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Abstract
Identifying individual animals is critical to describe demographic and behavioural patterns, and to investigate the ecologi-
cal and evolutionary underpinnings of these patterns. The traditional non-invasive method of individual identification in 
mammals—comparison of photographed natural marks—has been improved by coupling other sampling methods, such as 
recording overhead video, audio and other multimedia data. However, aligning, linking and syncing these multimedia data 
streams are persistent challenges. Here, we provide computational tools to streamline the integration of multiple techniques 
to identify individual free-ranging mammals when tracking their behaviour in the wild. We developed an open-source R 
package for organizing multimedia data and for simplifying their processing a posteriori—“MAMMals: Managing Animal 
MultiMedia: Align, Link, Sync”. The package contains functions to (i) align and link the individual data from photographs 
to videos, audio recordings and other text data sources (e.g. GPS locations) from which metadata can be accessed; and (ii) 
synchronize and extract the useful multimedia (e.g. videos with audios) containing photo-identified individuals. To illustrate 
how these tools can facilitate linking photo-identification and video behavioural sampling in situ, we simultaneously col-
lected photos and videos of bottlenose dolphins using off-the-shelf cameras and drones, then merged these data to track the 
foraging behaviour of individuals and groups. We hope our simple tools encourage future work that extend and generalize 
the links between multiple sampling platforms of free-ranging mammals, thereby improving the raw material needed for 
generating new insights in mammalian population and behavioural ecology.
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Introduction

Natural populations change in size and composition, pro-
pelling the dynamics of ecological communities, species 
interactions, and energy flow through the ecosystem (Odum 
and Barrett 1971). At the heart of these changes, are indi-
vidual animals being born, growing, behaving, and dying. 
Individual-based data provide the raw material to investigate 
the mechanics and dynamics of these natural populations, 
their ecological and behavioural interactions and evolution 
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(Coulson 2020), which is particularly necessary in longitudi-
nal studies (Clutton-Brock and Sheldon 2010). Therefore, a 
deep understanding of these patterns and processes in animal 
ecology requires identifying and tracking individual animals 
over time and space (Coulson 2020).

The available invasive and non-invasive methods for 
sampling individual animals present trade-offs on the accu-
racy, content and quality of the data they provide. Invasive 
methods require capturing animals to mark (e.g. with col-
lars, tattoos, tags, freeze branding; Silvy et al. 2005) or fit 
tracking devices (RFID, GPS, acoustic, satellite tags: e.g. 
Krause et al. 2013) but provide detailed information about 
the individuals (e.g. identity, location, behaviour, health). 
Actively capturing and marking animals, however, can be 
unfeasible, expensive or disrupt natural behaviour or physi-
ology (Walker et al. 2012). By contrast, non-invasive iden-
tification methods, such as photographic, acoustic and video 
recording (Karczmarski et al. 2022a, b), rely on systematic 
comparison of natural marks or behaviours (e.g. Karanth and 
Nichols 1998; Muller et al. 2018; Longden et al. 2020) to 
track individuals from a distance (e.g. Clapham et al. 2020; 
Ferreira et al. 2020). Although efficient in providing individ-
ual identities, non-invasive methods generally provide fewer 
information on other biological variables (but see Toms et al. 
2020), which has motivated the simultaneous use of other 
multimedia sampling platforms, such as video (e.g. Raoult 
et al. 2018; Francisco et al. 2020; Landeo-Yauri et al. 2020) 
and audio recordings (Cheng et al. 2012; Erbe et al. 2020). 
Novel technologies for identifying and tracking individuals 
using such multimedia data are becoming increasingly more 
precise in the lab or captivity (e.g. Mersch et al. 2013; Dell 
et al. 2014; Pérez-Escudero et al. 2014; Alarcón-Nieto et al. 
2018; Graving et al. 2019; Marks et al. 2021), but doing so 
in situ remains more challenging (e.g. Ferreira et al 2020; 
Guo et al. 2020). In the field, where animals are not spa-
tially constrained, recording data from multiple sampling 
platforms simultaneously, or syncing large volumes of data 
to then link with that of individual identification a posteriori, 
can be troublesome.

