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Abstract With the increasing global warming, high-temperature stress is affecting plant growth and develop-
ment with greater frequency. Therefore, an increasing number of studies examining the mechanism of
temperature response contribute to a more optimal understanding of plant growth under environ-
mental pressure. Post-translational modification (PTM) provides the rapid reconnection of transcrip-
tional programs including transcription factors and signaling proteins. It is vital that plants quickly
respond to changes in the environment in order to survive under stressful situations. Herein, we
discuss several types of PTMs that occur in response to warm-temperature and high-temperature
stress, including ubiquitination, SUMOylation, phosphorylation, histone methylation, and acetylation.
This review provides a valuable resolution to this issue to enable increased crop productivity at high
temperatures.
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INTRODUCTION

Climate change has resulted in a significant increase in
the average global temperature and has rapidly changed
the farming environment over the past few years
(Teixeira et al. 2013; Yang et al. 2017). Temperature not
only affects the metabolic balance of crops, but high
temperature also accelerates the risk of drought stress
on the metabolism of crops and limits photosynthetic
efficiency. Short-term exposure to extreme tempera-
tures can also greatly decrease the yield of crops,
especially in critical development stages, where heat
stress damage is particularly severe (Sun et al. 2019;
Tigchelaar et al. 2018; Zhao et al. 2017). During their
long-term evolution, plants have developed regulatory
networks and adaptive mechanisms at the physiological,
biochemical, and cellular-molecular levels in response

to the surrounding environment (Li et al. 2018). In
the post-translational modifications (PTMs) of proteins,
a small molecule is added to modify the location, sta-
bility, or function of target proteins, which is vital for
survival in acute stress situations because it enables a
swift response to a changing environment (Millar et al.
2019).

Plants have evolved a set of defense strategies to
adequately respond to the complexity and diversity of
environmental temperature changes. In response to
high-temperature stress, plants perceive and transmit
signals through receptors, including a plasma mem-
brane channel, a histone sensor in the nucleus and
cytosol, and two unfolded protein sensors in the endo-
plasmic reticulum (ER). Subsequently, transcription
factors (TFs) in the regulatory network initiate the
expression of downstream genes by binding to cis-act-
ing elements of downstream target genes to enhance
plant heat tolerance (Saini et al. 2021). Even though
there has been extensive research over the past several& Correspondence: yuzhibo724@163.com (Z. Yu), yangchw@sc-

nu.edu.cn (C. Yang)
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decades, transcriptional regulation continues to be
intensely scrutinized. The regulatory mechanism
depends on the intensity of the heat and the duration
and speed of the temperature increases. When the
temperature increases 5–6 �C above the optimum
ambient temperature, this mainly affects plant growth
and development of hypocotyls and petioles, as well as
flowering. Respiration and photosynthesis change when
the temperature increases at this stage. Thus, in the
plant’s response to early heat stress, the network of
bHLH transcription factor phytochrome-interacting fac-
tor 4 (PIF4) acts as a central mechanism of thermo-
morphogenesis (Choi and Oh 2016; Li et al. 2018; Quint
et al. 2016). As temperatures continue to increase and
harm plant life, they produce heat shock (HS). At the HS
stage, emerging evidence indicates that heat shock fac-
tor (HSF)-dependent transcriptional networks regulate
thermoresponsive gene expression. In addition, calcium
(Ca2?) signaling, reactive oxygen species (ROS) signal-
ing, nitric oxide (NO) signaling, and the unfolded protein
response (UPR) are also involved in the plant response
to HS (Ding et al. 2020; Li et al. 2018).

Perception and transduction of extracellular signals
are essential for the survival of organisms. For the
environment that is undergoing long-term change, cells
can reprogram gene expression to respond to external
stimuli, but for short-term stress, cells must adapt to
stimuli by altering the activity and function of existing
proteins. To perform this rapid regulatory mechanism,
cells evolved by creating diversified small label tools,
including phosphoric acid, acetyl groups, lipids, and
other small peptides. When combined with their target
proteins, these labels can quickly coordinate the
behavioral change of their target proteins to respond to
the complex environmental changes. The process ofl a-
beling proteins is called PTM (Beltrao et al. 2013). Most
PTMs are not present on the given target proteins,
which denotes that they enable rapid improvement of
the modified proteins through the action of modifying
enzymes. Importantly, this process is independent of
energetically expensive protein synthesis and degrada-
tion and work-saving (Olsen and Mann 2013).

The PTM further promotes complexity and variety
from the genome to proteome by regulating the activity,
location of proteins, and their interaction with other
proteins or nucleic acids. To date, more than 400 types
of post-translational modifications have been identified,
and they are involved in regulation throughout cell life
activities (Bateman et al. 2017). It is estimated that 5%
of the proteome is composed of their enzymes, including
kinases, phosphatases, transferases, and ligases. These
enzymes are mainly used to add and remove small
peptides in the formation of amino acids, or cleave

peptide bonds to remove specific sequences for forming
a specific modifying molecule. In addition to these
functions, they also modify themselves by autocatalytic
domains for regulating their own activity (Walsh 2006).
There has been a rapid progress over the past decade in
the research into plant PTMs, with analytical approa-
ches that have been improved, and further elaboration
of their functions and regulatory mechanisms in plants.
Herein, we focus on five types of PTMs in response to
high-temperature in plants.

