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Abstract
Theprimary objective of this paper is to explore themulti-phase variant of quadrature domains
associated with the Helmholtz equation, commonly referred to as k-quadrature domains.
Our investigation employs both the minimization problem approach, which delves into the
segregation ground state of an energy functional, and the partial balayage procedure, drawing
inspiration from the recent work by Gardiner and Sjödin. Furthermore, we present practical
applications of these concepts in the realms of acoustic waves and magnetic fields.
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1 Introduction

1.1 Background

The subject under consideration in this note is k-quadrature domains with k > 0, also known
as quadrature domains for the Helmholtz operator. This topic is intricately connected to the
inverse scattering theory, as detailed in references [33, 36, 41].

Given any μ ∈ E ′(Rn) (n ≥ 2), we recall that a bounded open set D ⊂ R
n is termed a

(one-phase) k-quadrature domain with respect to μ if μ ∈ E ′(D) and∫
D

w(x) dx = 〈μ,w〉

holds for all w ∈ L1(D) satisfying (� + k2)w = 0 in D. It is shown in [33, Proposition 2.1]
that a bounded open set D ⊂ R

n is a k-quadrature domain for μ ∈ E ′(D) if and only if there
exists ũ ∈ D ′(Rn) satisfying the following equations

{
(� + k2)ũ = χD − μ in R

n ,

ũ = |∇ũ| = 0 in R
n \ D.

(1.1)

Later in [36], the system of equations (1.1) was further generalized by introducing the
following Bernoulli-type free boundary problem:

{
(� + k2)ũ = h − μ in D, ũ = 0 in R

n \ ∂D, |∇ũ| = g in R
n \ ∂D, (1.2)

where the Bernoulli condition |∇ũ| = g is considered in a very weak sense. Refer also to
[35] for a connection between the anisotropic non-scattering problem and the Bernoulli-type
free boundary problem. We refer to a bounded domain D in (1.2) as the hybrid k-quadrature
domain.

1.2 Two- andmultiphase k-quadrature domains (the notion)

A bounded domain D in R
n is referred to as a quadrature domain for harmonic functions,

associated with a distribution μ ∈ E ′(D) if∫
D
h(x) dx =

∫
h(x) dμ(x) (1.3)

holds for every harmonic function h ∈ L1(D); see, for example, the monograph [39]. In the
special case when μ = ∑m

j=1 λ jδx j , where δa is the Dirac measure at a, (1.3) reduces to a
quadrature identity for computing integrals of harmonic functions; refer to [25]. Quadrature
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domains can also be regarded as a generalization of the mean value theorem for harmonic
functions: Br (a) is a quadrature domain with μ = |Br (a)|δa . Various examples can be
constructed using complex analysis; see, for instance, [13, 25, 40] for further background.

A generalization of the Helmholtz operator was investigated in [19, 33]. For k > 0, a
bounded open set D in Rn (not necessarily connected) is referred to as a quadrature domain
for (� + k2), or a k-quadrature domain, associated with a distribution μ ∈ E ′(D), if

∫
D

w(x) dx =
∫

w(x) dμ(x) (1.4)

holds for all w ∈ L1(D) satisfying (� + k2)w = 0 in D. It is essential to note that the
k-quadrature domain can also be regarded as a generalization of the mean value theorem: For
each k > 0, Br (a) is a k-quadrature domain with μ = cMVT

k,k,r δa for some suitable constant

cMVT
n,k,r (which may be zero for specific parameters n, k, and r ). Similar to the classical case
(k = 0), various examples can also be constructed using complex analysis [33].

We now introduce the concept of two-phase quadrature domains as defined in [14], and
later in [18].

Let D± be disjoint bounded open subsets of Rn , and let μ± ∈ E ′(D±), respectively. If a
pair (D+, D−) has the property that

∫
D+

h(x) dx −
∫
D−

h(x) dx =
∫

h(x) d(μ+ − μ−) (1.5)

holds for every harmonic function h on D+ ∪ D− with h ∈ C(D+ ∪ D−), then we designate
such a pair (D+, D−) as a two-phase quadrature domain (for harmonic functions) corre-
sponding to distributions (μ+, μ−) ∈ E ′(D+) × E ′(D−). The precise meaning in the right
hand side of (1.5) is the distributional pairing 〈μ+, h〉−〈μ−, h〉, which is well-defined since
h ∈ C∞(D±). The following trivial example also illustrates this notion:

Example It is evident that if D± are quadrature domains (for harmonic functions) correspond-
ing to distributions μ ∈ E ′(D±) respectively in the sense of (1.3) and satisfy D+ ∩ D− = ∅,
then such a pair (D+, D−) clearly satisfies (1.5).

Here, we refer to [14, 18] for some less trivial examples of two-phase quadrature domains
(1.5). It is worth mentioning that Gardiner and Sjödin [18, Theorem 3.1(b)] proved that
if (D+, D−) is a two-phase quadrature domain (for harmonic functions) corresponding to
distributions (μ+, μ−) ∈ E ′(D+) × E ′(D−), then there exist polar sets Z± such that there
exists ũ such that

�ũ = (1− μ+)χD+∪Z+ − (1− μ−)χD−∪Z− in R
n, ũ = 0 outside D+ ∪ Z+ ∪ D− ∪ Z−.

Conversely, if a function ũ ∈ H1(Rn) with compact support satisfies1

�ũ = (1 − μ+)χ{ũ>0} − (1 − μ−)χ{ũ<0} in R
n ,

and if supp (μ±) ⊂ {±ũ > 0}, by [18, Theorem 3.1(a)] we see that ({ũ > 0}, {ũ < 0}) a two-
phase quadrature domain (for harmonic functions) corresponding to distributions (μ+, μ−) ∈
E ′(D+) × E ′(D−).

1 We define the sets {v > 0} := R
n\{v ≤ 0} and {v < 0} := R

n\{v ≥ 0}. In the case when v ∈ H1(Rn) has
compact support, the inequalities v ≥ 0 and v ≤ 0 also can be understood in almost-every pointwise (a.e.)
sense, see [30, Definition II.5.1 and Proposition 5.2].
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In [14], they use a minimization approach to study the model equation

�ũ = (λ+ − μ+)χ{ũ>0} − (λ− − μ−)χ{ũ<0} in R
n . (1.6)

The above discussions strongly suggest studying the following model equation, which is also
the main theme of this paper:

�ũ + k2+ũ+ − k2−ũ− = (λ+ − μ+)χ{ũ>0} − (λ− − μ−)χ{ũ<0} in R
n , (1.7)

where k± ≥ 0, λ± > 0 and μ± ∈ E ′(Rn). We refer to such pair of domains (D+, D−) with
D± = {± ũ > 0} as the two-phase (k+, k−)-quadrature domain.

In [1], the following problem in terms of partial differential equations was considered:
Given m positive measures μi and constants λi , for i = 1, · · · ,m, find functions ui ≥ 0
with suitable regularity and disjoint sets Di = {ui > 0} such that

�(ui − u j ) = (λi − μi )χDi − (λ j − μ j )χDj in R
n \

⋃
��=i, j

D�. (1.8)

It is easy to see that (1.6) is simply a special case of (1.8) for m = 2. We remark that
(1.8) is locally a two-phase problem in the set Rn\⋃

��=i, j D�, which excludes all points
in ∂Di ∩ ∂Dj , therefore it is not easy to establish quadrature identities similar to (1.5) for
multi-phase case. One can think about the Lakes of Wada, which are three disjoint connected
open sets of the plane or open unit square with the counter-intuitive property that they all have
the same boundary. Indeed, one can also construct a countable infinite number of disjoint
connected open sets of the plane with the same boundary.

According to [1], inspired by the segregation problem [11], they minimize some suitable
energy functional so that theminimizer satisfies (1.8). In otherwords, the supports of densities
ui have to satisfy a suitable optimal partition problem in Rn .

Not only the multi-phase problem which we considered, there are also some other type of
segregation problem, for example [8]: they minimize the Dirichlet functional (say)

Dε(u) :=
m∑
i=1

∫
	

|∇ui (x)|2 dx + fε(u)

where fε(u) is chosen such that the functional gets huge penalties, say 1/ε, on the set
{ui > 0}∩ {

u j > 0
}
, and the limit of this functional leads to a segregation of the supports of

the components. The work [1] or the equation (1.8) strongly suggests studying the following
model equation:We want to find functions ui ≥ 0 with disjoint positivity sets Di = {ui > 0}
such that

�(ui − u j ) + k2i ui − k2j u j = (λi − μi )χDi − (λ j − μ j )χDj in 	 \
⋃

��=i, j

D�

where ki ≥ 0, λi ≥ 0 and μi ∈ E ′(Rn), for some open domain 	. We refer to such k-tuple
of domains (D1, · · · , Dm) as the multi-phase (k1, · · · , km)-quadrature domain (in 	).

1.3 Applications: acoustic waves andmagnetic fields

1.3.1 Inverse scattering in acoustic waves

To provide motivation for this study, we initially establish a connection between the two-
phase problem (1.7) and the inverse scattering problem for acoustic waves. We consider the
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acoustic scattering problem governed by the wave equation c(x)−2∂2t U − �U = 0, where
c is the velocity of sound in the given medium. The acoustic wave with a fixed frequency
(wave number) k0 > 0 corresponds to solutions of the formU (x, t) = eik0t uρ̃ (x), where the
total field uρ̃ satisfies the (inhomogeneous) Helmholtz equation

�uρ̃ + k20 ρ̃(x)uρ̃ = 0 in R
n (1.9)

where (for simplicity) we have set ρ̃ = ρ̃(x) = c(x)−2. Later, we will also explain that (1.9)
models the cylindrical magnetic field; refer to Sect. 1.3.2 below.

