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Abstract
We prove a spectral inequality (a specific type of uncertainty relation) for Schrödinger oper-
ators with confinement potentials, in particular of Shubin-type. The sensor sets are allowed to
decay exponentially, where the precise allowed decay rate depends on the potential. The proof
uses an interpolation inequality derived by Carleman estimates, quantitative weighted L2-
estimates and an H1-concentration estimate, all of them for functions in a spectral subspace
of the operator.
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1 Introduction, main results, and discussion

In the context of control theory, a spectral inequality for a nonnegative selfadjoint operator
H in L2(Rd) is an inequality of the form

‖ f ‖L2(Rd ) ≤ d0e
d1λs‖ f ‖L2(ω) for all f ∈ Ran Pλ(H), λ ≥ 1, (1.1)

with a measurable set ω ⊂ R
d and some s ∈ (0, 1) and d0, d1 > 0. Having the application in

control theory in mind, we will refer to ω as a sensor set. Here, λ �→ Pλ(H) = 1(−∞,λ](H)

denotes the resolution of identity associated to H . Once Inequality (1.1) is at disposal, the
famousLebeau-Robbianomethod [33], see also [6, 23, 43, 51], allows to conclude (final state)
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observability and null-controllability from ω of the abstract Cauchy problem associated to
−H . Note that the spectral inequality is a manifestation of the uncertainty principle and has
been used also in other contexts albeit with a different name, see, e.g., [17].

The new results in this paper concern Schrödinger operators H = −�+V with potentials
V growing at infinity. A paradigmatic model in this context is the harmonic oscillator H =
−� + |x |2, for which spectral inequalities were proven in [4, 6, 15, 18, 40]. See also [16]
for a treatment of partial harmonic oscillators. In particular, [15] shows that (1.1) holds for
H = −� + |x |2 with measurable sensor sets ω ⊂ R

d satisfying

|ω ∩ (k + (−ρ/2, ρ/2)d)|
ρd

≥ γ 1+|k|α for all k ∈ Z
d , (1.2)

with some parameters ρ > 0, γ ∈ (0, 1], and α ∈ [0, 1).
Sets satisfying (1.2) with α = 0 are called thick sets. They are crucial in two aspects:

First, for the pure Laplacian H = −� an inequality like (1.1) holds if and only if ω is a thick
set. This has been studied in [27, 35, 45, 46] culminating in sharp inequalities established
in [29, 30]. These results are in the literature often referred under the term ‘Logvinenko–
Sereda inequality’. Second, as shown in [19, 52] independently, the heat equation on R

d is
observable (hence final state controllable) from a set ω ⊂ R

d if and only if ω is a thick set.
This illustrates that this type of set is a benchmark for comparison for the topics at hand.

For a Schrödinger operator H = −� + V with a bounded, real-valued, suitably analytic
potential V vanishing at infinity, a spectral inequality with thick sets ω was shown in [32].
Thick sets are also relevant for spectral and parabolic observability inequalities on bounded
domains, mostly if one considers a sequence of them like (−L, L)d and aims for bounds
uniform in L ∈ N cf. [20] and [49]. See also [5, 34] for related results for divergence type
operators.

Although we conjecture that a condition similar to (1.2) would be appropriate in the
context of this paper, see Sect. 2 for a more precise statement, due to the methods applied,
we need to assume more regularity of the sensor set. More precisely, we have to work in the
category of open rather than measurable sets.

In this setting the natural analog of thick sets is the following: For 0 < δ < 1/2, a
measurable ω is called a δ-equidistributed set, if each intersection ω ∩ (k + (−1/2, 1/2)d),
k ∈ Z

