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Abstract
African elephants (Loxodonta africana) are increasingly exposed to high levels of human disturbance and are threatened by 
poaching and human–elephant conflict. As anthropogenic pressures continue to increase, both inside and outside protected 
areas, understanding elephant behavioural responses to human activity is required for future conservation management. 
Here, we use bycatch data from camera trap surveys to provide inferences on elephant habitat use and temporal activity in 
Kasungu National Park (KNP), Malawi. The KNP elephant population has declined by ~ 95% since the late 1970s, primar-
ily because of intensive poaching, and information on elephant ecology and behaviour can assist in the species’ recovery. 
Using occupancy modelling, we show that proximity to water is the primary driver of elephant habitat use in KNP, with 
sites closer to water having a positive effect on elephant site use. Our occupancy results suggest that elephants do not avoid 
sites of higher human activity, while results from temporal activity models show that elephants avoid peak times of human 
activity and exhibit primarily nocturnal behaviour when using the KNP road network. As key park infrastructure is located 
near permanent water sources, elephant spatiotemporal behaviour may represent a trade-off between resource utilisation and 
anthropogenic-risk factors, with temporal partitioning used to reduce encounter rates. Increased law enforcement activity 
around permanent water sources could help to protect the KNP elephant population during the dry season. Our findings 
highlight that camera trap bycatch data can be a useful tool for the conservation management of threatened species beyond 
the initial scope of research.
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Introduction

African elephants (Loxodonta africana; hereafter ele-
phant) play an integral role in ecosystem processes (Ker-
ley and Landman 2006; Ripple et  al. 2015; Coverdale 
et al. 2016) and can provide economic and social benefits 
through wildlife-based tourism (Naidoo et al. 2016; Rip-
ple et al. 2016). Nevertheless, elephants have experienced 
significant range contractions and population declines, 
which have accelerated over the last two decades (Wit-
temyer et  al. 2014; Chase et  al. 2016). Unsustainable 
illegal hunting (Wittemyer et al. 2014; Hauenstein et al. 
2019), habitat loss (Ripple et al. 2015; Wall et al. 2021) 
and human-elephant conflict (Di Minin et al. 2021) are key 
drivers of elephant population decline across Africa. As 
anthropogenic pressures continue to increase across pro-
tected areas and surrounding land (Jones et al. 2018a), it 
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is predicted that the drivers of elephant population decline 
will intensify and risk further localised extirpations (Rip-
ple et al. 2015; Wall et al. 2021).

Anthropogenic disturbance, both inside and outside 
protected areas, can have implications for animal behav-
iour, human-wildlife conflict and population demograph-
ics (Nyhus 2016; Di Marco et al. 2018; Suraci et al. 2019). 
Areas of higher human activity can often represent a com-
plex trade-off for animals, as heightened activity in these 
areas can increase encounter rates with humans but also pro-
vide access to high-quality food resources and potentially 
reduced levels of interspecific competition (Brown et al. 
1999; Ogutu et al. 2014; Bastille-Rousseau et al. 2020). As 
a result, animals may adopt spatiotemporal responses in 
human-dominated areas, whereby they adjust their use of 
space and/or time to minimise the risk of human interaction 
whilst maintaining access to resources (Gunn et al. 2014; 
Gaynor et al. 2018). Owing to their flexible activity patterns, 
advanced cognitive ability, and tendency to utilise anthropo-
genic resources, elephants are a model species for investigat-
ing spatiotemporal responses to human disturbance (Gaynor 
et al. 2018). As 82% of protected areas containing elephants 
are adjacent to areas with significant human pressures (Di 
Minin et al. 2021), understanding elephant ecology and the 
species’ behavioural responses to anthropogenic activity is 
important for future conservation and management efforts 
(Bastille-Rousseau et al. 2020; Wall et al. 2021).

Malawi, in south-central Africa, exemplifies the conser-
vation issues facing both elephants and wider biodiversity. 
The human population in Malawi is predicted to double by 
2038 (World Bank 2020), and with ~ 60% of the total land 
area already used for agricultural purposes (FAO 2019), 
protected areas are becoming increasingly isolated and tar-
geted for bushmeat hunting and habitat alteration (Gondwe 
et al. 2019; van Velden et al. 2020). The national elephant 
population in Malawi has declined by ~ 21% over a twenty-
year period, from approximately 1651 individuals in 1995 
to an estimated 1307 individuals in 2015 (Thouless et al. 
2016), although in some areas population declines have been 
more severe (NEAPM 2015). For example, between 1978 
and 2003, aerial counts in Kasungu National Park (KNP), 
Malawi, revealed that the elephant population had declined 
by approximately 95% (Bhima et al. 2003). The elephant 
population decline in KNP is primarily a result of unsustain-
able illegal hunting and encroachment into park buffer zones 
increasing human-elephant conflict (Bhima et al. 2003; 
NEAPM 2015). The drivers of elephant population decline 
in KNP are synonymous with the causes of elephant decline 
throughout protected areas in Malawi (NEAPM 2015). How-
ever, most Malawian protected areas lack detailed ecologi-
cal information to inform elephant management strategies 
and aid population recovery (NEAPM 2015; Sievert et al. 
2022). Consequently, information on elephant behaviour and 

