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Abstract
The space to event (STE), time to event (TTE), and instantaneous sampling (IS) methods were developed to estimate 
abundance of unmarked animals from camera trap images (Moeller et al. in Ecosphere 9(8):e02331, 2018). The space and 
time to event models use camera data in a different way than other abundance estimation methods do. Instead of using counts 
of animals over independent events, STE uses a measure of sampled space before the first detection of the target species, 
and TTE uses the time until the first detection. We introduce spaceNtime, a free and open-source R package designed to 
assist in the implementation of the STE and TTE models, along with the IS estimator. This package takes the user through 
the steps of transforming data, defining sampling effort, selecting sampling occasions, building encounter histories, and 
estimating abundance from camera data using these three methods. The package is designed for users with a baseline level 
of knowledge of R and statistics, without requiring expertise in either.

Keywords Abundance · Camera trap · Density · Instantaneous sampling · Space to event · Time-lapse photography · Time 
to event · Unmarked animals

Introduction

Historically, the most common use of camera traps for 
abundance estimation involved individually identifiable 
animals—either those with natural markings like spots or 
stripes, or with artificial markings placed by researchers. 
When animals are individually identifiable, researchers can 
use capture–recapture or mark–resight models (Karanth 
1995; Karanth and Nichols 1998; Rich et al. 2014). More 
recently, spatially explicit versions of capture–recapture have 
also been implemented with cameras (Royle et al. 2009; 

Sollmann et al. 2013). However, many species have no natu-
ral markings that allow individual identification. Artificially 
marking animals can be expensive and dangerous to both 
humans and wildlife. Therefore, camera methods without 
the need for individual identification have gained traction in 
recent years, including the space and time to event models 
(STE and TTE) and instantaneous sampling estimator (IS) 
(Moeller et al. 2018).

The mathematical derivation of the STE, TTE, and IS 
models and their assumptions are described in detail in 
Moeller et al. (2018), but the authors do not focus on how 
to implement the models in the field or on the computer. In 
this paper, we introduce spaceNtime, a free R package 
for estimating abundance using STE, TTE, and IS. Here, we 
first summarize the models and their assumptions but refer 
readers looking for additional detail to Moeller et al. (2018). 
In the Functionality section, we detail the necessary compo-
nents for each model, and we describe the steps to run each 
analysis in a complete R workflow from processing data to 
estimating abundance.

As detailed in Moeller et al. (2018), TTE and STE models 
use the mathematical relationship between the Poisson and 
exponential distributions to estimate animal density, and the 
IS estimator uses fixed-area point counts. Conceptually, TTE 
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and STE rely on the basic idea that greater abundance in an 
area leads to greater detection rates at cameras. The first of 
these, TTE, estimates abundance from the amount of time 
that elapses before an animal enters the viewshed of a given 
camera. As shown by Moeller et al. (2018), if the number of 
animals in view of camera i on occasion j can be modeled by 

 then the time to event at camera i on occasion j is modeled 
by

Because time to detection also depends on animal 
movement, TTE requires an independent estimate of animal 
movement rate. Conceptually, STE is similar to TTE with 
space substituted for time (Moeller et  al. 2018). At an 
instantaneous point in time j, the space to event is modeled 
by

Space to event is defined as the amount of area sampled 
on the ground until the species of interest is encountered. In 
contrast to TTE, the STE model uses instantaneous sampling 
occasions, and therefore it does not depend on movement 
rate. IS is a reduction of STE that uses fixed-area point 
counts at multiple instantaneous points in time. IS density 
is estimated by

 where nij is the count of animals in camera i = 1, 2, …, M 
on occasion j = 1, 2, …, J and a is the camera’s viewable 
area. All three methods estimate average density within the 
viewable area of the cameras, then scale that density up to 
the area of interest (i.e., the sampling frame).

Moeller et al. (2018) describe four basic assumptions for 
STE, TTE and IS. First, they show that camera sites should 
be representative of the sampling frame. To implement this, 
cameras should be randomly or systematically deployed 
across the sampling frame. Practices to increase detections, 
such as targeting high-use trails, should be avoided as 
they can bias the abundance estimate. Second, the authors 
note that animals should have no behavioral response to 
cameras or camera sites. This precludes the use of bait or 
lures to increase encounter rates. It also means that cameras 
should be unobtrusive and not repel animals with bright 
flashes or human scent. Third, the authors indicate that 
the population should be closed and all animals should be 
available for detection. However, if the population is not 
closed and animals temporarily leave the sampling frame or 
become unavailable for detection (e.g., by hibernating), the 
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models will estimate the mean number of animals present 
and available in the sampling frame over the course of the 
study (Loonam et al. 2021). Fourth, the area viewed by 
each camera should be known across time and measured 
accurately. If camera area is not measured accurately, 
abundance estimates will be biased.

