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Abstract As sessile organisms, plants are unable to move or escape from their neighboring competitors under
high-density planting conditions. Instead, they have evolved the ability to sense changes in light
quantity and quality (such as a reduction in photoactive radiation and drop in red/far-red light ratios)
and evoke a suite of adaptative responses (such as stem elongation, reduced branching, hyponastic leaf
orientation, early flowering and accelerated senescence) collectively termed shade avoidance syndrome
(SAS). Over the past few decades, much progress has been made in identifying the various photore-
ceptor systems and light signaling components implicated in regulating SAS, and in elucidating the
underlying molecular mechanisms, based on extensive molecular genetic studies with the model
dicotyledonous plant Arabidopsis thaliana. Moreover, an emerging synthesis of the field is that light
signaling integrates with the signaling pathways of various phytohormones to coordinately regulate
different aspects of SAS. In this review, we present a brief summary of the various cross-talks between
light and hormone signaling in regulating SAS. We also present a perspective of manipulating SAS to
tailor crop architecture for breeding high-density tolerant crop cultivars.
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INTRODUCTION

For higher plants, light is arguably one of the most
important environmental factors that not only provides
energy for photosynthesis but also serves as an infor-
mational signal to direct their growth and develop-
mental patterns throughout their life cycle, ranging from
seed germination to seedling de-etiolation, vegetative
growth, reproductive transition, and seed setting (Lau
and Deng 2010). Plants have also evolved an internal
time-keeping mechanism, the circadian clock, to help
plants to anticipate and synchronize various develop-
mental and physiological activities with the daily

diurnal light/dark cycle generated by the rotation of the
earth around the sun, thus increasing plant fitness
(Dodd et al. 2005). The plasticity of plants to environ-
mental light changes is inherited in the sophisticated
photosensory systems, which through signal transduc-
tion and integration, can massively reprogram the
transcriptomic activities, leading to adaptive changes in
the developmental programs and physiology.

Probably a best manifestation of this plasticity is the
shade avoidance response, which is triggered when
plants sense competition for light from their neighbors.
Under a vegetative canopy, the red (R, 600–700 nm)
and blue (B, 400–500 nm) spectrum of light is har-
vested for photosynthesis by upper leaves, whereas far-
red (FR, 700–800 nm) light is transmitted or reflected,
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resulting in a reduction of photoactive radiation (PAR)
and reduced R/FR ratios. Plants use a battery of pho-
toreceptors to sense such changes in light quality and
quantity, and evoke a suite of adaptive responses col-
lectively termed shade avoidance syndrome (SAS),
including stem elongation, reduced branching,
hyponastic leaf orientation, early flowering and accel-
erated senescence (Fig. 1) (Casal 2013; Franklin 2008).
These responses are believed to improve individual
plant performance and fitness in a crowded plant pop-
ulation, allowing them to finish the life cycle before the
canopy getting too dense (Schmitt1997). In addition,
shade also redirects more carbon resources to growth at
the expense of defense, rendering plants more suscep-
tible to pathogen attack (Ballaré 2014). As SAS is a
major limiting factor for high-density planting in agri-
cultural practice, it is expected that a better under-
standing of the molecular mechanisms governing SAS
should provide meaningful approaches and target genes
for breeding shade-tolerant crop cultivars through
manipulating SAS.

LIGHT REGULATION OF SAS IN ARABIDOPSIS

Photoreceptors that mediate SAS

Plants use a set of photoreceptor proteins to monitor
the changes in light quantity and quality, including
phytochromes (phys), cryptochromes (crys), and UV
RESISTANCE LOCUS 8 (UVR8). Under shade conditions,
changes in R/FR ratios are perceived by phytochromes
which exist in two photoreversible forms: the inactive
red light-absorbing (Pr) form and the active far-red
light-absorbing (Pfr) form. Upon R light absorption, the
Pr form is converted to the Pfr form and translocate into
the nucleus to activate light-responsive gene expression
(Wang and Wang 2015). The Pfr form of phytochromes
can switch back to the Pr form upon FR irradiation or
through dark reversion (Whitelam et al. 1998). In the
model species Arabidopsis thaliana, there are five phy-
tochrome receptors (phyA-phyE). Of these, phyB is the
predominant phytochrome that suppresses shade
avoidance, as the mutant deficient in phyB displays a

Fig. 1 Overview of shade avoidance syndrome. Low R/FR light quality caused by the proximity of competitors induces shade avoidance
syndrome. Multiple physiological events, such as accelerated elongation of hypocotyl and petiole, reduced branching, early flowering,
precocious senescence and attenuated defense response, are triggered by shade. The wild-type Arabidopsis plant shown on the left is
grown under normal white light conditions, while the plants shown on the right is grown under low R/FR ratio conditions. Arrows
indicate positive regulation, while bars indicate negative regulation. White arrowheads indicate the short rosette branches. Pictures are
adopted from Xie et al. 2017; Liu et al. 2019; Xie et al. 2020a, and 2020b.

� The Author(s) 2021, corrected publication 2024

132 aBIOTECH (2021) 2:131–145



constitutive shade avoidance phenotype (Franklin
2008). In addition, phyD and phyE play additional roles
in suppressing shade avoidance in response to reduced
R/FR ratios (Franklin et al. 2003). Interestingly, it has
been shown that phyA can antagonize SAS induced by
phyB inactivation under deep canopy conditions, thus
preventing excess SAS (Martı́nez-Garcı́a et al. 2014).