ecology in KNP can potentially inform wider management 
strategies in areas that are currently data deficient.

Camera trap studies and bycatch data on non-target spe-
cies are increasingly used to answer ecological questions 
beyond the initial scope of research (Caravaggi et al. 2017; 
Edwards et al. 2018). As camera trap surveys are often 
employed to collect data on elusive species that are found at 
low densities (e.g., leopard Panthera pardus), the amount of 
bycatch data for non-target species can often outweigh that 
of target animals and provide a valuable source of data for 
species of conservation concern (Edwards et al. 2018). In 
this study, we use bycatch data from large carnivore camera 
trap surveys (Davis et al. 2021a, b) to investigate elephant 
habitat use and spatiotemporal responses to human activity 
in KNP. We apply occupancy and temporal activity models 
to determine the impact of a range of environmental and 
anthropogenic effects on elephant site use and use these data 
to inform conservation management in KNP. Elephants in 
KNP have experienced high rates of illegal hunting and have 
previously been found to alter their spatiotemporal behaviour 
in areas of increased human activity (Gaynor et al. 2018; 
Ihwagi et al. 2018), therefore, we predict that elephants will 
display spatial avoidance of areas of higher human activ-
ity and exhibit primarily nocturnal behaviour to minimise 
interaction with humans.

Materials and methods

Study area

Kasungu National Park is a 2316 km2 legally protected area 
located in the Central Region of Malawi and forms an inter-
national border with Zambia along its western boundary 
(Fig. 1). KNP is predominantly covered by closed canopy 
miombo woodland, comprising Brachystegia and Julber-
nardia spp., interspersed with seasonally wet grasslands and 
isolated rocky inselbergs. Elevation ranges between 1000 
and 1500 m and the mean annual rainfall is 780 mm, which 
primarily falls between November and April (Bhima et al. 
2003). During the dry season (May–October) the average 
daily temperature is 25.6 °C, with sunrise between 05:30 
and 06:10 and sunset between 17:27 and 17:43.

Illegal hunting pressure has led to widespread declines 
in the elephant and large mammal populations in KNP 
(Munthali and Mkanda 2002; Bhima et al. 2003; Davis 
et al. 2021a). The KNP elephant population has declined 
from an estimated 2000 individuals in the late 1970s (Bell 
1978 in Bhima et al. 2003) to a reported low of 40 indi-
viduals in 2014 (Macpherson 2015). A poaching spike in 
the early 1980s caused a significant decline in the KNP 
elephant population and this trend has continued through 
to the present day, with poaching incidents recorded during 
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this study. A low scout density (1 scout/52.6 km2), a lack of 
adequate resources and difficulties policing the international 
border are considered key reasons for the ongoing poaching 
issues in KNP (NEAPM 2015). Poaching pressure can alter 
elephant population structure and demographics, leading to 
large aggregations as a risk avoidance strategy (Abe 1994) 
or skewing group sizes and sex ratios (Jones et al. 2018b; 
Mkuburo et al. 2020). However, elephants in KNP are still 
observed in normal family units and bull groups (Macpher-
son 2015).

Kasungu National Park is bordered by communal land in 
both Malawi and Zambia, with the surrounding land used 
primarily for subsistence farming and tobacco production 
(Munthali and Mkanda 2002; NEAPM 2015). Encroach-
ment and agricultural expansion are regarded as significant 
threats to the KNP elephant population, with the potential 
to increase human-elephant conflict levels and reduce avail-
able habitat (NEAPM 2015). No human settlements, besides 
national park authorities (operating from eleven scout camps 
inside the park), are permanently based in KNP, and trophy 

hunting is not permitted in the park. Park roads are used for 
management, tourism, and research purposes, with no public 
traffic through the park. As a result of reduced animal densi-
ties, the presence of tsetse flies, and limited park infrastruc-
ture, tourist numbers are low in KNP. Elephants exhibit both 
avoidance and aggressive behaviour in response to vehicles 
in KNP, particularly in areas further from human settle-
ments, as continued poaching pressure, human-elephant 
conflict in surrounding areas, and low tourism rates have 
limited habituation levels.