d , contains a ball of radius δ. This term was introduced in [47] (but see also [21, 22] for
related notions) in the context of random Schrödinger operators with bounded potentials and
shown to be sufficient for aweaker formof uncertainty relation than (1.1), where f needs to be
an individual eigenfunction of H , rather than an element of a spectral subspace Ran Pλ(H).
This condition on f was subsequently relaxed in [28] to allow for f ∈ Ran 1(λ−ε,λ](H), for
specified, but small ε > 0. In [31] the argument was extended to potentials with uniformly
controlled local singularities. Finally, a proper spectral inequality for Schrödinger operators
with bounded potentials of the form (1.1) was obtained in [42, 44], the difference being
that the first paper treats domains of the type (−L, L)d , whereas the second allows also
certain ‘rectangular’ unbounded domains, as well, including Rd itself. Again, this result was
extended in [12] to potentials with certain local singularities, giving an improvement of [31],
as well. A common feature of these papers is that they trace the dependence of uncertainty
relation on the geometry and model parameters, in contrast to a many earlier papers with
qualitative results. In particular, [43] extends the techniques of the ingenious paper [25]
(itself based on the seminal [11]) from compact domains to R

d using a geometric covering
construction and quantifying the above mentioned parameter dependence.

Let us come back to the harmonic oscillator. For the harmonic oscillator on the domain
R
d thick set have been shown in [4] to be sufficient for a spectral inequality. In [18] this
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was generalized to certain unbounded domains exhibiting sufficient symmetry. However, in
contrast to the pure Laplacian, this condition is not optimal here. In fact, the fast growth of
the quadratic potential yields fast decay of eigenfunctions of the harmonic oscillator, i.e.,
Hermite functions. This explains why one can weaken the geometric condition on the sensor
sets to a decay of the form (1.2). In particular, (1.2) allows the sensor set to have finite
Lebesgue measure, see, e.g., the set ω considered in (1.6) below.

One naturally expects similar phenomena for Schrödinger operators of the form H =
−�+|x |τ with general τ > 0, in particular that the unbounded potential enforces fast decay
of the eigenfunctions. This should make it possible to allow a similar (or even faster) decay
in the sensor set as in (1.2) above, while still obtaining a spectral inequality of the form (1.1)
with explicit dependence on the geometry of ω.

An important step in this direction was achieved in [39], who proves a spectral inequality
for τ ∈ 2N with the sensor set ω being a cone of the form

{x ∈ R
d : |x | ≥ r0 and x/|x | ∈ �0} for some open �0 ⊂ S

d−1. (1.3)

Note that the cone has infinite Lebesgue measure in contrast to typical sets satisfying (1.2)
with α > 0.

The operator considered in [39] is not only a Schrödinger operator, but at the same time a
Shubin operator, see Sect. 2 for a definition and discussion of the latter class. In contrast, the
methods of this paper do not require any integer condition on the power τ of the potential.

More precisely, our main new result is a spectral inequality for Schrödinger operators
H = −� + V with potentials V of the following type.

Assumption A Suppose that V ∈ W 1,∞
loc (Rd) is such that

(i) for some c1, c2 > 0 and some 0 < τ1 ≤ τ2 we have c1|x |τ1 ≤ V (x) ≤ c2|x |τ2 for all
x ∈ R

d ;
(ii) for some ν > 0 we have

Mν := ‖e−ν|x ||∇V |‖L∞(Rd\B(0,1)) < ∞. (1.4)

Theorem 1.1 (Spectral inequality) Let H = −� + V with V as in Assumption A, and let
ω ⊂ R

d be measurable such that for some δ ∈ (0, 1/2) and α ≥ 0 each intersection
ω ∩ (k + (−1/2, 1/2)d), k ∈ Z

d , contains a ball of radius δ1+|k|α . Then there is a constant
C > 0 depending only on τ1, τ2, c1, c2, ν, Mν , and the dimension d such that

‖ f ‖L2(Rd ) ≤
(1

δ

)C1+α ·λ(α+2τ2/3)/τ1

‖ f ‖L2(ω) (1.5)

for all f ∈ Ran Pλ(H), λ ≥ 1.

In the case α = 0, the sets ω considered in Theorem 1.1 correspond to δ2-equidistributed
sets defined above. More interesting and enlightening is the set

ω =
⋃

k∈Zd

B(k, 2−(1+|k|α)), (1.6)

which has finite measure if α > 0. Moreover, if α < 1, ω satisfies (1.2) with ρ = 1 and
suitably chosen γ ∈ (0, 1).

