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Abstract Ever since the concept of ‘‘plant cell totipotency’’ was first proposed in the early twentieth century, plant
regeneration has been a major focus of study. Regeneration-mediated organogenesis and genetic
transformation are important topics in both basic research and modern agriculture. Recent studies in
the model plant Arabidopsis thaliana and other species have expanded our understanding of the
molecular regulation of plant regeneration. The hierarchy of transcriptional regulation driven by
phytohormone signaling during regeneration is associated with changes in chromatin dynamics and
DNA methylation. Here, we summarize how various aspects of epigenetic regulation, including histone
modifications and variants, chromatin accessibility dynamics, DNA methylation, and microRNAs,
modulate plant regeneration. As the mechanisms of epigenetic regulation are conserved in many plants,
research in this field has potential applications in boosting crop breeding, especially if coupled with
emerging single-cell omics technologies.
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INTRODUCTION

From unicellular green algae to angiosperms, plants are
highly regenerative, meaning that new organs or whole
bodies can be rebuilt following injury (Ikeuchi et al.
2016, 2019). Research on regeneration can be traced
back to Gottlieb Haberlandt’s description of totipotency
proposed in the early twentieth century (Haberlandt
2003; Krikorian and Berquam 2003; Thorpe 2007). In
1957, Skoog and Miller demonstrated that the ratio of
exogenous auxin to cytokinin (CK) affects the fate of

callus differentiation in tobacco (Nicotiana tabacum)
(Skoog and Miller 1957), providing experimental tools
and a conceptual framework for exploring the functions
of phytohormones and their interactions during regen-
eration (Birnbaum and Alvarado 2008). Plant tissue
culture has been widely used in both basic research and
agriculture and provides an excellent system for
studying plant organogenesis and somatic embryogen-
esis. Strategies that combine tissue culture and genome
editing technologies provide opportunities to geneti-
cally improve crops (Loyola-Vargas and Ochoa-Alejo
2018).

Plant regeneration can be divided into two cate-
gories: injury-induced regeneration and tissue culture-
induced regeneration (Mathew and Prasad 2021). In the
former, different regeneration processes occur
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depending on the type of injury (Ikeuchi et al. 2016).
When the meristem is partially damaged, the plant will
reconstruct the meristem, whereas when the meristem
is completely absent, the plant will grow axillary shoots
or lateral roots. Some plant species, such as those in the
Crassulaceae and Gesneriaceae families, can undergo de
novo organogenesis to form new shoots or roots from
cut sites (Ikeuchi et al. 2016). Other plants, however,
require tissue culture to regenerate the entire plant.
Injury activates a range of genes, including cell cycle
genes, genes involved in CK synthesis and responses,
and genes encoding transcription factors (TFs) of the
AP2/ERF family (Ikeuchi et al. 2017). WOUND INDUCED
DEDIFFERENTIATION 1 (WIND1) is rapidly induced at
the wounding site and promotes cell dedifferentiation to
form callus via type-B ARR (Iwase et al. 2011). Another
gene in the AP2/ERF family, ETHYLENE RESPONSE
FACTOR 115 (ERF115), promotes reconstitution of the
stem cell niche after root tip excision (Heyman et al.
2016).

Tissue culture-induced regeneration can be divided
into three types based on the culture system and
regeneration process used: de novo root regeneration,
de novo shoot regeneration, and somatic embryogenesis
(Mathew and Prasad 2021). Both de novo root regen-
eration and shoot regeneration are two-step processes.
The explant forms callus on an auxin-rich callus induc-
tion medium (CIM). The callus then differentiates into
roots on root induction medium (RIM), which contains
little or no auxin, or shoots on CK-rich shoot induction
medium (SIM) (Lardon and Geelen 2020). Regardless of
the origin of the explant, the process of callus formation
induced on CIM follows the root developmental path-
way (Sugimoto et al. 2010), and the identity of the callus
is similar to that of root primordia (Zhai and Xu 2021).
During this process, auxin signaling in Arabidopsis
(Arabidopsis thaliana) first activates WUSCHEL RELA-
TED HOMEOBOX 11 (WOX11) and WOX12, which
transforms the regenerative pericycle or pericycle-like
cells of the explant into root founder cells (Atta et al.
2009; Liu et al. 2014; Sang et al. 2018; Xu 2018). Sub-
sequently, in the continuous presence of auxin, WOX11/
WOX12 activates the expression of WOX5, WOX7, LAT-
ERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), and
LBD29, which in turn transform root founder cells into
root primordium cells (Hu and Xu 2016; Xu 2018; Liu
et al. 2018b). Thus, callus is formed on CIM.

Subsequently, the ratio of auxin to CK determines the
direction of callus re-differentiation. On RIM, callus
resembling root primordia continues to undergo cell
division and differentiates into a well-organized root
apical meristem (RAM). During this process, LBD16
expression in the root meristem gradually decreases

and the expression of WOX5 and WOX7 is restricted to
the stem cell niche (Hu and Xu 2016; Xu 2018; Jing et al.
2020). In addition, PLETHORA 1 (PLT1), PLT2, SCARE-
CROW (SCR), and SHORT ROOT (SHR) are essential for
quiescent center specification and stem cell activity in
the RAM (Della Rovere et al. 2015; Shimotohno et al.
2018). However, under the induction of CK in SIM, the
callus differentiates into shoots. First, the expression of
CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 in callus is
spatially reorganized to mark promeristem regions, and
PIN-FORMED 1 (PIN1) is induced by CUCs to determine
the future locations of shoot progenitors (Hibara et al.
2003; Daimon et al. 2003; Gordon et al. 2007; Shin et al.
2020). Along with the up-regulation of PIN1, SHOOT
MERISTEMLESS (STM) is expressed in the promeristem
to maintain shoot meristem activity (Gordon et al. 2007;
Shin et al. 2020). In addition, type-B ARRs in the CK
signaling pathway, including ARABIDOPSIS RESPONSE
REGULATOR 1 (ARR1), ARR2, ARR10, and ARR12,
directly bind to and activate WUSCHEL (WUS), which
directs the shoot apical meristem (SAM) formation
program (Negin et al. 2017; Zhang et al. 2017b; Shin
et al. 2020).

Unlike de novo root or shoot regeneration, somatic
embryogenesis leads to the formation of a bipolar
structure with an apical and basal pole. In Arabidopsis,
somatic embryogenesis is often induced from 2,4-
dichlorophenoxyacetic acid (2,4-D)-treated immature
zygotic embryos at the bent cotyledon stage of devel-
opment (Horstman et al. 2017). Ectopic expression of
the embryo identity genes LEAFY COTYLEDON 1 (LEC1)
(Lotan et al. 1998) and LEC2 (Stone et al. 2001), the
meristem identity genes BABY BOOM (BBM) (Boutilier
et al. 2002) and WUS (Gaj 2004; Chatfield et al. 2013),
and wound-induced WIND1 (Ikeuchi et al. 2013) indu-
ces somatic embryogenesis.

