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Abstract
In an effort to ameliorate the impacts of climate change, forest managers in Central Europe increasingly turn to conifer spe-
cies that produce higher yields and are better adapted to projected future climatic conditions. Though small mammals are an 
important component of the forest ecosystem, the impacts of enriching native broadleaf forests with conifers on small mam-
mal communities are not well understood. We conducted mark–recapture surveys of small mammals to ascertain differences 
in their community structure among stands of two conifers (native Norway spruce Picea abies and non-native Douglas fir 
Pseudotsuga menziesii) and the dominant broadleaf in the region, European beech (Fagus sylvatica). After estimating the 
density of two common species, the yellow-necked mouse Apodemus flavicollis and bank vole Clethrionomys glareolus, we 
found that the population density of each is positively related to the proportion of beech and negatively to the proportion of 
conifers in each stand, though these effects of stand composition are smaller than the positive effect of herb cover. Increas-
ing Norway spruce proportion reduced monthly survival of small mammals, while Douglas fir proportion had a positive 
effect on survival. We conclude that the two conifer species have similar impacts on small mammal density, though overall 
small mammal survival was significantly lower on plots with Norway spruce. This suggests that increasing the proportion 
of Douglas fir at the expense of Norway spruce may be possible without significantly changing local patterns of small mam-
mal population density, but further research is necessary to elucidate the exact impacts of these two conifer species on small 
mammal demography and behavior.

Keywords Small mammals · Forestry · Population density · Survival · Mark-recapture · Douglas fir · Norway spruce · 
European beech

Introduction

Stands of Norway spruce (Picea abies) and other conifers 
were established across much of central Europe over the past 
two centuries in the face of wood shortages, as they were 
relatively easy to establish on degraded land and promised 
increased production volume relative to broadleaf Euro-
pean beech (Fagus sylvatica) forests (Spiecker 2003). In 
recent years, Norway spruce has fared poorly in the face of 
drought, heat waves, and pest infestations, leading to exten-
sive sanitary and salvage harvests (Mezei et al. 2017). This 

has increased forest managers’ interest in other tree species 
and management methods as they plan replacements, includ-
ing the creation of multi-species forest stands which may be 
more resilient to these pressures than traditional monocul-
tures (Griess et al. 2012; Dobor et al. 2020; Schnabel et al. 
2021). Cultivating multiple tree species in mixed stands has 
also been shown to increase biodiversity, water quality, and 
aesthetic value (Felton et al. 2016), result in higher levels 
of ecosystem services (Gamfeldt et al. 2013), and can stabi-
lize or even increase timber production (Jucker et al. 2014; 
Pretzsch and Schütze 2016).

In terms of alternatives to Norway spruce, non-native 
Douglas fir (Pseudotsuga menziesii), originally from North 
America, is increasingly utilized due to its high productiv-
ity, being well-adapted to predicted future central European 
climatic conditions and resistant to many common European 
forest pests (Roques et al. 2006; Vitali et al. 2017). Doug-
las fir may even reduce pest damage to European beech in 
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mixed stands (Matevski et al. 2023). However, the ecosys-
tem impacts of replacing native Norway spruce with exotic 
Douglas fir are not fully understood, especially on native 
fauna (Thomas et al. 2022). Little is known about how Cen-
tral European small mammals may be affected by increas-
ing cultivation of Douglas fir, which has been found to sup-
port different assemblages of birds (Schuldt et al. 2022), 
arthropods (Goßner and Ammer 2006; Kriegel et al. 2021), 
and soil microfauna, fungi, and microbes (Podrázský et al. 
2020; Likulunga et al. 2021; Lu and Scheu 2021), as com-
pared to Norway spruce.

Yellow-necked mice (Apodemus flavicollis) and bank 
voles (Clethrionomys glareolus) are two of the most com-
mon small mammal species found across Central European 
forests (Niedziałkowska et al. 2010; Suchomel et al. 2012). 
Seed and seedling predation by these and other small mam-
mals plays an important role in European beech regeneration 
patterns (Zwolak et al. 2016b) and has a significant impact 
on regeneration patterns of many other tree species (Bílek 
et al. 2009; Wagner et al. 2010). Caching of beech seeds by 
small mammals, in particular, has been cited as an important 
component of beech germination success, as winter frost can 
kill un-cached seeds on the soil surface (Jensen 1985). Both 
species play an important role in ectomycorrhizal fungal 
spore dispersal in Central Europe (Schickmann et al. 2012; 
Komur et al. 2021), providing inoculum of symbiotic fungi 
to tree seedlings which is crucial for forest regeneration. 
Pupal predation by small mammals can regulate insect popu-
lation densities (Kollberg et al. 2014), and bank voles have 
been found to affect outbreak patterns of forest pests (Hanski 
and Parviainen 1985). Furthermore, these common small 
mammals provide an important prey resource to sustain 
increased predator diversity (Sandom et al. 2013), especially 
for avian (Salamolard et al. 2000; Sundell et al. 2004) and 
smaller-bodied mammalian predators such as mustelids and 
foxes (Dell’Arte et al. 2007; Sundell et al. 2013).