UBIQUITINATION REGULATES PROTEIN STABILITY
IN RESPONSE TO HIGH TEMPERATURE

The ubiquitin (Ub) protein was first discovered in 1975,
and it covalently binds to the lysine residues of its target
protein, and then targets the substrate for proteasomal
degradation (Hershko and Ciechanover 1998). Ub was
identified as being responsible for modulating protein
turnover and homeostasis by the addition of one or
more ubiquitins in different configurations. This pro-
vides system flexibility and diversity in the response to
different environmental conditions by plants
(Sadanandom et al. 2012). Although there are few
studies on ubiquitination in plants under high-temper-
ature stress, nevertheless, it has been shown that
Ub plays an important role in modulating plant
response to temperature. Ub is preceded by an enzy-
matic conjugation cascade, including three types of
enzymes: ubiquitin-activating enzyme E1, ubiquitin-
conjugating enzyme E2, and ubiquitin ligase E3. E3
ligase facilitates the transfer of ubiquitin to the sub-
strate protein due to its capacity to recognize the target
proteins (Callis 2014). According to the conjugated
ubiquitin’s quantity and position, there are three
types of ubiquitination: monoubiquitination, multi-
monoubiquitination, and polyubiquitination (Deshaies
and Joazeiro 2009). The first two types mainly act as
markers for protein kinase activity (Salghetti et al. 2001;
Feng and Shen 2014; Ma et al. 2020). A chain of more
than four ubiquitins is conjugated to a substrate pro-
tein, and the targets may direct the substrate to the 26S
proteasome for proteolysis (Thrower et al. 2000).

Accumulating evidence indicates that the E3 ligase
genes are induced by HS, and gene overexpression can
increase the thermotolerance of plants. In Arabidopsis,
AtPUB48 expression was induced by heat stress, and is
involved in basal and acquired thermotolerance. Over-
expression of AtPUB48 resulted in increased heat tol-
erance during seed germination and seedling growth
(Peng et al. 2019). Another Arabidopsis conserved
chaperone-dependent ubiquitin E3 ligase, carboxyl
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terminus of HSC70-interacting proteins (CHIP), also
exhibits a similar function upon heat stress (Yan et al.
2003). Importantly, the function of ubiquitin E3 ligase is
conserved in plants. The expression of Solanum lycop-
ersicum CHIP (SlCHIP) was induced under high tem-
perature in tomatoes, and silencing of SlCHIP in
tomatoes decreased heat tolerance (Zhang et al. 2021
b). These results indicate that the Ub ligase CHIP plays a
critical role in plant heat stress responses. In rice,
researchers found RING E3 ligase localized in the Golgi
apparatus, and heat- and cold-induced 1 (OsHCI1)
accumulated in the nucleus and interacted with nuclear
substrate proteins under high temperature. Overex-
pressed OsHCI1 in Arabidopsis plants enhanced ther-
motolerance (Lim et al. 2013). Similarly, overexpression
of the Sorghum bicolor orthologue SbHCI1 in Ara-
bidopsis also improved basal heat stress tolerance.
Interestingly, under heat stress conditions, it was
observed that SbHCI1 migrated to the Golgi bodies from
the cytoplasm (Lim et al. 2020). Therefore, it suggests
that HCI1 may have evolved independently of the two
speciation to result in differences. In addition to HCI1,
another RING finger ubiquitin E3 ligase, heat tolerance
at seedling stage (OsHTAS), also plays a positive role in
heat tolerance at the seedling stage. Previous studies
found that OsHTAS could interact with components of
the ubiquitin/26S proteasome system and an isoform of
rice ascorbate peroxidases. Further studies proved that
OsHTAS enhances heat tolerance through modulation of
hydrogen peroxide-induced stomatal closure (Liu et al.
2016). On the contrary, drought, heat, and salt-induced
Oryza sativa ring finger E3 ligase, ring finger protein 1
(OsDHSRP1), acts as a negative regulator. Although the
OsDHSRP1 gene transcripts were highly expressed
under heat stress conditions, overexpressing OsDHSRP1
in Arabidopsis resulted in hypersensitivity to heat stress
(Kim et al. 2020). The above research results suggested
that the function of E3 ligases is diverse and complex.

In addition to the ubiquitin-proteasome system,
ubiquitin also modifies some key TFs that enable plant
adaptation to heat stress. It was found that dehydration-
responsive element binding protein 2A (DREB2A) is a
key transcription factor that regulates the expression of
many drought- and heat-stress-inducible genes in Ara-
bidopsis. Morimoto et al. identified BTB/POZ and math
domain proteins (BPMs), which are substrate adaptors
for a Cullin3-based E3 ubiquitin ligase as a DREB2A-
interacting protein. The researchers also found that
BPMs were involved in DREB2A degradation under heat
stress conditions. The results of genetic analysis and
biochemical assays indicated that the depletion of BPM
expression contributed to thermotolerance via DREB2A
stabilization. They also suggested that E3 ubiquitin

ligase BPMs modulate the heat stress response and
prevent any adverse effects of excess DREB2A on plant
growth (Morimoto et al. 2017).