In wild mammal research, cetacean studies exemplify the 
continuous development of non-invasive individual identi-
fication methods based on multimedia data. Photo-identifi-
cation has been the go-to technique to recognize individual 
whales and dolphins in the last five decades (e.g. Würsig 
and Würsig 1977; Katona and Whitehead 1981; Hammond 
et al. 1990). Since whales and dolphins can range over large 
areas and spend long times underwater, photo-identification 
has been increasingly coupled to other multimedia sampling 
to detect the presence of individuals and/or describe their 
behavioural patterns. For instance, while cameras and acous-
tic sampling provide invaluable underwater perspectives, 
the growing market of unmanned aerial vehicles (drones) 
has popularized the recording of behaviour, movement and 

health of cetaceans from an overhead view (e.g. Torres et al. 
2018; Gray et al. 2019; Hartman et al. 2020). With few 
exceptions, however, these sampling techniques do not pro-
vide individual identities—but see, e.g., identification from 
overhead images (e.g. Payne et al. 1983; Durban et al. 2015) 
or acoustic signals (e.g. Janik and Sayigh 2013). Combining 
traditional photo-identification sampling with hydrophones, 
underwater and drone cameras can resolve this limitation, 
but it inevitably creates another one: individual behavioural 
tracking from multiple platforms generates a large and multi-
dimensional dataset that rapidly become unfeasible to handle 
manually. These technological advances have therefore pro-
duced a need for corresponding advances in computational 
tools to organize and process multiple data streams (e.g. 
Schneider et al. 2019).

Here, we introduce a free and open computational tool for 
aligning, linking and syncing photo-identification data with 
other multimedia data of free-ranging vertebrates. The R 
package MAMMals—Managing Animal MultiMedia: Align, 
Link, Sync—contains functions to synchronize different mul-
timedia data streams a posteriori and so facilitate their post-
processing to measure relevant biological and behavioural 
data. Using MAMMals, one can (i) extract, organize and line 
up the metadata of photographs, videos, audios, drone flight 
logs and any other timestamped text data; (ii) select, trim 
and export clips or stills of the footage or audio recording 
containing individual photo-identification; and (iii) wran-
gle, convert and plot data from cameras, drones, hydro-
phones, microphones and other timestamped data sources. In 
what follows, we describe the workflow for pre-processing 
individual photo-identification and link it to other multime-
dia data (Fig. 1). Next, we illustrate the utility of these tools 
by applying them to process and analyse empirical data on 
the foraging behaviour of coastal bottlenose dolphins. We 
conclude by discussing the caveats of our approach and how 
future work can alleviate them.

Workflow overview: coupling 
photo‑identification with other multimedia 
data

The MAMMals R package targets the challenge of coupling 
large volumes of observational and multimedia data to tra-
ditional techniques of identifying individuals, extending 
therefore the possibilities for studies that use methods of 
focal-animal and focal-group sampling (Altmann 1974). 
The minimum requirements are image files with assigned 
individual identification and at least one other multimedia 
data source. The workflow follows four steps (Fig. 1): (i) 
extracting the metadata of photographs and any other multi-
media files available; (ii) aligning the metadata of these files 
to select the useful multimedia containing photo-identified 
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Fig. 1  The MAMMals workflow to align, link and sync multimedia 
and timestamped text data. a The inputs are files commonly produced 
in individual identification and behavioural sampling methods, such 
as images (.jpg, .tiff, .png), videos (.mov, .mp4), audios (.wav, .mp3) 
and/or text files (.csv,  .txt,  .srt). After aligning, linking and syncing 
the inputs, the outputs can be text files with metadata and/or synced 
image, audio and/or video files. The minimum requirements for the 
MAMMals workflow are the photo-identification data (i.e. the image 
files associated to individual identification text data), and at least one 
more multimedia data source, such as videos, audios or text files. b 
The first step is to extract the metadata of all multimedia files (and 
flight logs, if available, or from captions in .srt files of commercially 
available drones). One can also export the metadata for posterior pro-
cessing, such as attributing individual IDs to each photo processed 
by the getPhotoMetadata function, or assign individual identifica-