In Arabidopsis, there are two cryptochromes, CRY1
and CRY2, that predominantly regulate blue/UV-A-light
mediated photomorphogenesis and flowering time,
respectively (Ahmad and Cashmore 1993; Guo et al.
1998). They are photolyase-like proteins existing as
physiologically inactive monomers in the dark; blue
light irradiation leads to homo-oligomerization of CRYs
and altered interactions with various cryptochrome-in-
teracting proteins to transduce the blue light signal
(Wang and Lin 2020). Under shade conditions, the drop
in B light attenuates CRYs-mediated signaling process
and evokes SAS through modulating hormone actions
(Keller et al. 2011; Keuskamp et al. 2011; Pedmale et al.
2016). UVR8 acts as the photoreceptor for ultraviolet-B
(UV-B, 280–315 nm) and it exists in an inactive dimeric
form in cytoplasm. In response to UV-B exposure, it
rapidly monomerizes and translocates into the nucleus
to initiate the signal transduction process (Kaiserli and
Jenkins 2007; Rizzini et al. 2011). Recent studies
showed that repression of shade avoidance by UV-B is
UVR8-dependent (Hayes et al. 2014).

Light signaling components that mediate SAS

The mechanisms of phyB-mediated suppression of
hypocotyl/stem elongation have been well elucidated
now. It has been shown that active phyB are translo-
cated into the nucleus, where they act to represses SAS
via inhibiting the activities of a group of positive regu-
lators of SAS, named PHYTOCHROME INTERACTING
FACTORS (PIFs), including PIF3, PIF4 and PIF5 and PIF7
(Lorrain et al. 2008; Xie et al. 2017). The association of
active phyB with PIFs triggers the phosphorylation of
PIF3, PIF4 and PIF5, leading to their proteasome-me-
diated degradation (Al-Sady et al. 2006; Shen et al.
2007). Under shade conditions, phyB inactivation by
low R/FR light stabilizes PIF3/4/5 and allows them to
bind and activate downstream targets, mostly auxin
biosynthetic genes and cell wall-associated genes
involved in promoting stem elongation (Fig. 2). For
PIF7, shade promotes nuclear accumulation of the de-
phosphorylated form of PIF7, which acts to activate
downstream auxin biosynthetic genes to promote SAS
(Huang et al. 2018; Leivar et al. 2008; Li et al. 2012).

Moreover, PIF activity is also regulated by a group of
SAS negative regulators, such as LONG HYPOCOTYL IN

FAR RED 1 (HFR1), PHYTOCHROME RAPIDLY REGU-
LATED1 (PAR1) and PAR2 (Bou-torrent et al. 2011; Buti
et al. 2020; Hao et al. 2012). HFR1 and PARs are atypical
HLH proteins that do not directly bind DNA, instead
they interact with the DNA-binding domain of PIFs,
thereby repressing the transcriptional activities of PIFs
(Galstyan et al. 2011; Hornitschek et al. 2009). Inter-
estingly, these negative regulators of SAS are rapidly
promoted by low R/FR and transcriptionally activated
by PIFs, suggesting that these negative regulators of
PIFs could serve as a brake mechanism to fine-tune SAS.
Additional PIF direct targets include the homeodomain–
leucine zipper transcription factor ARABIDOPSIS
THALIANA HOMEOBOX PROTEIN2 (ATHB2) and PIF-
LIKE1 (PIL1), which are also promoted by low R/FR to
fine-tune shade avoidance responses (Hornitschek et al.
2012; Kunihiro et al. 2011). Recently, FAR-RED ELON-
GATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED
RESPONSE1 (FAR1), which encode a pair of transposase-
derived transcription factors essential for phyA-medi-
ated FR light signaling in Arabidopsis (Lin et al. 2007),
were shown to interact with PIF3/5, and act as negative
regulators of SAS as well (Liu et al. 2019, 2020). FHY3

Fig. 2 Perception of shade light by photoreceptor signaling
network. Photoreceptors detect different light wavelengths and
transduce the signal to downstream signaling factors. Low R/FR
or low blue light causes inactivation of phytochromes (mainly
phyB) or CRYs, respectively, leading to accumulation of PIF4, PIF5
and dephosphorylated PIF7 proteins and activation of auxin-
related genes, and thus shade avoidance syndrome. UV-B also
represses SAS also through reducing PIF4/5 activity. The light
signaling repressor COP1 promotes SAS through degradation of
SAS repressors, such as BBX21/22, HY5 and HFR1. Red arrows
indicate activation, blue bars indicate inhibition
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and FAR1 can also directly activate the expression of
PAR1 and PAR2 to downregulate SAS (Liu et al. 2019).

