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Solanaceae pangenomes are coming of graphical age to bring
heritability back
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Abstract Two recent articles describe a pangenome of potato and a graph-based pangenome for tomato,
respectively. The latter improves our understanding of the tomato genomics architecture even further
and the use of this graph-based pangenome versus a single reference dramatically improves heritability
in tomato.
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The last few years have seen significant progress in
Solanaceae genomics, spurred by novel sequencing
technologies. It all started with the publication of the
first version of the tomato ‘‘Heinz 1706’’ genome
10 years ago (Tomato Genome Consortium 2012) and
subsequently led to the elucidation of several Solana-
ceae reference genomes, ranging from wild to crop
species. However, advances in sequencing technologies
and bioinformatics have continued, enabling ever
cheaper and/or better analyses techniques. This has
allowed elucidating the genomes of tomato-like Solanum
species (Molitor et al. 2021; Powell et al. 2022) which
have been used in the construction of introgression
lines (Chetelat et al. 2019). At the same time, reduced
short-read sequencing costs allowed analysing several
hundred tomato accessions shedding light on domesti-
cation history (Lin et al. 2014) and ultimately led to the
construction of the tomato pangenome (Gao et al. 2019).
Novel long-read Nanopore data allowed the in-depth
analysis of structural variations within the tomato
pangenome (Alonge et al. 2020). Finally, a combination
of the two competing long-read technologies (i.e.
Nanopore and PacBio) showed their complementarity to
construct near complete, gapless tomato assemblies
(van Rengs et al. 2022). Potato genomics was following

these developments closely. Here, short-read genome
sequencing of a diverse panel of potato relatives, lan-
draces and accessions shed light on the evolutionary
and domestication history of potato (Hardigan et al.
2017). Long-read-based sequencing allowed the more
precise reconstruction of a doubled monoploid (Pham
et al. 2020) and a haplotype resolved assembly of a
diploid potato in 2020 (Zhou et al. 2020). This year has
already seen the release of a small, phased potato
pangenome comprising six genotypes (Hoopes et al.
2022) and a novel method relying on pollen sequencing
to resolve the complex autotetraploid potato genome to
the four individual haplotypes (Sun et al. 2022). (Fig. 1).
These resources are complemented by pepper (Ou et al.
2018) and eggplant (Barchi et al. 2021) short-read
based pangenomes.

Two companion papers are now pushing the
boundaries in Solanaceae genomics further by releasing
novel and improved pangenomes for tomato and potato.
Tang et al. (2022) explored the potato pangenome,
shedding light on potato provenance and evolution,
whereas Zhou et al. (2022) reconstructed the tomato
pangenome using pangenome graphs integrating newly
generated genome assemblies and all earlier genome
data, facilitating latest developments in the pangenome
field.

These are developments that will further spur
genomic and genetic analysis in the Solanaceae family as& Correspondence: b.usadel@fz-juelich.de (B. Usadel)
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it has become clear that a single reference genome is
usually not enough to characterise and capture the
genetic variation found within an entire species. Con-
sequently, the new improved ‘‘Heinz 1706’’ tomato
genome reference constructed by Zhou et al. (2022)
comprised 36,648 protein-coding genes, whereas the
addition of multiple long-read genomes allowed the
identification of an additional 14,507 genes present in
tomato. This new pangenome thus increased the total
number of genes in the tomato clade even further
compared to the short-read-based pangenome con-
structed earlier (Gao et al. 2019).

This is potentially partially explained by the use of
the improved underlying long-read sequencing tech-
nologies, as Gao et al. (2019) argued that the tomato
pangenome is likely closed, i.e., it comprises a finite total
number of genes. Indeed, the novel pangenome data by
Zhou also shows a tapering of new gene additions per
genome as more genomes are added. Similarly, the novel
potato genome also seemed to nearly reach a plateau of
genes found when approximately 40 genomes were
incorporated (Tang et al. 2022). In any case, focussing
on the gene content allows exploring the relation of
‘‘core’’ genes (i.e., those that are present in all genomes)
to ‘‘shell’’ genes that are found less often across acces-
sions, or even those that are accession specific, or
‘‘private’’. Core genes often have known functions, exhi-
bit wider expression ranges and are usually more highly
expressed, compared to dispensable genes that are
more likely to have no known function and might often
be on the way to pseudogenization. The remainder of
non-core genes are often enriched in genes related to
defence response, which has been shown for tomato
(Gao et al. 2019) and has now been corroborated for