tion from pre-processed data directly to the function getPhotoMeta-
data. c The second step is to align the metadata of photographs (or 
timestamped field notes) with that of the other media to automatically 
select the video or audio files containing individual photo-identifica-
tion data. d The third step is to link the selected media by clipping 
the videos and audios around the information of interest (e.g. photo-
identified individuals) to facilitate the post-processing of videos (get-
VideoClip), audios (getAudioClip) or stills from the video (getVide-
oFrame). If sampling includes drone videos, selected media can be 
linked to information from the flight, such as latitude, longitude and 
altitude. e The final step is to sync media and/or text by subsetting 
only the time intersect between data coming from different sampling 
platforms. The synced multimedia and text data can be exported as a 
single merged file or multiple separate files
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individuals; (iii) linking these selected files by clipping the 
multimedia containing photo-identified individuals; (iv) 
and syncing media and text data around their intersection 
time. We detail each step of the MAMMals workflow in the 
next sessions, and provide instructions and examples of the 
input and output files in a documentation in an online tuto-
rial (https:// mamma ls- rpack age. netli fy. app/ index. html). 
The MAMMals R package can be installed from the online 
repository (instructions at https:// bitbu cket. org/ mauca ntor/ 
mamma ls/). It depends on the installation of the R environ-
ment (R Core Team 2021) and key R packages such as lubri-
date (Grolemund and Wickham 2011) to manage date-time 
formats (full list of dependencies, see the package reposi-
tory), as well as external software ExifTool (https:// exift 
ool. org) to extract the metadata of media files, and FFmpeg 
(https:// ffmpeg. org) to clip video and audio files.

To align, link and sync multiple data sources, the MAM-
Mals workflow relies on timestamped files: essentially, the 
recording times of the multiple sampling equipment are 
extracted from the metadata of the media files and lined up. 
Therefore, the most important recommendations for field 
sampling are to synchronise the clocks of all collection plat-
forms, and to keep the original metadata of the media files 
unaltered. For accurate results, we recommend the clocks of 
cameras, drones, audio recorders and auxiliary equipment 
(such as cell phones used to pilot the drone or tablet apps 
to record observation data) to be adjusted to the maximum 
precision possible via information—either from the GPS 
satellite, or manually—and to be always double-checked 
and fine-tuned before each sampling occasion to account 
for clock drift. For example, one can photograph and film 
a reference clock prior to sampling or use audio or visual 
signals during sampling (e.g. flash in our case study detailed 
below) to offset time differences across images and videos.

When photographing animals for individual identifica-
tion using natural marks, we recommend following the pro-
tocols for collecting, processing and organizing such data, 
which have been extensively detailed elsewhere (e.g. Speed 
et al. 2007; Urián et al. 2015). We highlight that using 
DSLR cameras equipped with GPS and digital compass can 
be useful when teasing apart photo-identified individuals 
in the field, especially when tracking them with overhead 
videos. For instance, when tracking multiple individuals 
or groups distributed in space, one can assign the photo-
graphs taken to each group recorded in the overhead foot-
age by interpreting the GPS coordinates and shooting angle 
extracted from the photograph metadata. After the photo-
graphic data sampling, we recommend first processing the 
photo-identification data and organizing it in a plain text 
data frame, in which the first column contains the photo-
graph file name and extension (e.g. ‘6Q1A8164.JPG’), and 
the second contains the individual (alphanumeric) identifi-
cation code (e.g. ‘ID1248’).

When recording audio, we recommend using recorders 
that can produce timestamped files. Otherwise, one can man-
ually check the end time of recordings after sampling and 
rename files accordingly with date and time. When record-
ing videos from small drones (e.g. DJI Phantom, DJI Mavic 
Pro, DJI Inspire, Splash Drone) while simultaneously col-
lecting photo-identification or audio recordings, we recom-
mend keeping a constant flight height and point the camera 
straight down (i.e., drone and camera pitch = − 90°, roll = 0°) 
to ensure the centre of the frame matches the coordinates 
recorded by the drone GPS and to reduce the distortion from 
any measures taken from the drone footage. If measuring 
animals from the drone footage using photogrammetry, there 
will be additional requirements. In addition to the camera 
tilt, the aircraft altitude data are the main issues for precise 
and unbiased photogrammetric measurements. Off-the-shelf 
drones record the altitude relative to the aircraft’s take-off 
position (“home point”). Hence, if the aircraft takes off from 
the deck of a ship or a higher ground, the zero in the air-
craft’s barometer does not match the sea level. To mitigate 
this, an object of known length can be used to calibrate a 
scale (details in Burnett et al. 2019). Another solution is 
to couple a LiDAR sensor to the drone (e.g. Dawson et al. 
2017) to precisely measure the distance from the aircraft to 
the sea level. Correcting lens distortion and camera cali-
bration also reduce errors in measurement estimates (see 
Dawson et al. 2017).