Research on small mammal communities in Central Euro-
pean forests suggests that understory structure and canopy 
cover are important for many species (Ecke et  al. 2001; 
Benedek et al. 2021). Understory structures such as downed 
wood, rocks, and vegetation provide small mammals with shel-
ter as well as food (Harmon et al. 1986; Hallett et al. 2003; 
Juškaitis et al. 2013). The bank vole prefers forests with rela-
tively dense herb cover (Mazurkiewicz 1994), while the yel-
low-necked mouse prefers closed canopy forests which often 
have less ground vegetation (Marsh and Harris 2000). Both 
species inhabit a variety of forests from mature beech stands 
to young spruce plantations, though interspecific competition 
may lead to occupancy of less suitable habitats or changes in 
activity patterns by bank voles (Zárybnická et al. 2017). While 
both are considered generalist species, yellow-necked mice 
rely heavily on tree seeds, while bank voles consume more 
green vegetation including herbs and seedlings when seeds 

are not available (Selva et al. 2012). Arthropod prey make up 
a seasonally important part of both species’ diets, especially 
when breeding (Obrtel 1974).

While it has been shown that deciduous trees support 
greater small mammal abundance and diversity relative to 
conifers (Niedziałkowska et al. 2010), few studies investigate 
the impact of introduced tree species or mixtures on small 
mammals. To better understand how enriching native Euro-
pean beech forests with conifers impacts small mammals, and 
to ascertain whether a non-native conifer, Douglas fir, has a 
different impact than native Norway spruce, we conducted sur-
veys of small mammal communities in managed forests across 
the state of Lower Saxony in Northern Germany. We assessed 
the relationship between small mammal densities and forest 
stand composition across five stand types: pure Douglas fir, 
pure European beech, pure Norway spruce, and mixtures of 
European beech with each of the two conifer species.

We addressed two primary questions: (i) Do the densities of 
the two most common species, the yellow-necked mouse and 
the bank vole, vary between pure beech, mixed beech-conifer, 
and pure conifer stands, or with the proportions of each coni-
fer in a stand? (ii) Does the apparent survival of each species 
vary between stand types or with the proportion of each of the 
conifer species?

We expected that (i) pure conifer stands would have lower 
yellow-necked mouse densities than pure beech or mixed 
stands, due to their seed-focused diet, while bank vole densi-
ties would be similar across stand types, and that densities 
of both species in non-native Douglas-fir stands would be 
reduced compared to stands with Norway spruce. Similarly, 
we expected that stands with a lower proportion of conifers, 
and thus a higher proportion of European beech, would have 
a higher density of yellow-necked mice along the gradient of 
increasing beech proportion, while expecting bank vole den-
sities to be less affected by tree species proportion and more 
influenced by herb cover. We expected that both species would 
again have relatively reduced densities in stands with non-
native Douglas fir as compared to stands with similar propor-
tions of Norway spruce. (ii) With regard to apparent survival, 
we expected that pure conifer stands would have lower appar-
ent survival rates than mixed or pure beech stands, due to the 
higher availability of seeds from beech masting in pure beech 
and mixed stands, and that survival would be highest in stands 
with high proportions of native beech and lowest in stands with 
high proportions of non-native Douglas fir.

Methods

Study area

Our study was conducted within the framework of the 
Research Training Group 2300 project in the Northern 
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German state of Lower Saxony, in state-managed forests 
ranging from the Solling uplands and Harz mountains in 
the south to lowland areas near Nienburg in the northwest 
and the Elbe River in the northeast (Fig. 1). The climate in 
Northern Germany is cool and wet punctuated by hot, dry 
weeks over the summer, but varies with elevation and lati-
tude. The southern half of our study area is characterized by 
loamy soils, a mean annual temperature of 8.5 °C, elevations 
from 277 to 493 m and 815 to 1029 mm annual rainfall. The 
northern half has sandy soils, a mean annual temperature of 
9.3 °C, ranges in elevation from 47 to 138 m and receives 
from 672 to 746 mm of annual rainfall (Foltran et al. 2023).