In addition to the four assumptions common to all three 
methods, Moeller et al. (2018) describe several assumptions 
that apply to some, but not all, of the three methods. For 
STE and TTE, animal abundance should follow a Poisson 
distribution at the level of the camera. In other words, 
animals should move independently at the spatial scale of 
the camera’s viewshed. TTE is the only method of the three 
that requires an estimate of mean animal movement rate, 
defined across all animal behaviors, including rest (Moeller 
et al. 2018). Finally, for STE and IS, sampling should be 
instantaneous. In practice, sampling occasions should be 
short enough to approximate a snapshot of the landscape at 
a moment in time (Moeller et al. 2018).

Moeller et  al.  (2018) indicate that time-lapse 
photography provides a good way to meet the assumption 
of instantaneous sampling occasions for STE and IS. With 
time-lapse photography, a camera takes photos at even 
intervals throughout the day (e.g., every 15 min). Therefore, 
sampling effort, as defined by the number of cameras 
functioning throughout the study, is simple to quantify 
from time-lapse photography; cameras are known to be 
functioning when photos are taken at the expected intervals 
and cameras are not functioning if no photo is taken. With 
time-lapse photography, detection probability for STE and 
IS is narrowly defined as the probability that a species is 
correctly identified by an observer, given that it is in a photo. 
Although time-lapse photography has huge advantages for 
determining sampling effort and detection probability, most 
camera trap studies to date have relied on motion-sensor 
photography, with the goals of increasing detections of 
animals and decreasing the occurrence of “empty” photos. 
Motion-sensor datasets are produced through a complex 
combination of a detection function, an effort function, 
and species presence. For STE and IS, motion-sensor 
detection probability is defined by four conditions: the 
animal is present in the camera’s viewshed, the motion 
sensor detects the animal, the camera takes a picture with 
the animal still in view, and the user correctly identifies the 
species. This definition shows that motion-sensor detection 
probability is entwined with motion-sensor effort, meaning 
the camera was working as intended. Sampling effort is 
difficult to quantify from motion-sensor photography, as the 
outcome (no picture) is the same whether the camera stops 
working, the motion-sensor doesn’t detect the animal, or the 
animal is absent. Time-lapse photography can help define 
motion-sensor effort if the two are used in conjunction. 
For example, time-lapse photos throughout the day will 
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show that the batteries are functioning, the lens is clear of 
snow and debris, and the camera is pointed in the intended 
direction, which can help give confidence that the motion 
sensor is working as intended. As memory storage becomes 
increasingly inexpensive and image processing can be done 
automatically (Tabak et al. 2019), there is little downside 
to collecting time-lapse data for STE and IS analyses. For 
TTE, which needs time-to-detection data provided by motion 
sensors, the combination of time-lapse and motion-sensor 
photography time-lapse is beneficial.

As described earlier, STE and TTE use camera data in 
a particularly unique way that may be unfamiliar to many 
users. Rather than using counts of individual animals or 
independent detection events, STE uses the amount of space 
sampled by cameras until an animal detection at a given 
time, while TTE uses the time elapsed from an arbitrary 
starting point to the first detection of the species of interest. 
Furthermore, users have different levels of familiarity with 
statistics and estimating model parameters from data, both 
of which are required for implementing STE and TTE. 
Therefore, we developed spaceNtime, an R package 
designed to assist in implementing space to event, time to 
event, and instantaneous sampling methods. We developed 
a set of functions for transforming camera data to create 
encounter histories to fit these models.

We demonstrate an example analysis of STE on simulated 
data, and we detail the workflow from data entry through 
analysis output. The package spaceNtime  can be 
downloaded directly from GitHub using the R command 
devtools::install_github(“annam21/
spaceNtime”). A detailed vignette on running all three 
analyses is included in the package, and adding the optional 
argument build_vignettes = TRUE to the previous 
command will allow the user access to the vignette. The 
package provides tools to assist the user and outlines a 
complete workflow from data transformation to abundance 
estimates.

Functionality

The spaceNtime workflow can be divided into five 
major steps (Fig.  1). It begins with photo processing 
and ends with estimating density or abundance. Many 
functions are shared between STE, TTE and IS. Functions 
that are particular to one analysis begin with the prefixes 
ste_, tte_ or ise_. The workflow steps are:

1. Data preparation: record information from photos and 
transform data into the required format for further 
analysis.

2. Define sampling effort: specify when cameras were 
turned on and functioning, along with their viewshed 
area.

3. Specify sampling occasions: define sampling intervals 
that will be used to subset camera data and estimate 
abundance.

4. Build encounter history: build the encounter history for 
the appropriate analysis.

5. Estimate density or abundance: run the analysis and 
return an estimate of density or abundance in the defined 
study area.

