Skip to main content
Log in

Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing

  • Review
  • Published:
aBIOTECH Aims and scope Submit manuscript

Abstract

Apomixis is an asexual reproduction process in which clonal seeds are formed without meiosis and fertilization. Because of its potential in permanently preserving hybrid vigor, apomixis has attracted a great deal of interests from plant biologists and the seed industry. However, despite of decades of effort, introgression of apomixis traits from wild relatives into major crops has remained unsuccessful. Therefore, synthetic apomixis has been proposed as an alternative to fix hybrid vigor. In this article, I present the development of the MiMe (Mitosis instead of Meiosis), which turns meiosis into mitosis and leads to the production of clonal gametes. Apomixis-like clonal seeds are generated when MiMe plants are crossed to special genome elimination lines, which contain an altered centromere-specific histone 3 (CENH3). Furthermore, induction of haploid plants from egg cells can be achieved by either egg cell-specific expression of BABY BOOM1 (BBM1), or disruption of MATRILINEAL (MTL) using CRISPR/Cas9 gene-editing technology. Synthetic apomixis is established and clonal seeds are produced by simultaneous engineering MiMe with altering BBM1 expression or MTL disruption. Finally, I discuss how to further improve the apomixis strategy and its applications in crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barcaccia G, Albertini E (2013) Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod 26:159–179

    PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010) Heterosis. Plant Cell 22:2105–2112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Marquez-Lema A, Bhatt AM, Horlow C et al (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118:4621–4632

    CAS  PubMed  Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471

    CAS  PubMed  Google Scholar 

  • Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P (2015) A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci USA 112:11205–11210

    CAS  PubMed  Google Scholar 

  • Conner JA, Podio M, Ozias-Akins P (2017) Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod 30:41–52

    CAS  PubMed  Google Scholar 

  • Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, Copenhaver GP, Horlow C, Mercier R (2012) FANCM limits meiotic crossovers. Science 336:1588–1590

    CAS  PubMed  Google Scholar 

  • Dapp M, Reinders J, Bédiée A, Balsera C, Bucher E, Theiler G, Granier C, Paszkowski J (2015) Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat Plants 1:15092

    CAS  PubMed  Google Scholar 

  • De Muyt A, Vezon D, Gendrot G, Gallois JL, Stevens R, Grelon M (2007) AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J 26:4126–4137

    PubMed  PubMed Central  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:e1000124

    PubMed  PubMed Central  Google Scholar 

  • d’Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, Sun Y, To JP, Berchowitz LE, Copenhaver GP, Mercier R (2010) The cyclin-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet 6:e1000989

    PubMed  PubMed Central  Google Scholar 

  • Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J, Berges H, Beydon G, Bayle V, Barret P et al (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girard C, Chelysheva L, Choinard S, Froger N, Macaisne N, Lehmemdi A, Mazel J, Crismani W, Mercier R (2015) AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM antagonize meiotic crossovers by distinct mechanisms. PLoS Genet 11:e1005369

    PubMed  PubMed Central  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossniklaus U, Koltunow A, Lookeren Campagne VMM (1998) A bright future for apomixis. Trends Plant Sci 3:415–416

    Google Scholar 

  • Grossniklaus U, Nogler GA, van Dijk PJ (2001) How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell 13:1491–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gualtieri G, Conner JA, Morishige DT, Moore LD, Mullet JE, Ozias-Akins P (2006) A segment of the apospory-specific genomic region is highly microsyntenic not only between the apomicts Pennisetum squamulatum and buffelgrass, but also with a rice chromosome 11 centromeric-proximal genomic region. Plant Physiol 140:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hand ML, Koltunow AM (2014) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J, Tang D, Shen Y, Xue Z, Wang H, Shi W, Zhang C, Du G, Li Y, Cheng Z (2016) P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice. Proc Natl Acad Sci USA 113:10577–10582

    CAS  PubMed  Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W et al (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    CAS  PubMed  Google Scholar 

  • Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E et al (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37:287–292

    CAS  PubMed  Google Scholar 

  • Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91–95

    CAS  PubMed  Google Scholar 

  • Li X, Meng D, Chen S, Luo H, Zhang Q, Jin W, Yan J (2017) Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nat Commun 8:991

    PubMed  PubMed Central  Google Scholar 

  • Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L et al (2017) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10:520–522

    CAS  PubMed  Google Scholar 

  • Marimuthu MP, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogue F, Chan SW, Siddiqi I et al (2011) Synthetic clonal reproduction through seeds. Science (New York, NY) 331:876

    CAS  Google Scholar 

  • Miao C, Tang D, Zhang H, Wang M, Li Y, Tang S, Yu H, Gu M, Cheng Z (2013) Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell 25:2998–3009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mieulet D, Jolivet S, Rivard M, Cromer L, Vernet A, Mayonove P, Pereira L, Droc G, Courtois B, Guiderdoni E et al (2016) Turning rice meiosis into mitosis. Cell Res 26:1242–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    CAS  PubMed  Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    CAS  PubMed  Google Scholar 

  • Sailer C, Schmid B, Grossniklaus U (2016) Apomixis allows the transgenerational fixation of phenotypes in hybrid plants. Curr Biol CB 26:331–337

    CAS  PubMed  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    CAS  PubMed  Google Scholar 

  • Shao T, Tang D, Wang K, Wang M, Che L, Qin B, Yu H, Li M, Gu M, Cheng Z (2011) OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol 156:1386–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development—virgin births in farmers’ fields? Nat Biotechnol 22:687–691

    CAS  PubMed  Google Scholar 

  • Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K (2006) Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J 48:206–216

    CAS  PubMed  Google Scholar 

  • Tang Y, Yin ZN, Zeng YJ, Zhang QX, Chen LQ, He Y, Lu PL, Ye D, Zhang XQ (2017) MTOPVIB interacts with AtPRD1 and plays important roles in formation of meiotic DNA double-strand breaks in Arabidopsis. Sci Rep 7:10007

    PubMed  PubMed Central  Google Scholar 

  • van Dijk P, van Damme J (2000) Apomixis technology and the paradox of sex. Trends Plant Sci 5:81–84

    PubMed  Google Scholar 

  • Vielle Calzada JP, Crane CF, Stelly DM (1996) Apomixis—the asexual revolution. Science (New York, NY) 274:1322–1323

    Google Scholar 

  • Wang X, Xu Y, Zhang S, Cao L, Huang Y, Cheng J, Wu G, Tian S, Chen C, Liu Y et al (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772

    CAS  PubMed  Google Scholar 

  • Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019a) Development of a haploid-inducer mediated genome editing (IMGE) system for accelerating maize breeding. Mol Plant 12:597–602

    PubMed  Google Scholar 

  • Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R et al (2019b) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37:283–286

    CAS  PubMed  Google Scholar 

  • Xue Z, Li Y, Zhang L, Shi W, Zhang C, Feng M, Zhang F, Tang D, Yu H, Gu M et al (2016) OsMTOPVIB Promotes Meiotic DNA Double-Strand Break Formation in Rice. Mol Plant 9:1535–1538

    CAS  PubMed  Google Scholar 

  • Yu H, Wang M, Tang D, Wang K, Chen F, Gong Z, Gu M, Cheng Z (2010) OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma 119:625–636

    CAS  PubMed  Google Scholar 

  • Zhang C, Song Y, Cheng ZH, Wang YX, Zhu J, Ma H, Xu L, Yang ZN (2012) The Arabidopsis thaliana DSB formation (AtDFO) gene is required for meiotic double-strand break formation. Plant J 72:271–281

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Junjie Wang for preparing the figure. This study was supported by the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K. Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH 1, 15–20 (2020). https://doi.org/10.1007/s42994-019-00001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42994-019-00001-1

Keywords

Navigation