Forests in Lower Saxony encompass over 1.2 million 
hectares, and are managed for wood production, hunting, 
and other outdoor recreation. Pine species make up the 
largest proportion (Pinus spp. 28.6%), followed by spruce 
(Picea spp. 16.4%), beech (Fagus sylvatica 13.5%), and oak 
(Quercus spp. 12.3%). Douglas fir is present in a limited 
area, making up only 2.4% of the forested area, but has 
increased its share over the past decades relative to other 
conifers (Thünen-Institut 2012). Forests are typical of man-
aged stands in Central Europe and Germany, with mature 
trees of a single age-class.

To obtain a representative sample of forests across our 
study area, eight study sites were established, half in the 
northern and half in the southern portion, with each site 
consisting of five 0.5-hectare study plots. Each of these 
plots, in turn, represents one of five forest stand types: (1) 

pure Douglas fir, (2) a mixture of Douglas fir and European 
beech, (3) pure European beech, (4) a mixture of European 
beech and Norway spruce, and (5) pure Norway spruce. All 
stands selected for our study plots were older than 60 years, 
and each species in mixed stands contributed over 20% of 
the total basal area. Each quintet of five plots that make up 
a study site were located as close to each other as possible, 
usually within a few kilometers (Fig. 1), while maintaining 
a minimum separation of 100 m between plots.

Small mammal surveys

At each of our 40 study plots, a small mammal survey grid 
was established, with trapping points spaced 10 m apart 
in an eight-by-eight configuration covering approximately 
0.5 ha, with a minimum distance of 50 m between survey 
grids within a site. Small mammal surveys were conducted 
at all sites during the summer (July, August, and early Sep-
tember) of 2018, 2019, and 2020. Additionally, a subset of 
sites was surveyed in May and June of 2018 and 2019. Each 
survey lasted four nights, with traps set on the evening of 
the first day and removed after being checked the morning 
of the fifth day; all five plots at a site were surveyed concur-
rently. During each survey, one Sherman live trap (LFA, 
8 cm × 9 cm × 23 cm) was set at each of the trapping points, 
for a total 64 active traps per plot. An exception was the 
summer 2019 survey, where a subset of the grid in a 6 × 6 
configuration of 36 traps covering ¼ hectare was used. Traps 

Fig. 1  Study area and location of study sites (black diamonds) within the federal state of Lower Saxony (dark gray), Germany (light gray). 
Lower right inset depicts the arrangement of the five study plots at our site in the Harz mountains
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were baited with a mixture of sunflower seeds, oats, millet, 
peanuts, raisins, and peanut butter; a handful of natural wool 
at the back of each trap provided nesting material. Traps 
were checked at least twice per day, once at dawn and once 
in the late afternoon, with a third check added at mid-day 
if the maximum temperature was forecast to exceed 30 °C.

Captured small mammals were identified to species and 
weighed, had their hind-foot measured, and were visually 
inspected to determine sex, age, and breeding status. We 
additionally measured head–body length and tail length 
and recorded any further morphometric measurements 
diagnostic for differentiating between species when neces-
sary. These additional measurements were primarily used 
to discriminate between wood mice (Apodemus sylvaticus) 
and yellow-necked mice (Jenrich et al. 2010). Each animal 
had a small tissue sample taken from the ear, was injected 
with a passive integrated transponder (PIT) tag (Peddy-
mark 1.4 mm × 10 mm ISO 11784/5 FDX-B) for identifica-
tion, and had a small patch of fur on the right rear haunch 
trimmed as a secondary mark. Individuals recaptured during 
the same survey session had only their PIT tag number read 
and recorded; inter-session recaptures were evaluated as a 
new capture, less tissue sampling and marking.

Forest stand and vegetation surveys

The location of each tree on the plot relative to the plot 
center was recorded, and the diameter at breast height 
(DBH) of each tree was measured. All trees were identified 
to species, and the heights of a random sample of each tree 
species were measured. These stand surveys were updated 
yearly to account for any tree falls or other changes between 
years, but most stands did not experience significant changes 
in tree composition on the timescale of our study. Vegetation 
surveys were conducted on all plots by dividing the half-
hectare into quarters of an eighth-hectare each, and visually 
estimating the percentage of herbaceous cover within each 
of these sub-plots. The mean of these sub-plot surveys was 
used as a plot-level estimate of herb cover.