Step 1: extracting metadata of multimedia files

After conducting photo-identification as per standard protocols, 
the first step in the MAMMals workflow is to extract the meta-
data of all multimedia files (Fig. 1b) and organize them into a 
text database, such as an R data frame. We suggest allocating 
each media type in separate subfolders within the root folder 
of the project, then using the following functions to read and 
organize the metadata into a data frame where the number of 
rows equals the number of files, and each column corresponds 
to the available metadata. To extract the metadata of the photo-
graphs, access the subfolder with the image files with the func-
tion getPhotoMetadata, which handles many common image 
extensions (e.g. .jpg, .tiff, .png) and accesses the available meta-
data of each photograph—at least the date and time, but also the 
camera GPS coordinates and shooting angle, if available. The 
getPhotoMetadata function also assigns the individual ID to the 
full metadata of the photographs, by matching the file names 
with that of the simple two-column data frame containing the 
photo file name and the individual identification code. While 
we recommend having the individual identification ready prior 
linking and syncing with the other multimedia files, we highlight 
that, alternatively, one can also perform the photo-identification 
afterwards. In this case, the getPhotoMetadata function can be 
used to export the metadata of photographs to common text files 
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(e.g. .csv or .txt) and to then assign individual ID to the database 
using any text editor or spreadsheet software (e.g. Microsoft 
Excel, Apple Numbers). Bear in mind, however, that issues with 
the date and time formats and precision are common when using 
spreadsheet software; thus, we suggest using plain text editors 
to avoid lack of precision when aligning, linking or syncing the 
photo-identification to the multimedia data.

For the audio subfolder, use getAudioMetadata to extract 
metadata of audio files (at least duration, initial and final 
time). If the audio files do not contain date and time in the 
metadata, initial and final time of recordings can be extracted 
from the filename automatically generated with date-time 
stamps, as exported by commonly used autonomous record-
ers (e.g. Whytock and Christie 2017; Hill et al. 2019). To 
extract the metadata of the videos (at least duration, initial 
and final time), access the video subfolder with the getVideo-
Metadata. If videos were recorded with drones, additional 
metadata can be available (e.g. altitude, GPS coordinates) 
and will be extracted and organized into a text database as 
well. Most commercially available drones save detailed logs 
of every flight. Information on aircraft sensors, motors, bat-
tery, remote controller and media are logged on-board and 
on remote applications, often using proprietary file struc-
tures. Hobbyists (e.g. DatCon, TXTlogtoCSVtool), compa-
nies (e.g. https:// airda ta. com) and forensics (e.g. Clark et al. 
2017) have been developing tools to decode flight logs into 
readable .csv files. Alternatively, the MAMMals R package 
can extract the basic flight log data recorded by DJI drones. 
These drones can produce timestamped subtitles (1 Hz data) 
logging the aircraft latitude, longitude and height (calculated 
from the aircraft barometer), the home point latitude and 
longitude, and camera settings. However, subtitles do not 
contain auxiliary information on the aircraft and camera roll, 
pitch and angle; and the accuracy of latitude and longitude 
is limited to 10 m. But conveniently, subtitles are natively 
exported from DJI drones as text files (.srt) along video files, 
and the MAMMals readSRT function can read all .srt files 
in a folder and return an R data frame with the formatted 
metadata of the DJI drone flight logs.

