chen and Liu 2014).

Tomato, which is one of the most important veg-
etable crops, is cultivated worldwide. Although tomato
plants can grow under various climatic conditions, their
reproductive development, especially male reproductive
development, is severely impeded by abiotic stresses,
resulting in decreased yields and relatively low fruit
quality (Gerszberg and Hnatuszko-Konka 2017). Many
studies conducted over the last few decades to maintain
or increase tomato production focused on anther and
pollen development. We herein review the cytological
and morphological changes associated with tomato
male organ development, the molecular and genetic
pathways influencing tomato male reproduction-related
activities, and the general mechanisms by which abiotic
stresses can inhibit tomato male reproductive develop-
ment. We also describe experimental strategies useful
for enhancing tomato male reproductive development
under abiotic stress conditions.

TOMATO MALE REPRODUCTIVE DEVELOPMENT

After producing 8–10 leaves, the shoot apical vegetative
meristem of tomato plants transforms into an inflores-
cence meristem, which ultimately forms a lateral
monochasial inflorescence that includes 6–10 flowers
(Huang et al. 2018; Park et al. 2012). Tomato flowers
typically consist of five sepals and five petals that are
arranged in an alternating pattern. The five anti-sepa-
lous stamens are fused together to form a cone around
the style inside of the petals. On the basis of morpho-
logical and cytological characteristics, the tomato floral
developmental process has been divided into 20 stages
(Brukhin et al. 2003). The stamen primordia are
detectable at stage 3 after the sepal and petal primordia
have been initiated, but before the initiation of carpel
primordia, and initially form as a whorl of small bumps
at a specific site on the surface of the floral meristem
(Brukhin et al. 2003). During these processes, the divi-
sion of the floral meristem L1, L2, and L3 layers

produces specialized stamen cells and tissues (Goldberg
et al. 1993). More specifically, the L1 layer cells develop
into the epidermis and stomium, whereas the L3 layer
cells produce the connective, vascular bundle, and cir-
cular cell clusters adjacent to the stomium. Meanwhile,
the periclinal division of the L2 layer cells results in the
initiation of the anther primordia, which subsequently
differentiate into the archesporial cells and generate the
inner microspore mother cells and the outer parietal
cell layer (outer to inner layers: endothecium, middle
layer, and tapetum). The tapetum is a single layer of
metabolically active cells and most obvious anther cell
layer. Of the two basic tapetum types, the amoeboid
tapetum extends into the locule encasing the micro-
spore to provide the microspore with required materials
(e.g., in Arum species or Cichorium intybus), whereas the
secretory tapetum, which is more common among
plants (e.g., Arabidopsis thaliana, rice, and tomato),
provides nutrients through the liquid in the locule that
bathes the developing microspore (Pacini 2010). The
tapetum is a nutritive somatic tissue accompanying with
the pollen development by providing nutrition to
microspores, enzymes for microspores release, precur-
sors for pollen wall formation and small RNAs to reg-
ulate germline cells (Ma et al. 2021; Santiago et al. 2019;
Shi et al. 2015; Wang et al. 2018; Yao et al. 2022).
Programmed cell death (PCD)-triggered tapetal cells
degradation plays a vital role in nutrition supply, which
often occurs synchronously with post-meiotic micro-
spore development and is tightly controlled by inte-
gration of internal and external signals (Parish et al.
2012). In tomato, tapetum degradation is initiated
before the tetrad stage and is completed at the bicellular
pollen stage (Fig. 1). Recent research on tomato
revealed that premature or delayed tapetum degenera-
tion usually results in male sterility (Pan et al. 2021; Yan
et al. 2020; Yang et al. 2021).