Stand structure

To obtain a more realistic estimate of stand composition 
by tree species that is based on the area occupied by indi-
vidual trees, we utilized the area potentially available (APA) 
measure and calculated the proportion of the plot occupied 
by each tree species (Dirnberger et  al. 2017). The area 
potentially available is a spatially explicit index, taking into 
account the interaction of each tree in with its neighbors 
and the competitive ability of each species. The competitive 
ability was approximated with the 95% quantile of the crown 
radius (Pretzsch et al. 2015; Glatthorn 2021a). We used the 
statistical software application R (R Core Team 2022) to 

perform this and all subsequent data transformations and 
analyses. APA proportions for each of the three tree spe-
cies were calculated using the APAtree package (Glatthorn 
2021b) for R as described in Glatthorn (2021a).

Density estimation

We estimated the density of adult small mammals on our 
plots using spatially explicit capture–recapture (SECR) 
methods (Efford et al. 2009) as implemented in the R pack-
age secr version 4.5.7 (Efford 2022a) throughout. Spatially 
explicit measures allow for estimation of density, expressed 
as the number of individuals per hectare, that are comparable 
between studies with different survey methods and effort 
(Tourani 2022). Using the capture locations of each indi-
vidual to estimate the probability of detection and scale of 
movement around their home range centers, SECR models 
can directly estimate the effective sampling area and account 
for behavioral differences between species or study sites that 
may otherwise lead to over- or under-estimation of popula-
tion densities (Efford and Fewster 2013).

We conducted a model-selection procedure, described 
below, to determine the best model for each of the two most 
common small mammal species, as well as for all small 
mammals without regard to species identity. As there may 
be differences in animal behavior between study sites, best 
models were selected separately for each site.

Density, with the exception of the null model, was always 
set to vary by trapping session, as this was the primary out-
put variable of interest and is known to vary by season and 
year. A half-normal detection function was used to describe 
the decline in detection probability with increasing distance 
from an individual’s home range center. Models consider-
ing the impact of learned and transient responses to previ-
ous capture, trapping location, and previous capture of an 
individual at a specific trapping location (implying a trap-
happy or trap-shy individual) on detection parameters g0 
(probability of detection) and/or sigma (spatial scale param-
eter) were tested. Additionally, a time-of-day factor variable 
on the occasion level, corresponding to whether a capture 
period occurred during the day or overnight, was included 
in our model evaluation. A null model with density (D), g0, 
and sigma all being invariant across trapping sessions was 
included as a reference.

The models with the lowest AICc value were selected for 
each species and site combination, and these models were 
then used to generate all subsequent density estimates (see 
Supplementary Table 1).

Survival estimation

Apparent monthly survival rates were estimated for 
all marked adult small mammals, as well as for adult 
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yellow-necked mice and bank voles using non-spatial 
Jolly–Seber–Schwarz–Arnason (JSSA) models (Schwarz 
and Arnason 1996; Efford and Schofield 2020) implemented 
in the R package openCR version 2.2.5 (Efford 2022b). We 
allowed survival (phi) to vary between surveys, and evalu-
ated models which held encounter probability (p) and per-
capita recruitment (f) constant, or allowed them to vary 
between surveys, and chose the best model for each plot 
based on the models’ AICc values (Supplementary Table 2). 
Only half of the sites, which were surveyed twice per sum-
mer in both 2018 and 2019, were included, as the species 
considered here are relatively short-lived and a few individu-
als survive between years. Due to extremely low small mam-
mal population density during the spring survey of 2018, we 
only considered survival estimates from the summer of 2019 
in subsequent analyses.

Statistical analyses

To assess the impact of stand composition on small mam-
mal densities, we used negative binomial generalized linear 
mixed models; the negative binomial distribution is typically 
used for count data that is overdispersed (Lindén and Män-
tyniemi 2011). Primary fixed covariates were either stand 
type (categorical with five levels) or APA proportion of 
Douglas fir and Norway spruce (each a proportion between 
0 and 1). We considered both the stand type and propor-
tion of conifers, because mixture proportions varied and we 
were interested both in the overall effect of stand type and 
the more precise impact of each conifer proportion on small 
mammal density.

We included herb cover (continuous between 0, i.e., total 
lack of herbaceous ground vegetation and 1, i.e., complete 
coverage of the ground by herbaceous vegetation) to account 
for its influence on small mammal density (Suchomel et al. 
2012). Survey campaign was included as a random effect to 
incorporate temporal dependency, and site and plot as nested 
random effects to account for the spatial dependency among 
observations.