Under warm temperatures, ubiquitination controls
another regulation mechanism. The E3 ubiquitin
ligase constitutive photomorphogenic 1 (COP1), the
master regulator of photomorphogenesis, is regulated
primarily at the protein level in response to external
stimuli (Lau and Deng 2012). Because warm tempera-
tures could induce hypocotyl elongation, the research-
ers found that COP1 modulates hypocotyl
thermomorphogenesis, based on tracking information
flow. They further explained that COP1 is located in
the nucleus, and promotes the degradation of the ther-
momorphogenic repressor HY5, and stabilizes PIF4
under warm temperatures (Legris et al. 2017; Martı́nez
et al. 2018; Park et al. 2017). Additionally, COP1 phys-
ically interacts with transcriptional regulators DELLA
proteins, which serve as signaling hubs between the
environment and the transcriptional networks in the
control of plant growth. At 28�C, COP1 degrades DELLA
proteins (Blanco-Touriñán et al. 2020). As we previ-
ously mentioned, PIF4 plays a key role in the regulated
network of warm temperatures. In a recent study, the
CUL3-based E3 ligase (CUL3BOP1/BOP2) and high
expression of osmotically responsive genes 1 (HOS1)
were shown to interact with PIF4 (Kim et al. 2017;
Zhang et al. 2017a). The E3 ligase complex CUL3BOP1/
BOP2 mediates PIF4’s protein ubiquitination and degra-
dation in response to temperature (Fig. 1). For another
E3 ligase HOS1, it was determined that it suppresses
the transcriptional activity of PIF4 (Kim et al. 2017).
Recently, Zhang et al. found another E3 ligase, XB3
ortholog in Arabidopsis thaliana (XBAT31), that acts as
a positive thermomorphogenesis regulator and medi-
ates the protein stability of ELF3 to affect hypocotyl
growth under warm temperatures (Zhang et al. 2021a).
These studies demonstrate that PTMs play an important
role in plant temperature responses.

Except for heat stress response (HSR), UPR is also an
essential mechanism in response to heat stress in plants
(Malini et al. 2020). Accumulation of misfolded proteins
induced by high temperature activates the UPR to alle-
viate ER stress (Strasser 2018). When the UPR path-
ways are blocked, the misfolded proteins
are ubiquitinated for degradation through ER associated
degradation (ERAD) pathway. Ubiquitination is a vital
step in the ERAD pathway (Deng et al. 2013). In plants,
the core components of the ERAD pathway were iden-
tified, such as membrane-anchored ubiquitin E3
ligase brassinosteroid insensitive 1 suppressor 7
(EBS7), HMG-CoA reductase degradation1 a/b (Hrd1a/
b), protein associated with Hrda1-1/2 (PAWH1/2) and
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ERAD-mediating ring finger (EMR) (Liu et al. 2015;
Chen et al. 2016b; Park et al. 2018; Lin et al. 2019). The
molecular mechanism of the ERAD pathway still
remains poorly understood in plants, although the
components are conservated in eukaryotic cells. At
present, the heat-responsive studies of canonical URP
regulators mainly focus on the bZIP family and NAC
family in plants. During HS, the transcriptional factor
bZIP28 directly targets heat stress response genes, and
it was observed that the bzip28bzip60 double mutant
was sensitive to HS (Zhang et al. 2017b). Similarly, in
rice, OsbZIP74 is also pivotal for heat stress tolerance.
Under heat stress, Osbzip74 increases gene expression
of the NAC transcription factor OsNTL3, which regulates
the expression of downstream genes in response to heat
stress and the ER stress. Further OsNTL3 transmits heat
stress signals/effects from the plasma membrane to the
nucleus (Liu et al. 2020).

In conclusion, ubiquitination plays important roles in
mediating the accurate changes required for growth and
development as well as adaption to environmental
stresses. Mono-ubiquitination or multi-mono-ubiquiti-
nation, activates a variety of their functions, such as
activity, transcription regulation, trafficking, subcellular
localization and signal transduction (Hicke and Dunn
2003; Wu et al. 2003). Under high-temperature condi-
tions, the main function is the poly-ubiquitination

of target proteins, which degraded unfolded proteins
via the 26S proteasome. Of these, the greatest amount of
study has been devoted to E3 ligases, but there are
other related proteins of the ubiquitin system, such as
the a2 subunit of the 26S proteasome TT1 (Thermo-
tolerance 1) gene that markedly enhances the thermo-
tolerance in rice (Li et al. 2015). Despite this, current
research on molecular functions, and mechanisms of
action for the ubiquitination response to heat stress
remains at a rudimentary stage. Therefore, it is neces-
sary to identify the Ubiquitination substrate proteins of
important crops, especially using global genome-level
analyses.

SUMOYLATION RAPIDLY CONTROLS
TRANSCRIPTION UNDER HIGH TEMPERATURE

Small ubiquitin-like modifiers (SUMOs) are ubiquitin-
like polypeptides that are also involved in the heat-
stress response. The enzymatic mechanism of
SUMOylation is similar to that of ubiquitination,
whereby C-terminal Gly is covalently attached to
accessible Lys in the target by a protein conjugation
cascade. SUMO precursors are proteolytically processed
to expose their C-terminal double glycine (Gly-Gly)
motifs by SUMO-specific proteases, and activated SUMO
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Fig. 1 The regulation of ubiquitination in high-temperature stress responses in plants. Under warm temperatures, COP1 accumulates in
the nucleus and degrades HY5 via ubiquitination to further enhance PIF4 activity. COP1 then interacts with DELLA proteins and increases
the activity of DELLA to promote growth under the same conditions. DELLA can attenuate PIF4-mediated thermomorphogenesis activity
under long-day conditions. PIF4 was ubiquitinated by the CUL3BOP1/BOP2 E3 ubiquitin ligase complex for further degradation. Under
normal conditions, DREB2A is ubiquitinated by BPMs and degraded. Upon heat shock, SUMOylation maintains the protein stability of
DREB2A, which regulates the downstream heat stress response genes
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is driven by a SUMO activating enzyme 1 (SAE1, E1) in
an ATP-dependent reaction. Then, the activated SUMO is
transferred to the SUMO-conjugating enzyme 1 (SCE1,
E2) and diverted to substrate proteins with assistance
from a SUMO-protein ligase (E3) by transesterification
(Saracco et al. 2007).