If we expose the medium with an incoming wave u0 that solves

(� + k20)u0 = 0 in R
n , (1.10)

then the total field uρ̃ , which verifies (1.9), has the form uρ̃ = u0 + usc for some scattered
wave usc, which is outgoing. Classical scattering theory [9, 10, 31] guarantees the existence
and uniqueness of such an outgoing scattered field usc ∈ H1

loc(R
n).

In order to define non-scattering phenomenon, we need to recall some background in the
topic. Indeed, we first recall that a solution v of (� + k20)v = 0 in Rn\BR (for some R > 0)
is outgoing if it satisfies the Sommerfeld radiation condition

lim|x |→∞|x | n−1
2 (∂|x |v − ik0v) = 0 uniformly in all directions x̂ = x

|x | ∈ Sn−1, (1.11)

where ∂|x | = x̂ · ∇ denotes the radial derivative. In this case, the far-field pattern v∞ of v is
defined by

v∞(x̂) := lim|x |→∞ γ −1
n,k0

|x | n−1
2 e−ik0|x |v(x) for all x̂ ∈ Sn−1

for some normalizing constant γn,k0 �= 0. The Rellich uniqueness theorem [10, 27] implies
that v∞ ≡ 0 if and only if v = 0 in R

n\BR .
To formulate our theorem, regarding applications to acoustic waves, we need the following

definition.

Definition (Non-scattering) Consider two acoustic-penetrable obstacles (medium) (D±, ρ±)

such that D+ ∩ D− = ∅ with refraction indices (the light bending ability of that medium)
ρ± ∈ L∞(D±). We call ρ± ∈ L∞(D±) signed contrasts if ρ± ≥ c > 0 near ∂D±,
respectively. For each fixed wave number k0 > 0, we illuminate the obstacles (D±, ρ±)

using the incident field u0 as in (1.10), producing a unique total field uρ± = u0 + usc (see
(1.9)) satisfying

(� + k20 + ρ+χD+ − ρ−χD−)uρ± = 0 in R
n . (1.12)

We say that the pair of obstacles (D±, ρ±) is non-scattering with respect to the incident field
u0 if usc = 0 outside BR for some sufficiently large R > 0.

Remark If (D±, ρ±) is non-scattering and u0 is real-valued, then by taking the real and
imaginary parts of (1.12), one sees that uρ± must be real-valued.

Theorem 1.1 Let k0 ≥ 0, k± ≥ 0, λ± > 0 and μ± ∈ E ′(Rn). Suppose that there exists a
solution ũ ∈ E ′(Rn) of the two-phase problem (1.7) with

supp (μ±) ⊂ D± := {±ũ > 0}. (1.13)

If there exists an incident field u0 of (�+ k20)u0 = 0 inRn such that u0 < 0 on ∂D+ ∪ ∂D−,
then there exist contrasts ρ± ∈ L∞(D±) such that the pair of obstacles (D±, ρ±) is non-
scattering with respect to u0.
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Remark In the above theorem, if the obstacles D± are “touching” each other, i.e., ∂D+ ∩
∂D− �= ∅, then the common boundary is a two-phase free boundary:

uρ± > u0 in D+ and uρ± < u0 in D− near ∂D+ ∩ ∂D−, (1.14)

where uρ± is given in (1.12). In addition, limD±�x→x0 ρ±(x) both exist with

lim
D+�x→x0

ρ+(x) = − λ+
u0(x0)

> 0, lim
D−�x→x0

ρ−(x) = − λ−
u0(x0)

> 0

for each x0 ∈ ∂D+ ∩ ∂D−.

Remark (Existence of incident field u0) In general int(D+ ∪ D−) is not a Lipschitz domain.
We still can construct such u0 (can be even chosen to beHerglotz wave function (1.22) below)
using [34, Theorem 1.2] when ∂D+ ∪ ∂D− is contained in a small set.

Proof of Theorem 1.1 From (1.7) and the support condition (1.13), one sees that there exists
a neighborhood U of ∂(D+ ∪ D−) ≡ ∂D+ ∪ ∂D− in R

n such that

(� + k20)ũ = hχD in U , ũ|U\D = 0, D = D+ ∪ D−,

where

h = −(k2+ − k20)ũ+ + (k2− − k20)ũ− + λ+χD+ − λ−χD− ∈ L∞(D). (1.15)

By continuity of ũ in U and ũ|∂D = 0, one has |h| ≥ 1
2 min{λ+, λ−} > 0 near ∂D in D.

Now, the theorem (and the following remark) can be proved by following the exact same
argument as in [36, Theorem 2.4] (with g ≡ 0) and the discussions following the theorem. ��

1.3.2 Connection with magnetic fields

The Helmholtz equation is fundamental for understanding the spatial characteristics of
electromagnetic fields, which provides a mathematical framework to describe how elec-
tromagnetic fields propagate and vary in space.

Here, we shall connect the concept developed in this paper to one of the waveguide mode,
called the transverse-electric mode (TE-mode), which roughly means that there is no electric
field in the direction of propagation, see (1.19) below. In this case, since there is only a
magnetic field along the direction of propagation, sometimes we call this waveguide mode
the H-mode. One can refer e.g. the monograph [32] for mode details about this topic.

Let ω0 > 0 denote a frequency, ε0 represent the electric permittivity in a vacuum, and
μ0 denote the magnetic permeability in a vacuum. The (time-harmonic) magnetic fieldH =
(H1, H2, H3) in a medium with zero conductivity is governed by the equation

− curl

(
1

E(x)
curl H

)
+ k20H = 0 in R

3, with E(x) = ε(x)

ε0
+ i

σ(x)

ωε0
, (1.16)

where k0 = ω0
√

ε0μ0 > 0 is the wave number. In this equation, ε(x) signifies the electric
permittivity in the medium, and σ(x) represents its conductivity; for further details, refer to
[31, (5.18)–(5.19)] or [32, (1.8)–(1.9)].

We assume that E = 1 if and only if ε = ε0 and σ = 0 outside of a bounded domain.When
we illuminate the inhomogeneity, supported on supp (E − 1), using the incident magnetic
field H0 that satisfies

− curl curl H0 + k20H0 = 0 in R
3,
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then, under certain mild assumptions on ε and σ (refer to [31, Theorem 5.5]), there exists a
unique scattered magnetic field Hsc that satisfies the equation

− curl

(
1

E(x)
curl Hsc

)
+ k20Hsc = − curl

(
1 − 1

E(x)
curl H0

)
,

and the Silver-Müller radiation condition

curl Hsc(x) × x̂ − ik0Hsc(x) = O(|x |−2) as |x | → ∞,

uniformly on all direction x̂ = x/|x | ∈ S2.

Remark By using the fact that div curl ≡ 0 and the curl–curl identity

− curl curl = � − ∇ div, (1.17)

it is easy to see that (1.16) is equivalent to

�H + ∇E(x)

E(x)
× curl H + k20E(x)H = 0, divH = 0 in R

3. (1.18)

It is also noteworthy that the incident field satisfies the equation

�H0 + k20H0 = 0, divH0 = 0 in R
3,

and by direct computations, one can easily see that �(x · H0) + k20(x · H0) = 0 in R
3. The

curl–curl identity (1.17) can be extended for dimension n ≥ 2 in terms of n-dimensional curl
and its formal transpose. This even can be further extended to the symmetric tensors case in
terms of Saint Venant operator [28].

In practical application, one usually illuminates the inhomogeneity using the superposition
of plane waves, which called the Herglotz wave:

H0[p](x̂) :=
∫
S2

p(ẑ)eik0x ·ẑ dẑ for all p ∈ L2
t (S2) and for all x ∈ R

3,

where
L2
t (S2) := {

v ∈ (L2(S2))3 : x̂ · v(x̂) = 0, x̂ ∈ S2} .

The radiation condition for electromagnetic field is usually called the Silver-Müller radi-
ation condition, which is closely related to (see [32, Corollary 2.53]) Sommerfeld radiation
condition (1.11) and the far-field operator is analogously defined by the far-field amplitude
of the scattered field. In fact, one can reconstruct supp (E − 1) from the far-field amplitude
[31].

In the case when both E and H are cylindrical, i.e. independent to the variable x3, we see
that the third component H3(x ′) of H in (1.16) satisfies the isotropic elliptic equation

div′
(

1

E(x ′)
∇′H3

)
+ k20H3 = 0 in R

2, (1.19)

where ∇′ and div′ are gradient and divergence operator on R
2. In this case, we usually not

interested in the first two components H1 and H2, and we simply put H1 ≡ H2 ≡ 0, and this
situation is called the magnetic mode (H-mode) or transverse-electric mode (TE-mode) [32,
p. 11].