potato as well. In addition, Tang et al. (2022) also
observed an increased expression level of core genes
compared to non-core genes. Besides these gene centric
approaches, pangenomes can allow for more accurate
identification of complex DNA polymorphisms than a
single linear reference genome, where genomes are
combined into one unifying framework. Whilst there is
not yet a single standard framework or workflow to
capture the pangenome unambiguously, most modern
methods try to capture the genome in the structure of a
graph. The novel tomato pangenome used the popular
vg toolkit (Sirén et al. 2021) to represent the whole
pangenome in one structure, including single nucleotide
polymorphisms and structural variants. Jointly, these
data were shown to be superior in calling variants from
simulated genomic data and, as expected for graph-
based genomes, the sensitivity to detect structural
variants was markedly increased.

These new approaches have ushered tomato geno-
mics research into the ‘‘graph’’-based pangenome era.
This is a necessary development as both the genome of
S. pimpinellifolium (Wang et al. 2020), a close relative to
the cultivated tomato, as well as the Nanopore-based
tomato pangenome (Alonge et al. 2020) highlighted the
importance of structural variations for phenotypes.
Thus, it seemed mandatory to capture as much struc-
tural variation as possible for tomato.

Zhou et al. (2022) demonstrated the importance of
such a graph-based pangenome by comparing the her-
itability of more than 20,000 molecular traits when
variants were inferred using the linear genome to that
when variants were derived from the graph-based
pangenome. Interestingly, single nucleotide polymor-
phisms (SNPs) alone exhibited a slightly higher average

Fig. 1 major genomics
milestones for the crops
tomato and potato from the
genome release to reach the
pangenome and graph-based
pangenome stages
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heritability when these were derived from the pangen-
ome. However, it was the sum of all variants that
boosted average heritability to 0.41 in the graph-based
pangenome, mostly driven by structural variants. This
highly surpassed the estimated heritability of 0.33,
which was estimated based on variants inferred from
the linear genome only. This can have implications for
GWAS and other studies trying to find causal genes as
was demonstrated for one exemplary gene, where a
structural variant (SV) led to a truncated transcript
exhibiting high heritability. A statistically significantly
associated SNP, however, was several genes away, which
could have promoted misidentification of the most likely
causal gene.

Using these novel SV data for genomic selection
should, therefore, improve prediction models, which
was indeed the case for the majority of 33 investigated
flavour traits.

To further explore missing heritability, the authors
showed that in the case of expression quantitative trait
locus (eQTL) with determined cis regulation, consider-
ing all variants in the specific cis region versus only the
leading eQTL increased the estimated heritability fur-
ther, underlining the importance of considering allelic
heterogeneity. However, as of yet, modelling all loci and
allele heterogeneity cannot be efficiently incorporated
into prediction models. Hence for genes, a gene co-ex-
pression network was constructed and subclusters were
extracted to only use proximal genetic variation within
these clustered genes. While this procedure does natu-
rally sacrifice some heritability, it provides a useful
heuristic and was shown to be particularly useful for
flavonoids.

In summation, novel insights and better applicability
based on increased heritability in breeding research are
likely direct outcomes of the improved graph-based
pangenomic tomato references.

Therefore, will this be the final tomato pangenome?
Further improvements will most likely become avail-
able, as pangenomic reconstruction and representation
in general is still a fast-moving field where bioinfor-
matics and sequencing technology are still markedly
improving. This is exemplified in the fact that the
tomato graph-based pangenome did not specifically
consider copy number variation. Furthermore, given
extensive introgressions from wild species not yet
included in the pangenome into breeding lines, a super
pangenome (Khan et al. 2020) comprising not only
close, but also more distant relatives in the tomato
clade, might yield further insights. However, based on
recent evidence about the assiduous Solanum commu-
nity, this and other improvements are probably just
around the corner and the myriad of applications of the

graph-based tomato genome are just now becoming
possible as all data is available in accessible databases.
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