Step 1. Data preparation

The workflow begins when the user looks through photos 
and records species detections in a database. The user can 
record animal detections using any software or database 
designed for photo processing and data entry. One of the 
greatest advantages of camera traps is that they collect data 
that can be used to address multiple questions for multiple 
species, and we expect users will want to maximize the 
information collected during photo processing. We therefore 
recommend that users record the count of individuals of 
every species of interest in every photo. This method of data 
processing allows for the most flexibility to run STE, TTE, 
and IS, as well as many additional analyses.

The spaceNtime workflow is designed to estimate 
abundance of one species at a time. The user should begin 
with an R data.frame with one record for every photo. 
These data should have at minimum, a column named 
cam, containing unique IDs for each camera, a column 
datetime with the date and time the photo was taken, 
and a column count with the number of individuals of the 
target species in the photo (Table 1). The IS method is the 
only method of the three that uses counts of animals; STE 
and TTE use presence (1) and absence (0) only. For STE and 
TTE analyses, spaceNtime recognizes any value greater 
than or equal to 1 in the count column as presence, and 0 
as absence.

Step 2. Define sampling effort

The second step in the spaceNtime workflow is to define 
sampling effort. In this context, sampling effort refers to 
the times cameras are fully functioning and viewable area 
is known. The first component, camera functioning, is easy 
to quantify when using time-lapse photography. If there is 
a photo at a time-lapse interval, the camera was working 
properly. If there is no photo, the camera was not work-
ing. Camera functioning is much more difficult to quantify 
when using motion-sensor photography. For example, if 
snow collects on the motion sensor and prevents the camera 
from taking photos, the user may not have any indication 
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that this occurred. For motion-sensor photography, the user 
must make an informed guess about the period in which 
the camera was functioning. The second component of sam-
pling effort is viewable area, which can vary over time due 
to factors, such as weather, time of day, vegetative growth, 
and changes to the camera setup. Once again, time-lapse 
photography makes quantifying changes to viewable area 
much easier than motion-sensor photography does. Time-
lapse photography provides a complete record of viewable 
area over time. The user can determine whether the lens is 
obscured for any reason, and if so, set the viewable area to 0. 

Fig. 1  The spaceNtime workflow for count data. The user will go 
through five major steps for STE, TTE, and IS analyses. If the user 
has presence/absence (0 and 1) data instead of count data, the IS anal-

ysis is not appropriate, and the IS pathway should be removed from 
the flowchart

Table 1  An example input data frame, with a record for each photo

The minimum required columns are cam (unique ID of the camera), 
datetime (the time the photo was taken), and count (number of 
individuals of the target species in the photo)

cam datetime count

1 2016-01-02 12:00:00 1
1 2016-01-03 13:12:00 0
2 2016-01-02 12:00:00 0
2 2016-01-02 14:00:00 1
2 2016-01-03 16:53:42 2
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If the lens is only partially obstructed and the viewable area 
can be calculated, the user can define the viewable area for 
that occasion. In contrast, with motion-sensor photography, 
the user only has a record of the camera’s viewable area 
when animals are present and photos are taken. The user 
must assume that the same area is sampled when photos are 
taken and when they are not.

Because many existing datasets consist of only motion-
sensor photography, we created the functionality in this 
package to allow use of either time-lapse or motion-sensor 
photography or both. Regardless of whether the user has 
time-lapse or motion-sensor photography, sampling effort 
will have a similar structure (Tables 2 and 3). The user will 
create an R data.frame with a record for each period of time 
in which each camera was functioning as intended and had a 
constant viewable area. The sampling effort data.frame will 
contain the columns cam with unique IDs for each cam-
era, start and end for the start and ends of each period 
of camera functioning, and area with the viewable area 
during that period. For time-lapse photography, sampling 
effort can be defined directly from the photographic data 
and will look similar to the data created in Step 1 (Table 2). 
With timelapse photography, viewable area can be defined 
for every photo. Any photos missing at time-lapse intervals 
imply that the camera was not correctly functioning. In Step 
4 of the workflow, spaceNtime will interpret the absence 
of a photograph at a time-lapse interval as 0 sampled area. 
Whereas the sampling effort for time-lapse photography is 
defined at each time-lapse interval, for motion-sensor pho-
tography, sampling effort is defined by longer time periods 
in which the camera is assumed to be properly function-
ing and viewable area remains constant (Table 3). In Step 
4 of the spaceNtime workflow, the package will assume 
that any non-detection (i.e., lack of photo) within the user-
defined time period of camera functioning is a “true” 0 and 
the target species was not present in the camera’s viewshed. 

In contrast, any periods of time excluded from the sampling 
effort will be interpreted as the camera not functioning and 
will be treated as 0 sampled area. 