If E ∈ C2(R2) and is real-valued (iff σ ≡ 0), one can rewrite (1.19) as the Helmholtz
equation:

(�′ + k20 + q(x ′))u = 0 in R
2 (1.20)
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with u = (E(x ′)) 1
2 H3(x ′) and q(x ′) = −(E(x ′)) 1

2 �′
(
(E(x ′))− 1

2

)
, where �′ = div′∇′ is

the Laplacian on R
2, see e.g. [37, (0.2)–(0.3)]. We can formulate similar inverse problems

involving the reconstruction of q from the knowledge of the far-field operator (1.23). After
recovering q , we then finally recover E by solving the following elliptic boundary-value
problem:

�′ ((E(x ′))−
1
2

)
+ q(x ′)(E(x ′))−

1
2 = 0 in BR, (E(x ′))−

1
2

∣∣∣
∂BR

= 1 (1.21)

by choosing suitable large R > 0. We can construct q = ρ+χD+ − ρ−χD− as described
in Theorem 1.1, and then construct E = E(x1, x2) by solving (1.21). Formally, this is non-
scattering with respect to some incident H-mode/TE-mode magnetic field.

1.3.3 Some related application

We now revisit the Helmholtz equation, selecting uinc as the superposition of the plane
incident wave, expressed as the Herglotz wave function:

uinc[ f ] =
∫
Sn−1

eikx ·θ f (θ) dθ (1.22)

where f ∈ L2(Sn−1). Consequently, we consider the far-field operator:

f ∈ L2(Sn−1) �→
∫
Sn−1

u∞(θ ′, θ) f (θ) dθ. (1.23)

Here, u∞(θ ′, θ) represents the far-field of the scattered field corresponding to the incident
plane wave eikx ·θ .

Combining results from [37, 43], if k2 is not a Dirichlet eigenvalue of −� on D, it can be
shown that ρχD can be uniquely determined from the far-field operator (1.23). Refer to [26]
for a log-type stability estimate, which is nearly optimal [29]. See also [16, Appendix B].
In practice, obtaining only finitely many measurements

{
uinc[ fi ] : i = 1, · · · , N

}
is fea-

sible. However, based on nonscattering results in Theorem 1.1 above (also see [33, 36]),
it is generally impossible to determine ρχD solely from a single measurement uinc[ f1].
Thus, one should not expect to always determine ρχD from finitely many measurements{
uinc[ fi ] : i = 1, · · · , N

}
.

Intuitively, one can approximate the far-field operator (1.23) using
{
uinc[ fi ] : i=1, · · · , N

}
for large N . For instance, choosing fi as the eigenfunction of the Laplace-Beltrami operator
on Sn−1 is a possible approach. This intuition can be validated in a probabilistic sense (with
randomly chosen samples f1, · · · , fN with a large N ), as seen in [16]. In simple terms,
while one might fail to determine ρχD from the knowledge of

{
uinc[ fi ] : i = 1, · · · , N

}
for

randomly chosen f1, · · · , fN , the probability of such a situation occurring decreases as the
sample size N increases.

2 Multiphase problem throughminimization

2.1 Main results

We now delve into the exploration of the existence of two-phase (k1, k2)-quadrature domains
(1.7). Let	 ⊂ R

n be a bounded Lipschitz domain inRn (n ≥ 2). The function spaceC∞
c (	)
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consists of C∞(Rn) functions supported in 	, and H1
0 (	) is the completion of C∞

c (	) with
respect to the H1(	)-norm.

For each f1, . . . , fm ∈ L∞(Rn) and k = (k1, . . . , km) with k1, . . . , km ≥ 0, we consider
the functional

Jk(u) :=
m∑
i=1

Jki (ui ), Jki (ui ) :=
∫

	

(|∇ui (x)|2 − k2i |ui (x)|2 − 2 fi (x)ui (x)
)
, dx

(2.1)
for u = (u1, . . . , um) ∈ (H1(	))m . We define

Km(	) := {
(u1, · · · , um) ∈ (H1

0 (	))m : ui ≥ 0 for all i = 1, · · · ,m
}
,

Sm(	) := {
(u1, · · · , um) ∈ Km(	) : ui · u j = 0 for all i �= j

}
.

Similar to [11], we refer to the elements in Sm(	) as segregated states. A state u =
(u1, . . . , um) ∈ (H1(	))m is called segregated if ui · u j = 0 for all i �= j .

The primary focus of this paper is to investigate the following minimization problem:

Minimize Jk(u) subject to segregated states u ∈ Sm(	). (2.2)

The situation where k ≡ 0 was examined in [1], and an application from control theory
was presented. Also in [36], the functional Jki was investigated for sufficiently small ki > 0.

By using [36, Lemma 3.1], it is easy to see that Jk is unbounded from below in Sm(	) if
ki > k∗ for some i ∈ {1, · · · ,m}, where

k2∗(	) := inf
φ∈C∞

c (	),φ �≡0

‖∇φ‖2
L2(	)

‖φ‖2
L2(	)

> 0 (2.3)

is the first Dirichlet eigenvalue of 	. When 0 ≤ ki < k∗ for all i = 1, · · · ,m, by using [36,
Lemma 3.4], we know that Jk is weakly lower semi-continuous on (H1

0 (	))m . Since the set
Sm(	) is closed in (H1

0 (	))m , by following the standard arguments of calculus of variations
(as in [36, Proposition 3.6]) one can show that

there exists a minimizer u∗ of the functional Jk in Sm(	). (2.4)

We show that the difference u∗,i − u∗, j locally satisfies the two-phase obstacle equation.

Theorem 2.1 Let 	 be a bounded Lipschitz domain in Rn, let 0 ≤ ki < k∗ and fi ∈ L∞(	)

for all i = 1, · · · ,m. If u∗ = (u∗,1, · · · , u∗,m) is a segregated ground state of the energy
functional Jk, i.e. a minimizer of the functional Jk in Sm(	), then

�(u∗,i − u∗, j ) + k2i u∗,i − k2j u∗, j = − fiχ{u∗,i>0} + f jχ{u∗, j>0} in 	 \
⋃
k �=i, j

	k, (2.5)

where 	i = {u∗,i > 0} for all i = 1, · · · ,m.

Remark As mentioned above, we assume 	 has Lipschitz boundary in order to guarantee
(2.4), see also [36, Remark 3.5].

When m = 2, the functional Jk1,k2 ≡ Jk reads

Jk1,k2(u1, u2) = Jk1(u1) + Jk2(u2),

and the minimization problem (2.2) reads:

minimize Jk1,k2(u1, u2) subject to (u1, u2) ∈ S2(	). (2.6)
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Similar to [14], we consider the functional

J̃k1,k2(U ) =
∫

	

(|∇U |2 − k21 |U+|2 − k22 |U−|2 − 2 f1U+ − 2 f2U−
)
dx

with f1, f2 ∈ L∞(	), and the minimization problem

minimize J̃k1,k2(U ) subject to U ∈ H1
0 (	). (2.7)

In fact, the minimizing problems (2.6) and (2.7) are equivalent in the following sense:

If ũ is a minimizer of the functional J̃k1,k2 in H1
0 (	), then (ũ+, ũ−) is a

minimizer of the functional Jk1,k2 in S2(	). Conversely, if (u∗,1, u∗,2) is
a minimizer of the functional Jk1,k2 in S2(	), then ũ∗ := u∗,1 − u∗,2 is a
minimizer of the functional J̃k1,k2 in H1

0 (	).

(2.8)

This can be proved by following the arguments in [1, Theorem 2] and the observation

w1 = (w1 − w2)+, w2 = (w1 − w2)− for all (w1, w2) ∈ S2(	).

When 0 ≤ k1, k2 < k∗, by using (2.4), one immediately sees that there exists a minimizer ũ
of the functional J̃k1,k2 in H1

0 (	). Consequently, from Theorem 2.1, we can easily conclude
that: If ũ is a minimizer of the functional J̃k1,k2 in H1

0 (	), then

�ũ + k21 ũ+ − k22 ũ− = − f1χ{ũ>0} + f2χ{ũ<0} in 	. (2.9)

Therefore the two-phase problem (1.7) is a special case of the multi-phase problem (2.5).
We also exhibit some interesting point in Appendix A.

By using approximation theorem, we are also able to extend the existence result for the
solution of the local two-phase problem (2.5) for fi = μi − λi when μi is a measure.

Theorem 2.2 Let 	 be a bounded Lipschitz domain in Rn, let 0 ≤ ki < k∗, let λi be positive
L∞(	) functions with λi ≥ c > 0 in 	, and let μi ∈ E ′(	). Then there exists at least one
solution u∗ = (u∗,1, · · · , u∗,m) of (2.5) with fi = μi − λi .

In [36, Proposition 3.6] it is shown that there exists a minimizer v∗,i of the functional
Jki in K1(	). In this case, by using the Euler-Lagrange equation, one can prove that such a
minimizer v∗,i of the functional Jki is unique in K1(	). This implies that2

v∗ = (v∗,1, · · · , v∗,m) is the unique minimizer of the functional Jk in Km(	). (2.10)

However, at this point, we do not knowwhether v∗ is segregated (i.e., vi ·v j = 0 for all i �= j)
or not. We can compare the supports of minimizers in (2.2) with supp(v∗,i ) as presented in
the following theorem.

Theorem 2.3 Let 	 be a bounded Lipschitz domain in R
n, let k1 = · · · = km = k with

0 ≤ k < k∗ and let fi ∈ L∞(	) for all i = 1, · · · ,m. Then for each minimizer u∗ =
(u∗,1, · · · , u∗,m) of the functional Jk in Sm(	) one has

supp (u∗, i) ⊂ supp (v∗, i) for all i = 1, · · · ,m, (2.11)

where v∗ = (v∗,1, · · · , v∗,m) is given in (2.10).