Camera trap surveys

We used bycatch data from annual camera trap surveys 
(2016–2018) designed to estimate large carnivore density 
in KNP (see Davis et al. 2021a, b). Due to the low sample 
size for elephant captures in 2016, we only used the 2017 
and 2018 datasets for our study. Camera trap surveys were 
conducted once a year, with camera trap stations (2017, 
n = 50; 2018, n = 25) deployed for 120 days (23rd June–20th 

Fig. 1   Map showing a the location and key features of KNP, with the 
inset map showing the location of KNP within Malawi (shaded), b 
camera trap locations for the 2017 survey, c camera trap locations 

for the 2018 survey and d the forest cover (%) layer for KNP used in 
occupancy modelling
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October) and 90 days (27th June–25th September) in 2017 
and 2018, respectively. Roads and major trails were priori-
tised for camera placement to maximise the rate of pho-
tographic captures for target species, as large carnivores 
frequently travel along road networks (Davis et al. 2021a, 
b). We deployed one camera per station, and stations were 
checked regularly to maintain camera function and data col-
lection. We used a combination of white-flash (Cuddeback 
Models C and F; Cuddeback Inc., Green Bay, WI, USA) and 
infrared (Bushnell Trophy Cam HD; Bushnell Corporation, 
Overland Park, KS, USA) camera models.

Occupancy modelling

Occupancy design

Occupancy models use replicated detection/non-detection 
data to produce unbiased estimates of occupancy (Ψ; the 
probability of a site being occupied by a species) and detec-
tion (p; probability of detecting a species) (MacKenzie et al. 
2017). By incorporating covariates of interest, occupancy 
models can account for heterogeneity in Ψ and p, allowing 
researchers to make inferences about factors driving habitat 
use by species (MacKenzie et al. 2017). We developed a 
binary matrix of detection/non-detection capture histories 
for elephants at each camera trap station in KNP, where “1” 
indicated an elephant detection during a sampling occasion 
and “0” indicated no detection. Sampling occasions were 
pooled into 10 day intervals to account for a limited sample 
size and reduce non-detections. We removed one camera trap 
station from analyses due to camera malfunction. Occupancy 
models assume temporal and geographic closure, whereby 
sites are closed to changes in occupancy and detection 
histories between sites are independent (MacKenzie et al. 
2002). As our camera trap survey length was a maximum 
of 120 days, and elephants are a highly mobile species with 
an average home range of 172.9 km2 (Wall et al. 2021), we 
relaxed the closure assumptions of occupancy modelling by 
interpreting occupancy (Ψ) as the probability of site use, 
rather than the proportion of area occupied (MacKenzie 
et al. 2017).

Detection covariates

Incorporating site-specific and/or observation-specific 
detection parameters into occupancy models can account 
for heterogeneity in detection probability (MacKenzie et al. 
2017). We identified four covariates thought to potentially 
influence elephant detection probability between sampled 
sites: camera trap effort, camera model, year sampled and 
trail type. As camera trap effort, defined here as the number 
of days a camera was active during a sampling occasion 
(minimum = 0, maximum = 10), can affect species detection 

probability (e.g., Wevers et al. 2021) we included it as an 
observational covariate. Camera models and flash types can 
differ in their detection range and trigger speed, which can 
impact detection probability (Apps and McNutt 2018). The 
two Cuddeback camera models we deployed (Models C and 
F) have identical trigger speeds and were therefore pooled 
together, resulting in two camera type categories (infrared, 
Bushnell Trophy Cam; white flash, Cuddeback Models) for 
the camera model covariate. The year in which a camera 
was deployed (2017 or 2018) was included as a site-specific 
covariate. Although pooling data across years relaxes the 
basic assumption of temporal closure in occupancy studies 
(MacKenzie et al. 2017), we reasoned that annual variation 
in detection probability would be minimal over the time-
frame of the study. This approach has been used successfully 
in other occupancy studies to account for temporal variation 
in detectability (e.g., Wevers et al. 2021). Non-random cam-
era placement (e.g., targeted placement on roads) is known 
to influence species detectability (Cusack et al. 2015). As 
camera traps were deployed on roads and trails in KNP we 
included a trail type site covariate, comprising three cat-
egories: primary road (two-way government-maintained dirt 
road), secondary road (single-track dirt road) and game trail 
(paths created by animals).