Under acute high temperature (37�C/42�C), the
levels of SUMO conjugates are markedly increased in
response to stress. This is described as a conserved
‘‘SUMO stress response’’ (SSR) in eukaryotes (Lewicki
et al. 2015), and it supports the eukaryotic response to
acute stress. In Arabidopsis, fewer SUMO1/2 conjugates
were detected with overexpression of HSP70 during
heat shock (Kurepa et al. 2003), suggesting that the
accumulation of SSR is relevant to HSR. Temperatures
around 27-28�C are referred to as warm temperatures,
which do not lead to up-regulation of known heat stress
marker genes and permanent protein damage in plants
(Kumar and Wigge 2010). In relation to heat stress,
plants respond to slightly elevated temperatures for a
longer period of time mainly via thermal morphogene-
sis, like petiole elongation, leaf hypophysis, and early
flowering (Qiu et al. 2019; Quint et al. 2016). A SUMO1/
2 knockdown mutant exhibited thermosensitivity at
28�C. Van den Burg et al. found that SUMO-dependent
thermo-resilience can be potentially controlled in a
different manner. SUMO1/2 activates temperature
acclimation via the master regulator of heat stress:
the HSFA1 family (Hammoudi et al. 2021). This finding
explained that SUMO1/2 have key roles in enabling
plants to withstand prolonged warm periods. Similar to
ubiquitination, overexpression of SUMO E3 ligase (such
as AtSIZ1, OsSIZ1, SlSIZ1 and GmSIZ1) enhanced plants
tolerance to heat stress (Cai et al. 2017; Mishra et al.
2018; Yoo et al. 2006; Zhang et al. 2018). AtSIZ1 is also
a positive regulator of thermorphogenesis upstream of
the PIF4 regulation hub by cross-talking with ubiquitin
E3 ligase COP1 (Hammoudi et al. 2018).

Proteome-wide studies in Arabidopsis and maize
revealed that HS induces SSR, particularly on the target
proteins in the nucleus, which includes the response to
stress by TFs (the HSF, NAC and WRKY families), chro-
matin remodeling complexes (SWI/SNF complexes), and
RNA-related proteins (RNA-splicing factor, RNA heli-
case) (Miller et al. 2013; Rytz et al. 2018). They sug-
gested that SUMOylation regulates the heat stress
response at different levels, including transcription,
post-transcriptional processing, and translation. Current
evidence indicates that there are several important TFs
involved in HS responses. When heat stress occurs, it
induces increased accumulation of misfolded proteins in
cells. BAG7 (B-cell lymphoma 2 (Bcl2)-associated
athanogene (BAG) proteins) interacts with bZIP28

anchored to the ER membrane. The SUMO attachment
on BAG7 contributes to its translocation to the nucleus
for the enhancement of gene expression in the UPR
during HS by interaction with WRKY29 (Li et al. 2017).
SUMOylation of a heat shock transcription factor,
AtHSFA2, is essential for HSR and acquired thermotol-
erance (Cohen-Peer et al. 2010). DREB2A interacts with
SCE1, a SUMOylation component, and consequently
increases DREB2A protein stability under high tem-
perature (Wang et al. 2020). Thus, in contrast to ubiq-
uitination, SUMOylation mainly maintains the stability
of substrate proteins for heat-stress response (Fig. 2).

In addition, as high-throughput sequencing technol-
ogy has evolved the concept of group SUMOylation has
emerged, i.e. coordinated SUMO modification of multiple
proteins of a functional protein complex, which is
thought to enhance protein-protein interactions within
the complex by SUMO-SIM pairing (Niskanen and Pal-
vimo 2017). SUMOylation acts in a novel role, mediating
the transcription switch mechanism between develop-
ment and HS in plant cells by targeting different pro-
teins (Han et al. 2021). The interconnected dual role for
SIZ1 and SUMO1/2 conjugation in the switch between
plant immunity and high temperature-induced growth
also supports this view (Hammoudi et al. 2018, 2021).
In general, SUMOylation is vital for survival in stressful
situations because it enables a swift reaction to
a changing environment.

PHOSPHORYLATION CASCADES REGULATE
SIGNALING TRANSDUCTION UNDER HIGH
TEMPERATURE

Protein phosphorylation is a major post-translational
modification that influences protein activity, interaction,
localization, and stability. Phosphorylation is a highly
dynamic and reversible process mediated through
kinases and phosphatases, which often serve as ’on-and-
off’ switches in the regulation of many cellular activities
(Luan 2003). The Arabidopsis genome encodes more
than 1000 protein kinases, including mitogen-activated
protein kinases (MAPKs), sucrose non-fermenting-re-
lated kinases (SnRKs), calcium-dependent protein
kinases (CPKs) and receptor-like kinases (RLKs). Com-
pared to protein kinases, the Arabidopsis genome
encodes only approximately 150 protein phosphatases,
which include protein phosphatase 1 (PP1) and PP2A-
type phosphatases, the protein tyrosine phosphatase
family, and the metal-dependent protein phosphatase
family (Kerk et al. 2008). Accumulating evidence has
shown that phosphorylation acts as a central participant
in the regulation of gene expression to allow rapid
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adaptation of plants to environmental stress (Zhu
2016). The functional roles of phosphorylation in plant
thermal response are summarized below.