In addition to the outer layer of parietal cells, the
inner microspore mother cells also contribute to pollen
development, which is one of the most basic biological
processes related to plant sexual reproduction. Pollen
development involves the following two major stages:
microsporogenesis (i.e., differentiation of sporogenous
cells and meiosis) and microgametogenesis (i.e., post-
meiotic microspore development) (Gómez et al. 2015).
In tomato, microspore mother cells have a relatively
large nucleus and are surrounded by parietal cells at
floral developmental stage 7 (Fig. 1). The sporogenous
cells undergo meiosis at stage 9 and produce a callose-
encased tetrad. At stage 10, the callose is hydrolyzed by
b-1, 3-glucanase secreted from tapetal cells, resulting in
the release of free microspores from the tetrad (Fig. 1)
(Brukhin et al. 2003; Pan et al. 2021). The released
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microspores continue to develop using nutrients from
the degenerated tapetal cells. The formation of vacuoles
within microspores is accompanied by the migration of
the nucleus to one side of the cell (Fig. 1). Vacuolated
microspores undergo an asymmetrical mitotic division
to generate pollen grains that comprise two cells with
differing characteristics. The larger vegetative cell has a
dispersed nucleus and more cytoplasm, whereas the
smaller generative cell, which is enclosed entirely by the
vegetative cell, contains condensed chromatin and rel-
atively little cytoplasm (Fig. 1). As pollen grains mature,
a break in the stomium that leads to pollen release is
due to the degeneration of the tapetum and the rein-
forcement of the exothecium. In tomato, the generative
cell of the released pollen grains divides into two sperm
cells during pollen mitosis II (PMII) in the pollen tube
that grows through the pistil. In contrast, in Arabidopsis
and rice, PMII occurs in the anther sacs (Borg et al.
2009; McCormick 2004).

GENES INVOLVED IN TOMATO MALE REPRODUCTIVE
DEVELOPMENT

Male reproductive development involves multiple
stages, with abnormalities at any stage potentially
leading to male sterility (i.e., structural, functional, or
sporogenous male-sterile mutants) (Kaul 2012). In
tomato, structural male-sterile mutants usually have
extremely deformed stamens unable to produce pollen.
In contrast, functional male-sterile mutants form viable
pollen grains that cannot reach the stigma because of a
protruding style or indehiscent anthers. Stamenless (sl)
was the first verified structural male-sterile tomato

mutant, with vestigial stamens adhering to the carpels
(Bishop 1954). The tomato spl-like mutant is indistin-
guishable from wild-type tomato in terms of vegetative
development, but its anthers have a filamentous struc-
ture and do not produce pollen, leading to male sterility
(Rojas-Gracia et al. 2017). In Arabidopsis, the tran-
scription factors sporocyteless/nozzle (spl/nzz) mutants
were initially identified as sterile mutants, which dis-
played failure of male and female gametophyte forma-
tion (Schiefthaler et al. 1999; Yang et al. 1999).
Additionally, SPL/NZZ had also been demonstrated as a
transcriptional repressor during Arabidopsis ovule
development as the C-terminal end of SPL/NZZ contains
a typical EAR motif (ERF-associated amphiphilic
repression), a well-characterized repression domain
(Ohta et al. 2001; Wei et al. 2015). A MADS-box tran-
scription factor AGAMOUS (AG) that defines stamens
and carpels regulates microsporogenesis and pollen
formation by activating the expression of SPL/NZZ (Ito
et al. 2004; Schiefthaler et al. 1999; Yang et al. 1999).
Earlier research confirmed that SlDEFICIENS (SlDEF) is
necessary for the normal development of petal and
stamen characteristics, while tomato MADS-box 6
(SlTM6) modulates stamen morphology (Cao et al.
2019; De Martino et al. 2006). In tomato, stigma
exsertion has been observed in functional male-sterile
mutants (i.e., positional sterility). A recent investigation
indicated that stigma exsertion is due to different genes
in diverse tomato genotypes, including genes at several
loci associated with long styles (e.g., se2.1, StyleD1, and
sty 8.1) (Cheng et al. 2021). A mutation to a polygalac-
turonase-encoding gene, ps-2, results in non-dehiscent
anthers in tomato (Gorguet et al. 2009). Some mutants
with abnormal jasmonic acid and ethylene metabolism

Fig. 1 Schematic overview of tomato anther and pollen development. SlPIF4-SlDYT1-SlTDF1-SlAMS-SlMS1, ROS, and sugar pathways
affect tomato tapetum development. SlRECQ4, SlFANCM, and SlGIGL1 participate in tomato meiosis. SlPIF3, SlKRPs, and IAA regulate
pollen mitosis I. The dashed line indicates a putative role or relationship
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exhibit impaired tomato anther dehiscence (Schubert
et al. 2019).