Plant cells undergo multiple rapid cell fate transitions
during regeneration, which is accompanied by the
reprogramming of the transcriptome and chromatin
landscape. Cell identity genes, especially TF genes, are
induced by phytohormones to participate in plant
regeneration (Sang et al. 2018; Ikeuchi et al. 2019;
Sugimoto et al. 2019; Mathew and Prasad 2021). The
expression of these key TF genes is partially regulated
by various epigenetic regulators. In 2007, Crane and
Gelvin reported that RNAi lines in which 24 genes
encoding epigenetic regulators, including chromatin
remodeling complexes, DNA methyltransferases, and
various histone modification-related enzymes, had been
silenced showed altered genetic transformation effi-
ciencies (Crane and Gelvin 2007). Further studies have
uncovered epigenetic dynamics during plant regenera-
tion and highlighted the importance of the epigenetic
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regulation of key TFs that drive the cell fate transition
during regeneration (Wang et al. 2020; Xu et al. 2021;
Wu et al. 2022). Here, we summarize recent advances in
understanding the epigenetic regulation of the plant
regeneration process (Fig. 1, Table 1), with a focus on

tissue culture-induced regeneration, and propose future
directions for better understanding the different layers
of epigenetic regulation of plant regeneration and their
applications in crop breeding.

Fig. 1 Roles of epigenetic regulators in plant regeneration. Mechanisms of histone methylation (A), histone acetylation (B), DNA
methylation (C), and miRNA (D) in regulating plant regeneration. The font color indicates the transcriptional status of the gene, with red
representing transcriptional activation and blue representing transcriptional repression. The scissors represent the injury-induced
regeneration. The arrows represent activation and the T-ended arrows represent inhibition
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Table 1 Epigenetic regulators of plant regeneration

Protein
name

Protein ID Annotation Targets Roles in regeneration References

CLF AT2G23380 H3K27me3
methyltransferase

SAW1, SAW2, ATH1,
TCP10

Inhibits somatic embryogenesis;
Promotes callus formation from
leaves

He et al. (2012)

SWN AT4G02020 H3K27me3
methyltransferase

SAW1, SAW2, ATH1,
TCP10

Inhibits somatic embryogenesis;
Promotes callus formation from
leaves

He et al. (2012)

ATX4 AT4G27910 H3K4me3
methyltransferase

ATH1, KANT4,
SAW1, SAW2,
TCP10, YAB5

Inhibits callus formation from
leaves; Promotes shoot
regeneration from callus

Lee et al. (2019)

LDL3 AT4G16310 H3K4me2
demethylase

CIPK23, GLT1,
UPL4, ARR12

Promotes shoot regeneration from
callus

Ishihara et al. (2019)

ATXR2 AT3G21820 H3K36me3
methyltransferase

LBD16, LBD29,
ARR5, ARR7

Promotes callus formation from
leaves; Inhibits shoot
regeneration from callus

Lee et al.
(2017, 2018b, 2021)

ASHR3 AT4G30860 H3K36me3
methyltransferase

ARR1, PLT3, WIND3 Promotes wound-induced callus
formation

Lee et al. (2020)

JMJ30 AT3G20810 H3K9me3
demethylase

LBD16, LBD29 Promote callus formation from
leaves

Lee et al. (2018a)

AtPRMT5 AT4G31120 H4R3sme2
methyltransferase

KRP1 Promotes shoot regeneration from
callus

Liu et al. (2016a)

HAG1 AT3G54610 histone
acetyltransferase

WOX5, SCR, PLT1,
PLT2

Promotes wound-induced callus
formation; Promotes shoot
regeneration from callus

Kim et al. (2018),
Rymen et al. (2019)

HAG3 AT5G50320 histone
acetyltransferase

NA Promotes wound-induced callus
formation

Rymen et al. (2019)

HDA19 AT4G38130 histone
deacetylases

LEC2 Inhibits somatic embryogenesis Morończyk et al.
(2022)

HDA9 AT3G44680 histone
deacetylases

LBD17, LEC1 Inhibits callus formation from
leaves

(Lee et al. 2016)

HDT1 AT3G44750 histone
deacetylases

BBM, WUS Inhibits callus formation from
leaves

Lee et al. (2016)

OsHDA710 Os02g0215200 histone
deacetylases

OsARF18, OsARF22 Promote callus formation from
embryos

Zhang et al. (2020)

HTR15 AT5G12910 coding H3.15 WOX11 Promotes wound-induced callus
formation; Promotes callus
formation from hypocotyls

Yan et al. (2020)

INO80 AT3G57300 chromatin
remodeling
complexes

PIN1 Collaborates with histone
chaperones NRP1/2 to regulate
IM and RAM activities

Kang et al. (2019)

PKL AT2G25170 chromatin
remodeling
complexes

LEC1, FUS3, ABI3,
EMF2, CLF, SWN,
AP3, AG, FLC

Facilitates root meristem activity;
Limits embryogenesis

Aichinger et al.
(2009, 2011)

BRM AT2G46020 chromatin
remodeling
complexes

Cyc81;1, CycB1;3,
PIN1–4, PIN7

Maintains the root stem cell niche Yang et al. (2015)

CHR3 AT2G28290 chromatin
remodeling
complexes

WUS Maintains the floral meristem Sun et al. (2019)

MET1 AT5G49160 DNA
methyltransferase

WUS, ARR1, ARR10,
CRY1

Inhibits shoot regeneration from
callus

Liu et al. (2018a), Shim
et al. (2021)

DRM1 AT5G15380 DNA
methyltransferase

WUS Inhibits shoot regeneration from
callus

Shemer et al. (2015)

DRM2 AT5G14620 DNA
methyltransferase

WUS Inhibits shoot regeneration from
callus

Shemer et al. (2015)
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LAYERS OF EPIGENETIC REGULATION
OF TRANSCRIPTION

Gene transcription is regulated at multiple levels. In
general, trans-acting TFs bind to cis-elements in their
target promoters to promote or inhibit gene transcrip-
tion. However, in the cellular environment, DNA is
wrapped around histones and packaged into nucleo-
somes, which limits the access of TFs. Transcription
factors compete with histones and other chromatin-
binding proteins to bind to DNA (Klemm et al. 2019).
Chromatin remodeling complexes can directly alter
nucleosome composition and interactions, thereby
affecting chromatin accessibility (Ojolo et al. 2018).
Methylation or acetylation of histone H3 and H4 can
affect the interactions between histones and DNA,
resulting in loose or dense chromatin (Pfluger and
Wagner 2007). DNA methylation is also involved in
transcriptional regulation. DNA methylation in promot-
ers inhibits gene transcription, whereas DNA methyla-
tion in gene bodies is mostly associated with
constitutive expression (Zhang et al. 2018a). Post-tran-
scriptional regulation, such as processes mediated by
microRNA (miRNA), can also affect gene expression
(Gibney and Nolan 2010).