In addition, several studies have also implicated
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1),
ELONGATED HYPOCOTYL5 (HY5) and members of the
B-box (BBX) family proteins in SAS regulation. COP1
encodes an E3 ubiquitin ligase that is accumulated in
the nucleus in darkness, where it acts as a central
repressor of photomorphogenesis through targeted
degradation of transcription activators such as HY5,
HFR1 and LONG AFTER FAR-RED LIGHT1 (LAF1). Light
triggers the migration of COP1 into the cytosol, thus
abolishing its repressive effect on photomorphogenesis
(Osterlund et al. 2000; Seo et al. 2003; Yang et al. 2005).
Typical SAS requires COP1, as SAS and SAS-associated
gene expression is suppressed in cop1 mutants (Roig-
Villanova et al. 2006). Interestingly, it was shown
that natural or simulated shade conditions can induce
rapid nuclear re-accumulation of COP1, and that after-
noon shade is more effective than morning shade in
inducing nuclear re-accumulation of COP1, implicating a
possible role of COP1 in fine-tuning SAS in response to
the fluctuating light environments (Pacı́n et al. 2013).
Recently, COP1 was shown to promote the stabilization
of PIF3 and PIF5 through repressing BIN2-mediated
phosphorylation and degradation (Ling et al. 2017;
Pham et al. 2018). Although HY5 does not appear to be
involved in the control of hypocotyl growth in response
to shade, it was shown to play a critical role in sup-
pressing sunfleck-mediated shade-avoidance response
(Roig-Villanova et al. 2006; Sellaro et al. 2011). Notably,
the B-box Domain Protein 21 (BBX21) and BBX22 were
shown to negatively regulate SAS, whereas BBX24 and
BBX25 were shown to promote shade avoidance
response (Crocco et al. 2010, 2015), although these BBX
proteins are all targeted for 26S proteasome-mediated
degradation in a COP1-dependent manner (Chang et al.
2011; Gangappa et al. 2013; Indorf et al. 2007; Xu et al.
2016). The detailed molecular mechanisms underlying
the differential roles of these BBX proteins and their
regulation await further studies.

Interestingly, recent studies showed that both low
blue light (LBL)- and UV-B mediated SAS also acts
through modulating PIF4 and PIF5 activity (Fig. 2). It
was shown that PIF4 and PIF5 are also cryptochrome-
interacting proteins and that PIF4, PIF5, and CRY2 bind
to common chromatin regions of target genes (Pedmale
et al. 2016). In addition, a role of phyB in suppressing
LBL-mediated SAS has also been observed (Pedmale
et al. 2016). Moreover, LBL can potentiate low R/FR-
induced SAS by increasing PIF5 abundance and atten-
uating low R/FR-induced gene expression of negative
regulators (such as HFR1) (de Wit et al. 2016). In

addition, it has been shown that B light-activated CRY1
and CRY2 associate with the COP1/SPA1 complex and
suppress their ubiquitin ligase activity, thus inhibiting
hypocotyl elongation (Liu et al. 2011). Thus, cryp-
tochrome signaling and phytochrome signaling are
integrated to modulate plants’ response to a changing
environment.

Similarly, it has been shown that UVR8-mediated
suppression of hypocotyl elongation also requires
degradation of PIF4 and PIF5 (Tavridou et al. 2020a).
On the other hand, HFR1 is stabilized under UV-B in a
UVR8-dependent manner, which functions in part
redundantly with PIL1 to suppress shade-induced gene
expression (Tavridou et al. 2020b). In addition, it was
recently shown that UV-B induced nuclear accumulation
of UVR8 monomeric protein is dependent on COP1 (Yin
et al. 2016) and that COP1 interacts with PIF5 to sta-
bilize PIF5 in light-grown plants. Exposure to UV-B
promotes the association of UVR8 with COP1, thus
disrupting the stabilization of PIF5 by COP1, leads to
rapid degradation of PIF5 via the ubiquitin–proteasome
system and suppression of SAS (Sharma et al. 2019).

INTEGRATION OF LIGHT WITH VARIOUS HORMONES
IN REGULATING DIFFERENT ASPECTS OF SAS

It is worth noting that our mechanistic understanding of
the signaling pathways of SAS is mostly derived from
studies focused on the elongation process in Arabidop-
sis. Actually, high-density planting elicits diverse
responses beyond stem and petiole elongation, includ-
ing reduced branching, acceleration of flowering time,
attenuated defense response and early senescence.
These SAS-related physiological responses are regulated
by the combined action of light together with a number
of plant hormones, including gibberellin (GAs), auxin,
brassinosteroids (BR), jasmonic acid (JA), strigolactone
(SL), abscisic acid (ABA) and ethylene. Here we describe
recent advances on the regulatory mechanisms of vari-
ous shade avoidance responses by the integration of
light with various hormone signaling pathways.