Most tomato male-sterile mutants exhibit sporoge-
nous male sterility. Accordingly, they have morphologi-
cally normal flowers that produce little or no viable
pollen (Gorman et al. 1997). The tomato male-sterile
mutant ms1035 resulting from a spontaneous mutation
shows degenerating microspores with enlarged vac-
uoles during meiosis. A gene mapping analysis revealed
that Ms1035 encodes a bHLH transcription factor and is
homologous to the Arabidopsis gene DYSFUNCTIONAL
TAPETUM 1 (DYT1) (Jeong et al. 2014). This gene
encodes a transcription factor that functions down-
stream of SPL/NZZ, but is one of the earliest tapetal
development-related genes to be activated after another
cells are initiated (Zhang et al. 2006). Additionally, DYT1
regulates the expression of many tapetal genes, such as
TAPETAL DEVELOPMENT1 (TDF1) and ABORTED
MICROSPORES (AMS), the latter of which encodes a
master regulator of tapetal development involved in the
synthesis of lipidic and phenolic components essential
for pollen wall patterning and flavonoid production (Gu
et al. 2014; Sorensen et al. 2003; Zhu et al. 2008). In the
ms1035 mutant, the expression levels of Soly-
c03g113530, Solyc08g062780, and Solyc04g008420,
which are homologs of AtTDF1, AtAMS, and MALE
STERILITY1 (AtMS1), respectively, are downregulated.
In addition to ms1035, the tomato male sterility 32
(ms32) mutant fails to undergo meiosis; its mutated
locus was mapped to a putative gene (Solyc01g081100)
homologous to the Arabidopsis bHLH89/91 gene (Liu
et al. 2019). Moreover, the Solyc01g081100 expression
level is downregulated in ms1035, suggesting that
bHLH89/91 function downstream of DYT1 in tomato. In
Arabidopsis, AMS has been reported to interact with
bHLH89/91 to regulate the expression of MYB80, which
promotes the sporopollenin synthesis for pollen wall
formation (Ferguson et al. 2017; Lou et al. 2014; Wang
et al. 2018; Xiong et al. 2016; Zhang et al. 2007). The
rice bHLH protein UNDEVELOPED TAPETUM (OsUDT1),
a putative homolog of AtDYT1, acts after initiation of the
tapetum in an analogous manner to AtDYT1 (Jung et al.
2005). Moreover, a couple of important genes that are
essential for tapetum development have been cloned
from male-sterile rice mutants, including TAPETUM
DEGENERATION RETADATION (TDR) and OsMYB80,
which are homologs of AtAMS and AtMYB80, respec-
tively (Han et al. 2021; Pan et al. 2020; Phan et al. 2011;
Wilson and Zhang 2009). The functional similarity
shared among these genes in both dicots and monocots
suggest that the DYT1-TDF1-AMS-MYB80 transcrip-
tional cascade might also play an essential and

conserved roles in regulating tapetal development in
tomato.