REGULATION OF PLANT REGENERATION
VIA HISTONE MODIFICATIONS AND HISTONE
VARIANTS

Histone methylation-regulated plant
regeneration

The lysine or arginine residues of histone tails can be
modified by mono-, di- and tri-methylation, which
affects transcription by altering the local chromatin
state. Methylation of residues at different positions of

histone has various effects on the transcriptional regu-
lation of genes. In general, trimethylation at lysine 27 of
histone H3 (H3K27me3) and trimethylation at lysine 9
of histone H3 (H3K9me3) negatively regulate tran-
scription, whereas trimethylation at lysine 4 of histone
H3 (H3K4me3) and trimethylation at lysine 36 of his-
tone H3 (H3K36me3) are associated with transcrip-
tional activation (Xiao et al. 2016). Histone methylation
dynamics are regulated by ‘‘writers’’ that add methyl
groups, such as histone lysine methyltransferase
(HKMTs) and protein arginine methyltransferases
(PRMTs), and ‘‘erasers’’ that remove methyl group, such
as histone demethylases (HDMs) (Liu et al. 2010).

H3K27me3 dynamics regulate plant regeneration

In Arabidopsis, H3K27me3 is catalyzed by Polycomb
repressive complex 2 (PRC2), which consists of four
subunits. The catalytic subunit Enhancer of zeste
homolog2 (EZH2) is encoded by three functionally
independent genes: CURLY LEAF (CLF), SWINGER
(SWN), and MEDEA (MEA). The spatial–temporal-speci-
fic expression of these genes leads to the functional
diversification of PRC2 (Bieluszewski et al. 2021).
Instead of exhibiting normal plant architecture, the clf
swn double mutant spontaneously forms a callus-like
tissue that accumulates neutral lipids and occasionally
somatic embryo-like structures (Chanvivattana et al.
2004; Ikeuchi et al. 2015). Although auxin failed to
induce somatic embryogenesis from wild-type shoots,
this treatment induced somatic embryo formation from
clf swn shoots (Mozgová et al. 2017). This observation
suggests that the loss of function of PRC2 promotes
somatic embryogenesis from vegetative tissues in Ara-
bidopsis. In rice (Oryza sativa), the H3K27me3 levels of
OsWOX6, OsWOX9, OsWOX11, OsPLT3, OsPLT6, and
OsPLT8 are significantly lower in callus than in seedlings
(Zhao et al. 2020). In peach (Prunus persica), during the

Table 1 continued

Protein
name

Protein ID Annotation Targets Roles in regeneration References

CMT3 AT1G69770 DNA
methyltransferase

WUS Inhibits shoot regeneration from
callus

Shemer et al. (2015)

miR156 microRNA SPL9 Promotes shoot regeneration;
Promotes somatic
embryogenesis

Zhang et al. (2015),
Long et al. (2018)

miR319 microRNA TCP3, TCP4 Inhibits shoot regeneration Yang et al. (2020)

miR160 microRNA ARF10 Inhibits callus formation; Inhibits
shoot regeneration

Qiao et al. (2012), Liu
et al. (2016b)

miR167 microRNA ARF6, ARF8 Inhibits somatic embryogenesis Arora et al. (2020)

miR393 microRNA TIR1, AFB3 Inhibits shoot regeneration;
Inhibits somatic embryogenesis

Wójcik and Gaj (2016),
Wang et al. (2018)
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leaf-to-callus transition, the up-regulation of auxin-re-
lated genes PpPIN6 and AUXIN-INDUCED PROTEIN 13
(PpIAA13) and the lateral root development-related
genes PpLBD1, LATERAL ORGAN BOUNDARIES (PpLOB),
SHI RELATED SEQUENCE 1 (PpSRS1), and LATERAL
ROOT PRIMORDIUM 1 (PpLRP1) is accompanied by a
decrease in H3K27me3 levels (Zheng et al. 2022). Fur-
thermore, treatment with the H3K27me3 demethylase
inhibitor GSK-J4 significantly reduced the rate of callus
induction in peach (Zheng et al. 2022). In hexaploid
wheat (Triticum aestivum), H3K27me3 deceases at
auxin signaling genes and root meristem formation-re-
lated genes such as TaPIN1 and TaLBD17 during the late
stage of callus formation from immature embryos (Liu
et al. 2022b). Thus, the attenuation of H3K27me3 of
auxin signaling and meristematic-related genes could
facilitate their activation and promote callus formation.
By contrast, leaf tissue of the Arabidopsis clf swn mutant
failed to form callus on CIM, because leaf identity genes,
such as SAWTOOTH 1 (SAW1), SAW2, ARABIDOPSIS
THALIANA HOMEOBOX GENE 1 (ATH1), and TCP
DOMAIN PROTEIN 10 (TCP10), cannot be repressed
without PRC2-mediated H3K27me3 deposition during
dedifferentiation and callus induction (Fig. 1A) (He et al.
2012). In summary, PRC2-mediated H3K27me3 marks
meristematic genes in differentiated tissues to prevent
callus formation, while it is also required to turn off
tissue identity genes for the acquisition of pluripotency
and to facilitate callus formation.

Altering H3K4me3 and H3K4me2 affects plant
regeneration

During the leaf-to-callus transition in Arabidopsis, the
down-regulation of leaf identity genes is also regulated
by the decrease in H3K4me3 levels. ARABIDOPSIS
TRITHORAX 4 (ATX4) (Foroozani et al. 2021) catalyzes
the trimethylation of H3K4 and participates in de novo
shoot regeneration from leaf explants (Lee et al. 2019).
ATX4 is highly expressed in leaves and deposits
H3K4me3 on the leaf identity genes ATH1, KNOTTED1-
LIKE HOMEOBOX GENE 4 (KNAT4), SAW1, SAW2, TCP10,
and YABBY 5 (YAB5) to maintain leaf cell identify. Upon
induction on CIM, the expression level of ATX4 decrea-
ses rapidly and remains low throughout callus induc-
tion. As a result, the H3K4me3 and expression levels of
leaf identity genes decrease, which results in the loss of
leaf cell identity (Lee et al. 2019). Compared to the wild
type, atx4 more readily generates callus from leaf tissue
(Lee et al. 2019). ATX4 also affects re-differentiation
from callus to shoot tissue. When callus is transferred to
SIM, ATX4 is temporarily up-regulated, and ATX4 re-
deposits H3K4me3 on ATH1, SAW1, SAW2, TCP10, and

YAB5 to regain shoot identity (Fig. 1A) (Lee et al. 2019).
Thus, ATX4-mediated H3K4me3 has dual functions in
callus induction and the re-differentiation of callus in
Arabidopsis. By contrast, in crops such as wheat (Liu
et al. 2022b) and rice (Zhao et al. 2020), H3K4me3
deposition increases during immature embryo- or seed-
induced callus formation, pointing to an opposite role
for H3K4me3 in promoting callus formation in these
crops compared to Arabidopsis. This discrepancy might
be due to the different types of explants used for each
species.