Step 3. Specify sampling occasions

All three of the estimators use samples of the camera data at 
given times, which are known as sampling occasions. STE 
and IS use instantaneous sampling occasions, whereas TTE 
uses longer sampling occasions. First, for STE and IS, sam-
pling occasions are instantaneous moments in time in which 
every camera has a record of species presence/absence (for 
STE) or group count (for IS) (Moeller et al. 2018). The most 
straight-forward way to meet the assumption of instantane-
ous sampling occasions is to use time-lapse photography 
with all cameras coordinated to take photos at the same time. 
If time-lapse photography is not available, motion-sensor 
datasets can be used instead. To use motion-sensor photog-
raphy for STE and IS, sampling occasions can be defined 
as very short windows of time rather than instantaneous 
moments (see Table 4). Consecutive sampling occasions 

Table 2  The structure of sampling effort for time-lapse photography

The minimum required columns are cam (unique ID of the camera), 
start (time of the start of the period of camera functioning), end (time 
of the end of the period of camera functioning), and area (viewable 
area during that period). When using time-lapse photography, each 
photo is a record of the camera’s proper functioning, and thus the 
columns start and end will be equal. Area should be recorded as 0 if 
the camera’s lens is fully obstructed. If the lens is partially obstructed 
and the viewable area can be calculated, the area can vary for each 
occasion

cam count start end area

1 0 2016-01-02 12:00:00 2016-01-02 12:00:00 300
1 1 2016-01-02 14:00:00 2016-01-02 14:00:00 300
2 0 2016-01-02 12:00:00 2016-01-02 12:00:00 200
2 0 2016-01-02 14:00:00 2016-01-02 14:00:00 0
2 2 2016-01-03 16:00:00 2016-01-03 16:00:00 450

Table 3  The structure of sampling effort for motion-sensor photogra-
phy

Sampling effort will have the same structure as for time-lapse 
photography, but the user will define periods in which each camera 
is assumed to be working. Every non-detection during these periods 
is assumed to arise from the target species being truly absent from the 
camera’s viewshed

cam start end area

1 2015-12-01 15:00:00 2016-01-05 00:00:00 300
2 2015-12-08 00:00:00 2015-12-19 03:30:00 200
2 2016-01-01 00:00:00 2016-01-01 05:00:00 200
2 2016-01-02 00:00:00 2016-01-05 00:00:00 450

Table 4  The structure of sampling occasions for an STE or IS analy-
sis, which can be built with the function build_occ() 

There is a single record for each sampling occasion (numbered in 
the column occ), along with its start and end times (start and end, 
respectively). When using time-lapse photos, users will define 
instantaneous sampling periods, where the start and end times are 
equal. Alternatively, users with motion-sensor photos can define 
short windows for each sampling occasion (as shown here with 
samp_length = 10 s). Sampling occasion windows should be short to 
approximate an instantaneous moment in time

occ start end

1 2016-01-01 00:00:00 2016-01-01 00:00:10
2 2016-01-01 01:00:00 2016-01-01 01:00:10
3 2016-01-01 02:00:00 2016-01-01 02:00:10
4 2016-01-01 03:00:00 2016-01-01 03:00:10
5 2016-01-01 04:00:00 2016-01-01 04:00:10
6 2016-01-01 05:00:00 2016-01-01 05:00:10
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for STE and IS should be separated by enough time to allow 
animals to redistribute themselves on the landscape (Moeller 
et al. 2018).

TTE sampling occasions, on the other hand, are long 
periods of time that are defined by independent estimates 
of animal movement speed and the camera viewshed. As 
described in Moeller et al. (2018), TTE sampling occasions 
are broken up into k = 1, 2, …, K sampling periods. A 
sampling period is defined as the average length of time 
needed for an animal to move across the camera viewshed 
(also see Loonam et al. 2021). For example, if the camera 
viewshed is 100  m across and the species moves on 
average 100 m/h, each sampling period will be 1 h. The 
TTE sampling occasion is made up of multiple sampling 
periods and will be a length of time (e.g., 24 h) within which 
a camera is continuously monitoring a viewshed. There is 
currently no definitive rule for the number of sampling 
periods that should make up a sampling occasion, so the 
choice is somewhat arbitrary (Moeller et al. 2018).

In the spaceNtime workflow, sampling occasions for all 
three analyses have a similar structure of rows and columns 
(Tables 4 and 5). Sampling occasions will be defined in an R 
data.frame with a single row for each occasion. The data.frame 
should have, at minimum, the columns occ, with a consecutive 
unique ID for each sampling occasion, as well as columns 
start and end for the start time and end time of the sampling 
occasion. Sampling occasions either can be defined manually in 
this format by the user or with the functions build_occ() 
(for STE and IS) and tte_build_occ() (for TTE).