As mentioned above, during the establishment and
specification of the anther cell layers, sporogenous cells
encased in the tapetum are generated from archesporial
cells. The sporogenous cells then undergo a conserved
cell division necessary for eukaryotic sexual reproduc-
tion (i.e., meiosis), which leads to the generation of
haploid microspores. Meiosis comprises the following
five key stages: meiotic entry, recombination initiation,
chromosome synapsis, resolution of recombination
intermediates, and the second meiotic division (Ma
2005). Defective meiosis generally prevents the pro-
duction of viable pollen grains. Genes involved in
meiosis were identified in Arabidopsis and other crops
following analyses of mutants that are sterile or less
fertile than normal (Wang et al. 2021). Both Topoiso-
merase3a (TOP3a) and RecQ-mediated instability 1
(RMI1), which are components of the RTR (RecQ/Top3/
Rmi1) complex, are crucial for meiosis; mutations to the
corresponding Arabidopsis genes result in meiotic
defects and sterility. Analyses of tomato plants indicated
the mutation in the top3a mutant is lethal to embryos,
whereas the mutation in the rmi1 mutant does not
cause abnormalities in somatic DNA repair or meiosis
(Xing et al. 2012). Meiotic crossovers generate genetic
diversity but improper crossover frequency can disrupt
meiosis and cause pollen sterile in many plant species. A
group of genes that exert the function for limiting
meiotic recombination have been identified in Ara-
bidopsis, including Fanconi anemia of complementation
group M (FANCM), Recombinant Escherichia coli ATP-
dependent DNA helicase (RECQ) and AAAATPase FIDGE-
TIN-LIKE-1 (FIGL1). In contrast to the fact that loss of
function of these genes individually increases the
crossover frequency and has little effect on fertility in
Arabidopsis (Mieulet et al. 2018), the rice Osfigl1 mutant
gives rise to aborted pollen, which may result from
abnormal chromosome behavior during meiosis (Zhang
et al. 2017). Similarly, the tomato Slfigl1 mutant is also
completely sterile, supporting the essential role of
SlFIGL1 for fertility (Mieulet et al. 2018). To date, a few
studies have been conducted on meiosis in tomato,
which has resulted in the identification and characteri-
zation of several genes involved in meiosis. For example,
silencing MUTS-HOMOLOG 2 (MSH2), which encodes a
protein that recognizes and repairs errors in DNA
sequences, disrupts tomato male meiosis where half of
the meiocytes stalled at the zygotene stage or combined
to form diploid tetrads, which substantially inhibits
normal pollen formation (Sarma et al. 2018; Wang et al.
2021).
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The post-meiosis pollen developmental stage is
microgametogenesis, in which microspores form pollen
grains via cellular mitosis. This process depends on the
asymmetrical division of the microspore during pollen
mitosis I (PMI), which is essential for establishing male
germ cells (McCormick 2004). During mitosis in somatic
cell, the division site is marked by a circumferential
band of microtubules, called the preprophase band.
Although no obvious preprophase bands are observed
in microspores before division, the migration of micro-
spore nuclear is sensitive to colchicine, suggesting the
involvement of a microtubule system (Twell et al. 1998).
Compelling evidence comes from studies of the orchid
Phalaenopsis, in which a specialized generative pole
microtubule system appears at the future generative cell
pole prior to nuclear migration (Brown and Lemmon
1991). In Arabidopsis, mutations in microtubule-related
genes impact asymmetrical division of microspores and
cause abnormal male germline formation, ultimately
lead to male sterility, such as gemini pollen1 (gem1),
two-in-one (tio) and kinesin- 12A/ 12B (Liu and Qu
2008; Twell 2011). Given that the microtubule system
plays an important role in directing and maintaining
nuclear migration, one can expect that it might act in
response to cellular signals or polarity determinants
within the cytoplasm. However, the underlying mecha-
nisms are still unclear so far. Mutations to cell-cycle
regulators in Arabidopsis can impair the progression of
pollen mitosis with lethal consequences for gameto-
phytes (Liu and Qu 2008; Liu et al. 2008; Takatsuka
et al. 2015). Loss-of-function of genes related to
microtubules or cell-cycle regulators in tomato also
directly affects the asymmetrical division of pollen cells
(Yang et al. 2022). In addition, some intracellular
metabolites help regulate pollen mitosis. For example, in
Arabidopsis, the auxin flow in anthers affects pollen
development by regulating PMI (Feng et al. 2006).
Additionally, the mutations in the yuc2yuc6 double
mutant result in arrested PMI and a lack of viable pollen
(Yao et al. 2018). Thus, auxin is vital for asymmetrical
pollen cell division. In tomato, a mutation to SlPIF3
prevents the production of viable pollen grains because
of the associated arrested PMI. Compared with wild-
type tomato plants, the Slpif3 mutant has a substantially
lower anther auxin content and abnormal microtubule-
and cell-cycle-related gene expression levels (Yang et al.
2022). The application of exogenous auxin downregu-
lates the expression of cyclin kinase inhibitor genes
(SlKRP2 and SlKRP4), while also partially rescuing the
pollen viability of the Slpif3 mutant, suggesting that
auxin regulates tomato PMI by modulating the expres-
sion of genes related to microtubules and the cell cycle.
Furthermore, sugar metabolism-associated signaling

pathways are involved in pollen mitosis in tomato.
Recent research demonstrated that SlSWEET5b facili-
tates tomato pollen mitosis and maturation by mediat-
ing the transport of apoplasmic hexose into developing
pollen cells (Ko et al. 2022), while SlMAPK20 is neces-
sary for the uninucleate-to-binucleate transition of
tomato pollen cells, because it regulates anther sugar
metabolism (Chen et al. 2018). The molecular and reg-
ulatory mechanisms underlying the effects of sugar-re-
lated signaling pathways on pollen mitosis will need to
be more precisely characterized in future studies.