Site use covariates

Based on evidence from previous studies, we selected 
six covariates that could predict elephant site use across 
KNP: distance to water (km), human activity (average 
number of human captures per station), tree cover (%), 
habitat quality (vegetation index), distance to scout camp 
(km), and distance to park border (km). Distance to water 
was incorporated as an indicator of habitat use based 
on species-specific requirements for water (Chamaillé-
Jammes et al. 2007; Abraham et al. 2021). KNP has no 
buffer zone and human settlements often begin at the 
park boundary (Munthali and Mkanda 2002). Encroach-
ment and habitat loss to agricultural expansion have been 
identified as key threats to the KNP elephant population 
(NEAPM 2015). Therefore, distance to park border was 
included as a measure of human activity indicating the 
potential for human-elephant conflict. Elephants can 
perceive differences in risk and discriminate between 
human threats (McComb et al. 2014; Goldenberg et al. 
2017). For example, elephants may aggregate in areas 
closer to ranger posts, as the increased ranger presence 
acts as a deterrent to poachers, whilst elephants will 
adapt their behavioural responses to acoustic cues from 
human groups that pose varying threat levels (McComb 
et al. 2014; Beale et al. 2018). We included the distance 
to scout camp covariate as a proxy for habitat ‘safety’, 
reasoning that camera stations closer to scout camps 
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would provide greater refuge from poaching pressure 
(Beale et al. 2018). For all distance-based covariates, the 
Euclidian distance (km) between each camera trap and 
the chosen feature was extracted in QGIS v.3.20.2 (QGIS 
Development Team 2020).

To account for the effects of human activity on ele-
phant behaviour and distribution (Buij et al. 2007; Gaynor 
et al. 2018), we calculated the average number of human 
captures per day per station by dividing the total number 
of human captures (defined as any human activity on foot 
or in a vehicle by park staff, researchers or tourists) per 
camera trap station, by the number of active trap nights 
per station. The use of human images from camera trap 
data followed the ethical code of conduct outlined by 
Sharma et al. (2020). Permission to use camera traps was 
obtained from the appropriate government department 
and no data on individuals or activities were recorded or 
shared without their prior consent (Sharma et al. 2020).

Spatial variability in vegetation cover and habitat qual-
ity can affect elephant distribution (Harris et al. 2008; 
Chibeya et al. 2021). We used the MODIS Terra Vegeta-
tion Continuous Fields dataset (MOD44B; Dimiceli et al. 
2015) to measure the percentage cover of tree-vegetation 
(henceforth tree cover), as a metric for woody vegeta-
tion. Habitat quality was measured using the Normalized 
Difference Vegetation Index (NDVI), a frequently used 
proxy for primary productivity and habitat ‘greenness’ 
(Pettorelli et al. 2011). NDVI measures the difference 
between near-infrared (which vegetation strongly reflects) 
and red light (which vegetation absorbs) from remote 
sensing data, resulting in a value between − 1 and 1, 
where positive values indicate higher habitat productiv-
ity (Pettorelli et al. 2011). We calculated NDVI from the 
surface-reflectance bands of the MODIS terra satellite 
(MOD13Q1; Didan 2015). Both MODIS vegetation lay-
ers had a resolution of 250 m × 250 m and we extracted 
values for each cell that contained a camera trap station.

Occupancy analyses

We analysed presence-absence camera trap data in a sin-
gle-season, single-species occupancy model, using the 
package ‘unmarked’ v1.1.1 (Fiske and Chandler 2011) in 
the R environment (version 4.1.1; R Core Team 2021). We 
followed a two-step modelling approach, by first identify-
ing the detection covariates that best explained heteroge-
neity in detection probability (p) before modelling occu-
pancy variables (MacKenzie et al. 2017). First, we fitted 
single-season occupancy models, where occupancy (Ψ) 
remained constant (using the most parametrised model of 
non-correlated covariates), and p varied by either a single 
covariate or all possible combinations of detection covari-
ates. We limited candidate models to a maximum of two 

detection covariates to avoid overparameterisation. Then, 
using model selection, we identified the detection model 
with the lowest AIC value and retained these detection 
covariates for testing the significance of occupancy covari-
ates (Karanth et al. 2011). Following this, we modelled 
the probability of site use (Ψ), using only the top-ranked 
detection covariates identified in the previous stage, and 
all possible combinations (additive only, no interactions) 
of site use covariates. We used a maximum of three site 
use covariates per single model, using the rule of thumb 
of 15–25 observations per predictor variable (Henschel 
et al. 2016). We standardised site covariates to a mean of 
zero and a standard deviation of one using the R-package 
‘vegan’ (Oksanen et al. 2020) and tested for collinearity 
using Pearson’s correlation test, excluding covariates from 
the same model if correlated at r > 0.7 (Dormann et al. 
2013).