Note that inequality (1.5) is of the form (1.1), with the exponent s satisfying s = (α +
2τ2/3)/τ1 < 1 if and only if 0 ≤ α < τ1 − 2τ2/3. Hence, if Assumption A holds and
additionally 2τ2 < 3τ1, Theorem 1.1 directly leads to observability of the abstract Cauchy
problem associated to −H . More precisely, we get the following result using the variant of
the Lebeau-Robbiano method spelled out in [43, Theorem 2.8].
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Corollary 1.2 (Final state observability inequality) Let V be as in Assumption A, let
(et(�−V ))t≥0 be the C0-semigroup with generator � − V , and let ω be as in Theorem 1.1
with 0 ≤ α < τ1 − 2τ2/3.

Then, for all T > 0 and all g ∈ L2(Rd) we have

‖eT (�−V )g‖2L2(Rd )
≤ C2

obs

∫ T

0
‖et(�−V )g‖2L2(ω)

dt . (1.7)

The constant satisfies the asymptotics Cobs = Cobs(T ) = O(T−1/2) as T → ∞ and the
bound

C2
obs ≤ K

T
(2d0 + 1)K exp

[
K

(
d1
T s

)1/(1−s)]
(1.8)

with s = α+2τ2/3
τ1

, d1 = −C1+α ln δ, d0 = δ−C1+α
, C = C(τ1, τ2, c1, c2, ν, Mν, d) > 0

depending only on τ1, τ2, c1, c2, ν, Mν , and the dimension d, and K = K (s) ≥ 1 depending
only on s.

Remark 1.3 (Bound on the observability constant) For general potentials satisfying Assump-
tion A the bound (1.8) seems rather complicated. Let us concentrate on the question, how
Cobs depends on the time parameter T and specialize to potentials of the form V (x) = |x |τ
(for some τ > 3α). The bound (1.8) on the observability constant Cobs in (1.7) can then be
rewritten as

C2
obs ≤ D

T
exp

(
D

T 1+ 2α+τ/3
τ/3−α

)
for all T > 0

where D > 0 is a constant that depends only on τ, α, δ, and the dimension.

Let us briefly comment on the hypotheses in Assumption A: The lower bound in part (i)
allows to bound the eigenvalue counting function for H , cf. (3.9) below. It also implies a
suitable L2-decay for eigenfunctions of H , see Proposition 3.3 below. The bound in part (ii)
allows to obtain a similar decay for partial derivatives of eigenfunctions by differentiating
the eigenvalue equation H f = λ f , which introduces partial derivatives of the potential to
the equation, see Proposition 3.4 below. Together with the bound on the eigenvalue counting
function, this amounts to the fact that the H1-mass of f ∈ Ran Pλ(H) is strongly localized.
This is made precise in the following theorem.

Theorem 1.4 Let H = −� + V with V as in Assumption A. Then there is a constant
C ′ > 0, depending only on τ1, c1, ν, Mν , and the dimension d, such that for all λ ≥ 1 and
all f ∈ Ran Pλ(H) we have

‖ f ‖2
H1(Rd\B(0,C ′λ1/τ1 ))

≤ 1

2
‖ f ‖2L2(Rd )

. (1.9)

This result enables us essentially to reduce the considerations to a sufficiently large cube

 = (−L, L)d inRd by a ‘cut-off procedure’ (cf. Remark 4.3 below). At this point the upper
bound in part (i) of Assumption A comes into play and ensures an effective bound on V .
More precisely, ‖V ‖∞,
 := supx∈
 V (x) ≤ c2dτ2/2 Lτ2 .