2 Given v′∗ = (v′∗,1, · · · , v′∗,m ) ∈ Km (	) with v′∗ �= v∗, i.e. v′∗, j �= v∗, j for some j , one sees that v′∗, j
must not the minimizer of Jk j , therefore Jk j (v

′∗, j ) > Jk j (v∗, j ), which implies Jk(v′∗) > Jk(v∗), i.e. the
minimizer of Jk in Km (	) is unique.
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Suppose that for each i = 1, 2, · · · ,m we are given the non-negative distribution μi

which is sufficiently concentrated near xi ∈ R
n in the sense of

μ = 0 outside Bεi (xi )

and

μi (R
n) > Cnλiεi , Cn ≥ 2n

(3π)
n
2

�(1 + n
2 )

Jn
2
( j n−2

2 ,1)

Jn
2
( j n−2

2 ,1/3)

for some constants εi > 0 and λi > 0, where � is the standard Gamma function, Jα is the
Bessel functions of order α of the first kind, and jα,m is the mth positive root of Jα . We now
fix a parameter 0 < β < j n−2

2 ,1. By using [36, Theorem 7.6], for each k > 0 satisfying

k < min

{
1

3
,

(
Cn,β

λi

μ(Rn)

) 1
n
}

, Cn,β =
(
4π

3

) n
2

β
n
2 Jn

2
(β)

Jn
2

(
2
3 j n−2

2 ,1

)

Jn
2

(
j n−1

2 ,1

) ,

there exists a non-negative function v∗,i ∈ C0,1
loc (Rn) such that

(� + k2)v∗,i = −μ̃i + λiχQi , Qi = {v∗,i > 0}, μ̃i = μi ∗ φ2εi

with the support condition

supp (μ̃i ) ⊂ Qi , Qi ⊂ Bβk−1(xi ), (2.12)

where
φ2ε = (cMVT

n,k,2ε)
−1χB2ε , cMVT

n,k,2ε = (2π)
n
2 k− n

2 (2ε)
n
2 Jn

2
(2kε).

Here, Qi is a (1-phase) k-quadrature domain corresponding to μi and positive constant
λi . In addition, such v∗,i is also the unique minimizer of Jk with fi = μi −λiχQi inK1(	).
Hence we see that v∗ = (v∗,1, · · · , v∗,m) is the unique minimizer of the functional Jk with
k = (k, k, · · · , k) and fi = μi −λiχQi inKm(	). Whenμ is bounded, the above also holds
true by replacing μ̃ with μ.

It is important to notice that Qi may not be disjoint even in the case when supp (μi ) ∩
supp (μ j ) = ∅ for all i �= j . In this case, we need to shrink Qi into {u∗,i > 0} in the sense
of Theorem 2.3.

An essential component of the theory of quadrature domains involves the relationship:

supp(μi ) ⊂ {u∗,i > 0}. (2.13)

From Theorem 2.3, it becomes evident that a prerequisite for (2.13) is expressed by:

supp (μi ) ⊂ Qi := {v∗,i > 0}.
In this scenario, for each i = 1, . . . , n, it can be observed that Qi represents a one-phase
k-quadrature domain corresponding to μi . This observation prompts the formulation of suf-
ficient conditions for (2.13) in terms of 1-phase k-quadrature domains.

The following theorem exhibits some sufficient condition to guarantee the following
weaker support condition:

supp (μi ) ⊂ supp (u∗,i ), (2.14)

where u∗ = (u∗,1, · · · , u∗,m) is a minimizer of the functional Jk in Sm(	):
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Theorem 2.4 Let 	 be a bounded Lipschitz domain and let 0 < k < k∗. For each i =
1, · · · ,m, let μi ∈ L∞(Rn) with supp (μi ) ⊂ 	 and let Qi = {

v∗,i > 0
}
, where v∗,i is the

unique minimizer of Jki in K1(	) with ki = k. Suppose that

Qi ∩ supp (μ j ) = ∅ for all i �= j , (2.15)

and let k = (k, k, · · · , k) and fi = μi − λi for i = 1, · · · ,m. If

inf
x∈Ui

μi (x) > λi holds for all i = 1, · · · ,m, (2.16)

for some open sets Ui ⊂ supp (μi ), then all minimizers of Jk in Sm(	) satisfy the support
condition

Ui ⊂ supp (u∗,i ) for all i = 1, · · · ,m. (2.17)

Remark If supp (μi ) = int (supp (μi )), then we can guarantee (2.14) by choosing Ui =
int (supp (μi )).

2.2 Proofs of the theorems

By modifying the ideas in [1, Proposition 1], we now prove Theorem 2.1.

Proof of Theorem 2.1 Let ψ ∈ C∞
c be non-negative such that supp (ψ) ⊂ 	\ ⋃

k �=i, j 	k .
Given any ε > 0, we define

Qε := {
x ∈ 	 : u∗,i − u∗, j ≤ εψ

}
.

If we define z := (z1, z2, · · · , zm) as

z� := u∗,� if � �= i, j, zi := (u∗,i − u∗, j − εψ)+ and z j := (u∗,i − u∗, j − εψ)−,

then z ∈ Sm(	). Since u∗, j
∣∣
	\Qε

= 0, u∗,i = (u∗,i − u∗, j )+ and u∗,i = (u∗,i − u∗, j )−, we
obtain

0 ≤ Jk(z) − Jk(u∗) = I1 + I2, (2.18)

where

I1 =
∫

	

(|∇(u∗,i − u∗, j − εψ)+|2 − |∇u∗,i |2
) + (|∇(u∗,i − u∗, j − εψ)−|2 − |∇u∗, j |2

)
dx

+ 2
∫

	

fi (u∗,i − (u∗,i − u∗, j − εψ)+) + f j (u∗, j − (u∗,i − u∗, j − εψ)−) dx

and

I2 = −
∫

	

k2i
(|(u∗,i − u∗, j − εψ)+|2 − |u∗,i |2

) + k2j
(|(u∗,i − u∗, j − εψ)−|2 − |u∗, j |2

)
dx

Following the exactly same arguments as in [1, Proposition 1], one can show that

I1 ≤ −2ε
∫

	\⋃k �=i, j 	k

∇(u∗,i − u∗, j ) · ∇ψ + ε2
∫

	\⋃k �=i, j 	k

|∇ψ |2 dx

+ 2ε
∫

	\⋃k �=i, j 	k

fiχ{u∗,i>u∗, j }ψ dx − 2ε
∫

	\⋃k �=i, j 	k

f jχ{u∗,i<u∗, j }ψ dx + o(ε)

(2.19)
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On the other hand, we see that

I2 = −
∫

	\Qε

k2i
(|u∗,i − (u∗, j + εψ)|2 − |u∗,i |2

)
dx

+
∫
Qε

k2i |u∗,i |2 dx −
∫
Qε

k2j
(|u∗, j − (u∗,i − εψ)|2 − |u∗, j |2

)
dx

= 2ε
∫

	\Qε

k2i u∗.iψ dx − 2ε
∫
Qε

k2j u∗, jψ dx

+
∫
Qε

k2i |u∗,i |2 dx −
∫
Qε

k2j |u∗,i − εψ |2 dx −
∫

	\Qε

k2i |u∗, j + εψ |2 dx

= 2ε
∫

	\⋃k �=i, j 	k

(k2i χ	\Qε + k2jχQε )u∗.iψ dx − 2ε
∫

	\⋃k �=i, j 	k

(k2jχQε + k2i χ	\Qε )u∗, jψ dx

+ (k2i − k2j )
∫
Qε

|u∗,i |2 dx + ε2(k2i + k2j )
∫
Qε

|ψ |2 dx

Since u∗,i · u∗, j = 0, then∫
Qε

|u∗,i |2 dx =
∫
x∈	,u∗,i (x)≤εψ(x)

|u∗,i |2 dx ≤ ε2
∫

	\⋃k �=i, j 	k

|ψ |2 dx,

as well as
(k2i χ	\Qε + k2jχQε )u∗,i = (k2i χ{u∗,i>εψ} + k2jχ{u∗,i≤εψ})u∗,i

(k2jχQε + k2i χ	\Qε )u∗, j = k2j u∗, j .

From this, we reach

I2 ≤ 2ε
∫

	\⋃k �=i, j 	k

(k2i χ{u∗,i>εψ} + k2jχ{u∗,i≤εψ})u∗,iψ dx

− 2ε
∫

	\⋃k �=i, j 	k

k2j u∗, jψ dx + Cε2
∫

	\⋃k �=i, j 	k

|ψ |2 dx .
(2.20)

Combining (2.18), (2.19) and (2.20), we divide the resulting inequality by 2ε and then taking
the limit ε → 0, we reach

�(u∗,i − u∗, j ) + k2i u∗,i − k2j u∗, j ≤ − fiχ{u∗,i>0} + f jχ{u∗, j>0} in 	 \
⋃
k �=i, j

	k .

Finally, by interchanging the role of i and j we conclude (2.5). ��
We are now in position to prove Theorem 2.2, which can be done similarly to [1, Theo-

rem 5].