First, the function build_occ() works for defining 
both STE and IS sampling occasions. It builds instantaneous 
or near-instantaneous sampling occasions at a user-defined 
frequency (Table 4). For users with time-lapse photogra-
phy, the start and end times of each sampling occasion will 
be equal (i.e., instantaneous sampling occasions). When 
using time-lapse photography, the frequency of sampling 

occasions can be any multiple of the time-lapse frequency. 
For example, if time-lapse photos are taken every 15 min, 
sampling occasions can be every 15 min, 30 min, or 45 min, 
etc. For users with motion-sensor photography, the start and 
end times will define a short window of time (i.e., near-
instantaneous sampling occasions, Table  4). Sampling 
windows should be short, to approximate an instantaneous 
sample. In the next step of the workflow, spaceNtime will 
look for photos occurring within that window and treat any 
species detections as instantaneous.

The functions tte_samp_per() and tte_build_
occ() help build TTE sampling occasions. The function 
tte_samp_per() helps users define the length of 
sampling period k from the average viewshed area of the 
user’s cameras and the user-defined average movement 
speed. The function tte_build_occ()  then uses 
that sampling period length and a user-defined number of 
sampling periods to build sampling occasions (Table 5). 
Because TTE sampling occasions are lengths of time, the 
columns start and end will never be equal.

Step 4. Build encounter history

The encounter histories for all three analyses are built from 
the photo data formatted in Step 1, the camera effort defined 
in Step 2, and the sampling occasions defined in Step 3. 
Moeller et al. (2018) show the mathematical derivation of 
STE, TTE, and IS and describe the components needed 
for each analysis. Here, we summarize the necessary 
components and describe how they translate to an encounter 
history. Encounter histories for STE and TTE are markedly 
different from encounter histories for mark-recapture or 
occupancy analyses. They require data transformation 
that may be unfamiliar to many users. Because of this, we 
introduce functions in spaceNtime to assist users with 
building an encounter history for each analysis. Additionally, 
the functions ste_build_eh(), tte_build_eh(), 
and ise_build_eh() check the structure and validity 
of input data to help users locate issues.

The STE encounter history has two main components: the 
calculated space to event on each sampling occasion and a 
censor value for that sampling occasion. The function ste_
build_eh() calculates both of these and builds a data.
frame with one row per sampling occasion, a column STE 
with the calculated space to event for each sampling occa-
sion, and a column censor, with the censor value for each 
sampling occasion (Table 6). Space to event is calculated by 
randomly ordering all cameras on each sampling occasion 
and calculating the sum of their viewable areas, stopping at 
the first camera with a detection of the target species (Moe-
ller et al. 2018). The censor value is the sum of all cameras’ 
viewable areas on each sampling occasion. ste_build_
eh() interprets a lack of photos on a sampling occasion 

Table 5  The structure of sampling occasions for a TTE analysis

It contains a record for each sampling occasion, along with its start 
and end time. Although it has a similar structure to STE and IS 
sampling occasions, TTE sampling occasions are not instantaneous. 
Shown here is an example of TTE sampling occasions created when 
each occasion consists of 24 periods, each lasting 240 s, and 2 h are 
allowed between the end of one occasion and the beginning of the 
next

occ start end

1 2016-01-01 00:00:00 2016-01-01 01:36:00
2 2016-01-01 03:36:00 2016-01-01 05:12:00
3 2016-01-01 07:12:00 2016-01-01 08:48:00
4 2016-01-01 10:48:00 2016-01-01 12:24:00
5 2016-01-01 14:24:00 2016-01-01 16:00:00
6 2016-01-01 18:00:00 2016-01-01 19:36:00
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as species absence if the sampling effort data.frame has a 
record for that camera/sampling occasion combination and 
it defines the camera area as greater than 0. If there is no 
record for that camera/sampling occasion in the sampling 
effort data.frame, ste_build_eh() will add 0 area to 
the censor value and ignore that camera when calculating 
STE. This is how spaceNtime accounts for motion-sensor 
datasets. If no detections are found at any of the cameras on 
a given sampling occasion, the STE column is given an NA 
and the occasion is right-censored. Right-censored sampling 
occasions contain valuable information for the model; they 
represent occasions on which the space to first detection 
was greater than the total sampled area on that occasion 
(i.e., the censor value for that occasion). For right-censored 
occasions, the model integrates under the right tail of the 
exponential curve above the censor value. Because any given 
sampling occasion is more likely to have no detections than a 
detection, the STE encounter history will be largely made up 
of right-censored occasions (NAs). NAs can be contrasted 
with zeros in the encounter history; a zero indicates that the 
first detection of the species of interest was immediately in 
front of the first camera (i.e., no space was sampled before 
the first detection was found).