Light signaling cross-talks with Auxin/BR/GAs
signaling to regulate stem elongation

Auxin plays a major role in shade-induced elongation of
hypocotyl, stem and petiole. Under low R/FR conditions,
PIF4 and PIF5 are stabilized, while PIF7 is dephospho-
rylated, and they act together to regulate auxin activity
at levels of biosynthesis, transport and signaling (Hor-
nitschek et al. 2012; Iglesias et al. 2018; Li et al. 2012;
Sun et al. 2012) (Fig. 3). Consistently, the pif4 pif5
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mutant and mutants of reduced auxin levels, such as
higher order yuc mutants and sav3/wei8/taa1, are
defective in low R/FR-induced hypocotyl elongation and
other shade avoidance responses (Nozue et al. 2015;
Hornitschek et al. 2012). Typically, low R/FR conditions
induce auxin synthesis in the cotyledons, which is
subsequently transported to the hypocotyl via the auxin
efflux-associated protein PIN-FORMED 3 (PIN3), PIN4
and PIN7 to promote hypocotyl growth (Keuskamp et al.
2010; Kohnen et al. 2016; Procko et al. 2014). In par-
ticular, shade induces changes in the cellular location of

PIN3, which leads to increased free auxin levels in the
hypocotyl epidermal cells (Procko et al. 2016). Auxin
sensitivity and responsiveness are also enhanced by low
R/FR. It has been reported that photoactivated phyB
and CRY1 are able to interact with AUX/IAA proteins,
and inhibit the binding of AUX/IAAs with the auxin
receptor TIR1, thus protecting AUX/IAAs from auxin-
induced degradation, resulting in impaired auxin sig-
naling in high R/FR (Xu et al. 2018). Thus, inactivation
of phyB and CRY1 by low R/FR and LBL, respectively,
could lead to enhanced auxin signaling and SAS. More-
over, it was recently shown that photoactivated CRY1
and phyB can physically interact with ARF6 and ARF8,
and repress their DNA-binding activity on downstream
target genes, thus inhibiting auxin-induced hypocotyl
elongation (Mao et al. 2020). A recent study also
showed that a member of TEOSINTE BRANCHED1,
CYCLOIDEA, and PCF (TCP) family, TCP17, promotes
shade avoidance through upregulating PIF4 level and
auxin biosynthesis (Zhou et al. 2018).

While the above studies primarily focused on the
early events of SAS, a recent study provided novel
insight into SAS under persistent shade when auxin
levels have declined to the prestimulation values. It was
found that the sustained inactivation of phytochrome B
under persistent shade leads to altered PIF4 expression
profiling, thus modifying auxin perception and signaling
to sustain SAS without enhancing auxin levels (Puccia-
riello et al. 2018).

GAs is another hormone that promotes stem and
petiole growth. Low R/FR condition increases GA level
partly through transcriptional upregulation of the GA
synthesis genes GA20ox1 and GA20ox2 (Hisamatsu et al.
2005). DELLA proteins are a subset of plant-specific
GRAS family regulators that repress GA signaling, and
they are degraded by the SCFSLY1/GID2 complex in a GA-
dependent manner (Davière and Achard 2013). Inter-
estingly, it was shown that DELLA is able to interact
with PIFs and suppress their activities (De Lucas et al.
2008; Feng et al. 2008). Low R/FR ratios or phyB
inactivation promote DELLA degradation, resulting in
relief of PIFs to promote hypocotyl/stem growth (Dja-
kovic-Petrovic et al. 2007; Leone et al. 2014). Moreover,
it was shown that the transcriptional regulators BBX24
and BBX25 physically interact with the DELLA protein
GAI and prevent it from interacting with and repressing
PIF4, thus promoting GA-induced cell elongation
(Crocco et al. 2015). In addition, COP1 can directly
regulate DELLA protein stability, because DELLA is
targeted for degradation by COP1 in response to shade
signal (Blanco-Touriñán et al. 2020).

Shade also stimulates stem growth through coordi-
nating brassinosteroids signaling. The BR signaling

Fig. 3 Integration of auxin, BR and GA in shade-mediated stem
elongation. Upon shade light, transcription factors PIF4, PIF5 and
PIF7 are activated, and GA and BR levels are increased. As a result,
BZR1 and BES1 are activated and form a complex with PIF4 and
ARF6. DELLA is inhibited through GA-mediated degradation, thus
PIF4 is released from repression by DELLA. The transcription
regulator BBX24 physically interacts with DELLA and prevents it
from interacting with and repressing PIF4. Consequently, auxin
biosynthetic genes TAA1 and YUCCA are transcriptionally acti-
vated. Low R/FR induces synthesis of auxin in the cotyledons,
which is subsequently transported to the hypocotyl via auxin
efflux-associated protein PIN-FORMED 3 (PIN3), 4 and 7 to
promote growth. Due to direct interaction between photorecep-
tors and several Aux/IAA proteins, auxin signaling is enhanced as
auxin response factors (ARFs) are relieved from Aux/IAA repres-
sion. Arrows indicate positive regulation, while bars indicate
negative regulation. Bold arrows and bars indicate the events
favoured under shade conditions
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components BR-ENHANCED EXPRESSION (BEE) and
BES1-INTERACTING MYC-LIKE (BIM) are positive reg-
ulators of SAS (Bou-torrent et al. 2013). Importantly, the
central BR signaling regulator BRASSINAZOLE RESIS-
TANT1 (BZR1), together with ARF6 and PIF4, form a
regulatory module known as the BAP module, which is
activated to coordinate growth in response to multiple
growth-regulating signals, such as shade (Bouré et al.
2019; Oh et al. 2014). This BAP module may also
include BRI1 EMS SUPPRESSOR1 (BES1), which can
interact with PIF4, and thus switching BES1 from a
repressor to an activator (Martı́nez et al. 2018). A recent
study showed that PIF4, PIF5 and PIF7 act redundantly
to upregulate BR SIGNALING KINASE5 (BSK5) expres-
sion in shade conditions, leading to activation of the
BES1/PIF4/PIF5 signaling module (Hayes et al. 2019).
In addition, BR and GA also act interdependently to
promote hypocotyl growth, as the DNA-binding activity
of BZR1 is inhibited by DELLA (Bai et al. 2012).
Therefore, shade activates auxin, GA and BR signaling
pathways to synergistically activate downstream central
transcription factors, such as the BAP module, to pro-
mote stem growth and other shade avoidance
responses.