Proof of Theorem 2.2 For eachμi , we choose the sequenceμn
i ∈ C∞

c (	) such thatμn
i → μi

in E ′(	). We choose f ni = μn
i − λi , and it is clear that f ni → fi := μi − λi in E ′(	). We

consider the functional

J n
k (u) =

m∑
i=1

J n
ki (ui ), J n

ki (ui ) =
∫

	

(|∇ui |2 − k2|ui |2 − 2 f ni ui
)
dx .

By (2.4), for each n ∈ N there exists a minimizer un∗ of the functional J n
k in Sm(	). By using

Theorem 2.1, such minimizer satisfies

�(u∗,i − u∗, j ) + k2i u∗,i − k2j u∗, j = − f ni χ{u∗,i>0} + f nj χ{u∗, j>0} in 	 \
⋃
k �=i, j

	k .
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Since the support of the minimizers un∗ remain in a compact set 	 × · · · × 	, there exists a
subsequence which is weak-∗ convergent as distributions to a limit u∗, which satisfies (2.5)
with fi = μi − λi . ��

For later convenience, we introduce the notation

min{u, v} := (min{u1, v1}, · · · ,min{um, vm}),
max{u, v} := (max{u1, v1}, · · · ,max{um, vm}).

We now prove Theorem 2.3 by modifying the ideas in [1, Theorem 1].

Proof of Theorem 2.3 Let u∗ = (u∗,1, · · · , u∗,m) ∈ Sm(	) be a minimizer of the problem
(2.4). Since

min{u∗,i , v∗,i } + max{u∗,i , v∗,i } = u∗,i + v∗,i

|min{u∗,i , v∗,i }|2 + |max{u∗,i , v∗,i }|2 = |u∗,i |2 + |v∗,i |2∫
	

(|∇ min{u∗,i , v∗,i }|2 + |∇ max{u∗,i , v∗,i }|2
)
dx =

∫
	

(|∇u∗,i |2 + |∇v∗,i |2
)
dx

and k1 = k2 = · · · = km ∈ [0, k∗), then

Jk(min{u∗, v∗}) + Jk(max{u∗, v∗}) = Jk(u∗) + Jk(v∗).

Since min{u∗, v∗} ∈ Sm(	), then

Jk(u∗) ≤ Jk(min{u∗, v∗}).
Hence we reach

Jk(max{u∗, v∗}) ≤ Jk(v∗).

Since max{u∗, v∗} ∈ Km(	) and v∗ is the unique minimizer of Jk in Km(	), then

max{u∗, v∗} = v∗,

which proves our lemma. ��
We are now in position to prove Theorem 2.4 by modifying the ideas in [1, Theorem 7]

or [14, Theorem 5.1].

Proof of Theorem 2.4 Let u∗ = (u∗,1, · · · , u∗,m) be a minimizer of Jk in Sm(	) with k =
(k, k, · · · , k). The remaining task is to prove the support condition (2.17). In order to do this,
we only need to show

Ui ⊂ supp (u∗,i ).

Suppose the contrary, assuming the existence of i0 such that Ui0 \ supp (u∗,i0) �= ∅.
Let’s fix z0 ∈ Ui0 \ supp (u∗,i0). According to Theorem 2.3, we have supp (u∗,i ) ⊂ Qi

for all i = 1, . . . ,m. Consequently, using (2.15), it is evident that z0 ∈ Ui0\	̃, where
	̃ = ⋃m

i=1 supp (u∗,i ). Since 	̃ is compact andUi0 is open, we can find 0 < R < βk−1 with
0 < β < j n−2

2 ,1 such that BR(z0) ∩ 	̃ = ∅ and BR(z0) ⊂ Ui0 .
Let 0 < ε < M be such that

max
i=1,··· ,m‖μi‖L∞(Rn) ≤ M, min

i=1,··· ,m λi ≥ ε.

Let 0 < r < R be a constant to be determined later, and we define

νi0 := μi0χBr (z0).
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It is easy to see that

a0χBr (z0) ≤ νi0 ≤ MχBr (z0), a0 := inf
x∈supp (μi )

μi (x).

Since the mapping t �→ t
n
2 Jn

2
(kt) is monotone increasing on (0, βk−1), we can choose r > 0

sufficiently small so that

ε

M
>

r
n
2 Jn

2
(kr)

R
n
2 Jn

2
(kR)

(2.21)

and hence

R′ := max

{
ρ ∈ (r , βk−1] : ε

M
− r

n
2 Jn

2
(kr)

ρ
n
2 Jn

2
(kρ)

≤ 0

}
< R.

The sufficient condition of [36, Proposition 7.4] can be verified by (2.16) and (2.21), and one
sees that

supp (ṽ∗,i0) ⊂ BR′(z0) ⊂ BR(z0), Br0 ⊂ supp (ṽ∗,i0), (2.22)

where ṽ∗,i0 is the unique minimizer to the functional

v �→
∫
B

βk−1 (z0)

(|∇v|2 − k2|v|2 − 2(νi0 − λi0)v
)
dx

in K1(Bβk−1(z0)). Since BR(z0) ⊂ 	, then in particular ṽ∗,i0 is also the unique minimizer
to the functional

Jk,νi0 ,λi0
(v) =

∫
	

(|∇v|2 − k2|v|2 − 2(νi0 − λi0)v
)
dx

inK1(	). The second inclusion in (2.22) implies {ṽ∗,i0 > 0} �= ∅, thereforeJk,νi0 ,λi0
(ṽ∗,i0) <

0.
Since BR(z0)∩	̃ = ∅, then first inclusion in (2.22) implies supp (ṽ∗,i0)∩	̃ = ∅, therefore

w∗ = (u∗,1, · · · , u∗,i0−1, u∗,i0 + ṽ∗,i0 , u∗,i0+1, · · · , u∗,m) ∈ Sm(	),

as well as ∇ṽ∗,i0 · ∇u∗,i0 = 0 and ṽ∗,i0u∗,i0 = 0. If we consider the functional Jk with
k = (k, · · · , k) and fi = μi − λi , then we see that

Jk(w∗) =
∑
i �=i0

∫
	

(|∇u∗,i |2 − k2|u∗,i |2 − 2(μi − λi )u∗,i
)
dx

+
∫

	

(|∇(u∗,i0 + ṽ∗,i0)|2 − k2|u∗,i0 + ṽ∗,i0 |2 − 2(μi0 − λi0)(u∗,i0 + ṽ∗,i0)
)
dx

= Jk,··· ,k(u∗) +
∫

	

(|∇ṽ∗,i0 |2 − k2|ṽ∗,i0 |2 − 2(μi0 − λi0)ṽ∗,i0

)
dx

= Jk,··· ,k(u∗) + Jk,νi0 ,λi0
(ṽ∗,i0) < Jk,··· ,k(u∗),

which contradicts the minimality of u∗ ∈ Sm(	).
Therefore, we conclude thatUi \supp (u∗,i ) = ∅ for all i = 1, · · · ,m, which is equivalent

to Ui ⊂ supp (u∗,i ) for all i = 1, · · · ,m, which concludes our theorem. ��
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3 Two-phase problem through partial balayage

3.1 Main results

It appears that Theorem 2.4 does not ensure the crucial support condition (1.13) in our
application. Even for the one-phase case with k = 0 there is no simple way to guarantee the
support condition. To address this limitation, we slightly refine Theorem 2.4 specifically for
the case of m = 2, as presented in Theorem 3.1 below. This refinement employs a potential-
theoretic analysis known as partial balayage [17, 19, 22–24]. The framework adopted here
largely follows the concepts outlined in [18, 19]. For ease of discussion, we introduce the
same terminologies as in [19].3

Definition Let k > 0. A function s that is upper semicontinuous (USC) and satisfies (� +
k2)s ≥ 0 in the sense of distributions will be referred to as k-metasubharmonic.

Similarly, s will be termed k-metasuperharmonic if −s is k-metasubharmonic. Addi-
tionally, we use the term k-metaharmonic when s is both k-metasubharmonic and k-
metasuperharmonic.

The partial balayage heavily relies on the following concept:

Definition We say that the k-maximum principle holds on a domain (i.e. open and connected)
	 ⊂ R

n if the following properties holds: Every k-metasubharmonic function s which is
bounded from above and satisfies

lim sup
x→z

s(x) ≤ 0 for all z ∈ ∂	 apart (possibly) from a polar set

must also satisfy s ≤ 0 in 	.

We introduce the number

k̃∗(	) := sup
{
k : there exists USC s < 0 in 	 satisfying (� + k2)s ≥ 0 in 	

}
.

It is worth mentioning that there exists a positive eigenfunction h of −� corresponding to
k̃∗ = k̃∗(	), meaning

(� + k̃∗)h = 0 and h > 0 in 	, h|∂	 = 0 in a suitable sense,

as statedmore precisely in [4, Theorem 2.1]. Importantly, it is also noted that k̃∗(	) = k∗(	),
where k∗ is the number given in (2.3), a result that holds true for arbitrary bounded domains
	, as shown in [19, Proposition 2.6]. The connectedness of 	 is crucial here. Additionally,
it was demonstrated in [19, Proposition 2.8] that the following are equivalent (see also [4,
Theorem 1.1]):

(i) the k-maximum principle holds on 	;
(ii) 0 ≤ k < k∗;
(iii) there is a positive k-metasuperharmonic function on 	 which is not a multiple of h;
(iv) there is a k-metaharmonic function v ≥ 1 in 	.