Thus, the fine mapping of male sterility-related genes
and the identification of genes associated with genic
male sterility in tomato have deepened our under-
standing of the molecular basis of male reproductive
development and may increase the utility of biotech-
nology-based male sterility systems in hybrid breeding
programs.

ADAPTIVE RESPONSES OF TOMATO MALE
REPRODUCTIVE DEVELOPMENT TO ABIOTIC
STRESSES

Extreme environmental stresses, including excessive
heat, cold, and drought, adversely affect male fertility in
flowering plants and cause substantial crop yield losses.
For example, high-temperature stress can negatively
affect male reproductive structures and processes (e.g.,
stigma exsertion or anther indehiscence), leading to
decreased pollen dispersal and fruit set in tomato (Pan
et al. 2019; Sato et al. 2002). In most plants, the pro-
cesses from meiosis to PMI are especially vulnerable to
abiotic stress. When pollen development reaches the
meiotic stage, the tapetal cells are highly metabolically
active, with 20- to 40-fold increases in mitochondrial
activities (Parish et al. 2012). There is increasing evi-
dence of the link between abiotic stress-induced male
sterility and tapetal dysfunction (Gómez et al. 2015).

Excessive heat is not the only temperature-related
stress that can decrease crop yields. Even mild tem-
perature fluctuations have induced grain yield losses of
approximately 10%, 5.5%, and 3.8% per 1 �C increase
in rice, wheat, and maize, respectively (Lobell et al.
2011; Peng et al. 2004; Tashiro and Wardlaw 1989). An
exposure to heat stress can induce male sterility in
Arabidopsis, rice, wheat, and tomato by impairing
tapetum differentiation and microsporogenesis, acti-
vating tapetal PCD prematurely, and inhibiting the
dehiscence of anthers (Parish et al. 2012). At the
molecular level, heat stress induces oxidative damage,
prevents proteins from folding correctly, and disturbs
hormone homeostasis (Fig. 2A). In response to heat
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stress, mitochondria increase the production of reactive
oxygen species (ROS) via enhanced aerobic metabolism
and cause oxidative damage and cell death, with crucial
effects on tapetal PCD in Arabidopsis, rice, and tomato
(Parish et al. 2012; Zhang et al. 2021). A recent study
showed that loss-of-function mutations to DWARF
(DWF) and BRASSINAZOLE-RESISTANT1 (BZR1) alter the
timing of ROS production and delay tapetal PCD in
tomato (Yan et al. 2020). These findings provide evi-
dence that ROS homeostasis in anthers contributes to
the regulation of tapetal cell degeneration. Heat stress
promotes the production of protein disulfide isomerase
9 (PDI9), which affects nascent and misfolded proteins
in the endoplasmic reticulum; a mutation to the corre-
sponding gene decreases pollen viability at high tem-
peratures (Feldeverd et al. 2020). Plants rely on diverse
mechanisms to withstand heat stress, including the
production of antioxidants and ROS scavengers as well
as the induction of heat shock transcription factors
(HSFs) and heat shock proteins (HSPs) (Chaturvedi et al.
2013). Heat stress may also activate a regulatory loop in
which accumulating ROS modulate signaling cascades

that produce antioxidant enzymes that eliminate
excessive ROS in cells (Parish et al. 2012). Increases in
ROS levels reportedly induce the production of detoxi-
fication-related enzymes in wheat pollen (Kumar et al.
2014). Additionally, increasing ROS contents can
upregulate the expression of HEAT SHOCK TRANSCRIP-
TION FACTOR A1 (HsfA1), which substantially activates
the expression of heat responsive genes. In Arabidopsis
and tomato hsfa1 mutants, the expression levels of
many HS-responsive genes are lower than normal,
resulting in vegetative tissues with HS-insensitive phe-
notypes (Mishra et al. 2002; Yoshida et al. 2011). Many
HSF and HSP genes are highly expressed in tomato
microsporocytes and microspores, and their expression
levels may be further increased by heat stress (Cha-
turvedi et al. 2013). For example, SlHsfA2 regulates the
expression of several HS-responsive genes and main-
tains pollen viability in plants exposed to heat stress
during meiosis in the microspore stage, suggestive of
the importance of HsfA2 for pollen thermotolerance
(Fragkostefanakis et al. 2016). The contribution of
AtHsfA5 to pollen thermotolerance was revealed in an