Step 2: aligning multimedia files

After extracting the metadata of the multimedia files, large 
volumes of multimedia data can be aligned with the MAM-
Mals functions that subset media files containing photo-
identification data (Fig. 1c). Use the selectVideos or selec-
tAudios functions to get the video and audio files of interest, 
respectively, by aligning their metadata with the metadata 
of the photographs of individuals (previously generated by 
the functions getVideoMetadata, getAudioMetadata, get-
PhotoMetadata, respectively). The select set of functions 
calculates the time of the photograph in the video or audio 
files for all photographs taken during the sampling event, 

and they return an R data frame with data matching the time 
in the video or audio files. Then, one can export an R data 
frame containing only the photo-identified individuals, or 
other events of interest, into a .csv or .txt. We highlight that 
while these functions are based on photograph metadata, 
they also work with other text data in which events are cor-
rectly timestamped (Fig. 1c), such as observed behavioural 
events recorded in the field notes, and GPS positions from 
loggers fitted to the animals.

Step 3: linking photographs with multimedia data

After aligning the metadata of the media files, the photo-
identification data can be linked with video or audio files by 
trimming these media files (Fig. 1d) based on the informa-
tion generated by the selectVideos and selectAudios func-
tions. If the aim is to get a still from the video for every 
photo-identified individual, the getVideoFrame function can 
export a frame of the video in the moment each photo was 
taken. If the aim is to perform further video or audio analy-
ses, one can export short clips around the time of each photo-
identification for both video (getVideoClip) and audio files 
(getAudioClip). If sampling with drones, one can automati-
cally link data from flight logs to every event exported by 
the selectVideos or selectAudios functions. The linkFlight-
ToMetadata function returns an R data frame in which the 
number of lines is equal the number of photo-identification 
photographs, and the columns contain all available metadata. 
The linkMetadataToFlight function merges the media data 
with the flight data, returning an R data frame with all the 
flight logs, or a list with a data frame for each flight log data.

Step 4: syncing multimedia data

Finally, the multiple media data sources can be synchronized 
based on the intersection of their recording time (Fig. 1e). 
Using the function syncMedia, video and audio files that 
were sampled concurrently and selected by the selectVideos 
and selectAudios functions can be trimmed to match the time 
intersection, and merged into a single file or exported as sep-
arate media files. Other auxiliary text data (e.g. GPS track-
ers, heart rate loggers, flight logs) recorded simultaneously 
in the field can be synchronized based on the intersection of 
their sampling time and merged into a single text database 
using the function syncData, as long as the input clocks are 
precisely synced.

Auxiliary functions for post‑processing multimedia 
data

The MAMMals R package was designed to streamline the 
pre-processing of photo-identification and multimedia data; 
thus its workflow does not include the post-processing of the 
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biological data of interest. After linking the photographs 
with the useful parts of the videos and audios, manual or 
semiautomatic extraction of the target data is required. This 
may include video playback to quantify behavioural states 
and events (e.g. Torres et al. 2018), morphometry or health 
variables (e.g. Christiansen et al. 2020); automatic detec-
tion of species (e.g. Gray et al. 2019); or photographic com-
parison needed to identify individual animals (e.g. Urián 
et al. 2015). To efficiently measure and extract such biologi-
cal data from photos, videos, and audio data, we point the 
reader to the growing number of computational tools avail-
able elsewhere (e.g. Abràmoff et al. 2004; Friard and Gamba 
2016, Beery et al. 2020; Schneider et al. 2018; Torres and 
Bierlich 2020; Bird and Bierlich 2020). We exemplify one 
case of post-processing behavioural data in the next sec-
tion, but here we highlight that the MAMMals R package 
also contains some functions and utilities to assist with the 
post-processing of the linked multimedia data or auxiliary 
data. For instance, one can use MAMMals to wrangle and 
convert information from the drone flight log data, such as 
gimbal and camera angles, GPS coordinates, digital com-
pass and barometer sensors. We conceptually divide these 
functions into data tools and visualization (Table 1), which 
are, respectively, identified by the prefixes do and view. 
For instance, doCorrectAngle can be used to correct drone 
yaw ranging from 0 to 180 or − 180 to 0 to 0 to 360, and 
the function viewFlightPath can be used to visualize a 2D 
drone flight path with photos as points, using data from the 
linkMetadataToFlight.