3 The approach based on Balayage, does not straightforwardly generalize to multi-phase cases, and one would
need to find an enhanced version of it to assure an existence theorywith the support-inclusion conditions (1.13).
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By imitating some ideas in [17, 18], we now introduce a version of partial balayage which
is slightly general than the one in [19, Section 3]. Let k > 0. Given an open set D ⊂ R

n and
a positive measure μ with compact support in Rn , we define

Fk,D(μ) :=
{

v ∈ D ′(Rn) : −(� + k2)v ≤ 1 in D, v ≤ Uμ
k in R

n

the set {v < Uμ
k } is bounded

}
,

where the potential is given by

Uμ
k (x) :=

∫
�k(x − y) dμ(y), �k(x) = −1

4

(
k

2π

) n−2
2 |x |− n−2

2 Yn−2
2

(k|x |).

We simply denote
Fk(μ) := Fk,Rn (μ).

ObviouslyFk(μ) ⊂ Fk,D(μ), and by [19, Theorem 1.4], one can guaranteeFk(μ) �= ∅,
and so is Fk,D(μ), when k > 0 is sufficiently small such that

μ(Rn) ≤ ck(Rk), (3.1a)

where

Rk := k−1 j n−2
2

, ck(r) =
(
2πr

k

) n
2

Jn
2
(kr) =

∫ r

0
(2π t)

n
2 k− n−2

2 Jn−2
2

(kt)dt,

see also [19, Corollary 3.21 and Corollary 3.22] for some refinements.
By using the ideas in [19, Lemma 2.4], which involves Kato’s inequality for the Laplacian

[5] (see also [18, Corollary 2.3]), one sees that

max{u, v} ∈ Fk,D(μ) for all u, v ∈ Fk,D(μ).

Standard potential theoretic arguments [2, Section 3.7] now show thatFk,D(μ) has a largest
element, which has a USC representative.We denote this function by Vμ

k,D , which also can be
referred to as the partial reduction of Uμ

k [17]. Accordingly, we can define the non-contact
set by

ωk,D(μ) :=
{
Vμ
k,D < Uμ

k

}
, ωk(μ) := ωk,Rn (μ),

and the partial balayage is defined by

Balk,D(μ) := −(� + k2)Vμ
k,D in D ′(Rn), Balk(μ) := Balk,Rn (μ).

Obviously one has Vμ
k ≤ Vμ

k,D and ωk,D(μ) ⊂ ωk(μ) ∩ D for any open set D. If we further
assume that

μ(Rn) < ck(Rk), (3.1b)

since ωk(μ) is bounded, then one can choose ε > 0 such that

(μ + εm|ωk (μ))(R
n) = μ(Rn) + εm(ωk(μ)) ≤ ck(Rk).

again using [19, Theorem 1.4], we see that Fk(μ + εm|ωk (μ)) �= ∅. Consequently, by using
[19, Theorem 3.9] we see that

ωk(μ) satisfies the k-maximum principle (i)–(iv). (3.1c)

By using the fact Vμ
k,D = Uμ

k in R
n\D, one can easily verify that

Vμ
k,D = U

Balk,D(μ)

k .
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Following the same arguments as in [17, 19], similar to [18, (5)] or [42, (4)], one also can
show that there exists a measure ν ≥ 0 which is supported on ∂D ∩ ∂ωk,D(μ) such that

Balk,D(μ) = m|ωk,D(μ) + μ|Rn\ωk,D(μ) + ν, (3.2)

wherem is the usual Lebesgue measure. In addition, Balk,D(μ) ≤ 1 in D. Here and after, we
identify m with 1. When D = R

n , the above definitions are identical to the one mentioned
in [19].

We will prove the following analogue to [18, Theorem 5.1].

Theorem 3.1 (See (3.15) below for a more precise description) Let μ± be positive measures
with disjoint compact supports in R

n, and let k > 0 satisfies

μ+(Rn) + μ−(Rn) < ck(Rk) ≡ (2π j n−2
2

)
n
2 Jn

2
( j n−2

2
)k−n (3.3)

If
ωk(μ−) ∩ supp (μ+) = ∅, ωk(μ+) ∩ supp (μ−) = ∅ (3.4)

and additionally assume that

supp (μ+) ⊂ ωk,Rn\ωk (μ−)(μ+), supp (μ−) ⊂ ωk,Rn\ωk (μ+)(μ−), (3.5)

then there exist two disjoint open bounded sets D± such that (D+, D−) is a two-phase (k, k)-
quadrature domain, in the sense of (1.7), with λ+ = λ− = 1, which the support condition
(1.13) holds.

By combining Theorem 3.1 and [33, Theorem 7.1 and Remark 7.2], we also can prove
the following result:

Theorem 3.2 Letμ± be positive measures with disjoint compact supports inRn. There exists
a positive constant cn depending only on dimension n such that the following statement holds
true: If k > 0 satisfies

0 < k <
cn

(μ+ + μ−)(Rn)1/n
(3.6)

and μ± satisfy (3.4) as well as the concentration condition

lim sup
r→0+

μ+(Br (x))

rn
>

1

cn
for all x ∈ supp (μ+),

lim sup
r→0+

μ−(Br (y))

rn
>

1

cn
for all y ∈ supp (μ−),

(3.7)

then there exist two disjoint open bounded sets D± such that (D+, D−) is a two-phase (k, k)-
quadrature domain, in the sense of (1.7), with λ+ = λ− = 1, which the support condition
(1.13) holds.

3.2 Proofs of the theorems

Given a signed measureμ = μ+ −μ− with compact support and a Borel function u : Rn →
[−∞,+∞], we define the signed measure

η(u, μ) := (
(μ+ − 1)+ − (μ+ − 1)−|{u>0}

) − (
(μ− − 1)+ − (μ− − 1)−|{u<0}

)
.

We recall the properties of η:
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Lemma 3.3 ([18, Lemma 4.1]) Let u, u1, u2 : R
n → [−∞,+∞] be Borel measurable

functions, μ,μ1, μ2 be signed measures with compact supports, and A ⊂ R
n be a Borel set.

Then

(a) η(−u,−μ) = −η(u, μ);
(b) μ − 1 ≤ η(u, μ) ≤ μ + 1; and
(c) u1|A ≤ u2|A and μ1|A ≥ μ2|A imply η(u1, μ1)|A ≥ η(u2, μ2)|A.

Similar to [18, Section 2.2], by a δ-k-metasubharmonic function on an open set 	 we
mean a function w = s1 − s2 for some k-metasubharmonic functions s1 and s2 on 	, which
is well-defined outside the polar set where s1 = s2 = −∞. By using exactly same ideas there,
we also can refine this observation using the fine topology: As a distribution, −(� + k2)w
is locally a signed measure, and there exists a unique decomposition

−(� + k2)w = (−(� + k2)w)d + (−(� + k2)w)c

where (−(�+k2)w)d does not charge polar sets and (−(�+k2)w)c is carried by a polar set.
We always assign values to a δ-k-metasubharmonic function in the following way (without
explicitly mention after that):

w := +∞ a.e. with respect to ((−(� + k2)w)c)+,

w := −∞ a.e. with respect to ((−(� + k2)w)c)−,

where (−(�+k2)w)c = ((−(�+k2)w)c)+−((−(�+k2)w)c)− is the Jordan decomposition
of (−(� + k2)w)c.

It is convenient to define Wμ
k,D := Uμ

k − Vμ
k,D , whence Wμ

k,D is lower semicontinuous
(we use the abbreviation “LSC”), and we also denote Wμ

k := Wμ

k,Rn . We now define

τk,μ := {
w : w is δ-k-metasubharmonic, −(� + k2)w ≥ η(w,μ) and w ≥ −Wμ−

k in R
n} .

Fix any ϕ ∈ C∞(Rn) with (� + k2)ϕ = 1, we also can consider the collection

τ ′
k,μ := {

w +Uμ−
k − ϕ : w ∈ τk,μ

}
,

where the elements of τ ′
k,μ are suitably refined on a polar set to make them k-

metasuperharmonic. When k = 0, one can simply choose ϕ(x) = |x |2/2n. We now modify
[18, Lemma 4.2] in the following lemma:

Lemma 3.4 Letμ± be positive measures with disjoint compact supports inRn, and let k > 0
satisfies (3.1a) with respect to μ±. If v1, v2 ∈ τ ′

k,μ with μ = μ+ − μ−, then min{v1, v2} ∈
τ ′
k,μ.

Proof Let v1, v2 ∈ τ ′
k,μ and write vi = wi + Uμ−

k − ϕ where wi ∈ τk,μ. Following the
arguments in [18, Lemma 4.2], by using [19, Lemma 2.4] one can show that min{v1, v2} is
δ-k-metasubharmonic function and min{w1, w2} ≥ −Wμ−

k in R
n , as well as

η(min{w1, w2}, μ) = η(w1, μ)|{w1−w2≤0} + η(w2, μ)|{w1−w2>0}.

By using Kato’s inequality for Laplacian, one further computes that

η(min{w1, w2}, μ) ≤ −(� + k2)w1|{w1−w2≤0} − (� + k2)w2|{w1−w2>0}
≤ −�min{w1, w2} − k2w1|{w1≤w2} − k2w2|{w2<w1} = −(� + k2)min{w1, w2},

we conclude our lemma. ��
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We can prove the following two technical lemmas by employing the ideas presented in
[18, Theorem 4.3].