PHYA is known to play a major role in suppressing
SAS under deep shade (Martı́nez-Garcı́a et al. 2014),
however, the underlying molecular mechanism has
remained obscure. Yang et al. (2018) recently showed
that the accumulation of PHYA is increased under shade,
which releases the repressive auxin/indole-3-acetic acid
(AUX/IAA) proteins from SCFTIR1-mediated degradation,
thus weakening auxin signaling and negatively regulat-
ing shade responses. Moreover, it was recently shown
that under deep canopy, nulcear accumulation of PHYA
is promoted, causing reduced COP1 nuclear speckles
and subsequent changes in downstream target genes
(PIF4, PIF5 and HY5), and consequently inhibits SAS
through modulating BES1/BZR1 and BR signaling (Song
et al. 2020).

It is also worth mentioning that reduced R/FR ratios
can promote phototropism of de-etiolated seedlings
(reorientation of hypocotyl growth) through phyB-con-
trolled auxin biosynthesis, to avoid canopy shade (Goyal
et al. 2016). A recent study further showed that per-
sistent LBL promotes seedling phototropism and that
this response is also regulated by phyB and the CRY1-
PIF4 module through modulating auxin signaling in the
hypocotyls, thus reinforcing a critical role of the CRY1-
PIF4 module in regulating different light-mediated
responses (Boccaccini et al. 2020).

Light and the miR156/SPL module control SL-
and ABA-mediated regulation of branching

Branching (tillering in cereal crops) is a major compo-
nent of plant architecture and a critical determinant of
crop productivity. Shade suppresses axillary bud out-
growth and thus reducing branching. phyB inactivation
or PIF4/PIF5 overexpression leads to branching
repression in both high and low R/FR light conditions
(Holalu et al. 2020; Reddy and Finlayson 2014; Xie et al.
2017). A major genetic pathway regulating branch
outgrowth is the TB1/FC1/BRC1 pathway that represses
axillary bud outgrowth in both monocots and dicots
(Wang et al. 2019). Recent studies showed that under
canopy shade conditions, inactivation of phyB causes
elevated BRC1 expression in the axillary buds in a
manner dependent on PIF4 and PIF5 (Finlayson et al.
2010; Holalu et al. 2020).

Several studies have shown that the miR156-SQUA-
MOSA-PROMOTER BINDING PROTEIN-LIKE (SPL)
module plays an important role in controlling FC1/BRC1
expression (Jiao et al. 2010; Wang et al. 2015; Xie et al.
2020a). It has been shown that Arabidopsis SPL9/15
and rice OsSPL14 are able to directly bind to the BRC1
and FC1 promoter, respectively, and activate their tran-
scription (Song et al. 2017; Xie et al.2020a). Mechanis-
tically, inactivation of phytochrome B under shade
conditions promotes accumulation of PIFs, which
directly bind to the promoters of multiple MIR156 genes
and repress their expression, resulting in the release of
downstream SPL genes to promote SAS (Xie et al. 2017).
The upregulation of BRC1 by SPL proteins contributes to
reducing branching (Fig. 4). Moreover, it was shown
that FHY3 and FAR1 interact with both SPL9 and SPL15
and inhibit their binding to the BRC1 promoter, and that
simulated shade conditions downregulate the accumu-
lation of FHY3 and FAR1 proteins, thereby upregulating
BRC1 level and suppressing branching (Xie et al. 2020a).
Together, these findings suggest that two sets of SAS
regulators, FHY3/FAR1 and PIFs, control branching
through oppositely modulating SPL activity/expression
and thus BRC1 expression.

It is known that tiller bud growth is also repressed by
a carotenoid-derived hormone strigolactone. SL repres-
ses bud outgrowth and branching through promoting
the degradation of a set of central repressor proteins,
DWARF 53 (D53) in rice and D53-like SUPPRESSOR OF
MORE AXILLARY GROWTH2-LIKE proteins (SMXL6/7/
8) in Arabidopsis, which relieve their transcriptional
inhibitory effect on SPL-activated BRC1/FC1 expression
(Song et al. 2017; Wang et al. 2018). Strikingly, at least
two SMXLs (SMXL6 and SMXL7) are directly activated by
FHY3 and FAR1. Moreover, SMXL6, SMXL7, and SMXL8
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can physically interact with SPL9/15 and inhibit their
transcriptional activation activities on BRC1 (Xie et al.,
2020a). Additionally, SMXLs can also interact with BES1
and repress its transcriptional activation activity on
BRC1 to regulate branching (Hu et al. 2020). Taken
together, shade decreases the protein abundance of
FHY3/FAR1 and attenuates the expression of SMXL6/7,
relieving SPL9/15 and BES1 proteins to activate BRC1,
thus repressing branching (Fig. 4).