To evaluate the impact of stand composition on appar-
ent monthly survival rates of small mammals, we used beta 
generalized linear models; the beta distribution is appro-
priate for a proportion such as survival rate (Damgaard 
and Irvine 2019). Due to the lower sample size of our 
apparent survival estimates, we could not include random 
effects. As in our density models, stand type or propor-
tion of Douglas fir and Norway spruce were our primary 
fixed effects, while we included herb cover and site as 
additional fixed effects to account for the impact of herb 
cover and geographic location on survival. We used the R 
package glmmTMB (Brooks et al. 2017) to fit our models, 
as it allows for the use of the negative binomial and beta 

distributions, as well as the flexibility to specify zero-infla-
tion and dispersion models which are often important to 
account for variance patterns in field data.

Model assumptions were checked using diagnostic 
plots from the DHARMa package (Hartig 2022), which 
uses simulation to create interpretable residuals for fit-
ted GLMMs; we ran 1000 simulations for each of our 
fitted models and used these for model diagnostics. To 
ensure there was no multicollinearity between fixed effects 
terms, we used the variance inflation factor (VIF), as 
implemented in the performance package (Lüdecke et al. 
2021), and considered a VIF < 3 to indicate low correlation 
between fixed effects (Zuur et al. 2010).

We estimated both the marginal (proportion of total 
variance explained by fixed effects) and conditional (pro-
portion of total variance explained by both fixed and ran-
dom effects) R2 for each negative binomial linear mixed 
model per Nakagawa et al. (2017), as implemented in the 
MuMIn package (Bartoń 2023), and the marginal R2 for 
each beta linear model per Efron (1978), as implemented 
in the performance package.

To assess the significance of each fixed effect, we used 
likelihood ratio tests to compare a model with and without 
each effect; though as we were interested in the effect of 
each predictor on density and survival, we did not remove 
non-significant terms. To determine the relative effect and 
significance of each stand type on the density and appar-
ent survival of small mammals, we conducted post hoc 
pairwise Tukey tests; to determine the effect of conifer 
proportion on the same, we applied post hoc general linear 
hypothesis tests, each as implemented in the multcomp 
(Hothorn et al. 2008) package. We used the R packages 
ggplot2 (Wickham 2016) and ggeffects (Lüdecke 2018) to 
visualize our results.

Results

Trapping results

Total trapping effort from 2018 to 2020, after accounting for 
sprung or otherwise inactive traps, was 35,759 trap nights 
and 27,097 trap days. 3885 individuals of 7 species were 
captured over the course of the study, with the majority of 
captured individuals (3692) belonging to two common spe-
cies: the yellow-necked mouse (47% of marked individuals) 
and the bank vole (48% of marked individuals) (Table 1). 
Additionally, 378 shrews (Soricidae spp.) were captured, 
though shrews were not targeted by our trapping methods 
and we did not mark them. There was no evidence that spe-
cies richness or Shannon diversity varied between stand 
types.
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Inter‑year, seasonal, and regional effect on small 
mammal density

Small mammal density varied widely between years 
and seasons. Density of both yellow-necked mice and 
bank voles was lowest in the spring of 2018 (mean ± SD, 
0.92 ± 1.67 mice/ha, 2.6 ± 3.49 voles/ha) and highest in the 
spring (voles) and summer (mice) of 2019 (mean ± SD, 
40.46 ± 25.58 mice/ha, 29.51 ± 23.22 voles/ha). Surveys 
earlier in the summer generally found lower densities than 
surveys later in the summer. We found large differences in 
density between northern and southern plots within years as 
well, with bank voles generally present at higher densities in 
the southern plots, and yellow-necked mice at higher densi-
ties at the northern plots (Table 2).

Effect of stand type and APA proportion on small 
mammal density

Stand type was a significant component in models of 
yellow-necked mouse density and small mammal density 
overall, though not in bank vole density models. Rela-
tive to pure beech stands, pure stands of both Douglas 
fir and Norway spruce had a significant negative effect 
on yellow-necked mouse density, while mixed stands 

of Douglas fir and beech (estimate ± SE = 0.42 ± 0.14, 
z = 3.04, p = 0.020) and Norway spruce and beech (esti-
mate ± SE = 0.45 ± 0.16, z = 2.87, p = 0.033) had a sig-
nificant positive effect on yellow-necked mice relative to 
their respective pure conifer stands. Mixed Douglas fir/
beech plots also had a positive effect on yellow-necked 
mouse density relative to pure Norway spruce plots (esti-
mate ± SE = 0.53 ± 0.14, z = 3.71, p = 0.002). We did not 
find significant relationships between stand type pairs 
and bank vole density nor overall small mammal density 
(Fig. 2, Table 3a).