In general, dimethylation at lysine 4 of histone H3
(H3K4me2) positively regulates gene expression in
animals (Barski et al. 2007) but is associated with gene
repression in plants (Liu et al. 2019). LYSINE-SPECIFIC
DEMETHYLASE 1-LIKE 3 (LDL3) accumulates and
specifically erases H3K4me2 marks on genes required
for the acquisition of shoot traits during callus forma-
tion from root cells (Ishihara et al. 2019). Interestingly,
LDL3-mediated removal of H3K4me2 does not imme-
diately activate target genes, but rather primes genes for
subsequent activation during shoot induction on SIM
(Ishihara et al. 2019). Accordingly, the competency of
shoot regeneration is severely impaired in the ldl3
mutant due to its failure to eliminate H3K4me2 on
shoot regeneration genes, such as CBL-INTERACTING
PROTEIN KINASE 23 (CIPK23) and UBIQUITIN-PROTEIN
LIGASE 4 (UPL4) (Ishihara et al. 2019).

The status of H3K36me3 and H3K9me3 influences plant
regeneration

Signaling factors in the auxin and CK pathways interact
with histone modifiers to regulate gene expression
during plant regeneration. The H3K36me3 methyl-
transferase gene ARABIDOPSIS TRITHORAX-RELATED 2
(ATXR2) (Lee et al. 2017) and the H3K9me3 demethy-
lase gene JUMONJI C DOMAIN-CONTAINING PROTEIN 30
(JMJ30) (Lee et al. 2018a) are constitutively up-regu-
lated upon callus induction on CIM. The auxin signaling
factors AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19
interact with and recruit ATXR2 and JMJ30 to the pro-
moters of LBD16 and LBD29 and activate their expres-
sion to promote the dedifferentiation of leaf explants
and callus formation (Fig. 1A) (Lee et al. 2017, 2018a).
Notably, both JMJ30-mediated decreases in H3K9me3
and ATXR2-mediated increases in H3K36me3 are
required for the activation of LBDs during the leaf-to-
callus transition. ATXR2 also promotes root organo-
genesis on a phytohormone-free medium (Lee et al.
2018b) and inhibits shoot regeneration on SIM (Lee
et al. 2021). The atxr2 mutant shows enhanced shoot
regeneration from the callus regardless of the origin of
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the explant (Lee et al. 2021). ATXR2 interacts with type-
B ARR1 in the CK signaling pathway to deposit
H3K36me3 and activate ARR5 and ARR7 on SIM. ARR5
and ARR7 are type-A ARRs that inhibit WUS expression
and shoot formation (Lee et al. 2021). Therefore, auxin-
inducible ATXR2 regulates CK signaling and precisely
controls WUS expression to prevent premature shoot
induction. Another H3K36me3 methyltransferase,
ASH1-RELATED 3 (ASHR3), promotes wound-induced
callus formation. Following wounding, ASHR3 is rapidly
activated and deposits H3K36me3 on ARR1, PLT3, and
WIND3 to promote callus formation (Fig. 1A) (Lee et al.
2020).

Role of H4R3sme2 in plant regeneration

In addition to lysine methylation, histone arginine
methylation is also involved in plant regeneration.
Arabidopsis PROTEIN ARGININE METHYLTRANSFER-
ASE 5 (PRMT5), which catalyzes the symmetric
dimethylation at arginine 3 of histone H4 (H4R3sme2)
and RNA splicing factors, affects the transcription and
protein levels of the cyclin-dependent kinase inhibitor
KIP-RELATED PROTEIN 1 (KRP1) to participate in shoot
regeneration (Liu et al. 2016a). PRMT5 deposits
H4R3sme2 on KRP1 and KRP2 to inhibit their tran-
scription (Liu et al. 2016a). Furthermore, AtPRMT5
affects the alternative splicing of the E3 ubiquitin ligase
gene RELATED TO KPC1 (RKP), which produces an
abnormal RKP protein that cannot degrade KRP1 (Liu
et al. 2016a). KRP1 is up-regulated and KRP1 protein is
stabilized in the atprmt5 mutant. Since KRP1 negatively
regulates cell division, cell division and shoot regener-
ation are inhibited in this mutant (Liu et al. 2016a).

Histone acetylation-regulated plant regeneration

The level of histone acetylation is regulated by histone
acetyltransferases (HATs) and histone deacetylases
(HDACs) (Kumar et al. 2021). HATs activate gene
expression by catalyzing the acetylation of histone
lysine tails, while HDACs remove acetyl groups to
repress gene expression. HATs and HDACs can add or
remove acetylation at multiple lysine sites, including
lysine 9 of histone H3 (H3K9), lysine 14 of histone H3
(H3K14), lysine 36 of histone H3 (H3K36), lysine 5 of
histone H4 (H4K5), lysine 8 of histone H4 (H4K8), lysine
12 of histone H4 (H4K12), and lysine 16 of histone H4
(H4K16) (Kumar et al. 2021).

Histone acetylation levels change dynamically during
various regeneration processes. During wound-induced
callus formation, acetylation at lysine 9/14 of histone
H3 (H3K9/14ac) and acetylation at lysine 27 of histone

H3 (H3K27ac) accumulate on genes that are up-regu-
lated by wounding, such as WIND1, ERF113/RAP2.6L,
and LBD (Rymen et al. 2019). The histone acetyltrans-
ferases HISTONE ACETYLTRANSFERASE OF THE GNAT
FAMILY 1 (HAG1) and HAG3 promote callus formation
during wounding, as the callus formation rate is signif-
icantly reduced in hag1 and hag3 mutants (Rymen et al.
2019). HAG1 also promotes the transition of callus to
shoots. During de novo shoot regeneration, HAG1 cat-
alyzes the acetylation of WOX5, SCR, PLT1, and PLT2 and
promotes their expression, allowing the callus to
acquire competence for shoot regeneration (Fig. 1B)
(Kim et al. 2018). In addition to HATs, HDACs also affect
plant regeneration. Inhibiting HDAC activity in Ara-
bidopsis using the chemical inhibitor Trichostatin A
(TSA) induced the transformation of hypocotyls into
callus (Furuta et al. 2011) and induced somatic
embryogenesis in the absence of auxin (Wójcikowska
et al. 2018). Consistent with this observation, explants
with a knocked-down expression of HISTONE DEACE-
TYLASE 19 (had19) showed enhanced embryogenic
responses. Specifically, HDA19 inhibits somatic
embryogenesis by negatively regulating LEC1, LEC2, and
BBM expression by reducing their acetylation levels
(Fig. 1B) (Morończyk et al. 2022). However, when leaves
were used as the explant, TSA inhibited callus formation
(Lee et al. 2016). Consistently, both hda9 and hd-tuins
protein1 (hdt1) mutants show reduced callus induction
from leaves (Lee et al. 2016).