For TTE, the encounter history has a record for each 
camera on each sampling occasion, a column TTE with 
the calculated time to event for that camera occasion, and 
a column censor with the censor value for that occasion 
(Table 7). Time to event is calculated for each camera on 
each sampling occasion as the number of sampling periods 
k = 1, …, K that elapsed before the species of interest was 
first detected, and accounting for area of the camera (Moe-
ller et al. 2018). The censor value for a TTE analysis is the 
number of periods that elapse from the beginning to the 
end of the sampling occasion, also accounting for area of 
the camera. If no detections are made at a given camera on 
a given sampling occasion, TTE is assigned an NA and the 
occasion is right-censored. A right-censored event occurs 

when no animal is detected at a given camera on a given 
sampling occasion. Right-censoring indicates that the time 
to first encounter was greater than the length of the sampling 
occasion. As with STE, this is important information that 
helps guide the model, which integrates under the right tail 
of the exponential curve. In contrast to an NA, a zero in a 
TTE encounter history indicates that the target species was 
found instantly at the beginning of the sampling occasion 
(i.e., the time to detection was 0).

An IS encounter history contains a record for each camera 
on each sampling occasion, a column area with the cam-
era area, and a column count containing the animal count 
(Table 8). For time-lapse photography, the IS encounter his-
tory is identical to the initial photo dataset defined in Step 1 

Table 6  The structure of an STE encounter history, as built by ste_
build_eh() 

The encounter history has one row per sampling occasion and 
columns for observed space to event and censor value on each 
occasion. NAs in the encounter history represent right-censored 
occasions, on which no animals were detected. Shown here are 
occasions 35–40; occasions 37 and 39 have at least one animal 
detection and the other occasions are censored

occ start end STE censor

35 2016-01-02 10:00:00 2016-01-02 10:00:10 NA 750
36 2016-01-02 11:00:00 2016-01-02 11:00:10 NA 750
37 2016-01-02 12:00:00 2016-01-02 12:00:10 300 750
38 2016-01-02 13:00:00 2016-01-02 13:00:10 NA 750
39 2016-01-02 14:00:00 2016-01-02 14:00:10 450 750
40 2016-01-02 15:00:00 2016-01-02 15:00:10 NA 750

Table 7  The structure of a TTE encounter history, as built by tte_
build_eh() 

The encounter history has a row for each sampling occasion at each 
camera. It has columns for calculated time to event and censor time, 
accounting for camera area. NAs in the encounter history represent 
right-censored occasions, on which no animals were detected. Shown 
here are occasions 15–20 for camera 2; occasion 19 had at least one 
detection of an animal and the other occasions are censored

occ cam start end TTE censor

15 2 2016-01-03 
02:24:00

2016-01-03 
04:00:00

NA 10,800

16 2 2016-01-03 
06:00:00

2016-01-03 
07:36:00

NA 10,800

17 2 2016-01-03 
09:36:00

2016-01-03 
11:12:00

NA 10,800

18 2 2016-01-03 
13:12:00

2016-01-03 
14:48:00

NA 10,800

19 2 2016-01-03 
16:48:00

2016-01-03 
18:24:00

641.25 10,800

20 2 2016-01-03 
20:24:00

2016-01-03 
22:00:00

NA 10,800

Table 8  The structure of an IS encounter history, as built by ise_
build_eh() 

It has a record for each sampling occasion at each camera. Each row 
shows the animal count and viewable area for that record. Shown are 
occasions 36–38 for 2 cameras

occ cam start end area count

36 1 2016-01-02 
11:00:00

2016-01-02 
11:00:10

300 0

36 2 2016-01-02 
11:00:00

2016-01-02 
11:00:10

450 0

37 1 2016-01-02 
12:00:00

2016-01-02 
12:00:10

300 1

37 2 2016-01-02 
12:00:00

2016-01-02 
12:00:10

450 0

38 1 2016-01-02 
13:00:00

2016-01-02 
13:00:10

300 0

38 2 2016-01-02 
13:00:00

2016-01-02 
13:00:10

450 0
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(Table 2). For motion-sensor photography, however, the func-
tion ise_build_eh() can be used to build the encounter 
history. With motion-sensor photography, ise_build_
eh() uses the sampling effort data.frame to differentiate 
between occasions in which cameras are functioning (and lack 
of detections should be interpreted as a count of 0 animals) and 
occasions in which cameras are non-functioning (and viewable 
area is 0). ise_build_eh() differentiates between the two 
in the same way described for ste_build_eh().

Step 5. Estimate density or abundance

The final step of the workflow is to estimate abundance or 
density, using the appropriate encounter history from Step 4 
and the study area size. The functions for estimating abun-
dance are ste_estN_fn(), tte_estN_fn(), and 
ise_estN_fn(). Study area size must be defined in the 
same units as the camera area in the sampling effort data. 
For example, if camera viewsheds are measured in  m2, the 
study area should also be defined in  m2. If the study area is 
measured in  km2, camera viewsheds should also be defined in 
 km2. The models are formulated to produce estimates of aver-
age density per  unit2, then scale that up to the defined study 
area. For example, if the camera area is measured in  m2 and 
the study area size is set to  1m2, then the resulting estimate 
will represent average density per  m2. If the study area size 
was then changed to  1e6m2, the resulting estimate would be 
interpreted as average density per  km2. To get abundance in a 
 78km2 area, the user would define the study area size as 7.8e7 
 m2. The output from the _estN_fn() functions contains 

the estimate of abundance, its standard error, and the calcu-
lated lower and upper bounds of a 95% confidence interval 
(LCI and UCI, respectively) formed under the assumption 
that the sampling distribution of the estimator follows a log-
normal distribution (Burnham et al. 1987, Table 9).