We found strong evidence that the proportion of Doug-
las fir or Norway spruce was an important component of 
our models for the density of yellow-necked mice, as well 
as small mammal density overall, while the proportion of 
each conifer was not a significant component in our bank 
vole density models (Table 3b). Yellow-necked mouse and 
overall small mammal densities were negatively affected 
by increasing proportion of Douglas fir or Norway spruce, 
while bank vole density showed a similarly negative but 
not significant trend (Fig. 3).

Herb cover was a significant component in all density 
models for yellow-necked mice, bank voles, and small 
mammals overall, whether including categorial stand type 
or continuous conifer proportions (Table 3).

Table 1  Summary of individuals captured for each species and stand type across all surveys

Shrews were not tagged, thus totals for shrews reflect the number of capture events rather than number of individuals captured. Totals for each 
species may be slightly lower than expected from the sum of columns, as a few individuals moved from one stand to another between survey ses-
sions. Species diversity reflects the average Shannon index value for each stand type ± the standard deviation

Species Stand Type Totals

Common name Latin name Douglas Douglas/beech Beech Spruce/beech Spruce

Striped field mouse Apodemus agrarius 4 2 0 2 4 12
Yellow-necked mouse Apodemus flavicollis 345 448 400 336 300 1817
Wood mouse Apodemus sylvaticus 50 20 22 20 49 160
Bank vole Clethrionomys glareolus 467 425 285 321 391 1877
Garden dormouse Eliomys quercinus 0 2 0 1 0 3
Field vole Microtus agrestis 7 3 0 0 1 11
Common vole Microtus arvalis 1 0 0 2 0 3
Shrews Soricidae spp. 112 85 58 62 61 378
Species diversity 1.011 ± 0.174 0.897 ± 0.166 0.878 ± 0.205 0.937 ± 0.141 0.983 ± 0.184

Table 2  Mean densities 
(individuals/hectare) ± standard 
deviation by species, region, 
year, and early or late summer 
survey period

Species Region 2018 2019 2020

Early Late Early Late Late

Apodemus flavicollis N 1.11 ± 1.84 4.25 ± 3.13 27.8 ± 16.26 58.33 ± 19.06 16.03 ± 10.53
S 0.55 ± 1.26 0.74 ± 0.95 16.75 ± 12.5 22.6 ± 17.54 7.71 ± 7.58

Clethrionomys glareolus N 1.73 ± 2.62 4.3 ± 5.84 11.24 ± 12.01 18.26 ± 21.79 10.4 ± 7.81
S 4.33 ± 4.44 5.51 ± 4.83 47.77 ± 15.91 40.05 ± 32.64 13.31 ± 12.59



31Douglas fir and Norway spruce have similar effects on small mammal density, but not survival,…

1 3

Effect of stand type and APA proportion on summer 
apparent survival rates

Stand type was a significant component in models of monthly 
apparent survival rates for bank voles and small mam-
mals overall, but not yellow-necked mice. Norway spruce 
stands had a significant negative effect on overall small 
mammal apparent survival relative to stands of beech (esti-
mate ± SE = − 0.84 ± 0.25, z = − 3.39, p = 0.006), Douglas 
fir (estimate ± SE = − 1.10 ± 0.23, z = − 4.72, p < 0.001), 
and mixed Douglas-beech (estimate ± SE = − 0.74 ± 0.22, 
z = − 3.34, p = 0.007), and on bank vole apparent sur-
vival relative to Douglas fir (estimate ± SE = − 1.62 ± 0.37, 
z = − 4.41, p < 0.001) and mixed Douglas-beech (esti-
mate ± SE = − 1.09 ± 0.29, z = − 3.78, p = 0.001) stands 
(Table 4a).

The proportion of Norway spruce had a significant negative 
effect on apparent survival of yellow-necked mice, bank voles, 
and small mammals overall, while the proportion of Douglas 
fir had a significant positive effect on bank vole and overall 
small mammal apparent survival (Table 4b). Interestingly, 
despite having a larger effect on density than stand composi-
tion, herb cover did not appear to have an impact on apparent 
survival (Table 4, Fig. 4).

Discussion

We surveyed small mammal communities for 3 years at 40 
plots across Northern Germany to assess the relationship 
between these communities and the composition of man-
aged forest stands. Overall, we found that small mammal 
density, in particular of yellow-necked mice, was affected 
negatively by conifers relative to European beech. Small 
mammal apparent survival, especially of bank voles, was 
negatively affected by Norway spruce, while Douglas fir 
had either no significant impact on survival (yellow-necked 
mice) or a significant positive impact (bank voles, all spe-
cies). Herb cover had a positive effect on the density of all 
species, but no clear effect on apparent survival.