In rice, mature embryos are used as explants for
callus formation. TSA treatment inhibited the formation
of rice callus (Zhang et al. 2020). OsHDA710 decreases
the acetylation levels of the transcriptional repressor
genes OsARF18 and OsARF22, thereby activating OsPLT1
and OsPLT2 to promote callus formation (Fig. 1B)
(Zhang et al. 2020). However, low concentrations of TSA
promoted callus and shoot formation from mature
wheat embryos, whereas high concentrations of TSA
inhibited these processes (Bie et al. 2020). In addition,
treatment with the histone deacetylase inhibitor sodium
butyrate enhanced regeneration in wheat (Bie et al.
2020). Therefore, HDACs play various roles in the
regeneration of different explants in different species.
This variability is likely due to the promiscuous nature
of histone acetylation modifiers, which modify multiple
lysine residues of different histones.

The roles of histone variants in plant
regeneration

In addition to histone modification, histone variants
affect chromatin status and gene transcription (For-
oozani et al. 2021). For instance, the histone variant
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H2A.Z has dual functions in transcriptional activation
and repression (Kumar 2018). In rice callus, H2A.Z is
enriched at the 50 ends of highly expressed genes, while
inactive gene bodies are covered by H2A.Z (Zhang et al.
2017a). The atypical H3 variant HISTONE THREE
RELATED 15 (H3.15) is involved in cell fate repro-
gramming during plant regeneration in Arabidopsis
(Yan et al. 2020). H3.15 lacks the K27 residue that is
trimethylated, so its replacement would dilute
H3K27me3 levels (Yan et al. 2020). The H3.15-encoding
gene HISTONE THREE RELATED 15 (HTR15) is gradually
up-regulated by auxin signaling during callus formation
induced by wounding or culture on CIM (Yan et al.
2020). During callus formation, H3.15 is deposited on
WOX11 and helps remove H3K27me3, thus promoting
WOX11 expression and callus formation (Yan et al.
2020). Consistently, the htr15mutant has reduced callus
formation ability (Yan et al. 2020).

CHROMATIN ACCESSIBILITY DYNAMICS ARE
ASSOCIATED WITH THE CELL FATE TRANSITION
DURING PLANT REGENERATION

Chromatin accessibility dynamics are important for the
regulation of gene expression and are in turn generally
regulated by ATP-dependent chromatin remodeling
complexes (CRCs). Remodelers can alter the accessibil-
ity of a specific genomic region to regulate DNA–histone
interactions by changing the position, occupancy, and
composition of nucleosomes using energy from ATP
hydrolysis. Remodelers are highly conserved. Four
subfamilies of remodeler complexes have been charac-
terized in plants: CHROMODOMAIN HELICASE DNA
BINDING (CHD), SWITCH DEFECTIVE/SUCROSE NON-
FERMENTING (SWI/SNF), IMITATION SWITCH (ISWI),
and INOSITOL REQUIRING 80/SWI2/SNF2-RELATED 1
(INO80/SWR1) (Han et al. 2015; Ojolo et al. 2018).

Arabidopsis INO80 and the histone chaperones NAP1-
RELATED PROTEIN1 (NRP1) and NRP2 synergistically
regulate inflorescence meristem (IM) size and RAM
activity by affecting the expression of auxin-related
genes and preventing DNA damage to maintain chro-
matin stability (Kang et al. 2019). PICKLE (PKL) is a
CHD3 homolog in Arabidopsis that facilitates root
meristem activity (Aichinger et al. 2011) and maintains
root cell identity to limit embryogenesis by regulating
the expression of the PRC2-encoding genes CLF and
SWN (Aichinger et al. 2009). BRAHMA (BRM) is an SWI/
SNF chromatin remodeling ATPase that maintains root
stem cell activity by directly targeting PIN genes (Yang
et al. 2015). SPLAYED (SYD) is a SWI2/SNF2-like pro-
tein in the SNF2 subclass whose eviction, combined

with the deposition of H3K27me3 at the WUS promoter,
contributes to terminate floral meristem development
in Arabidopsis (Sun et al. 2019). Thus, chromatin
remodelers generally participate in the regulation of
meristem identity in plant tissues. However, few reports
have documented how manipulating chromatin remod-
elers alters chromatin accessibility to influence plant
regeneration. In monocot wheat, the regeneration effi-
ciency is generally low (Wang et al. 2017; Zhang et al.
2018b). Co-expressing GROWTH REGULATING FACTOR
and 4-GRF INTERACTING FACTOR 1 (TaGRF4-TaGIF1)
greatly promoted regeneration in different wheat vari-
eties (Debernardi et al. 2020). GIF recruits SWI/SNF
chromatin remodeling complexes to its target genes to
open the chromatin structure, thus allowing GRF4 to
regulate downstream gene expression (Kim 2019; Luo
and Palmgren 2021). Moreover, GIF1 functions together
with GRFs to recruit SWI/SNF chromatin remodeling
complexes to shape inflorescence architecture in maize
(Zea mays) (Li et al. 2022).

In Arabidopsis, auxin treatment altered the chromatin
accessibility of genes related to meristems and the cell
cycle, such as CYCLIN DEPENDENT KINASE B2;1
(CDKB2;1) and PLT7, to rewire the cell totipotency
network and drive somatic embryogenesis (Wang et al.
2020). A comparison of immature embryos and seedling
explants revealed that open chromatin and the activated
expression of embryonic genes such as ABA INSENSI-
TIVE 3 (ABI3), BBM, FUSCA 3 (FUS3), LEC1, and LEC2 are
required for somatic embryogenesis in Arabidopsis
(Wang et al. 2020). Similarly, in wheat, the gain of
chromatin accessibility, along with the activation of key
genes (such as TaBBM and TaWOX5) that mediate the
cell fate transition, occurs during callus induction from
immature embryos (Liu et al. 2022b). During shoot
regeneration from pluripotent callus in Arabidopsis, root
identity genes such as WOX5 gradually lose their chro-
matin accessibility, while shoot identity genes such as
PHYTOCHROME INTERACTING FACTOR 1 (PIF1) gain
chromatin accessibility. Furthermore, the chromatin
states of genes related to epidermal cell differentiation,
CK responses, and secondary metabolism gradually
become more open (Wu et al. 2022). In rice, chromatin
is generally more open in the callus than in seedlings,
with 58% more DNase I hypersensitive sites in the
callus that are positively correlated with transcription
(Zhang et al. 2012). During the process of protoplast
generation from leaf mesophyll cells in Arabidopsis,
more accessible chromatin regions are created, leading
to the random activation of WUS, which ultimately
promotes regeneration (Xu et al. 2021).

Therefore, an accessible chromatin environment
leads to higher totipotency, which is required for

� The Author(s) 2023

38 aBIOTECH (2023) 4:31–46



regeneration. Chromatin accessibility dynamics are
associated with changes in the expression of key genes
that drive the cell fate transition during different steps
of plant regeneration. However, the general or specific
roles of individual chromatin remodelers in plant
regeneration remain unclear.