An illustrative case study

To illustrate the utility of the MAMMals R package, we used 
individual and behavioural data collected from a coastal 
bottlenose dolphin population in Laguna, southern Brazil, 

where some individual dolphins forage near the coast with 
net-casting fishers (Simões-Lopes et al. 1998). To explore 
the dolphins’ foraging behaviour, we combined standard 
photo-identification with overhead video, recorded using a 
commercially available drone (DJI Mavic Pro) with a built-
in high-resolution camera mounted on a gimbal. We hovered 
the drone over the study area above 60 m to minimize poten-
tial disturbance to the dolphins (Fettermann et al. 2019), and 
follow all safety flight guidelines (Fiori et al. 2017; Raoult 
et al. 2020). The drone camera covered an area of ca. 7500 
 m2, including the coast where the fishers wait for dolphins 
and ca. 60 m of the lagoon canal. Simultaneously, two pho-
tographers registered the dolphins’ dorsal fins for posterior 
individual identification based on nicks, notches, scars and 
skin lesions, following photo-identification protocols (Ham-
mond et al. 1990). One photographer positioned ashore used 
a DSLR Canon 60D camera equipped with a 100-400 mm 
lenses to photograph all dolphins in the video footage area, 
while the second photographer stood on a 1.5 m platform 
3 m behind the fishers and used a DSLR Canon 7D MkII 
with built-in GPS and digital compass and a 70–300 mm 
lenses to identify the individual dolphins that approach the 
fishers to interact. This photographer was always captured in 
the drone footage and used a flash (Yongnuo) pointing up, so 
the timing of the photographs taken could be verified in the 
video to double-check if the clocks of the camera and drone 
were properly synced.

To illustrate two types of behavioural data that can be 
measured from the merged video and photo-identification 
dataset, we tracked (i) the foraging behaviour of individual 
dolphins in terms of distance and heading angles relative to 
the coast over time (Fig. 2a); and (ii) the foraging behaviour 
of a group of dolphins in terms of spatial cohesion and div-
ing synchrony (Fig. 2b). In both cases, we used the MAM-
Mals R package to automatically select examples of drone 
videos containing photo-identified dolphins from a total of 

Table 1  Auxiliary functions provided in the MAMMals R package to assist data wrangling, conversion and visualization

Function Description

doConvertAngle Convert angle in degrees ranging from 0 to 180 for the right side and − 180 to 0 for the left side, and return 
angle in degrees ranging from 0 to 360

doCorrectCameraYaw Correct camera yaw relative to drone yaw in degrees relative to geographical North
doFilterDroneHeight Filter drone data to data in height equal or above a value in meters
doFilterGimbalPitch Filter drone data to when the camera is pointing straight down, i.e. pitch = − 90°
doCalcDistanceX and doCalcDis-

tanceY
Calculate horizontal (doCalcDistanceX) or vertical (doCalcDistanceY) distance of an object marked in any 

image tool (e.g. ImageJ). This distance will be used to transform the marked object into a GPS position 
using the origin point as reference

doNewLatitude Calculate latitude of an object given the distance and angle to a reference point using photogrammetry data
doNewLongitude Calculate longitude of an object given the distance and angle to a reference point using photogrammetry data
doAngleToDec Convert the degree-min-sec format (e.g. 28° 29′ 44.77″ S) into degree decimals
doCalcRadiusEarth Calculate radius of Earth at any given latitude and altitude
viewFlightPath Plot drone flight path and relate with photo-identification data, if available
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56.6 h of footage and 3614 photographs of 21 identified 
individual dolphins. First, we used the functions getPhoto-
Metadata and getVideoMetadata to extract and organize the 
metadata of photographs and videos, extracted the drone 
flight logs and used some of the auxiliary functions to cor-
rect angles of drone footage (doConvertAngle, doCorrect-
CameraYaw) and filter off flights that were too low (doFil-
terDroneHeight) or in which the camera was not pointed 
straight down (doFilterGimbalPitch).