Lemma 3.5 Letμ± be positive measures with disjoint compact supports inRn, and let k > 0.
Consider u1 and u2 as δ-k-metasubharmonic functions with

{u1 �= 0} ∪ {u2 �= 0} ⊂ 	̃

for some open set 	̃ such that the k-maximum principle (i)–(iv) holds. If −(� + k2)u1 ≥
η(u1, μ) and −(� + k2)u2 ≤ η(u2, μ) with μ = μ+ − μ−, then it follows that u2 ≤ u1.

Proof One computes that the function v = u2 − u1 satisfies

− (� + k2)v ≤ η(u2, μ) − η(u1, μ)

= (μ+ − 1)−|{u1>0} − (μ+ − 1)−|{u2>0} + (μ− − 1)−|{u2<0} − (μ− − 1)−|{u1<0} ,

so −(� + k2)v
∣∣{v≥0} ≤ 0. By using the Kato’s inequality as in [19, Lemma 2.4], one sees

that
(� + k2)v+ ≥ (� + k2)v

∣∣{v≥0} ≥ 0,

in other words, v+ is k-metasubharmonic. Since {v+ > 0} ⊂ 	̃, we conclude v+ ≡ 0 by
k-maximum principle (i)–(iv), which completes our proof. ��

If we have the assumption (3.3), from the discussions in (3.1c) above we know that
Fk(μ+ + μ−) �= ∅ and

ωk(μ+ + μ−) satisfies the k-maximum principle (i)–(iv). (3.8a)

By using [19, Lemma 3.3], we have

ωk(μ+) ∪ ωk(μ−) ⊂ ωk(μ+ + μ−). (3.8b)

Based on these observations, we now able to proof the following lemma.

Lemma 3.6 Letμ± be positive measures with disjoint compact supports inRn, and let k > 0
satisfy (3.3). Consider u as a δ-k-metasubharmonic function with {u �= 0} ⊂ ωk(μ+ + μ−).
Then the following hold:

(a) If −(� + k2)u ≤ η(u, μ) with μ = μ+ − μ−, then u ≤ Wμ+
k .

(b) If −(� + k2)u ≥ η(u, μ) with μ = μ+ − μ−, then u ≥ −Wμ−
k and so u ∈ τk,μ.

Proof First of all, we remind the readers that Wμ+
k is non-negative (see the definition of

Vμ+
k and the definition of Fk(μ+)), δ-k-metasubharmonic and has compact support. Since

Balk(μ+) ≤ 1 in R
n , by the structure of partial balayage (3.2) we see that

μ+|{Wμ+
k =0} = μ+|

Rn\ωk (μ+) ≤ 1.

Consequently, together with Lemma 3.3(c) we compute that

− (� + k2)Wμ+
k = μ+ − Balk(μ+) = μ+ − m|{Wμ+

k >0} − μ+|{Wμ+
k =0}

= (μ+ − 1)|{Wμ+
k >0} = (μ+ − 1)+ − (μ+ − 1)−|{Wμ+

k >0} = η(Wμ+
k , μ+)

≥ η(Wμ+
k , μ).

Now we choose u1 = Wμ+
k , u2 = u and 	̃ = ωk(μ+ + μ−) in Lemma 3.5 (together with

(3.8a)–(3.8b)) to conclude u ≤ Wμ+
k and we complete the proof of Lemma 3.6(a).
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We now replacing μ with −μ to obtain

− (� + k2)(−Wμ−
k ) = (� + k2)W (−μ)+

k = η(W (−μ)+
k , (−μ)+)

≤ −η(Wμ−
k ,−μ) = η(−Wμ−

k , μ),

where the last equality follows from Lemma 3.3(a). Now we choose u1 = u, u2 = −Wμ−
k

and 	̃ = ωk(μ+ +μ−) in Lemma 3.5 (together with (3.8a)–(3.8b)) to conclude −Wμ−
k ≤ u

and we complete the proof of Lemma 3.6(b). ��
Wenowfollow the arguments in [18,Theorem4.4,Theorem4.5,Corollary 4.6, andRemark1]

to establish the following lemma.

Lemma 3.7 Letμ± be positive measures with disjoint compact supports inRn, and let k > 0
satisfies (3.3). If we write μ = μ+ − μ−, then the set τk,μ contains a least element W

μ

k with
{Wμ

k �= 0} ⊂ ωk(μ+ + μ−)4. If the following support conditions hold:

supp (μ±) ⊂ D± :=
{
±W

μ

k > 0
}

, (3.9)

then both D± are open set in R
n and the pair of domains (D+, D−) is a two-phase (k, k)-

quadrature domain with λ+ = λ− = 1, that is, ũ := W
μ

k satisfies the model equation (1.7)
with k+ = k− = k and λ+ = λ− = 1.

We now ready to prove Theorem 3.1.

Proof of Theorem 3.1 We define

u := Wμ+
k − Wμ−

k,Rn\ωk (μ+)
, v := Wμ+

k,Rn\ωk (μ−)
− Wμ−

k ,

and using the disjoint condition between μ± (3.4) we observe that

{u < 0} = ωk,Rn\ωk (μ+)(μ−), {u > 0} = ωk(μ+),

{v > 0} = ωk,Rn\ωk (μ−)(μ+), {v < 0} = ωk(μ−).
(3.10)

Combining (3.5) and (3.10), we reach

supp (μ+) ⊂ {v > 0}, supp (μ−) ⊂ {u < 0}. (3.11)

By using (3.8b), we see that all the sets mentioned in (3.10) are contained in ωk(μ+ + μ−),
and thus

{u �= 0} ∪ {v �= 0} ⊂ ωk(μ+ + μ−). (3.12)

For readers’ convenience, we recall (3.8a): ωk(μ+ + μ−) satisfies the k-maximum principle
(i)–(iv).

On the other hand, by using the structure of partial balayage (3.2), from (3.10) one sees
that

− (� + k2)u = μ+ − Balk(μ+) − μ− + Balk,Rn\ωk (μ+)(μ−)

= (μ+ − 1)|ωk (μ+) − (μ− − 1)|ωk,Rn\ωk (μ+)
(μ−) + ν

≥ (μ+ − 1)|{u>0} − (μ− − 1)|{u<0}.

4 Since Wμ+
k ≥ 0 ≥ −W

μ−
k , then W

μ+
k ∈ τk,μ. By definition of τk,μ and the minimality of W

μ
k , one has

W
μ+
k ≥ W

μ
k ≥ −W

μ−
k . Consequently by (3.8b), one reaches {Wμ

k �= 0} ⊂ ωk (μ+ + μ−). This condition
is essential when applying Lemma 3.6.
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In view of the structure of partial balayage (3.2) (with D = R
n), one observes that μ+ ≤ 1

outside ωk(μ+) = {u > 0}, hence one sees that
− (� + k2)u ≥ (μ+ − 1)|{u>0} − (μ− − 1)|{u<0} = η(u, μ). (3.13)

Combining (3.13) and (3.12) with Lemma 3.6, we conclude u ∈ τk,μ, and we reach u ≥ W
μ

k .
Consequently, from (3.11) we conclude that

supp (μ−) ⊂ {u < 0} ⊂ {Wμ

k < 0}. (3.14a)

One can similar show that

supp (μ+) ⊂ {v > 0} ⊂ {Wμ

k > 0}. (3.14b)

This means that the support conditions (3.9) are verified by (3.14a) and (3.14b). Using the
second part of Lemma 3.7, we can conclude our theorem defining

D± =
{
±W

μ

k > 0
}

, ũ = W
μ

k . (3.15)

��
Using Theorem 3.1, we can prove Theorem 3.2 following the ideas in [18, Corollary 5.2].

Proof of Theorem 3.2 First of all, let cn be the small positive constant (depending only on
dimension) described in [33, Theorem 7.1]. Let x ∈ supp (μ+) and from (3.7) there exists a
decreasing sequence of positive numbers {r j } which converges to 0 such that

μ+(Br j (x)) >
1

cn
rnj for all j ∈ N.

If μ+({x}) = 0, then from (3.4) we know that there exists j such that

ωk

(
μ+|Br j (x)

)
⊂ R

n \ ωk(μ−).

Applying [33, Theorem 7.1] to the measure μ+|Br j (x) we see that

x ∈ Br j (x) ⊂ ωk

(
μ+|Br j (x)

)
= ωk,Rn\ωk (μ−)

(
μ+|Br j (x)

)
⊂ ωk,Rn\ωk (μ−) (μ+) . (3.16)

If μ+({x}) > 0, there exists ε > 0 such that εδx ≤ μ+, using similar arguments as in [19,
Lemma 3.3], one can show that

x ∈ ωk,Rn\ωk (μ−)(εδx ) ⊂ ωk,Rn\ωk (μ−)(μ+). (3.17)

We now combine (3.16) and (3.17) to conclude

supp (μ+) ⊂ ωk,Rn\ωk (μ−)(μ+).

Similar arguments also work for μ−, verifying condition (3.5). Possibly replacing cn by a
smaller constant, still depending only on dimension n, the condition (3.3) can be guaranteed
by (3.6). Therefore we conclude Theorem 3.2 using Theorem 3.1. ��
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Appendix A. The Pompeiu problem (aminimization viewpoint)

Given a ball BR with radius R > 0 we consider the functional corresponding to k1 = k2 = k,
f1 = −1, f2 = 1 (This corresponds to Theorem 2.2 with μi = 0 and λ1 = 1, and λ2 = −1):

J̃k,k(U ) =
∫
BR

(|∇U |2 − k2U 2 + 2U
)
dx U ∈ H1

0 (BR).