Cyclin-dependent kinase CDC2s interact with Ara-
bidopsis HSF1, a master regulator for the expression of
HSPs and thermotolerance, and they phosphorylate
AtHSF1 in vitro. This inhibits binding to the heat-shock
elements of target DNA, suggesting a possible regulatory
relationship between heat stress response and cell-cycle
control in plants. However, the mechanism used by
Cdc2a to prevent the DNA-binding activity of
AtHSF1 remains unclear (Reindl et al. 1997). Further
experiments showed that Arabidopsis CaM-binding
protein kinase 3 (AtCBK3) participates in fundamental
thermotolerance and that it interacts with and phos-
phorylates AtHSFA1, which regulates the binding to
HSEs and the expression of HSP genes during heat
stress (Liu et al. 2008). Furthermore, AtCBK3 activity
can be stimulated by AtCaM. Importantly, AtCaM3 reg-
ulates the DNA-binding activity of HSFs to adjust plant
thermotolerance. Therefore, AtCaM3 involved in plant
thermotolerance is related to the AtCBK3-mediated
phosphorylation status of HSFA1 (Zhang et al. 2009). In

addition, Arabidopsis PP7, a Ser/Thr phosphatase,
interacts with AtCaM3 and AtHSF1, and is also involved
in heat stress through mediating the expression of
AtHSP70 and AtHSP101 (Liu et al. 2007). Previous
research showed that HSFA1s directly modulate the
expression of transcription factors that are important in
the heat stress response, including the induction of
DREB2A (Praat et al. 2021). DREB2A is a key tran-
scriptional activator that induces many heat- and
drought-responsive genes involved in the stress pro-
cess. DREB2A is unstable under non-stress conditions,
but stabilizes in response to stress. Recently, Mizoi et al.
found that DREB2A is a substrate of CK1, and the level
of phosphorylation is reduced in response to stress. The
accumulation of DREB2A led to the downstream stress-
responsive genes expression that accounts for the
enhanced thermotolerance (Mizoi et al. 2019).

In addition to HSFA1, other Arabidopsis HSFA mem-
bers are also phosphorylated by Mitogen-Activated
Protein Kinases (MAPKs/MAP kinases), which modulate
the plant response to heat stress. Alfalfa cells have two
temperature-responsive MAPKs, SAMK (Stress-Acti-
vated MAP Kinase) and HAMK (Heat Shock-Activated
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Fig. 2 The molecular mechanism of the SUMO stress response under heat shock. Under HS, the SUMO stress response (SSR) is triggered
by a large amount of SUMO1/2 entering from the cytoplasm into the nucleus in plant cells. To date, researchers determined that the
regulatory mechanisms consist of BAG7 interacting with BiP2 and bZIP28 in the ER under normal conditions. When HSR and UPR are
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of DREB2A prevents its interaction with the ubiquitin ligase BPMs, enhancing the stabilization of the TF, and ultimately leading to the
promotion of heat-induced gene expression
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MAP Kinase), which are activated by a relative tem-
perature shift, suggesting that MAP kinases have a
critical role in regulating thermotolerance in plants
(Sangwan and Dhindsa 2002). Arabidopsis mitogen-ac-
tivated protein kinase MPK6 is induced by heat stress
and phosphorylates several heat stress transcription
factors, but strongly phosphorylates HSFA2, and thereby
contributes to regulating heat stress-induced nuclear
accumulation of HSFA2. In addition, HSFA2 protein
stability is regulated in a phosphorylation-dependent
manner, but it is independent of MPK6, indicating that
the activity of HSFA2 is subject to multiple regulatory
mechanisms (Evrard et al. 2013). MPK6 and MPK3 also
interact with and phosphorylate the major Ser-309
residues of HSFA4, which if mutated, strongly diminish
the activity of heat shock protein 17.6A (HSP17.6A).
Interestingly, HSFA4A, as a substrate of MPK3/MPK6,
modulates plant response to salt and oxidative stress
(Pérez-Salamó et al. 2014). Further research demon-
strated that MAP kinases, such as MPK3, MPK4, and
MPK6, phosphorylate HSFA4A in the Ser-309 residue as
the dominant phosphorylation site, indicating that heat-
activated factor HSFA4A is regulated by a complex
mechanism. In addition, HSFA4A becomes activated by
high salinity or high temperature, and a combination of
these conditions regulates the abiotic stress response by
increasing the accessibility of the HSFA4A binding site at
the target gene promoters, ZAT12, HSP17.6A, and
WRKY30 (Andrási et al. 2019). After salt stress treat-
ment, HSFA4A is transported into the nuclei, which is
in accordance parallel with a previous report and indi-
cates that HSFs accumulate in the nuclei upon heat and
other stresses. Tomato MAP kinase also can be activated
upon heat stress. Heat-activated MAP kinase phospho-
rylates and promotes HSFA3 expression, which is cal-
cium-dependent (Link et al. 2002). MAP kinases in
mammals and yeasts have been found to be involved in
heat-stress signaling through phosphorylating HSFs,
which indicates that MAP kinases that modulate the
heat stress response are conserved in eukaryotes (Link
et al. 2002). The biological or molecular function of such
MAP kinase-mediated phosphorylation, however,
requires further confirmation.