Shade-induced suppression of branching also
involves the action of the phytohormone ABA (Fig. 4).
Under shade conditions, ABA concentration and signal-
ing particularly in lower buds are increased partly
through PIF4/5-mediated upregulation of some ABA

biosynthetic and responsive genes. Consistently, ABA
synthesis mutants exhibit increased branching and lack
of responsiveness to low R/FR (Holalu et al. 2020;
Reddy et al. 2013). However, ABA-mediated inhibition of
branching might not act through the BRC1 pathway, as
exogenous ABA treatment does not alter BRC1 level (Yao
et al. 2015). Instead, ABA was shown to act downstream
of BRC1 to suppress bud development (González-
Grandı́o et al., 2017). Interestingly, IAA accumulation as
well as expression of auxin biosynthetic and transport
genes are repressed by ABA treatment, suggesting that
auxin is involved in ABA-mediated repression of bud
outgrowth. Additionally, it has been shown that FHY3
and FAR1 are positive regulators of ABA signaling, as
ABA sensitivity as well as expression of ABA responsive
genes are attenuated in the fhy3 and far1 mutants (Tang
et al. 2013). Thus, it will be interesting to explore the
connection between FHY3/FAR1 and ABA-mediated
branching suppression.

The action of light, miR156/SPL and GA
in flowering

Flowering is a major developmental transition in the
plant life cycle, and proper flowering time control is
essential for plants’ reproductive success and survival
(Amasino and Michaels 2010). In response to competi-
tion for light from their neighbors, shade-intolerant
plants flower precociously to ensure reproductive suc-
cess and survival. The Arabidopsis wild-type plants
subjected to low R/FR-treatment and phyB mutants
grown under high R/FR demonstrate accelerated flow-
ering (Wollenberg et al. 2008). The underlying mecha-
nism involves promoted expression and protein stability
of the core flowering regulator CONSTANS (CO), which
acts to induce expression of the florigen gene FLOW-
ERING LOCUS T (FT) and its close homolog TWIN
SYSTER OF FT (TSF) (Halliday et al. 2003; Valverde et al.
2004; Wollenberg et al. 2008). It was recently shown
that PIF4, PIF5 and PIF7 play a predominate role in
shade-induced flowering, through directly upregulating
FT/TSF while downregulating Pri-MIR156E/F (Zhang
et al. 2019; Galvāo et al. 2019). In addition, it was shown
that under shade conditions, GA-mediated degradation
of DELLA relieves their inhibition on PIF4, which in turn
activates FT transcription to promote flowering (De
Lucas et al. 2008; Kumar et al. 2012; Yamaguchi et al.
2014).

FHY3 and FAR1 were shown to negatively regulate
flowering time under both long-day and short-day
conditions through transcriptional regulation of Early
Flowering4 (ELF4) (Li et al. 2011). A recent study
revealed that FHY3 and FAR1 can physically interact

Fig. 4 The crosstalk between SL and ABA in shade-mediated
shoot branching. Shade-mediated PIF4/5 activation represses
MIR156 expression, thereby releasing its targets SPL9/15 to
promote BRC1 expression and repress branching. Shade condi-
tions also downregulate FHY3 protein accumulation, thus reliefing
SPL9 and SPL15 from inhibition by FHY3, leads to activation of
BRC1 expression. The SL repressor proteins SMXLs are directly
up-regulated by FHY3. SMXL proteins can interact with SPL9/15
and BES1, and repress their transcriptional activity on BRC1,
thereby regulating branching. ABA acts downstream of BRC1 and
FHY3 to regulate branching. Arrows indicate positive regulation,
while bars indicate negative regulation. The dotted lines indicate
either indirect regulation or regulation in an unknown manner.
Bold arrows and bars indicate the events favoured under shade
conditions
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with three flowering-promoting SPL transcription fac-
tors (SPL3, SPL4, SPL5) and inhibit their binding to the
promoters of several key flowering regulatory genes,
including FRUITFUL (FUL), LEAFY (LFY), APETALA1
(AP1), and MIR172C, thus downregulating their tran-
script levels and delaying flowering. Under simulated
shade treatments, the levels of transcripts and proteins
of FHY3 and FAR1 decrease, and thus more SPL3/4/5
proteins are released from inhibitory interactions with
FHY3 protein, resulting in increased expression of FUL/
LFY/AP1/MIR172C and thus early flowering (Xie et al.
2020b) (Fig. 5).