In view of Theorem 2.1, we consider the function ũ which is a solution of the following
(unstable) two-phase problem, or no-sign one-phase problem:

(� + k2)ũ = χD in R
n, ũ = 0 outside D, (A.1)

provided D ⊂ BR . If k < k∗(BR) = j n−2
2 ,1k

−1, then the (unique) minimizer of J̃k,k must

trivial. This suggests us to consider the case when k > k∗(BR). In this case, the above
functional is indeed unbounded below in H1

0 (BR), see [36, Lemma 3.1] or a more concrete
example below in (A.8). The main theme of this appendix is to exhibit some interesting point
of J̃k,k as below:

Theorem A.1 Let ũ be a solution of (A.1) for some bounded Lipschitz domain D in Rn, then
it satisfies

‖∇ũ‖2L2(D)
= n

2k2
|D|, k2‖ũ‖2L2(D)

= n + 2

2k2
|D|, (A.2)

and it is neither a local minima nor local maxima of the functional J̃k,k in H1
0 (BR) for each

R > 0 with D ⊂ BR.

Remark See Example A.2 below for an example of such D in (A.1).

Proof of Theorem A.1 By integrating the identity ∇ · (x |u|2) = n|u|2 + 2ux · ∇u over D, one
can easily obtain

(u, x · ∇u)L2(D) = −n

2
‖u‖2L2(D)

+ 1

2
〈x · ν, |u|2〉∂D (A.3a)

for all real-valued u ∈ H1(D). On the other hand, combining the equations5

∇ · (x |∇u|2) = n|∇u|2 + x · ∇(|∇u|2)
and

x · ∇(|∇u|2) = 2 (∇ · (∇u(x · ∇u)) − �u(x · ∇u)) − 2|∇u|2
= 2 (∇u · ∇(x · ∇u)) − 2|∇u|2,

5 These differential identities are suggested in [12, 15].
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we obtain

∇u · ∇(x · ∇u) = 2 − n

2
|∇u|2 + 1

2
∇ · (x |∇u|2).

Then by integrating the above identity over D we obtain

(∇u,∇(x · ∇u))L2(D) = 2 − n

2
‖∇u‖2L2(D)

+ 1

2
〈x · ν, |∇u|2〉∂D . (A.3b)

for all real-valued u ∈ H2(D). See also [15, Lemma 2.3] for a probabilistic version of
(A.3a)–(A.3b).

If we choose u = ũ, then from (A.3a)–(A.3b) we see that

(ũ, x · ∇ũ)L2(D) = −n

2
‖ũ‖2L2(D)

, (∇ũ,∇(x · ∇ũ))L2(D) = 2 − n

2
‖∇ũ‖2L2(D)

because ũ = |∇ũ| = 0 on ∂D. By testing (A.1) using x · ∇ũ over D, we see that

− n
∫
D
ũ dx =

∫
∂D

(x · ν)ũ dS(x) − n
∫
D
ũ dx =

∫
D
x · ∇ũ dx

=
∫
D
(�ũ + k2ũ)(x · ∇ũ) dx = −(∇ũ,∇(x · ∇ũ))L2(D) + k2(ũ, x · ∇ũ)L2(D)

= n − 2

2
‖∇ũ‖2L2(D)

− k2n

2
‖ũ‖2L2(D)

,

(A.4)

On the other hand, we integrate (A.1) over D to obtain

|D| =
∫
D

�ũ dx + k2
∫
D
ũ dx =

∫
∂D

ν · ∇ũ dS(x) + k2
∫
D
ũ dx = k2

∫
D
ũ dx . (A.5)

We combine (A.4) and (A.5) to obtain the energy estimate

− n

k2
|D| = n − 2

2
‖∇ũ‖2L2(D)

− k2n

2
‖ũ‖2L2(D)

. (A.6)

We also test (A.1) by ũ, and using (A.5) to obtain

1

k2
|D| =

∫
D
ũ dx =

∫
D
(�ũ + k2ũ)ũ dx = −‖∇ũ‖2L2(D)

+ k2‖ũ‖2L2(D)
(A.7)

Solving (A.6) and (A.7), we reach (A.2), that is,

n + 2

2
|D| = k4‖ũ‖2L2(D)

,
n

2
|D| = k2‖∇ũ‖2L2(D)

.

For each t ∈ R, from (A.5) and (A.2) we see that

J̃k,k(t ũ) = t2
(
‖∇ũ‖2L2(D)

− k2‖ũ‖2L2(D)

)
+ 2t

∫
D
ũ dx = (−t2 + 2t)

|D|
k2

for all R > 0 with D ⊂ BR . It is clear that

lim
t→±∞ J̃k,k(t ũ) = −∞, max

t∈R J̃k,k(t ũ) = J̃k,k(ũ) = |D|
k2

, (A.8)
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which shows that J̃k,k is unbounded below in H1
0 (BR) and ũ is not a local minimum. We

now fix an eigenfunction φ ∈ H1
0 (BR) with −�φ = k20φ with k0 > k. We see that

J̃k,k(ũ + tφ) = J̃k,k(ũ) + 2t
∫
D

∇ũ · ∇φ dx + t2‖∇φ‖2L2(D)

− 2k2t
∫
D
ũφ dx − t2k2‖φ‖2L2(D)

+ 2t
∫
D

φ dx

= J̃k,k(ũ) + 2t(k20 − k2)
∫
D
ũφ dx + t2(k21 − k2)‖φ‖2L2(D)

+ 2t
∫
D

φ dx

≥ J̃k,k(ũ) + 2t

(
(k20 − k2)

∫
D
ũφ dx +

∫
D

φ dx

)
.

If (k20 − k2)
∫
D ũφ dx ≥ ∫

D φ dx , then we see that

J̃k,k(ũ + tφ) ≥ J̃k,k(ũ) for all t ≥ 0;

Otherwise, if (k20 − k2)
∫
D ũφ dx ≤ ∫

D φ dx then we see that

J̃k,k(ũ + tφ) ≥ J̃k,k(ũ) for all t ≤ 0.

In either case, we see that ũ is not a local maximum. ��
Example A.2 (A refinement of [33, Example 2.3]) For each m = 1, 2, 3, · · · , we now show

that Bk−1 j n
2 ,m

is a null k-quadrature domain.We consider the function x �→ |x | 2−n
2 Jn−2

2
(k|x |)

that solves (� + k2)u = 0 in R
n . By using the fact

(t
2−n
2 Jn−2

2
(t))′ = −t

2−n
2 Jn

2
(t),

one can easily see that {k−1 j n
2 ,m : m is odd} are all positive local minima with Jn−2

2
( j n

2 ,m) <

0, while {k−1 j n
2 ,m : m is even} are all positive local maxima with Jn−2

2
( j n

2 ,m) > 0. For each

m ∈ N, we define

ũm(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(k−1 j n
2 ,m)

2−n
2 Jn−2

2
( j n

2 ,m) − |x | 2−n
2 Jn−2

2
(k|x |)

k2(k−1 j n
2 ,m)

2−n
2 Jn−2

2
( j n

2 ,m)
for all |x | < k−1 j n

2 ,m ,

0 otherwise.

We see that χ{ũm>0}∪{ũm<0} = χBk−1 j n
2 ,m

and ũm ∈ C1,1(Rn) satisfy (A.1). It is interesting

to mention for the case m = 1 that ũ1 ≥ 0 in R
n .

Recall that the assumption in the Pompeiu problem [38] is equivalent to the existence of
a function ũ solving the two-phase problem (A.1) for some k > 0, as demonstrated in [44,
45]. It’s worth mentioning that [45] guarantees that if D has a Lipschitz boundary ∂D which
is homeomorphic to the unit sphere in R

n and it satisfies the assumption in the Pompeiu
problem, then the boundary of such D must be analytic. However, the unanswered question,
posed in [46, Problem 80], is whether D, a bounded Lipschitz domain homeomorphic to a
ball and satisfying (A.1), must be a ball or not.

Partial results exist [3, 6, 7, 20] as partial answers to this question. In [33], it is observed that
such a domain D is also a k-quadrature domain. Therefore, using the maximum principle
along with the positivity of the first Dirichlet eigenfunction of −�, it is necessary that
k > k∗(D). This problem is challenging from the following perspective:
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• By using Theorem A.1, one sees that nontrivial local minima (if they exist) of the func-
tional J̃k,k in H1

0 (BR) never satisfy (A.1). We do not see how to study the symmetry of
null k-quadrature domain by directly using the ideas in [1, Corollary 1].

• The lack of positivity of solution to the Pompeiu problem, is also an obstacle for using
the moving plane technique.

• It is easy to see that k > 0 is also a Neumann eigenvalue of D with eigenfunction
ṽ = ũ − k−2, which satisfies ṽ|∂D = −k−2. One also can see e.g. [21] for isoperimetric
inequality for (Dirichlet, Neumann or Robin) eigenvalues. The main difficulty is the
knowledge of ṽ|∂D does not explicitly contained in theCourantminimax characterization
of Neumann eigenvalues. Therefore we also believe that the Courant minimax principle
is not helpful in the study of the Pompeiu problem.
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