Phosphorylation events have been implicated in the
regulation of plant thermomorphogenesis. The bHLH
transcription factor PIF4 acts as a central integrator of
plant thermomorphogenesis. The PIF4 factor was
phosphorylated by the BR signaling kinase brassinos-
teroid insensitive 2 (BIN2), which marks PIF4 for pro-
teasome degradation to contribute to diurnal hypocotyl
growth (Bernardo-Garcı́a et al. 2014). Interestingly, the
phosphorylation level of PIF4 increased under warm
ambient temperatures, which stabilized the protein, in

contrast to light-induced phosphorylation. This sug-
gests that light and temperature play an antagonistic
role in regulating the activity of PIF4, at least moder-
ately, through phosphorylation (Foreman et al. 2011).
Warm temperature induces the translocation of BR-
regulated transcription factor brassinazole-resistant 1
(BZR1) to the nucleus, where it binds to the promoter of
PIF4 to promote expression and cell elongation (Ibañez
et al. 2018). Recent studies have shown that the activity
of MAP4K/target of temperature 3 (TOT3) kinase is
required for thermomorphogenesis in both dicots and
monocots. Compared to Col-0, a lack of full-length
TOT3 mutants resulted in a significantly shorter hypo-
cotyl at 28�C. The TOT3 protein variants that lacked the
kinase domain, which attenuates kinase activity, could
not rescue defective phenotype at warm temperatures
(Dai et al. 2021). Furthermore, TOT3 functions inde-
pendently apart from PIF4 and phyB, but likely controls
brassinosteroid-mediated hypocotyl growth by regulat-
ing BZR1 activity under warm temperatures. However,
further study is required to determine how TOT3 con-
trols BZR1 activity (Fig. 3).

In summary, phosphorylation is controlled by the
balance between kinases and phosphatases in the reg-
ulation of protein activity. Under warm and extra high
temperatures, there are different targets for kinases
that respectively regulate multiple temperature signal-
ing pathways for plant temperature response. However,
the molecular mechanisms used by kinases and phos-
phatases that function under high temperature to
(de)phosphorylate different targets are still unknown.

DYNAMIC HISTONE ACETYLATION PRECISELY
CONTROLS GENE EXPRESSION DURING
THE RESPONSE TO HIGH TEMPERATURES

Chromatin structure has a dominant role in the regu-
lation of gene expression and is modified through
nucleosome positioning, histone variants, and post-
translational modification of histones. Histone acetyla-
tion is a crucial modification in gene expression, and the
histone acetylation level is mediated through histone
acetyltransferases (HATs) and deacetylases (HDACs).
The Arabidopsis genome contains 12 HAT genes, of
which GCN5 is an intrinsic HAT that is involved in
numerous plant development pathways and responses
to stress. There were 16 kinds of HDACs have been
identified in Arabidopsis thaliana (Shen et al. 2019).
Increasing evidence shows that PTMs of histones are
necessary for plants to adapt to environmental stress.
Below, we summarize the roles of post-translationally
modified histones in plant thermal responses.
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Arabidopsis ASF1 (ANTI-SILENCING FUNCTION 1)
histone chaperones consist of ASF1A and ASF1B, which
are associated with basal and acquired thermotolerance.
With nucleosome removal andH3K56ac stimulation, they
activate the transcription of the HSFA2 and HSA32 genes,
implying that histone modification may be the key action
in mediating the heat-stress response in plants (Weng
et al. 2014) (Fig. 4A). Incapacitation of GCN5 represses

the expression of heat-stress responsive genes, leading to
further severe defects in terms of Arabidopsis thermo-
tolerance. In particular, GCN5 is enriched in the promoter
regions ofHSFA3 andUVH6, which regulate the H3K9 and
H3K14 acetylation states. In addition, TaGCN5 in
wheat can restore the defect in the thermotolerance
phenotype in Arabidopsis gcn5mutant plants, suggesting
that GCN5-mediated thermotolerance may be conserved
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in plants (Hu et al. 2015). Furthermore, HD2C, the well-
studied HD2-type histone deacetylase (HDAC), directly
interacts with the SWI/SNF complex subunit SWI3B,
which is involved in the Arabidopsis response to heat
stress by regulating the expression of heat-responsive
genes and the H4K16Ac levels of HSFA3 and HSP101
(Buszewicz et al. 2016) (Fig. 4B).

Histone modification is also involved in plant thermo-
morphogenesis. The deacetylase HAD9 interacts with
POWERDRESS (PWR), a SANT-domain containing protein,
andpromoteshistoneH3deacetylation at specific genomic
sites and is also involved in plant developmental pro-
cesses, such as Arabidopsis aging (Chen et al. 2016a; Kim
et al. 2016). Interestingly, PWR acts as a positive regulator
for thermomorphogenesis and is necessary to deacetylate
PIF4 and YUCCA8 (YUC8). In addition, histone H2A.Z
dynamics on downstream genes are regulated by PWR,
suggesting a potential link between histone deacetylation
and H2A.Z nucleosome processes in regulating gene
expression (Tasset et al. 2018). Further studies showed
that the HDA9-mediated deacetylation of YUC8 by
H3K9K14 permits PIF4 binding to the YUC8 promoter to
induce YUC8 transcription, and is followed by auxin
biosynthesis during thermomorphogenesis. Accordingly,
the net eviction of H2A.Z from YUC8 nucleosomes is
mediated through HDA9 activity at warm temperatures