DNA METHYLATION STATUS AFFECTS PLANT
REGENERATION

In plants, DNA methylation occurs on cytosine, includ-
ing symmetrical CG methylation, CHG methylation, and
asymmetric CHH methylation (Law and Jacobsen 2010).
The establishment, maintenance, and removal of DNA
methylation marks are catalyzed by different enzymes
(Law and Jacobsen 2010). DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2) catalyzes de novo
methylation, whereas the maintenance of DNA methy-
lation requires different enzymes: CG methylation is
maintained by DNA METHYLATRANSFERASE 1 (MET1,
also known as DMT1), CHG methylation is maintained
by CHROMOMETHYLASE 3 (CMT3), and CHH methyla-
tion is maintained by DRM2 and CMT2 (Zhong et al.
2014). DNA demethylation is initially mediated by DNA
glycosidases, including DEMETER (DME), REPRESSOR
OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2), and
DML3 (Law and Jacobsen 2010).

Significant changes in DNA methylation levels both
globally and at local key genes occur during multiple
plant regeneration processes. Compared to leaves, glo-
bal CHG methylation levels are higher and CHH methy-
lation levels are lower in callus, which is consistent with
the up-regulation of CMT3 and down-regulation of
CMT2 in callus (Shim et al. 2022). Cell proliferation-
related genes, including PLT1, PLT2, ORIGIN RECOGNI-
TION COMPLEX 1 (ORC1), REPLICATION FACTORC 2
(RFC2), MITOTIC ARREST DEFICIENT 1 (MAD1), and
DISRUPTION OF MEIOTIC CONTROL 1 (DMC1), are
hypomethylated in callus (Shim et al. 2022). The bind-
ing motifs of the circadian rhythm regulator genes
CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE
ELONGATED HYPOCOTYL (LHY) are enriched in these
CHH-hypomethylated regions (Shim et al. 2022). Indeed,
CCA1 directly binds to the promoter of the cell division-
related gene ORC1 to inhibit its expression, which may
be related to the high CHH methylation levels of this
promoter in leaves (Shim et al. 2022). During callus
formation, CCA1 is inhibited and the CHH methylation
level of the ORC1 promoter decreases, thus releasing the
expression of ORC1 and enhancing cell proliferation
(Shim et al. 2022).

DNA methyltransferases affect shoot regeneration.
Compared to wild-type Arabidopsis, both themet1 single
mutant and drm1 drm2 cmt3 (ddc) triple mutant show
enhanced competence for shoot regeneration (Shemer
et al. 2015; Liu et al. 2018a; Shim et al. 2021). Fur-
thermore, the ddc mutant regenerated shoots directly
from roots on SIM without inducing callus formation
(Shemer et al. 2015). During the two-step shoot
regeneration process, MET1 is highly expressed in the
callus under the activation of ATE2FA (E2FA), and its
expression is down-regulated on SIM (Liu et al. 2018a).
MET1 maintains the DNA methylation of WUS and
inhibits WUS expression in the callus (Fig. 1C) (Liu et al.
2018a). When MET1 was mutated, WUS, the CK signal-
ing genes ARR1 and ARR10, and the blue light receptor
gene CRYPTOCHROME 1 (CRY1) were activated to pro-
mote shoot regeneration (Liu et al. 2018a; Shim et al.
2021). Similarly, the up-regulation of WUS in the ddc
mutant resulted in the direct conversion of roots into
shoots on SIM (Fig. 1C) (Shemer et al. 2015). However,
treatment with 5-azacytidine, which inhibits DNA
methylation, has different effects on regeneration in
different species. 5-azacytidine promoted the transfor-
mation of peach leaves to callus (Zheng et al. 2022) but
inhibited callus formation in strawberry (Fragaria
ananassa) (Liu et al. 2022a). In addition, treatment with
5-azacytidine enhanced somatic embryogenesis in Ara-
bidopsis (Grzybkowska et al. 2018) but inhibited this
process in rice (Hsu et al. 2018). These findings suggest
that DNA methylation plays diverse roles in the regen-
eration of different plant species.

Plant regeneration competence is affected by the
explant’s age and variety, which are also related to DNA
methylation. The regeneration capacity of Boea hygro-
metrica leaves decreases during aging, which may be
related to the high CHH methylation levels in mature
leaves (Sun et al. 2020). There are significant differ-
ences in somatic embryogenesis competence between
the cotton (Gossypium hirsutum) cultivars Yuzao1 and
Lumian1, which may be related to the level of CHH
methylation (Guo et al. 2020). Yuzao1 has a high
somatic embryo induction rate and CHH hypomethyla-
tion, whereas Lumian1 has a low somatic embryo
induction rate and CHH hypermethylation (Guo et al.
2020). Therefore, high DNA methylation levels reduce
the regeneration ability of plants.

MICRORNA LEVELS ARE ASSOCIATED WITH PLANT
REGENERATION CAPACITY

miRNAs are a class of 21-nt non-coding small RNAs that
reduce gene transcription by targeting mature mRNAs
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(Axtell 2013). miRNAs such as miR156, miR160,
miR167, miR319, and miR393 are involved in plant
regeneration via the direct or indirect regulation of
auxin and CK signaling genes.

miR156 is involved in several age-related develop-
mental processes (Xu et al. 2016; Guo et al. 2017). The
shoot regeneration capacity of Arabidopsis and tobacco
decreases with plant age, which can be compensated for
by overexpressing MiR156 (Zhang et al. 2015). SQUA-
MOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9),
encoded by a gene targeted by miR156, directly binds to
type-B ARR genes, including ARR1, ARR2, ARR10, and
ARR12, to impair CK responses (Fig. 1D) (Zhang et al.
2015). High levels of miR156 inhibited SPL9 expression
at the juvenile stage of Arabidopsis seedlings (Zhang
et al. 2015). After juvenile-to-adult transition, decreased
miR156 levels led to the up-regulation of SPL9 and the
inhibition of CK responses, thus weakening the capacity
for shoot regeneration (Zhang et al. 2015). The miR156-
SPL regulatory circuit plays a similar role in somatic
embryogenesis in citrus. For the majority of citrus cul-
tivars, the callus gradually loses its embryogenesis
capacity and fails to differentiate into shoots after long-
term culture (Long et al. 2018). miR156 levels are sig-
nificantly lower in non-embryonic than in embryonic
callus, while its target genes CsSPL3 and CsSPL14 show
the opposite trend (Long et al. 2018). The expression
levels of CsSPL3 and CsSPL14 are highly negatively
correlated with somatic embryogenesis capacity in dif-
ferent citrus varieties (Long et al. 2018). In the orange
varieties ‘Anliu’, ‘Newhall’, ‘Valencia’, and ‘American’ sour
orange, which can undergo somatic embryogenesis, the
expression levels of CsSPL3 and CsSPL14 are relatively
low, while in varieties with weak competence for
somatic embryogenesis, the expression levels of CsSPL3
and CsSPL14 are high (Long et al. 2018). These obser-
vations suggest that miR156-SPLs are involved in reg-
ulating age-dependent and variety-specific somatic
embryogenesis in citrus.