We now discuss under which conditions on the parameter α (encoding the decay rate) the
spectral inequality provided by Theorem 1.1 is of the type (1.1) and hence usable as input
for the observability inequality in Corollary 1.2.
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To this end, let us focus on the harmonic oscillator, that is, H = −�+V with V (x) = |x |2.
This operator meets the hypotheses of Theorem 1.1 (with τ1 = τ2 = 2, c1 = c2 = 1).
Furthermore, condition 0 ≤ α < τ1 − 2τ2/3 required for s ∈ (0, 1) in (1.1), simplifies to
0 ≤ α < 2−4/3 = 2/3. By contrast, [15] derives Inequality (1.1)merely under the condition
α < 1. Let us further restrict our considerations to the case α = 0, i. e. that ω is a thick set.
Then the exponent on the right-hand side of (1.5) reads Cλ2/3, while the corresponding term
in [15] is Cλ1/2 which is the expected behaviour, see for instance the discussion on page 14
in [29] or in Section 3 of [20]. The slightly worse behaviour in our Theorem 1.1 above is
due to the application of a Carleman estimate after the mentioned ‘cut-off procedure’ to the
cube 
 = (−L, L)d . While according to a conjecture associated with the name of Landis,
the sup norm of the potential should enter the unique continuation estimate in the scaling
‖V ‖1/2∞,
 the current technology based on Carleman estimates yields the scaling ‖V ‖2/3∞,
.
Tracing this suboptimality further leads to the suboptimal condition on the exponent α. See
also the discussion in the next section.

Let us finally mention that our results can also be extended to potentials V : Rd = R
d1 ×

R
d2 → [0,∞) which grow only in certain coordinate directions. For simplicity, we here

restrict ourselves to potentials V (x) = |x1|τ with x = (x1, x2) ∈ R
d1 ×R

d2 and τ > 0. The
more general analogue to Theorem 1.1 is presented in Theorem 5.1 below.

Theorem 1.5 Let H = −� + |x1|τ , and let ω ∈ R
d be measurable such that for some

δ ∈ (0, 1/2) and α ≥ 0 each intersection ω ∩ (k + (−1/2, 1/2)d), k = (k1, k2) ∈ Z
d ,

contains a ball of radius δ1+|k1|α . Then there is a constant C > 0 depending only on the
dimension d and the parameter τ such that for all λ ≥ 1 and all f ∈ Ran Pλ(H) we have

‖ f ‖L2(Rd ) ≤
(1

δ

)C1+α ·λα/τ+2/3

‖ f ‖L2(ω).

The rest of this note is organized as follows. The purpose of Sect. 2 is threefold: We
consider some related models, in particular Shubin operators, formulate conjectures, that
have been spelled out in the first version of this manuscript, and finally discuss papers of
other authors, which have been obtained during the refereeing procedure of this manuscript,
actually confirming the conjectures. Based on [24], Sect. 3 discusses decay properties of
eigenfunctions and establishes the H1-localization for elements f ∈ Ran Pλ(H), i. e. Theo-
rem 1.4. Section4 then revisits the proofs of the spectral inequalities developed in [42] and
improved in [12, 44] and adapts them towards a proof of Theorem 1.1. Finally, in Sect. 5 we
discuss how to extend our results to partial confinement potentials based on a tensorization
technique.

In all these considerations, we frequently write A � B with quantities A and B if there
is a constant c > 0 depending on the model parameters such that A ≤ cB. If the constant
depends only on a subset of the model parameters, we occasionally write these parameters
in the subscript of �, for instance, A �d B if the constant only depends on the dimension d .

2 Conjectures, generalizations and further developments

In this section, we discuss some related models, in particular Shubin operators, and formulate
some conjectures that were spelled out in our original preprint. In fact, recent papers obtain
more general results than ours and mostly confirm our original conjectures, in some cases
quoting them as motivation. Let us discuss this properly.

We expected that a (partial) improvement of Theorem 1.1 of the following form is valid.
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Confirmed conjecture 2.1 Let τ > 0, and suppose that ω ⊂ R
d is measurable such that for

some δ ∈ (0, 1/2) and α ≥ 0 each intersection ω ∩ (k + (−1/2, 1/2)d), k ∈ Z
d , contains

a ball of radius δ1+|k|α . Then there is a constant C > 0 depending only on τ , δ, α, and the
dimension d such that for all λ ≥ 1 and all f ∈ Ran Pλ(−� + |x |τ ) we have

‖ f ‖L2(Rd ) ≤
(1

δ

)C ·λ α
τ + 1

2

‖ f ‖L2(ω).