We observed a strong effect of year and season on small 
mammal density, the cyclical boom-bust nature of which 
is well documented (Korpimäki et al. 2004; Lambin et al. 
2006). Our first surveys in the summer of 2018 revealed very 
low densities of all species on nearly every plot, even late in 
the summer when populations normally reach their yearly 
peak. In the autumn of 2018, beech forests across Northern 
Germany experienced a strong masting event, which led to a 
substantial increase in small mammal densities the following 
year. By the summer of 2020, the density of small mammals 

Fig. 2  Model predicted density (ind/ha) and 95% confidence intervals 
for a yellow-necked mice (A. flavicollis) and b bank voles (C. glareo-
lus) for each stand type. Stars represent significant differences at the 

levels (***) p < 0.001, (**) p < 0.01, (*) p < 0.05. Predictions were 
conditioned on mean herb cover
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was greatly reduced compared to 2019, but still noticeably 
higher than in 2018 (Table 2).

Effects of stand composition on small mammal 
density

Despite the significant effect of stand composition on the 
density of yellow-necked mice and small mammals over-
all, stand composition had only weak effects on the density 
of bank voles, the density of which was most affected by 
herb cover. The strong negative effect of both conifers on 
the density of yellow-necked mice (Fig. 3a) supported our 
first hypothesis; this is likely related to the proportion of 
high-caloric value tree seeds in their diet (Selva et al. 2012) 

and their well-known affinity for forests with deciduous 
seed-bearing trees (Niedziałkowska et al. 2010). We found 
that mixed stands supported densities of yellow-necked mice 
that were not significantly different than pure beech stands 
(Fig. 2a), which suggests that mixing conifers with native 
beech may allow for increased timber production and forest 
resilience to climate change while avoiding a large decrease 
in yellow-necked mouse populations.

While we did see a slight negative effect of both conifers 
on bank vole density, (Fig. 3c), it was not strongly affected 
by stand composition, supporting our hypothesis that bank 
vole density would be similar across stand types. The wide 
diet breadth of bank voles, which is uniquely intermediate 
and overlapping between European arvicoline and murine 

Fig. 3  Model predicted density (ind/ha) and 95% confidence inter-
vals for yellow-necked mice (A. flavicollis, a, b) and bank voles (C. 
glareolus, c, d) in relation to the APA proportion of Douglas fir (red 
lines) or Norway spruce (blue lines) in the left two panels (a, c), and 
to herb cover proportion in the right two panels (b, d). Solid lines 

indicate significant relationships (p < 0.05), dashed lines indicate non-
significant relationships. Predictions based on herb cover effects were 
conditioned on average spruce and Douglas APA proportions, and 
predictions based on conifer APA proportions were each conditioned 
on mean herb cover and zero APA proportion for the other conifer
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rodents (Butet and Delettre 2011), likely allows bank voles 
to fully exploit available resources in each stand type.

Norway spruce and Douglas fir had similar effects on 
small mammal density, which did not support our hypoth-
esis that Douglas fir would have a more negative impact on 
densities than Norway spruce. This was unexpected for sev-
eral reasons. Most conifers produce defense compounds that 
can reduce the palatability of their seeds and seedlings to 
rodent predators (Lobo 2014), and Norway spruce produces 
different defensive compounds than Douglas fir (Mamoci 
et al. 2022); the novelty of compounds present in non-native 
Douglas fir tissues could result in lower consumption of 
Douglas fir seeds compared to those of Norway spruce. In 
addition, Norway spruce stands are preferred by foraging 
red squirrels (Sciurus vulgaris) over silver fir (Abies alba) 
stands, suggesting that rodents may prefer Norway spruce 
seeds over the seeds of other conifers (Rubino et al. 2012). 
Though a study in Norway found that abundances of the 
most common small mammal species were lower in non-
native spruce stands relative to stands of native birch, and 
that abundances in mixed stands were similar to native birch 

stands (Pedersen et al. 2010), this could be attributed to the 
differences between coniferous and broadleaf species rather 
than introduced vs. native species. Despite these indica-
tions that Norway spruce could be preferred to non-native 
Douglas fir, our results suggest that the differences between 
the two conifers do not translate into differential impacts on 
small mammal population densities.