(Van Der Woude et al. 2019). Therefore, HDA9 and PWR
are required for the heat-induced transcription of YUC8
and thermomorphogenesis. The HDA9 and PWR have
partial redundancyof functions, but the function of PWR is
more pleiotropic than that of HDA9 (Mayer et al. 2019).
HOS15 is a core member of the HDA9-PWR complex, and
mutated HOS15 alters global histone acetylation, which is
similar to hda9 and pwrmutants. However, themechanism
of HDA9-PWR-HOS15, a core histone deacetylase complex
in plant thermo-morphogenesis, remains yet unknown
(Mayer et al. 2019)(Fig. 4C). Deacetylase HDA15 interacts
with the transcription factor HFR1 to regulate the gene
expression involved in plant thermomorphogenesis, indi-
cating that HDA15 may be recruited by the HFR1 to
the chromatin to epigenetically repress downstream tar-
get genes during the plant response to elevated ambient
temperature (Shen et al. 2019) (Fig. 4D). Therefore,
HDA15 andHDA9 function in plant thermomorphogenesis
by interacting with transcription factor HFR1 or PWR to
regulate the acetylation level of downstream genes, indi-
cating that HDA15 and HDA9 possess diverse functions in
response to elevated temperature.

Overall, (de)acetylation is important for histone
recruitment and their interaction with TFs
for the modulation of stress-response gene expression
under warm- or high- temperature stress.
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HISTONE METHYLATION CONTRIBUTES
TO SOMATIC AND TRANSGENERATIONAL
THERMOMEMORY

The most abundant histone PTM is methylation, which
usually occurs at the lysine and arginine residues of
core histone tails. Mono-, di- and trimethylation in these
residues at the N-terminal tails of H2A, H2B, H3, and H4
can further increase the indexing potential. In Ara-
bidopsis, genome-wide analyses indicated that tri-
methylation at H3K4 and H3K36 is generally recruited
at actively transcribed genes, while other incidences of
tri-methylation are associated with repressed genes or
constitutive heterochromatin and silenced transposons.
The precise role of histone arginine methylation has not
been completely elucidated. However, because the levels
of symmetric H3R2me2 and H4R3me2 negatively cor-
responded to the level of H3K4me3, an important
marker for active transcription, it is possible
that H3R2me2 and H4R3me2 could be involved in gene
repression (Guccione et al. 2007; Zhao et al. 2009).

Accumulating evidence suggests that the modifica-
tion of histones by methylation plays a vital role in plant
thermomemory and thermotolerance. The levels of
H3K4me3 and H3K4me2 at the specific loci of APX2 and
HSP22.0 increased during acquired thermotolerance
(heat stress memory). This depends on the HSF tran-
scription factor HSFA2 that transiently associates with
the promoters of these loci, suggesting that HSFA2 may
recruit H3K4 histone methyltransferases to memory loci
to modulate their sustained induction (Lämke et al.
2016). In addition, HSFA2 is activated by heat-induced
demethylation of H3K27me3, and in turn, positively
regulates the expression of REF6. Therefore, HSFA2 and
REF6 form a positive feedback loop to mediate trans-
generational thermomemory in Arabidopsis (Liu et al.
2019). H3K36me3 also plays a key role in splicing
regulation in response to fluctuating ambient tempera-
ture. It affects the splicing of upstream regulators of
flowering time genes, such as VIL2 and MAF5, and
thus, further affects temperature-induced flowering.
However, the molecular mode of action still remains to
be elucidated (Pajoro et al. 2017). Importantly, methy-
lation of histones also plays a key role in crop response
to heat stress. In rice, the levels of DNA and H3K9
methylation associated with OsFIE1 (Fertilization-Inde-
pendent Endosperm 1) were decreased at 48 h and
72 h after fertilization under moderate heat stress,
suggesting that epigenetic regulation partially con-
tributes to the thermal sensitivity of endosperm devel-
opment (Folsom et al. 2014). This result might provide
new insights to increase crop thermotolerance.

To date, in plant studies, histone methylation changes
via chromatin remodeling are required for develop-
ment, stress tolerance, and short-/long-term memory.
Bobadilla et al. presented a preliminary model for his-
tone methylation changes in stress responses: before
stress occurs, histone methylation limits the spreading
of repressive chromatin marks and/or potentiates rapid
transcriptional induction upon need at stress-related
genes. Under stress, histone methylation is transiently
induced from an inactive or a permissive chromatin
state, to support the transcriptional initiation of stress-
responding genes. Finally, histone methylation con-
tributes to the accumulation of somatic memory or
transgenerational memory (Bobadilla and Berr 2016).