Fig. 2 Regulatory pathway of the tomato anther and pollen development in response to abiotic stress. A High-temperature (HT) stress
induces ROS production and the tomato tapetal PCD process, leading to male sterility. An exposure to HT stress also increases the HSF and
UPR expression levels, thereby enhancing the ability of tomato anthers and pollen grains to tolerate heat stress. B Low-temperature (LT)
stress leads to abnormal anther m6A levels and increased ABA contents in tomato, which adversely affects sugar metabolism by
decreasing CWIN expression levels and delaying tapetal PCD degradation, ultimately resulting in male sterility. Moreover, LT stress
enhances the production of SlPIF4, which interacts with SlDYT1 and induces SlTDF1 expression, which leads to delayed tapetal PCD.
Drought inhibits tapetal degradation through the ABA and IAA signaling pathways. Upward and downward pointing red arrows indicate
significant increases and decreases, respectively. The dashed line indicates a putative role or relationship
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earlier study in which the pollen abortion rate was
relatively high for the Athsfa5 mutant because of
defective HS responses (Reňák et al. 2014). Phytohor-
mone signaling pathways typically mediate plant
responses to abiotic stress. Excessive heat causes the
abscisic acid (ABA) level to increase in rice anthers,
whereas the IAA and GA contents decrease, leading to a
decrease in pollen fertility (Zhang et al. 2021). The
application of exogenous auxin can reverse the male
sterility of barley plants exposed to high temperatures,
demonstrating that auxin defection was an essential
factor responsible for the heat stress-induced male
sterility (Sakata et al. 2010). Notably, the AUXIN
RESPONSE FACTOR17 (ARF17) was reported to directly
regulate the expression of CALLOSE SYNTHASE5 (CalS5),
the key gene for callose biosynthesis. The miR160 reg-
ulated expression of ARF17 is also required for its
function during anthers development in Arabidopsis
(Wang et al. 2017; Yang et al. 2013). Both ABA and GA
are candidate signaling molecules that affect tapetal
development by regulating carbohydrate availability in
the tapetum and microspores under abiotic stresses
(Zhang et al. 2021).

Cold stress is another prevalent abiotic factor affect-
ing the growth and development of plants, especially
subtropical vegetable crops. In Arabidopsis and rice,
cold stress usually delays or inhibits tapetum regener-
ation by disrupting tapetal PCD, resulting in infertile
pollen (Zhang et al. 2021). In developing tomato anthers
and pollen grains, PCD-triggered tapetum degradation is
initiated during the tetrad stage, intensifies from the
early-to-late uninucleate stage, and is undetectable at
the binucleate pollen stage. Cold stress in tomato leads
to irregular hypertrophy and tapetum vacuolation
because of delayed PCD, which subsequently leads to
pollen abortion (Fig. 2B) (Pan et al. 2021; Yang et al.
2021). In contrast, pollen grains develop normally in the
tomato Slpif4 mutant under cold stress conditions
because the inhibited activation of SlTDF1 makes the
tapetum relatively insensitive to low temperatures
(Fig. 2B) (Pan et al. 2021). The inhibition of invertase
may be associated with tapetal hypertrophy and vac-
uolation. For example, during male gametogenesis in
rice, low-temperature stress causes ABA to accumulate,
which may suppress the expression of the tapetum-
specific cell wall invertase gene OsINV4 and the
monosaccharide transporter genes OsMST8 and
OsMST7, leading to abnormalities in anther sugar
metabolism and male sterility (Oliver et al. 2005).
Abscisic acid has vital functions related to plant devel-
opment and mediates responses to abiotic stress.
Increased ABA levels improve plant abiotic stress tol-
erance during the vegetative growth stage, but there is a