We used model selection to determine the top model by 
comparison of AIC values and retained all models consid-
ered to have strong support (ΔAIC < 2) in the final model set 
(Burnham and Anderson 2002). From the final model set, 
we applied model averaging to obtain average β-coefficient 
estimates and determine the importance and direction of 
site use covariates. To assess the relative contribution of 
each covariate in explaining elephant occupancy in KNP, 
we calculated the summed model weights (Σw) of all site 
use covariates in the final model set. This metric can be 
used to assess the overall level of support for a given vari-
able (Burnham and Anderson 2002). Values can range from 
zero to one, where a value of one indicates that a covariate 
is present in all models, and variables with high summed 
model weights are considered more important in explain-
ing heterogeneity in site use (Henschel et al. 2016). Model 
averaging and summed model weights were calculated using 
the “MuMIn” package (Barton 2020). Model fit and over-
dispersion (ĉ > 1.1) were evaluated using a goodness-of-fit 
test with Pearson’s chi-square statistic and 10,000 parametric 
bootstraps (MacKenzie and Bailey 2004).

Temporal overlap

We used the time and date stamps from photographic cap-
tures to describe the daily activity levels (percentage of time 
spent active over the 24 h daily cycle) and temporal overlap 
of elephants and humans in KNP. We followed the criteria of 
Gaynor et al. (2018) to define independent elephant capture 
events. Human activity was defined as any vehicle or person 
on foot passing a camera trap. Time of day was converted 
to solar time (i.e., adjusted according to sunrise and sun-
set) using the ‘solartime’ function in the package “activ-
ity” v.1.3. (Rowcliffe 2019). After testing for differences 
between survey years, to ensure no bias between individual 
years, we combined the 2017 and 2018 datasets for the final 
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temporal analyses. Before conducting our temporal analy-
ses, we performed a Hermans-Rasson test on temporal data 
(Landler et al. 2019), using the package “CircMLE” (Fitak 
and Johnsen 2017), to determine whether activity patterns 
were significantly different to a random distribution over the 
circadian cycle (Havmøller et al. 2020).

Daily activity levels were estimated using the Kernel cir-
cular density function (Ridout and Linkie 2009; Rowcliffe 
et al. 2014). We used the overlap coefficient (Δ), which uses 
a scale from 0 (no overlap) to 1 (total overlap), to quantify 
the degree of overlap between elephant and human activ-
ity. Following Meredith and Ridout (2016), we used the Δ4 
estimator for the overlap coefficient as both sample sizes 
were > 75 observations. Ninety-five percent confidence 
intervals were calculated for Δ, using 10,000 smoothed boot-
strap repetitions for each distribution. Kernel density estima-
tion curves were produced using the R-package ‘overlap’ 
v.0.3.2 (Meredith and Ridout 2014). We used the function 
compareCkern() in the package “activity” v.1.3. (Rowcliffe 
2019) and 10,000 bootstrap samples to test for significant 
differences between the two activity curves. The com-
pareCkern() function tests the probability that two activity 

curves come from the same distribution (Rowcliffe 2019; 
Havmøller et al. 2020).

Results

A survey effort of 4707 camera-trap nights at 74 camera sta-
tions resulted in 145 elephant capture events. Elephants were 
captured at 41% of camera stations (n = 30 stations). Using 
10 day sampling occasions resulted in a combined total of 
490 occasions at 74 stations (average: 6.62 occasions per 
station), with elephants recorded on 91 sampling occasions.

Occupancy

Detection covariates Effort + Trail best explained elephant 
detection probability (Table 1). Camera trap effort (num-
ber of trap nights per sampling occasion) positively influ-
enced elephant detection probability (βeffort = 0.24 ± SE 
0.12). Elephant detectability was higher on secondary roads 
(βsecondary = 2.77 ± SE 1.04) and trails (βtrail = 0.61 ± SE 1.50), 
when compared to primary roads.

Three models had substantial support (< 2 ΔAIC) for 
elephant occupancy (Table 2). Distance to water was the 
most important predictor explaining elephant site use 
(βwater =  − 2.22 ± SE 0.61; Σw = 1.00), with elephant occu-
pancy declining at sites further from water (Fig. 2). Tree 
cover (%) (Σw = 0.68), and human activity (Σw = 0.38) 
were both present in the final candidate models, but only 
distance to water had a significant effect on elephant site use 
(Table 3). A goodness-of-fit test on the top-ranked model in 
the final candidate set did not indicate evidence of overdis-
persion (ĉ = 0.96) or lack of fit (p = 0.41). 