CONCLUSION AND FUTURE DIRECTIONS

A change in temperature elicits signaling pathways in
plants via perturbation of cellular homeostasis.
Recently, there has been increased interest in shifting
the researched focus from the single level of molecular
regulation of stress-related gene expression to regula-
tion in multiple dimensions, such as post-transcrip-
tional and post-translational processes. In plants,
alternative splicing (AS) regulation is a universal heat
HSR mechanism. Some key HSR regulators, including
HSF (Liu et al. 2013; Jang et al. 2014; Hu et al. 2020),
bZIP (Cheng et al. 2015), DREB (Matsukura et al. 2010),
and HSP (Ling et al. 2018), are precisely controlled in an
HS-dependent manner by AS in response to heat stress
and HS memory (Ling et al. 2018, 2021). Small RNAs
(sRNAs) are also involved in heat stress tolerance in
plants. MicroRNA398 is induced by HS and promotes
the accumulation of HSF proteins, which enable heat
stress tolerance in Arabidopsis (Chuck et al. 2007).
MicroRNA396 targeted to HaWEKY6 regulates an early
HS response in sunflower (Giacomelli et al. 2012). After
the plant temperature increases or decreases, PTMs
enable a more flexible mechanism for plants to activate
networks of signaling events that promote resistance in
short times in comparison to post-transcriptional pro-
cesses. Thus, illustrating the mechanisms elaborately
regulated by PTMs is crucial for plant adaptation to
stressors and enhancement of crop resistance.

In plants, PTM of proteins is predominantly involved
in mediating heat stress responses. There has been
increased interest in this area of research. To date,
although several reports have revealed the critical
importance of PTM in plant heat-stress responses, the
types of PTMs examined in high-throughput proteomics
research are still very limited to several normally
studied PTMs, such as the previously mentioned
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ubiquitination, SUMOylation, phosphorylation, acetyla-
tion, and methylation. These PTMs can induce protein
conformational changes, or add and/or mask the inter-
action surfaces of targets resulting in sub-cellular re-
localization, changes in enzymatic stability/activity, or
interaction with other proteins, which expand the
diversity and functionality of the proteome. To ensure
that the signaling process is accurate, adding or
removing PTMs to targets at specific sites requires
specific enzymes, which are called ‘‘writers’’ and ‘‘era-
sers’’ of PTMs. The readers can recognize targets, writ-
ers, and erasers, which add or move the ‘‘signal’’ that
changes the biological pathways. For this objective,
studies were performed on genetic manipulation
achieved by heterologous expression and natural/in-
duced diversity. Negative mutations or overexpression
of specific components in post-transcriptional or post-
translational systems may generate genotypes with
increased tolerance. For example, overexpression of
RING finger E3 ligase OsHTAS, OsHCI1, or OsHIRP1
escalated heat tolerance in rice (Kim et al. 2020; Lim
et al. 2013; Liu et al. 2016). Over-expression of the rice
SUMO E3 ligase OsSIZ1 also enhanced plants subjected
to heat stress and increased the photosynthesis rate
(Mishra et al. 2018). Therefore, the developments in
natural/induced diversity are very promising for crop
improvements. During the last 5 years, CRISPR-associ-
ated (Cas) system-based genome editing for crops has
been a fundamental breakthrough technique (Jaga-
nathan et al. 2018). Although there has been little
application of the technology to plants in the PTM field,
CRISPR/Cas9 can be used for the generation of mutants
with point mutations targeting amino acids in sub-
strates to elucidate PTMs changes and their functions
(Sander and Joung 2014). Combined with genome re-
sequencing programs and mass spectrometry, it could
allow the identification of the potential targets and
creation of new alleles, which then could be used in
the molecular breeding of new and improved plant
genotypes in the future.

It is noteworthy that among high-temperature tran-
scriptional regulation, we found PTM crosstalk, which
switches the activation/attenuation of the same path-
way, and ensures rapid regulation of signal transduc-
tion. PTM crosstalk is usually highly dynamic and relies
on a refined spatial and temporal experimental back-
drop. The crosstalk in phosphorylation–ubiquitination–
SUMOylation has been identified (Dai et al. 2018). For
example, the regulation of DREB2A and PIF4 is involved
in the heat stress response under HS by three types
PTMs crosstalk (Mizoi et al. 2019; Morimoto et al. 2017;
Wang et al. 2020). Ubiquitination–SUMOylation cross-
talk has two sides. SUMOylation nearly sustains the

stability of targets occupied by lysine for inhibited
protein degradation. In the typical example from COP1
and SIZ1, SUMOylation or ubiquitination dynamically
regulates high-temperature-induced growth responses.
However, SUMO can undergo regulated proteolysis ini-
tiated by the formation of a poly-SUMO chain through
the activity of SUMO ligases (E4), such as PIAL1/2. This
chain recruits STUbLs, which attach poly-ubiquitin
chains (Ub) to SUMO and the target protein so that they
can then be degraded by the 26S proteasome. This
introduces another layer of transcriptional regulation
(Wawrzyńska and Sirko 2020). However, the overall
orchestration and possible crosstalk of these PTMs in
plant stress-response regulation remain unexplored.

The investigation of PTM response to temperature in
plants has thus far mainly focused on a single target and
enzyme. The molecular mechanism remains to be
understood. First, how to recognize a heat signal
remains a crucial topic that requires exploration. Pre-
vious research has revealed that AtCaM interacts with
protein kinase to regulate the phosphorylation status of
HSFA1. It is unclear whether calcium signals function as
primary heat sensors. Second, it is unknown how the
post-translational related factor is recruited to target
a gene locus to modulate gene expression. These issues
require elucidation in the future, and further data will
provide novel insight into improving thermotolerance in
crops.
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D, Bovy A, Scharf KD, Schleiff E, Fragkostefanakis S (2020)
Natural variation in HsfA2 pre-mRNA splicing is associated
with changes in thermotolerance during tomato domestica-
tion. New Phytol. https://doi.org/10.1111/nph.16221
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