The action of JA and SA in shade mediated
growth-defense tradeoff

Another important aspect of SAS is attenuated resis-
tance to abiotic and biotic stresses, as limited resources
are reallocated from defense toward rapid elongation
under shade conditions (de Wit et al. 2013). Resistance

against a hemibiotrophic pathogen (Pseudomonas syr-
ingae pv tomato) and a necrotrophic pathogen (Botrytis
cinerea) was found to be suppressed by shade treatment
(Cerrudo et al. 2012; de Wit et al. 2013; Pieterse 2013).
JA is a core regulatory hormone that orchestrates
defense response against insects and necrotrophic
pathogens (Browse 2009). It is known that low R/FR
ratios repress JA-induced defense responses, including
JA signaling and the expression of defense-related genes
against herbivores and pathogens. Under shade condi-
tions, inactivation of phyB results in attenuated JA
sensitivity through promoting the stability of PIFs and
JAZ proteins, while destabilizing DELLA proteins, thus
relieving PIFs and JAZs from the inhibitory effect of
DELLAs and allowing them to activate downstream
genes and promote growth at the expense of defense
(Cerrudo et al. 2012; Cortés et al. 2016; de Wit et al.
2013; Moreno et al. 2009; Yang et al. 2012) (Fig. 6).
Besides PIFs, FHY3 and FAR1 were recently shown to
modulate JA-mediated defense responses, as FHY3 and
FAR1 are able to interact with both JAZs and MYC2 (Liu
et al. 2019). Interestingly, the fhy3 far1 mutant dis-
played reduced JA sensitivity and increased suscepti-
bility to necrotrophic fungus Botrytis cinerea under both
high and low R/FR conditions. Consistently, expression
of several typical JA-responsive genes, including LOX2,
PDF1.2, TAT1, and VSP2, was significantly reduced in the
fhy3 far1 mutant. The transcription activation of JA
responsive genes by FHY3 can be repressed by JAZ1
through direct interaction. In parallel, FHY3 and MYC2
form heterodimers and coordinately induce the
expression of JA-responsive genes. The dual functions of
FHY3 in regulating growth and defense under shade
conditions indicate that plants balance their growth and
defense responses through the convergence of the
phytochrome signaling and JA signaling pathways. On
one hand, FHY3 and FAR1 activate the expression of
PAR1/PAR2, which inhibit the expression of growth-re-
lated genes by forming non-DNA binding heterodimers
with PIFs, thus preventing an exaggerated elongation
growth. On the other hand, FHY3/FAR1, together with
MYC2, activate the expression of defense-associated
genes, while JAZ proteins inhibit the activity of FHY3/
FAR1 and MYC2 to maintain a proper level of defense
gene expression and defense response (Liu et al. 2019).

In addition to JA, salicylic acid (SA)-dependent dis-
ease resistance is also inhibited by reduced R/FR ratios
(Fig. 6). Although SA level is not altered under low R/FR
light, SA-dependent phosphorylation of NPR1, a key
transcriptional regulator of SA-mediated defence, is
reduced, thus resulting in inhibition of SA-induced
transcription of disease resistance-related genes (de Wit
et al. 2013; Nozue et al. 2018).

Fig. 5 The network of shade-regulated flowering time. Upon
shade light, the increased activity and abundance of PIFs and CO
lead to upregulation of FT or TSF, thus accelerating flowering.
Additionally, SPL3/4/5 are released from repression by FHY3 and
miR156, which in turn promotes flowering through upregulating
several flowering promoting factors, such as FUL, LFY, AP1 and
miR172. Arrows indicate positive regulation, while bars indicate
negative regulation. The dotted lines indicate either indirect
regulation or regulation in an unknown manner. Bold arrows and
bars indicate the events favoured under shade conditions
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Light and ethylene signaling modulates
senescence

The volatile hormone ethylene has also been shown to
act as a proximity perception signal within canopies.
Low R/FR-induced petiole elongation is absent in the
ethylene signaling mutants ein2 and ein3 eil1, indicating
a requirement of the intact ethylene signaling pathway
for shade avoidance response in Arabidopsis (Pierik
et al. 2009). In accordance with this, transgenic tobacco
lacking sensitivity to ethylene showed delayed shade-
avoidance traits including leaf angles and stem elonga-
tion in response to shade signal (Pierik et al. 2003).
Presumably, ethylene signaling acts downstream of
photoreceptors to regulate SAS (Pierik et al.
2004, 2007). In support of this notion, Shi et al. (2016)
showed that light-activated phyB can physically interact
with EIN3 and lead to its rapid degradation. Thus, low
R/FR conditions may stabilize EIN3 due to inactivation
of phyB, and in turn promoting SAS.

Another important effect of shade on the whole plant
is precocious leaf senescence, a process of aging trig-
gered by ethylene (Fig. 7). It was shown that leaf

senescence is attributable to accelerated degradation of
chlorophylls and proteins under shade conditions
(Brouwer et al. 2012). Consistently, it has been shown
that PIF4 negatively regulates chloroplast activity
through activating expression of the chlorophyll degra-
dation gene Non-yellowing 1 (NYE1) and repressing
expression of the chloroplast activity maintainer gene
Golden 2-like Transcription factor 2 (GLK2) (Song et al.
2014). In addition, PIF4 and PIF5 are able to promote
dark-induced senescence through directly activating
ethylene biosynthesis genes and key transcription fac-
tors of the ethylene and ABA signaling pathways, such
as ACSs, EIN3 and ABI5, thereby activating downstream
senescence-related targets, such as ORE1. Photoacti-
vated phyB can inhibit leaf senescence through
repressing leaf senescence activators PIF4/PIF5 at the
post-translational level (Sakuraba et al. 2014; Song et al.
2014). A recent report revealed that the fhy3 and far1
mutants also exhibit precocious leaf senescence in both
high and low R/FR light conditions, indicating a nega-
tive role of FHY3/FAR1 in regulating leaf senescence
(Tian et al. 2020). It was shown that one mechanism of
FHY3/FAR1 suppressing senescence is through