Similar to miR156, miR319 also promotes shoot
regeneration by affecting CK responses. The target
genes of miR319 are TCP3 and TCP4, encoding proteins
that directly activate ARR16, which encodes a negative
regulator of shoot regeneration (Fig. 1D) (Yang et al.
2020). Loss-of-function of HUA ENHANCER 1 (HEN1), a
small RNA methyltransferase that stabilizes miR319,
decreased miR319 levels, leading to the up-regulation of
TCP3 and TCP4, which in turn activated ARR16 and
inhibited shoot regeneration (Yang et al. 2020).

miRNAs also affect auxin signaling during plant
regeneration. miR160 targets ARF10 and inhibits auxin
signaling, which in turn inhibits callus and shoot
regeneration (Fig. 1D) (Qiao et al. 2012; Liu et al.

2016b). Furthermore, the transcriptional repressor
ARF10 binds directly to AuxRE in the promoter region
of ARR15, which encodes a negative regulator of callus
formation (Fig. 1D) (Liu et al. 2016b). Therefore,
miR160 inhibits regeneration by affecting both auxin
and CK signaling pathways. In cotton, miR167 nega-
tively regulates somatic embryogenesis by targeting
ARF6 and ARF8 (Fig. 1D) (Arora et al. 2020). In plants
overexpressing the miR167 target mimic
(35S::MIM167), ARF6, ARF8, the auxin-responsive gene
GRETCHEN HAGEN 3 (GH3), and the auxin transporter
genes AUXIN RESISTANT 1 (AUX1), LIKE AUX1 3 (LAX3),
PIN1, and PIN2 were significantly up-regulated, sug-
gesting that miR167 promotes somatic embryogenesis
by enhancing auxin signaling (Arora et al. 2020). In
addition to affecting ARF expression, miRNAs also affect
the expression of auxin receptor-encoding genes, such
as TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and
AUXIN SIGNALING F-BOX 3 (AFB3). TIR1 and AFB3 were
up-regulated in a miR393 mutant, and the capacity for
shoot regeneration and somatic embryogenesis was
higher in the mutant than in the wild type (Fig. 1D)
(Wójcik and Gaj 2016; Wang et al. 2018).

CONCLUSIONS AND FUTURE PROSPECTS

Cell totipotency and cell fate determination are funda-
mental research topics in biology. Plant regeneration
provides an excellent system for studying these topics.
Multi-step cell fate transitions occur during plant
regeneration, which are accompanied by chromatin
landscape remodeling and transcriptome reprogram-
ming, particularly for cell identity genes such as WOX11,
WOX5, and WUS. Recent studies have improved our
understanding of the functions of various epigenetic
regulators, such as histone modification ‘writers’ and
‘erasers’, chromatin remodelers, DNA methyltrans-
ferases, and miRNAs, in shaping plant regeneration by
altering the expression of cell identity genes. However,
many open questions remain.

Cell identity is associated with the accessibility of
specific portions of the genome, which is controlled by
interactions between genomic DNA and nucleosomes
containing various histones (Chen and Dent 2014).
Altering DNA–histone interactions via chromatin modi-
fiers would affect the transcriptional competency of
genes associated with specific regions of the genome
(Klemm et al. 2019). Since cell identity frequently
switches during plant regeneration, multiple chromatin
modifiers are required to broadly alter the accessibility
of certain portions of the genome and specifically fine-
tune the expression of key genes in coordination with
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the activity of specific TFs. One challenging question is
how different chromatin modifiers function coopera-
tively to control regeneration. The specific expression or
induction patterns of chromatin modifiers and their
recruiters might differ for different targets or for the
same targets but at different stages of regeneration. For
example, the methyltransferase ATXR2 of H3K36me3
and demethylase JMJ30 of H3K9me3 both regulate
LBD16 and LBD19, but their regulation is interdepen-
dent (Lee et al. 2018a). However, different chromatin
modifiers might function together at the same loci. For
instance, the removal of H3K27me3 and gain of chro-
matin accessibility as well as increases in H3K4me3 at
specific gene clusters were detected during the early
callus induction step of wheat shoot regeneration from
immature embryos (Liu et al. 2022b). The detailed
mechanism that coordinates the activities of different
chromatin modifiers remains to be elucidated.

Phytohormone signals, especially auxin and CK sig-
nals, are essential during plant regeneration. Auxin and
CK signals are transmitted to downstream target genes
via ARF (Powers and Strader 2020) and type-B ARR (Li
et al. 2021) TFs, respectively. On the one hand, epige-
netic regulators can directly affect the expression of ARF
and ARR (Zhang et al. 2020) or targets of ARF and ARR
by ‘‘hijacking’’ ARF and ARR (Lee et al. 2017, 2021) to
deposit specific histone modifications that alter their
transcriptional activity. On the other hand, certain epi-
genetic regulators are induced by auxin or CK signaling,
showing specific expression patterns during regenera-
tion (Lee et al. 2018b, 2021). Therefore, additional
studies are needed to explore the relationship between
plant hormonal signals and epigenetic regulators, par-
ticularly to establish how auxin and CK influence epi-
genetic regulators for global chromatin remodeling and
thus the cell fate transition.

The mechanisms of epigenetic regulation of plant
regeneration, such as chromatin accessibility,
H3K27me3, and H3K4me3, are generally conserved
among different species, indicating that knowledge
obtained studying model plants can be transferred to
less-studied species, such as crops with large and
complex genomes [e.g., wheat, maize, and barley (Hor-
deum vulgare)]. However, epigenetic regulators show
diverse, pleiotropic effects; the same factor may behave
differently or even in an opposite manner during dif-
ferent stages of the regeneration process. Moreover,
orthologous factors might exhibit various functions
during the same stage of regeneration in different spe-
cies or even in different explants of the same species.
For these pleiotropic effects, in addition to epigenetic
regulators per se, more attention needs to be paid to
stage-specific recruiters that set the ‘specificity’ of

epigenetically modified targets. The diverse effects of
orthologous factors are likely related to the different
pre-existing cell identities in various explants or similar
explants of different species. Special attention should be
paid to characterizing the explant- or species-specific
reprogramming of epigenomics during regeneration.