Case study

We illustrate the spaceNtime workflow for an STE 
analysis on simulated data. The data were simulated using 
a random walk of 100 animals in a 10,000  unit2 area with 
a constant step length. We recorded each animal’s location 
once every 10 steps, to simulate time-lapse photography. 
We simulated 100 cameras, each with an area of 4  unit2, and 
we recorded the number of animals that were detected in 
each camera at each time-lapse “photo”. We demonstrate the 
spaceNtime STE workflow in R, using the tidyverse 
suite of packages (Wickham et al. 2019). The simulated 
photo data are available in the supplementary materials.

Table 9  Output of the ste_estN_fn() from the simulated data, 
showing the abundance estimate (N), its standard error (SE), and the 
calculated lower and upper bounds of a 95% confidence interval (LCI 
and UCI, respectively) formed under the assumption that the sam-
pling distribution of the estimator follows a log-normal distribution 
(Burnham et al. 1987)

N SE LCI UCI

102.8251 10.33431 84.48186 125.1511

library(tidyverse)
library(spaceNtime)

# Step 1. Data preparation
photo_data <- read_csv("simulated_data.csv")

# Step 2. Define sampling effort
effort <- photo_data %>% 
  mutate(start = datetime,
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The output shows the estimate of abundance (N) in the 
study area, its standard error (SE), and the calculated lower 
and upper bounds of the 95% log-normal based confidence 
interval (LCI and UCI, respectively). STE encounter 
histories are built by randomly arranging the cameras at each 
sampling occasion, so the last two lines may produce slightly 
different results each time. A user could potentially re-create 
the encounter history and rerun the analysis multiple times, 
taking the mean estimated abundance from across the runs 
to reduce the effect of randomness.

Conclusion

There are multiple areas currently in development to expand 
and advance the spaceNtime package. The first of these is 
a simulation and power analysis tool. This tool will allow the 
user to compare precision of each estimator under different 
(a) animal densities, (b) number of cameras, and (c) number 
of sampling occasions. The user would then be able to 
determine the ideal sampling effort required for their desired 
precision. Second, goodness-of-fit tests for STE and TTE 
are in development and will be added to the package once 
they are validated. Third, due to the randomness inherent in 
building the STE encounter history, estimates of abundance 
vary slightly when the model is run multiple times. We 
intend to build a tool for running the STE analysis multiple 
times over different possible encounter histories to allow 
users to quantify Monte Carlo error associated with the 
STE method. This method could take advantage of parallel 
processing to speed up calculation.

When estimating abundance from cameras, time-lapse 
photography can be an extremely valuable tool. Time-lapse 
photography best meets the assumption of instantaneous 
sampling occasions for STE and IS. Furthermore, time-
lapse photography helps define sampling effort in a clear 
and unbiased way, which is useful for all three methods 
in the spaceNtime package, along with many other 
abundance estimation methods. Time-lapse photography 
provides a complete record of camera effort, and it is easy to 
identify times when the camera was not working as intended. 
Motion-sensor photography, on the other hand, causes the 
user to rely on the assumption that the camera is working 
as intended, and each non-detection is due to an animal’s 
absence rather than the camera’s malfunction. Furthermore, 
time-lapse photography eliminates the need to estimate the 
sensitivity of a camera’s motion sensor or account for all the 
different animal behaviors that can result in a motion sensor 
not being triggered when an animal is in the viewshed (e.g., 
sleeping in front of the camera). Time-lapse photography 
can produce large datasets. Technological aides like species-
recognition software can be useful for shortening photo 

processing time. Software that does not produce group 
counts would not be appropriate for IS analysis, but would 
be perfectly suited for STE or TTE.

The STE, TTE, and IS methods estimate animal density 
at cameras and scale that up to the population of interest. 
Randomly or systematically placed cameras are key for 
collecting a representative sample of the population of 
interest. This study design allows the three methods to scale 
up easily because their precision and accuracy do not depend 
on a specific camera density. Therefore, populations that are 
spread out over large geographic areas can be sampled using 
the same number of cameras used for a smaller geographic 
population.
spaceNtime is a package designed for the user to 

implement every step of the STE, TTE, and IS analyses 
without requiring advanced knowledge of R or statistical 
modeling. The package contains functions to walk the user 
through every step of the analysis, from data formatting to 
estimating abundance. The encounter histories required 
for STE and TTE analyses are particularly unique, and we 
designed the package to assist users who may be unfamiliar 
with formatting their data in this way.
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Acknowledgements We thank J. Joshua Nowak and Kenneth Loonam 
for their suggestions and coding expertise.