Temporal activity

We observed a temporal overlap average of Δ = 0.34 
(0.28–0.40) between elephants and humans. Elephant use 

Table 1   Model selection procedure for covariates associated with 
detection (p) of elephants in KNP. Global indicates the most para-
metrised model of non-correlated siteuse covariates. The top model 
was retained to model site use (Ψ). Only the null model and models 
within ΔAIC < 7 are presented here

wi relative model weights, K number of parameters in the model, 
-LogLik negative log-likelihood

Model ΔAIC wi K -LogLik

p (effort + trail) Ψ (global) 0.00 0.71 11 167.62
p (trail) Ψ (global) 2.85 0.17 10 170.05
p (camera + trail) Ψ (global) 4.82 0.06 11 170.03
p (effort + camera) Ψ (global) 6.99 0.02 10 172.12
Null model: p (.) Ψ (global) 31.32 0.00 2 192.28

Table 2   Results of model 
selection for estimating elephant 
site use (Ψ) from camera trap 
data collected during the dry 
seasons (June-October) in 
2017 and 2018 in Kasungu 
National Park, Malawi. Models 
with ΔAIC < 2 were selected 
for model averaging. The ten 
highest ranking models, plus the 
null model, are presented here

wi relative model weights, K number of parameters in the model, -LogLik negative log-likelihood

Model ΔAIC wi K -LogLik R2

Ψ (water + human + forest) p (effort + trail) 0.00 0.22 8 168.33 0.48
Ψ (water + forest) p (effort + trail) 1.02 0.13 7 169.84 0.46
Ψ (water) p (effort + trail) 1.35 0.11 6 171.00 0.44
Ψ (water + human) p (effort + trail) 2.13 0.08 7 170.39 0.45
Ψ (water + ndvi + human) p (effort + trail) 2.32 0.07 8 169.49 0.46
Ψ (water + ndvi) p (effort + trail) 2.51 0.06 7 170.58 0.45
Ψ (water + ndvi + forest) p (effort + trail) 2.78 0.06 8 169.72 0.46
Ψ (water + border + forest) p (effort + trail) 3.00 0.05 8 169.83 0.46
Ψ (water + forest + scout) p (effort + trail) 3.02 0.05 8 169.83 0.46
Ψ (water + border) p (effort + trail) 3.29 0.04 7 170.97 0.44
Null model: Ψ (.) p (.) 35.91 0.00 2 192.28 0.00
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of the diel cycle was statistically different compared to 
human activity (p < 0.001; Fig. 3). Elephant use of the KNP 
road network showed peaks after sunset (18:00) and before 
sunrise (04:00–06:00), with 83% of elephant photographic 
captures during nocturnal hours (18:00–06:00). Human 
activity was predominantly between the hours of 06:00 and 
17:00, peaking between 10:00 and 16:00. Overall activity 

(proportion of time spent active over the diel cycle) was esti-
mated as 0.43 (SE = 0.06) for elephants and 0.49 (SE = 0.01) 
for humans, with the Hermans-Rasson test indicating that 
both species had activity patterns that were significantly dif-
ferent from random (p < 0.001 for both).

Discussion

Understanding the factors influencing elephant ecology and 
their behavioural responses to human disturbance can help 
mitigate elephant population decline and inform conserva-
tion and management (Fritz 2017). Here, using a combina-
tion of occupancy and temporal activity models, we exam-
ined the drivers of elephant habitat use and temporal activity 
in KNP, a Malawian protected area that has experienced an 
historical decline in elephant population numbers (Bhima 
et al. 2003). During the dry season, proximity to water was 
the key driver of elephant site use in KNP. Contrary to our 
prediction, elephants exhibited no spatial response to areas 
of increased human activity or areas of higher potential risk 
(park borders). Instead, our findings suggest that elephants 
in KNP adjust their temporal activity, exhibiting primarily 
nocturnal behaviour around the KNP road network, poten-
tially to minimise encounters with humans.

Our occupancy modelling results corroborate exist-
ing work suggesting that elephant site use is driven by the 
availability of water (Chamaillé-Jammes et al. 2007; Harris 
et al. 2008; Abraham et al. 2021). Elephants need to drink 
frequently and prefer to travel short distances (Harris et al. 
2008; Thaker et al. 2019), therefore, increased elephant site 
use close to water is expected in KNP. The predicted prob-
ability of elephant site use declined by ~ 50% at distances 
more than 3 km from water sources. These findings sug-
gest that, during the dry season, increased law enforcement 
activity around permanent water areas may help to reduce 
poaching pressure on the KNP elephant population. Ripar-
ian areas in KNP are comprised of nutrient-rich vegetation 
and are frequented by large herbivores (Bhima et al. 2003), 
while detection rates for threatened carnivore species were 
also found to increase at sites closer to water in KNP (Davis 
et al. 2021b). As a result, increased law enforcement activity 
around water sources may also benefit herbivore and large 
carnivore populations.