negative correlation between the anther ABA content
and pollen fertility (Oliver et al. 2007). In tomato, an
exposure to cold stress significantly increases anther
ABA levels, but the expression of SlCWIN7, which is
homologous to the rice gene OsINV4, significantly
decreases, suggesting that low temperatures disrupt
anther sugar metabolism, which leads to pollen sterility
(Yang et al. 2021). Reversible epigenetic modifications
typically occur in developing plants in response to
environmental stress. At low temperatures, N6-methy-
ladenosine (m6A) levels decrease in tomato anthers,
which results in the altered transcription of many pollen
development-related genes (Yang et al. 2021). These
findings suggest m6A may influence tomato pollen
development under cold conditions. Similar to cold
stress, drought conditions can interfere with tapetal
development by preventing or delaying the induction of
PCD in developing tomato pollen grains (Lamin-Samu
et al. 2021). Analyses of transcription levels and hor-
mone metabolism showed that in tomato anthers,
drought stress upregulates the expression of genes
related to tapetum development and ABA homeostasis,
whereas it has the opposite effect on the expression of
sugar metabolism-associated genes, leading to
increased ABA levels and decreased soluble sugar con-
tents, which is consistent with what has been reported
for other crops (Ji et al. 2011; Oliver et al. 2007). These
results imply that in tomato, drought stress has detri-
mental effects on the metabolism of carbohydrates and
hormones. The molecular mechanisms linking tapetal
development and anther sugar and ABA homeostasis
remain unclear. Future research will need to elucidate
the cold- and/or drought-induced changes to these
mechanisms that lead to tapetal dysfunction.

CONCLUSIONS AND FUTURE PERSPECTIVES

Increases in the global population as well as climate
changes are major issues that must be addressed to
maintain agricultural production and food security. In
addition to increasing crop yields, minimizing abiotic
stress-induced production losses is a major objective
among plant researchers. Thoroughly characterizing the
mechanism regulating male fertility and identifying
novel stress resistance genes associated with male
reproductive development may enable the generation of
stress-resistant germplasm resources suitable for
biotechnology-based crop breeding. Research regarding
reproductive stress tolerance has continued to progress
because multiple strategies have been applied. For
example, protein phase separations have been revealed
to contribute to plant adaptive responses to cellular pH
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changes, temperature fluctuations, and oxidative stress.
In Arabidopsis, a prion-like domain in ELF3 functions as
a putative thermo-sensor to undergo protein phase
transition that results in the formation of liquid droplets
in response to increasing temperatures (Jung et al.
2020). The oxidation in the tomato shoot apical meris-
tem triggers protein phase separations that enable TMF
to bind to the promoter of the floral identity gene
ANANTHA to repress its expression (Huang et al. 2021).
The reversible protein phase separation promoted by
changing internal and external conditions is responsible
for the flexibility with which plants respond to global
climate changes; this may represent a new abiotic stress
mechanism influenced by plant developmental cues,
especially those related to reproductive development.
Stress resistance is typically a complex and polygenic
trait. Developing novel plant lines with desirable traits
through polygenic editing is a considerable challenge.
There are numerous extant wild relatives of tomato that
are highly tolerant to various stresses. Therefore, the de
novo domestication of wild tomato species has been
proposed as a viable alternative for creating climate-
smart crops via genome engineering (Li et al. 2018a).
Furthermore, a ‘two-in-one’ strategy-based breeding
program that combines the production of male-sterile
lines of an elite cultivar using CRISPR technology with
the de novo domestication of wild species may enable
researchers and breeders to enhance tomato stress
resistance and yield (Xie et al. 2022). Although tomato
male fertility has been widely studied and many reces-
sive genic male-sterile mutants are useful for producing
hybrid seeds, two major factors still restrict their com-
mercial utility. First, it is difficult to efficiently maintain
male sterility in genic male-sterile lines through self-
pollination. Alternatively, analyses of male-sterile
mutants in two lines may facilitate the large-scale iso-
lation of pure male-sterile female lines via self-pollina-
tion (Chen and Liu 2014; Shi et al. 2021; Zhu et al.
2020). Second, the production of tomato hybrid seeds is
an expensive and labor-intensive process. Because the
stigma is completely covered by the staminal tube in
tomato cultivars, hybridizations require the manual
emasculation of the seed parent line. However, most
tomato male-sterile mutants exhibit sporogenous male
sterility and lack an exposed stigma, unlike functional
male-sterile mutants. Elucidating tomato stamen mor-
phological development and creating male-sterile lines
with an exposed stigma may substantially decrease the
costs associated with producing tomato hybrid seeds,
thereby increasing their commercial utility.
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