Fig. 6 The action of JA and SA in shade-mediated growth and defense tradeoff. The phosphorylated NPR1, which is the active form in SA
signaling is reduced under shade conditions. Due to reduced JA level and the repression of phyB and DELLA in shade conditions, JAZ
proteins are stabilized and are able to repress the transcriptional activity of MYC2 and FHY3. Therefore, SA- and JA-related targets of
defense-responsive gene expression are reduced. Meanwhile, PIF4 and PIF5 are accumulated and released from repression by DELLA and
PAR1/2, thus promoting growth-related target genes expression. Arrows indicate positive regulation, while bars indicate negative
regulation. The dotted lines indicate either indirect regulation or regulation in an unknown manner. Bold arrows and bars indicate the
events favoured under shade conditions
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repressing the expression of WRKY28, a positive regu-
lator of senescence (Tian et al. 2020). Given the
demonstrated interaction between FHY3/FAR1 with
PIFs (Liu et al. 2020), it will be interesting to investigate
how these two sets of SAS molecules act coordinately to
regulate leaf senescence in the future.

PERSPECTIVE AND CONCLUSIONS

This review summarizes our present understanding of
the integration of light and hormone signaling pathways
in the regulation of multiple physiological responses of
SAS in Arabidopsis. It is hoped that such knowledge can
be leveraged to increase our understanding of SAS in

various crops. Due to the global climate change and
rising population, improvement of yield production per
unit area is becoming increasingly important. Much
effort has been devoted to breeding crops with the
increased yield at high-planting density. However, SAS in
crops can be detrimental to yield, due to increased
lodging, reduced biomass production, precocious mat-
uration and reduced defense to pathogens, etc. There-
fore, SAS needs to be attenuated for genetic
improvement of crops.

Indeed, much effort has been made to attenuate SAS
in several crops such as rice, wheat, potato, tomato, and
turfgrasses by overexpressing PHYA or PHYB. In most
case, limited success has been achieved due to associ-
ated pleiotropic effects (Boccalandro et al. 2003; Boylan
and Quail 1989; Ganesan et al. 2012; Garg et al. 2006;
Gururani et al. 2015; Robson et al. 1996; Thiele et al.
1999). Thus, a better understanding of SAS in various
crops is urgently needed to fine-tune SAS and tailor
plant architecture for adapting to high-density planting.
Several recent studies have made progress to meet this
need. A recent study reported that overexpression of
GmCRY1b in soybean conferred improved plant archi-
tecture (such as reduced plant height, and thus more
lodging-resistant) and higher yield performance under
density planting or maize-soybean intercropping con-
ditions. Moreover, it was shown that GmCRY1s play
important roles in mediating LBL-induced SAS through
modulating GA metabolism (Lyu et al. 2020). Other
studies in maize reported that the Zmphyb1 Zmphyb2
double mutant displays constitutive shade avoidance
responses, while Zmphyc1 Zmphyc2 double mutant
shows moderately early flowering under long-day con-
ditions (Kebrom et al. 2006; Li et al. 2020; Sheehan et al.
2007). Furthermore, expression of these two hyperac-
tive mutant forms of ZmPHYB1 or overexpression of
ZmPHYCs effectively reduces the plant height and ear
height of mature maize plants in field conditions (Li
et al. 2020; Zhao et al. 2020). Additionally, the Zmpifs
knockout mutants also display attenuated SAS and
reduce plant and ear height effectively (Wu et al. 2019).
Despite the progress been made, much more work
remains to be done to provide a comprehensive
understanding of SAS in crops and to identify valuable
targets for genetic improvement of SAS. As various
hormones are intimately involved in regulating different
aspects of SAS, components of their signaling pathways
may provide valuable targets for more precise manip-
ulation of the various agronomic traits of crops (such as
biomass, plant height, branches, leaf angle, leaf size,
senescence, flowering time, etc.). On the other hand,
tapping into the rich resource of natural variation of
crop germplasm using population genetics approaches

Fig. 7 Integration of light with ethylene promotes senescence
under shade conditions. Under shade conditions, the activity and
abundance PIF4/5 and EIN3 are increased by the action of
ethylene or shade light. As a result, the key senescence regulator
ORE1 is up-regulated directly by PIF4/5, EIN3 and ABI5. Mean-
while, WRKY28 is relieved from FHY3 repression. Therefore, the
upregulated ORE1 and WRKY28 promote senescence under shade
light. Arrow indicates positive regulation, while bar indicates
negative regulation. The dotted lines indicate either indirect
regulation or regulation in an unknown manner. Bold arrows and
bars indicate the events favoured under shade conditions
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may offer an alternative approach to identify the supe-
rior alleles associated with attenuated SAS for breeding
shade-tolerant crop cultivars (Wang et al. 2020). With
the rapid advances in plant functional genomics, gen-
ome editing technologies and synthetic biology, more
tools and resources will become available to meet the
challenge of breeding high-density tolerant crops with
higher efficiency.
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Ballaré CL (2014) Light regulation of plant defense. Annu Rev
Plant Biol 65:335–363. https://doi.org/10.1146/annurev-
arplant-050213-040145
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