In this study, increased human activity had no signifi-
cant effect on elephant site use in KNP. However, elephant 
detection was significantly higher on secondary roads and 
trails than primary roads, suggesting elephants utilise areas 
of reduced vehicle traffic. In addition, elephant and human 
activity patterns were significantly different, with elephants 
displaying primarily nocturnal behaviour when using the 
KNP road network. The nocturnal activity patterns of 
elephants, when using human infrastructure, may suggest 

Table 3   Model averaged estimates, standard error (SE), 95% confi-
dence intervals (95% CI) and summed model weights (Σw %) of site 
covariates from the final model set (ΔAIC < 2) for occupancy models 
estimating elephant site use in Kasungu National Park, Malawi

Site covariate Averaged β 
estimates

SE 95% CI Σw (%)

Water  − 2.22 0.61  − 3.42, − 1.02 1.00
Forest  − 0.73 0.45  − 1.62, 0.16 0.68
Human 1.90 1.48  − 1.01, 4.81 0.38

Fig. 2   The effect of distance to water (km) on the expected prob-
ability of elephant site use (Ψ) in Kasungu National Park, Malawi. 
Predicted Ψ was based on the top-ranked occupancy model. The grey 
shaded area represents 95% confidence intervals

Fig. 3   Diel distribution and coefficient of overlap (Δ) of elephant and 
human activity on roads in Kasungu National Park, Malawi. The grey 
region shows the overlap between the two distributions. The coeffi-
cient of overlap value is presented, along with 95% confidence inter-
vals
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avoidance of anthropogenic activity in KNP, as elephant 
activity often peaks in the early morning and late afternoon 
(e.g., Shannon et al. 2008; Kasozi et al. 2022). Increased 
nocturnal activity could also be a response to thermal stress, 
as elephants are known to shift their activity peaks to cooler 
times of the day to aid thermoregulation and move over 
longer distances (Kinahan et al. 2007; Thaker et al. 2019). 
The observed temporal activity pattern may allow elephants 
to utilise the KNP road network as movement corridors 
(Gaynor et al. 2018), travelling over longer distances whilst 
it is cooler and minimising interaction with humans.

Our temporal activity results support findings from 
Gorongosa National Park (GNP), Mozambique, where ele-
phants exhibited increased crepuscular and nocturnal behav-
iour when using roads (Gaynor et al. 2018). In our study, 
83% of elephant activity on roads occurred during nocturnal 
hours, in accordance with Okita-Ouma et al. (2021) who 
found that 78% of elephant railway crossings took place at 
night. Similarly, Wadey et al. (2018) observed that Asian 
elephants (Elephas maximus) crossed roads more frequently 
at night. In accordance with these previous findings, KNP 
elephants appear to reduce their use of roads during times 
of peak vehicle traffic (Gaynor et al. 2018). Elephants can 
show behavioural responses to vehicle disturbance, includ-
ing increased conspecific- and human-directed aggression 
(Szott et al. 2019a, b) and physiological stress (Szott et al. 
2019a, b; Oduor et al. 2020), which can have long-term con-
sequences for reproduction and individual fitness. As ele-
phants in KNP often exhibit stress behaviour around vehicles 
and can be aggressive towards humans, it is recommended 
that speed limits and guidelines on minimum safe viewing 
distances are introduced and enforced in KNP to reduce dis-
turbance levels for elephants.

The lack of spatial avoidance exhibited by elephants in 
areas of higher human activity may be due to the presence 
of permanent water near key park infrastructure (i.e., park 
headquarters and scout camps) and park borders. Previ-
ous studies have indicated that elephants can differentiate 
between human risks (McComb et al. 2014) and preferen-
tially use areas of increased safety from poaching pressure, 
such as areas close to scout camps (Beale et al. 2018). Our 
results suggest that elephant site use in the dry season is 
not driven by risk avoidance, as neither the distance to park 
border nor scout camp covariates influenced the probability 
of elephant site use. As such, we reason that water is the 
driving factor influencing habitat selection. Elephant site 
use during the dry season may represent a trade-off between 
resource access and human-risk factors. Similar trade-offs 
between resource access and avoidance of human activity 
have been observed in other elephant populations. For exam-
ple, Bastille-Rousseau et al. (2020) found that elephants in 
the Laikipia/Samburu ecosystem, Kenya, prioritised water 
and forage access over avoidance of human settlements. By 

adjusting their temporal activity and limiting their use of 
park infrastructure (i.e., roads) to times of reduced anthro-
pogenic activity, elephants in KNP can utilise key resources 
whilst minimising direct contact with people.