To describe (i) the individual-level foraging, we then 
used the function selectVideos to identify drone videos 
taken when there were 1 or 2 dolphins at the interaction 
site, and the function getVideoClip to crop 6-min video clips 

around the photographs taken. Next, we manually processed 
these clips with the open-source software imageJ (Abràmoff 
et al. 2004); each time the photo-identified dolphin surfaced 
to breath, we used the ‘straight line’ tool to measure the 
distance of the dolphin from shore, and the ‘angle’ tool to 
measure the angle between the dolphin’s heading and the 
shore. In videos with more than one dolphin at the site, 
we distinguished photo-identified dolphins recorded in the 
video at the same time but in different places using the angle 
(available in the metadata of the photographs) between the 
dolphin and the camera equipped with built-in compass used 
for photo-identification. Finally, we converted the distances 
measured in pixels to meters based on a 1-m scale captured 

Fig. 2  Examples of individual- and group-level behaviour of photo-
identified mammals extracted from overhead videos. a Tracking 
the foraging behaviour of individual coastal dolphins, in terms of 
distance and angle to the shore. The MAMMals package was used 
to automatically select and clip a video containing a solitary photo-
identified dolphin (inset photo-identification). The video was then 
post-processed, when dolphins’ distances (yellow lines in the picture; 
y-axis in the plot) and angles (cyan lines in the picture, with the mid-
dle point centred on the dolphin; arrows in the plot, whose colours 
indicate temporal sequence) relative to shore were measured each 
time they surfaced to breath. Distances measured in pixels were con-
verted to meters based on a 1-m scale placed behind the photogra-
pher; angles measured in degree relative to the shore, were converted 
to radians, considering the True North as a reference. b Group cohe-
sion and dive synchrony of photo-identified bottlenose dolphins, in 
terms of relative distance to each member and timing of surfacing. 

The MAMMals R package was used to select the photographs with 
the dolphins’ dorsal fins for posterior identification of the 5 group 
members. The group of 5 dolphins were then tracked over time with 
a custom computer vision model trained to detect dolphins in drone 
videos. Cohesion was estimated as the average Euclidean distances 
among the centroids of all dolphins detected (i.e. the green rectan-
gles with detection scores) every 0.2 s and converted to meters using 
a known 1-m scale captured in the video (not shown here). Synchrony 
was estimated as the time difference between detections. Pictures 1–4 
illustrate a case of diving sequence of a subgroup of 5 dolphins, in 
which 1 individual is detected first, followed by three that surfaced 
simultaneously, and then by the fifth individual after a 2-s lag. Box 
plots present the distribution of mean distances and breath intervals 
(y-axes) across different number of simultaneous detections (circles) 
of dolphins at the surface (x-axes) during a ~ 20-min drone video
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in the drone video, and converted the angles measured in 
degrees relative to the shore to radians, considering the True 
North as a reference. In Fig. 2a, we present an example of 
these data on the distances and angles of a photo-identified 
individual dolphin foraging close to shore.

To describe the group-level foraging, we used the functions 
selectVideos and getVideoClip to select the photographs of 
all dolphins foraging in groups and trim the complete 20-min 
drone video into a shorter video around the time that the pho-
tos were taken. We first photo-identified individuals manu-
ally, and then measured group cohesion and dive synchrony, 
in terms of relative distance to each member of the group and 
timing of surfacing. To do that, we have used a convolutional 
neural network object detection classifier (He et al. 2016) to 
automatically detect and count dolphins in the drone footage. 
We have re-trained a TensorFlow pre-trained classifier with 
Faster-RCNN model architecture (Ren et al. 2015) using 838 
drone video frames in which dolphins were manually labelled 
using LabelImg (Tzutalin 2015), and 200 other such images 
for testing the model. We then applied this supervised learn-
ing computer-vision model to detect and count the number of 
dolphins at every 0.2 s of the drone video, i.e. every 5 frames 
of a 25 FPS video (for a similar approach, see Guo et al. 2020). 
We highlight that although we have used machine learning to 
post-processes the video clips, this procedure could also be 
done manually. For instance, one can extract short .avi clips 
with a framerate of 1 fps using the getVideoClip function, and 
then import the clip to imageJ to measure the inter-individual 
distances and surface timing. To estimate the group cohesion, 
we calculated the relative time between each dolphin detec-
tion, considering greater cohesion when individuals are closer 
together; to estimate diving synchrony, we calculated the lag 
between dolphin surfacing times, considering greater syn-
chrony when their breath intervals were shorter. We measured 
the group cohesion as the average Euclidean distance, in pixels, 
between the centroids of all dolphins detected in each frame, 
and converted these distances into meters based on a known 
1-m scale recorded in the drone video. We measured the diving 
synchrony as the time lag between detections, considered the 
group to be in synchronous diving when more than one dolphin 
was detected in the same video frame. In Fig. 2b, we present 
these data on group cohesion and dive synchrony as the distri-
bution of mean distances and breath intervals among different 
number of dolphins at the surface.