In fact, recently [53] confirmed the conjecture considering even more general potentials
of the following type:

Assumption B Suppose that V = V1 +V2 with V1 ∈ W 1,∞
loc (Rd) and V2 ∈ L∞

loc(R
d) satisfies

(i) for some τ1, c1 > 0 we have

c1(|x | − 1)τ1+ ≤ V (x) for all x ∈ R
d and

(ii) for some τ2, c2 > 0 we have

|V1(x)| + |∇V1(x)| + |V2(x)|4/3 ≤ c2(|x | + 1)τ2 for all x ∈ R
d .

Theorem 2.2 (Theorem 1 in [53]) Let H = −� + V with V as in Assumption B, and let
ω ⊂ R

d be measurable such that for some δ ∈ (0, 1/2) and α ≥ 0 each intersection
ω ∩ (k + (−1/2, 1/2)d), k ∈ Z

d , contains a ball of radius δ1+|k|α . Then there is a constant
C > 0 depending only on τ1, τ2, c1, c2, α, and the dimension d such that

‖ f ‖L2(Rd ) ≤
(1

δ

)C ·λ(α/τ1)+(τ2/2τ1)

‖ f ‖L2(ω)

for all f ∈ Ran Pλ(H).

The proof of [53] follows the same line of argument as ours but develops several crucial
technical improvements, among them a Carleman estimate using a bound on the gradient of
the potential, not just the sup norm of the potential itself, and Cacciopoli inequalities. We
recommend the reader interested in the currently best obtainable estimates in our context to
consult their proofs.

[53] in turn motivated the study of null-controllability of the heat equation associated to
fractional Baouendi-Grushin operators in [26]. The paper contains several related results. We
quote a particular case of one of them as an example that considers potentials of the following
class:

Assumption C Suppose that V = V1 +V2 with V1 ∈ W 1,∞
loc (Rd) and V2 ∈ L∞

loc(R
d) satisfies

for some τ, c1, c2 > 0

(i)

c1|x |τ ≤ V (x) for all x ∈ R
d and

(ii)

|V1(x)| + |∇V1(x)| + |V2(x)|4/3 ≤ c2(|x | + 1)τ for all x ∈ R
d .

Theorem 2.3 (Cf. Theorem 1.7 in [26]) Let δ ∈ (0, 1/2) and V be as in Assumption C.
Set θ∗ := τ+2

3 . Let ω ⊂ R
d be a δ-equidistributed set. Then for every initial condition

φ0 ∈ L2(Rd × R
m) the problem

∂tφ(t, x, y) + (−�x − V (x)�y
)θ

φ(t, x, y) = (1ω×Rm · u)(t, x, y), t > 0, x ∈ R
d , y ∈ R

m ,

φ(0, x, y) = φ0(x, y), x ∈ R
d , y ∈ R

m .
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is final state null-controllable in every time T > 0, if θ > θ∗. Furthermore, there exists a
time T∗ > 0 such that for θ = θ∗ the above problem is final state null-controllable provided
T > T∗. For δ ↘ 0, the time T∗ diverges like ln

( 1
δ

)
.

Due to the use of Carleman inequalities, we can prove the spectral inequality in Theo-
rem 1.1 only for sensor sets containing suitable open balls, but not for measurable sets of the
form (1.2). This prompts the question, how and under what conditions this restriction can be
removed. Natural candidates are polynomial or analytic potentials, in particular in view of
[32].