Elephants in KNP showed no spatial response to areas 
of anthropogenic activity, despite the historic influence of 
human predation (i.e., ivory poaching) on the local popula-
tion (Bhima et al. 2003). Our results suggest that proximity 
to the KNP boundary has no effect on elephant site use, 
evidenced by the absence of this covariate in our final set 
of candidate models, and elephants are likely to be found 
in areas of increased human activity. This may have impli-
cations for human-elephant conflict (HEC), as elephants 
move closer to the park boundary the possibility of crop 
raiding increases, particularly during the dry season when 
crop raiding incidents often peak in elephant populations 
(e.g., King et al. 2017). Elephant site use near park bor-
ders may also be related to the presence of the KNP river 
network, which runs parallel to the park’s eastern bound-
ary. Although water sources are widespread within KNP 
(Macpherson 2020), prolonged periods of drought, which 
are predicted to increase with climate change (Warnatzsch 
and Reay 2019), may increase elephant movements outside 
of the park and impact levels of HEC. Efforts to install fenc-
ing along a 40 km section of the eastern perimeter of KNP 
(IFAW 2020), where communities have experienced conflict 
with elephants, could address potential HEC issues. How-
ever, recent studies have indicated that fencing can shift 
areas of HEC (Osipova et al. 2018). Continued monitoring 
of elephant movements and HEC would be useful for HEC 
management strategies in KNP.

We acknowledge that the placement of camera traps on 
the KNP road network may have limited our ability to pre-
dict drivers of elephant site use, as elephants may reduce 
their use of the road network to avoid vehicles (e.g., Blake 
et al. 2008). However, Gaynor et al. (2018) found that 
cameras placed on the road network in GNP detected simi-
lar overall levels of elephant activity compared to camera 
grids deployed off roads. Therefore, we believe our results 
are representative of elephant behaviour in KNP during 
the dry season. As the availability of surface water and 
food production increases during the wet season, elephants 
may disperse into less human-utilised areas (Martin et al. 
2010). Investigating the drivers of habitat use and elephant 
behaviour in anthropogenic areas between seasons would 
be beneficial for law enforcement and management. Cam-
era trap surveys are difficult in KNP during the wet season, 
as road access is limited and vegetation obscures camera 
detections (Davis et al. 2021a, b). Consequently, wet sea-
son monitoring of elephant behaviour in KNP is not feasi-
ble using camera traps. Future studies would benefit from 
satellite collaring elephants in KNP, providing fine-scale 
data on elephant movements and improving our knowledge 
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of elephant distribution in the wet season. Initial elephant 
collaring efforts in Vwaza Marsh Wildlife Reserve and 
Namizimu Forest Reserve, Malawi, have highlighted the 
benefits of collaring for investigating transboundary move-
ments and potential areas of HEC (Sievert et al. 2022).

Our study has added to the growing body of literature 
highlighting the benefits of camera trap bycatch data for 
providing additional ecological information on non-target 
species (Edwards et al. 2018; Gaynor et al. 2018; Williams 
et al. 2021). Funding limitations, time budgets and the 
sparsity of resources often restricts the ability of conser-
vation practitioners to make informed conservation man-
agement decisions (e.g., Lindsey et al. 2014). As such, 
utilising camera trap datasets and the additional data col-
lected on species of conservation concern can be a use-
ful tool for conservation practitioners. Whilst our study 
provides a small-scale example from one protected area, 
previous studies have demonstrated that these methods 
can be applied to camera trap datasets at a national and 
international level (Scotson et al. 2017a, b; Williams et al. 
2021). We advocate the wider use of camera trap bycatch 
data to investigate ecological questions outside the initial 
scope of research. However, researchers must ensure that 
the sampling design and modelling approach undertaken 
are appropriate for the non-target species and analytical 
framework being considered (Hardouin et al. 2021). As 
the use of camera traps continues to expand across Africa 
(Agha et al. 2018), the possibilities for large-scale collabo-
rations and the use of bycatch data to produce meaningful 
insights for a wide range of taxa will increase. By improv-
ing the ease of data sharing and following best practices 
for data management, bycatch data can be a useful tool for 
conservation management on a broad spatial scale (Scot-
son et al. 2017a, b).
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