Author contributions AKM and PML conceived of the ideas. AKM 
led the analysis, package creation, and writing of the manuscript. PML 
provided funding and substantive contributions to the manuscript.

Funding Funding was provided by Idaho Department of Fish and 
Game; South Dakota Game, Fish and Parks; and University of 
Montana.

Declarations 

Conflict of interest The author has no conflicts of interest to declare.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Data availability A CSV file of the simulated data is available in the 
supplementary materials.

Code availability The code for this package is publicly available on 
github.com/annam21/spaceNtime.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 

https://doi.org/10.1007/s42991-021-00181-8


590 A. K. Moeller, P. M. Lukacs 

1 3

if changes were made. The images or other third party material in this 
article are included in the article's Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article's Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http:// creat iveco mmons. 
org/ licen ses/ by/4. 0/.

References

Burnham KP, Anderson DR, White GC, Brownie C, Pollock KH 
(1987) Design and analysis of fish survival experiments based on 
release-recapture data. American Fisheries Society Monograph 
5, Bethesda

Karanth KU (1995) Estimating tiger Panthera tigris populations from 
camera-trap data using capture-recapture models. Biol Conserv 
71:333–338. https:// doi. org/ 10. 1016/ 0006- 3207(94) 00057-W

Karanth KU, Nichols JD (1998) Estimation of tiger densities in India 
using photographic captures and recaptures. Ecology 79:2852–
2862. https:// doi. org/ 10. 1890/ 0012- 9658(1998) 079[2852: EOT-
DII] 2.0. CO;2

Loonam KE, Lukacs PM, Ausband DE, Mitchell MS, Robinson HS 
(2021) Assessing the robustness of time-to-event models for esti-
mating unmarked wildlife abundance using remote cameras. Appl 
Ecol. https:// doi. org/ 10. 1002/ eap. 2388

Moeller AK, Lukacs PM, Horne JS (2018) Three novel methods to 
estimate abundance of unmarked animals using remote cameras. 
Ecosphere 9(8):e02331. https:// doi. org/ 10. 1002/ ecs2. 2331

Rich LN, Kelly MJ, Sollmann R, Noss AJ, Maffei L, Arispe RL, Pavi-
olo A, De Angelo CD, Di Blanco YE, Di Bitetti MS (2014) Com-
paring capture–recapture, mark–resight, and spatial mark–resight 
models for estimating puma densities via camera traps. J Mamm 
95:382–391. https:// doi. org/ 10. 1644/ 13- MAMM-A- 126

Royle JA, Karanth KU, Gopalaswamy AM, Kumar NS (2009) Bayes-
ian inference in camera trapping studies for a class of spatial 
capture-recapture models. Ecology 90:3233–3244. https:// doi. 
org/ 10. 1890/ 08- 1481.1

Sollmann R, Gardner B, Parsons AW, Stocking JJ, McClintock BT, 
Simons TR, Pollock KH, O’Connell AF (2013) A spatial mark-
resight model augmented with telemetry data. Ecology 94:553–
559. https:// doi. org/ 10. 1890/ 12- 1256.1

Tabak MA, Norouzzadeh MS, Wolfson DW, Sweeney SJ, Vercauteren 
KC, Snow NP, Halseth JM, Di Salvo PA, Lewis JS, White MD, 
Teton B, Beasley JC, Schlichting PE, Boughton RK, Wight B, 
Newkirk ES, Ivan JS, Odell EA, Brook RK, Lukacs PM, Moeller 
AK, Mandeville EG, Clune J, Miller RS (2019) Machine learning 
to classify animal species in camera trap images: applications in 
ecology. Methods Ecol Evol 10:585–590. https:// doi. org/ 10. 1111/ 
2041- 210X. 13120

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, 
Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen 
T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, 
Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H 
(2019) Welcome to the Tidyverse. J Open Source Softw 4:1686. 
https:// doi. org/ 10. 21105/ joss. 01686

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0006-3207(94)00057-W
https://doi.org/10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2
https://doi.org/10.1002/eap.2388
https://doi.org/10.1002/ecs2.2331
https://doi.org/10.1644/13-MAMM-A-126
https://doi.org/10.1890/08-1481.1
https://doi.org/10.1890/08-1481.1
https://doi.org/10.1890/12-1256.1
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.21105/joss.01686

	spaceNtime: an R package for estimating abundance of unmarked animals using camera-trap photographs
	Abstract
	Introduction
	Functionality
	Step 1. Data preparation
	Step 2. Define sampling effort
	Step 3. Specify sampling occasions
	Step 4. Build encounter history
	Step 5. Estimate density or abundance

	Case study
	Conclusion
	Acknowledgements 
	References