Though the importance of herb cover to many small 
mammal species is well known (Ecke et al. 2001), and both 
yellow-necked mouse and bank vole densities increased sig-
nificantly with increasing herb cover on our plots (Fig. 3), 
we found that, as hypothesized, herb cover has a stronger 
effect on bank voles than yellow-necked mice. This is likely 
due to green vegetation making up a much greater propor-
tion of the bank vole’s diet as compared to the yellow-necked 
mouse, which depends more heavily on seeds year-round 
(Selva et al. 2012). The positive effect of understory herbs, 
especially in bank voles, can mask the negative effect of 
conifers on small mammal density; it is therefore important 
to consider the impact of understory herb cover or a similar 
understory cover measure in addition to stand composition. 

Fig. 4  Model predicted apparent survival rates and 95% confidence 
intervals for yellow-necked mice (A. flavicollis, a–c) and bank voles 
(C. glareolus, d–f) by stand type (a, d), tree APA proportion (b, e) 
of Douglas fir (red) and Norway spruce (blue), or herb cover propor-
tion (c, f). Stars represent significant differences at the levels (***) 

p < 0.001, (**) p < 0.01, (*) p < 0.05. Dashed lines represent non-sig-
nificant relationships (p > 0.05). Predictions based on tree APA pro-
portions were each conditioned on mean herb cover and a proportion 
of zero for the other conifer
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The more open canopy, and thus higher herb cover, found 
in managed conifer forests is primarily due to silviculture 
practices, specifically thinning, which has been found to 
influence understory cover more than tree species (Augusto 
et al. 2003). These silvicultural choices, therefore, likely 
have a large impact on the small mammal community in 
managed forests.

Effects of stand composition on apparent survival

We found that Norway spruce had a significant negative 
effect on the apparent survival of small mammals on our 
plots (Fig. 4). This did not support our hypothesis that stands 
of both conifers would have lower apparent survival rates 
than beech or mixed stands, nor that apparent survival would 
be lowest in Douglas fir stands. Interestingly, the apparent 
survival of small mammals was similar in stands of both 
Douglas fir and European beech, as well as their mixture. 
We expected apparent survival to be significantly higher in 
stands with higher proportions of beech, especially after the 
previous autumn’s major beech mast, but this was not sup-
ported by our data. It is important to note, however, that 
apparent survival does not allow for differentiation between 
emigration and death, and small mammals in Norway spruce 
stands could simply exhibit lower site fidelity than those in 
Douglas fir or European beech stands.

While the positive effect of Douglas fir proportion on 
survival was unexpected, the lack of a clear relationship 
between herb cover and survival was even more surprising 
given its importance in predicting small mammal population 
density. Zwolak et al. (2016a) found that both yellow-necked 
mice and bank voles had weaker associations with vegeta-
tive cover following a mast year when abundance was high, 
suggesting that when a rich food resource such as beech mast 
is available, understory vegetation may have less impact on 
survival. As we were only able to consider apparent survival 
following a mast year, this shift to beech seeds as a primary 
food source could explain the weak relationship between 
herb cover and survival in our data.

Given the similar negative effect of both conifers on small 
mammal density, the differences between the two conifers 
with regard to apparent survival were unexpected, though an 
Italian study on the effects of forestry practices on the den-
sity and survival of yellow-necked mice and bank voles also 
found that survival and density estimates were not always 
clearly linked (Gasperini et al. 2016). These differences 
between survival and density patterns suggest that plots with 
a higher proportion of Douglas fir may simply have a lower 
carrying capacity than plots with a high proportion of beech, 
while plots with a high proportion of Norway spruce could 
be population sinks for some small mammal species.

To investigate this further, we included per-capita recruit-
ment in our apparent survival models and found that, in the 

case of bank voles, there was a significant increase in the 
per-capita recruitment rate with increasing Norway spruce 
proportion (Supplementary Table 5). As bank vole apparent 
survival exhibited the strongest negative response to Norway 
spruce proportion, the corresponding higher recruitment rate 
suggests that one plausible explanation for the observed dif-
ferences in density and apparent survival patterns is Norway 
spruce stands serving as population sinks.

Conclusions

In central European managed forests, Douglas fir in pure 
and mixed stands with European beech is likely to support 
a community of common fossorial small mammals similar 
to that found in pure or mixed stands of Norway spruce. 
Though other ecological differences between the two coni-
fers may give pause to managers considering Douglas fir, 
there does not appear to be any clear difference between 
them with regard to the population density of common small 
mammals. Reduced small mammal apparent survival rates 
in stands including Norway spruce relative to Douglas fir 
or European beech warrant further investigation, and could 
indicate differences in the underlying demographic processes 
of small mammal communities in Norway spruce stands. 
Further studies are needed to confirm our findings and con-
tinue the process of discerning the ecological impacts of 
non-native tree species in central European managed for-
ests, especially with regards to under-studied groups such 
as small mammals.
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