Caveats

The tools herein presented assist the organization of 
simultaneous sampling methods, but caveats exist. 
First, the level of detail of the outputs—be them the 
merged databases or the cropped and synced media—
may depend on the accessibility of the study system. 

We have illustrated how the MAMMals tools work when 
recording and tracking coastal dolphins, but these tools 
could be used to process multimedia of mammals indi-
vidually identifiable from photographs taken from the 
ground or sea level (e.g. sperm and humpback whale 
caudal fins, or blue whale pigmentation; Hammond et al. 
1990) and from overhead (e.g. head of right whales, or 
other identifiable body parts of marine and terrestrial 
mammals; Landeo-Yauri et al. 2020; Maeda et al. 2021). 
However, in our example, we had the advantage of keep-
ing the photographer in the overhead video frame at all 
times for recording the position of the GPS-equipped 
camera as a reference point, and for double-checking 
the synchrony between the video and photograph data 
streams. This setup is rather unusual for studies of free-
ranging mammals, and require the sampling design to 
be adapted to fit the reality of other study systems. For 
example, boat-based focal follows of cetaceans could 
aim to keep the boat close to the group most of the time 
to allow the photographer to be in the overhead video 
frame, or overhead behavioural sampling of terrestrial 
mammals can be focused on a relatively small open area.

The second limitation of our tools is that the precision 
of the link between the photo-identification and the other 
multimedia can be dependent on group size and group cohe-
sion. In our example, we tracked solitary and small groups of 
animals that can be easily photo-identified, but mismatches 
in individual identification can occur when collecting data 
from multiple individuals at the same time, such as in large 
and tight groups. Our drone videos can contain multiple 
individuals, leading to the possibility that an individual pho-
tographed at a given time could be linked to multiple indi-
viduals that appear in the drone video at that time. We have 
resolved this by keeping the photographer in the overhead 
video frame and relying on the angle of the built-in digital 
compass of the camera to tease apart individuals in the over-
head footage. However, these decisions become increasingly 
more difficult to make as the group size, and the rate of 
pictures taken, increase, and/or the groups become tighter 
and closer to the photographer. In such situations, our tools 
could still help defining the timestamps of sampling events 
to extract group-level (but not individual) data or identify 
subgroups of animals.

Closing remarks

Our tools to streamline the use of multimedia data with tra-
ditional individual identification methods are steps toward 
the integration of multiplatform behavioural sampling on 
free-ranging mammals. We acknowledge there is room for 
improvement and, to encourage further development of these 

990



A simple tool for linking photo-identification with multimedia data to track mammal behaviour  

1 3

tools collectively, we provide all the code of the MAMMals 
package in an open repository (https:// bitbu cket. org/ mauca 
ntor/ mamma ls/). We hope to inspire further collective work 
in the scientific community to generalize the process of link-
ing multiple sampling platforms to refine the collection and 
processing of data of individual animals. More importantly, 
we hope these computer tools improve the raw material 
needed to promote new insights on the population dynam-
ics, ecological interactions and behaviour of free-ranging 
animals.

Appendix

The MAMMals R Package can be downloaded and installed 
from its open repository https:// bitbu cket. org/ mauca ntor/ 
mamma ls/. Please visit the MAMMals R Package web-
site at https:// mamma ls- rpack age. netli fy. app for list of all 
functions and a step-by-step guide on (i) extracting meta-
data of multimedia files; (ii) aligning multimedia files; 
(iii) linking photographs with multimedia data; and (iv) 
syncing multimedia data.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42991- 021- 00189-0.
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