Regeneration is widely used during the production of
genetically manipulated plants for agriculture. Whereas
in Arabidopsis, transgenic or genome-edited plants can
be directly generated using the floral dip method
(Clough and Bent 1998), major crops, including rice,
wheat, and maize, require long-term tissue culture (Hiei
et al. 2014). The efficiency of genetic transformation
methods of crops has been improved by optimizing their
regeneration systems (Hayta et al. 2019) and by the
ectopic expression of genes encoding key regeneration
factors such as WUS, BBM, and WOX5 (Lowe et al. 2016;
Wang et al. 2022). However, due to the diversity among
species and explants, not all factors that function in
Arabidopsis regeneration can improve the efficiency of
the genetic transformation of crops. Therefore, it is
important to systematically study the regeneration
processes of crops and to identify ‘novel’ factors that
can enhance the efficiency of crop regeneration. Several
recent studies have systematically analyzed gene
expression and chromatin dynamics during the regen-
eration process of rice (Zhao et al. 2020; Shim et al.
2020), wheat (Liu et al. 2022b), and barley (Suo et al.
2021), providing valuable resources for mining key
factors that enhance regeneration, such as TaDOF3.4
and TaDOF5.6 in wheat (Liu et al. 2022b). However,
more in-depth analysis is still urgently needed to better
understand the regeneration process and improve the
genetic transformation efficiency of crops.

Finally, the development of single-cell and spatial
omics technologies (Xia et al. 2022) provides additional
tools for tracing cells with regenerative origins in vari-
ous explants and exploring the heterogeneity of callus in
the same generation or during transmission to the next
generation (Mironova and Xu 2019; Xu et al. 2021; Zhai
and Xu 2021). Such analyses will further enhance our
mechanistic understanding of plant regeneration,
thereby facilitating the development of advanced crop
breeding tools.
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In: Laimer M, Rücker W (eds) Plant tissue culture: 100 years
since Gottlieb Haberlandt. Springer, Vienna, pp 1–24

Han S-K, Wu M-F, Cui S, Wagner D (2015) Roles and activities of
chromatin remodeling ATPases in plants. Plant J 83:62–77.
https://doi.org/10.1111/tpj.12877

Hayta S, Smedley MA, Demir SU, Blundell R, Hinchliffe A, Atkinson
N, Harwood WA (2019) An efficient and reproducible
Agrobacterium-mediated transformation method for hexa-
ploid wheat (Triticum aestivum L.). Plant Methods 15:121.
https://doi.org/10.1186/s13007-019-0503-z

He C, Chen X, Huang H, Xu L (2012) Reprogramming of H3K27me3
is critical for acquisition of pluripotency from cultured
Arabidopsis tissues. PLOS Genet 8:e1002911. https://doi.
org/10.1371/journal.pgen.1002911

Heyman J, Cools T, Canher B, Shavialenka S, Traas J, Vercauteren I,
Van den Daele H, Persiau G, De Jaeger G, Sugimoto K, De
Veylder L (2016) The heterodimeric transcription factor
complex ERF115–PAT1 grants regeneration competence.
Nature Plants 2:1–7. https://doi.org/10.1038/nplants.2016.
165

Hibara K, Takada S, Tasaka M (2003) CUC1 gene activates the
expression of SAM-related genes to induce adventitious shoot
formation. Plant J 36:687–696. https://doi.org/10.1046/j.
1365-313X.2003.01911.x

Hiei Y, Ishida Y, Komari T (2014) Progress of cereal transformation
technology mediated by Agrobacterium tumefaciens. Front
Plant Sci 5:2

Horstman A, Bemer M, Boutilier K (2017) A transcriptional view
on somatic embryogenesis. Regeneration 4:201–216. https://
doi.org/10.1002/reg2.91

Hsu F-M, Gohain M, Allishe A, Huang Y-J, Liao J-L, Kuang L-Y, Chen
P-Y (2018) Dynamics of the methylome and transcriptome
during the regeneration of rice. Epigenomes 2:14. https://doi.
org/10.3390/epigenomes2030014

Hu X, Xu L (2016) Transcription factors WOX11/12 directly
activate WOX5/7 to promote root primordia initiation and
organogenesis. Plant Physiol 172:2363–2373. https://doi.
org/10.1104/pp.16.01067

Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms
of induction and repression. Plant Cell 25:3159–3173.
https://doi.org/10.1105/tpc.113.116053

Ikeuchi M, Iwase A, Rymen B, Harashima H, Shibata M, Ohnuma M,
Breuer C, Morao AK, de Lucas M, De Veylder L, Goodrich J,
Brady SM, Roudier F, Sugimoto K (2015) PRC2 represses
dedifferentiation of mature somatic cells in Arabidopsis.
Nature Plants 1:1–7. https://doi.org/10.1038/nplants.2015.
89

Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regener-
ation: cellular origins and molecular mechanisms. Develop-
ment 143:1442–1451. https://doi.org/10.1242/dev.134668

Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi
Y, Heyman J, Watanabe S, Seo M, De Veylder L, Sakakibara H,
Sugimoto K (2017) Wounding triggers callus formation via
dynamic hormonal and transcriptional changes. Plant Physiol
175:1158–1174. https://doi.org/10.1104/pp.17.01035

Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B,
Sugimoto K (2019) Molecular mechanisms of plant regener-
ation. Annu Rev Plant Biol 70:377–406. https://doi.org/10.
1146/annurev-arplant-050718-100434

Ishihara H, Sugimoto K, Tarr PT, Temman H, Kadokura S, Inui Y,
Sakamoto T, Sasaki T, Aida M, Suzuki T, Inagaki S, Morohashi
K, Seki M, Kakutani T, Meyerowitz EM, Matsunaga S (2019)
Primed histone demethylation regulates shoot regenerative
competency. Nat Commun 10:1786. https://doi.org/10.
1038/s41467-019-09386-5

Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue
Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M (2011)
The AP2/ERF transcription factor WIND1 controls cell
dedifferentiation in Arabidopsis. Curr Biol 21:508–514.
https://doi.org/10.1016/j.cub.2011.02.020

Jing T, Ardiansyah R, Xu Q, Xing Q, Müller-Xing R (2020)
Reprogramming of cell fate during root regeneration by
transcriptional and epigenetic networks. Front Plant Sci 11:2

Kang H, Ma J, Wu D, Shen W-H, Zhu Y (2019) Functional
coordination of the chromatin-remodeling factor AtINO80
and the histone chaperones NRP1/2 in inflorescence meris-
tem and root apical meristem. Front Plant Sci 10:2

Kim JH (2019) Biological roles and an evolutionary sketch of the
GRF-GIF transcriptional complex in plants. BMB Rep
52:227–238. https://doi.org/10.5483/BMBRep.2019.52.4.
051

Kim J-Y, Yang W, Forner J, Lohmann JU, Noh B, Noh Y-S (2018)
Epigenetic reprogramming by histone acetyltransferase
HAG1/AtGCN5 is required for pluripotency acquisition in
Arabidopsis. EMBO J 37:e98726. https://doi.org/10.15252/
embj.201798726

Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility
and the regulatory epigenome. Nat Rev Genet 20:207–220.
https://doi.org/10.1038/s41576-018-0089-8

Krikorian AD, Berquam DL (2003) Plant cell and tissue cultures:
the role of haberlandt. In: Laimer M, Rücker W (eds) Plant
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