In this vein, let us discuss next results on Shubin operators, that is, Hamiltonians of the
form H = (−�)m + |x |2l with m, l ∈ N. Note that the particular case of m = l = 1 here
agrees with the harmonic oscillator. For l > m = 1, a first proof of a spectral inequality of the
form (1.1), and thus observability of the system generated by −H , was established in [39],
but only for sensor sets ω as in (1.3). Arbitrary sets ω with strictly positive measure were
treated recently in [37]. There, the author verifies that for such sets and general m, l ∈ N we
have the inequality

‖ f ‖L2(Rd ) ≤ d0e
d1λ

1
2m + 1

2 l log λ‖ f ‖L2(ω) for all f ∈ Ran Pλ(H), λ ≥ 1,

which in the case of max{m, l} > 1 is indeed of the form (1.1) with the choice s = 1/(2m)+
1/(2l) + ε < 1 for ε ∈ (0, 1/4). The constants d0 and d1 are, however, not explicit in this
case.

A similar result in [37] treated the case of sensor setsω that are thickwith respect to certain
unbounded scales, which allows for holes in ω of growing size. This takes into account more
precise information on ω and results in an improved dependence on λ, but the sensor sets are
required to have infinite Lebesgue measure and the constants d0 and d1 are still not explicit.

However, in light of the Bernstein inequalities proved in [37, Proposition 4.1] we expected
that the approach presented in [15] could be adapted for Shubin operators H = (−�)m+|x |2l ,
m, l ∈ N in order to obtain a result of the following form:

Confirmed conjecture 2.4 Let m, l ∈ N, and suppose that ω ⊂ R
d satisfies (1.2) with some

ρ > 0, γ ∈ (0, 1], and 0 ≤ α < l. Then there are constants K ,C > 0, with K depending
only on m, l, and the dimension d, and C depending additionally also on ρ and α, such that
for all λ ≥ 1 and all f ∈ Ran Pλ((−�)m + |x |2l) we have

‖ f ‖L2(Rd ) ≤
(K

γ

)C ·λ α
2 l + 1

2m

‖ f ‖L2(ω). (2.1)

This conjecturewas indeed confirmed recently in [3] by the second author and P.Alphonse.
In fact, while [37] relies on smoothing estimates for the semigroup generated by −H estab-
lished in [2], the paper [3] directly works with the underlying Agmon estimates from [2]
in order to prove a variant of the Bernstein inequalities that allow for very explicit spectral
inequalities under fairly general assumptions on the sensor set. In particular, the estimates of
[3] confirm (2.1) with the explicit bound on the constant

C ≤ K̃ 1+α(1 + ρ1+ k
m + ρ),

with K̃ > 0 depending only onm, l, and the dimension d , see Theorem 2.3 and Remark 2.5 in
[3]. Note that the general case of [3] actually treats sensor sets with a more general geometry
than (1.2).
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3 Decay of eigenfunctions

In this section we quantify decay properties of linear combinations of eigenfunctions for
the operator H = −� + V with V as in Assumption A. Although there are several results
available for eigenfunctions establishing a fast decay in L2-sense, see, e.g., [1, 7, 9, 13,
50], we need an explicit weighted L2-estimate also for the partial derivatives of first order.
The approach in [24] seems to be the most convenient one for this task. However, since it
is essential for us to have the dependence of the decay on the spectral parameter explicitly
quantified, we have to revisit the reasoning from [24] and extract the statements we need.

3.1 Properties of the operator andmain objective

We begin with a review of the construction of the operator H = −� + V with V as in
Assumption A and a collection of its basic properties.

Consider the forms

a[ f , g] :=
∫

Rd
∇ f (x) · ∇g(x) dx, f , g ∈ D[a] := H1(Rd),

as well as D[v] := { f ∈ L2(Rd) : V 1/2 f ∈ L2(Rd)},

v[ f , g] := 〈V 1/2 f , V 1/2g〉L2(Rd ), f , g ∈ D[v],

and

h := a + v, D[h] := D[a] ∩ D[v].

The nonnegative form a is closed since H1(Rd) is complete, and v is nonnegative and closed
by [48, Proposition 10.5 (ii)]. Thus, the form h is densely defined, nonnegative, and closed
by [48, Corollary 10.2], so that there is a unique (nonnegative) selfadjoint operator H on
L2(Rd) given by

D(H) = { f ∈ D[h] : ∃h ∈ L2(Rd) s.t. h[ f , g] = 〈h, g〉L2(Rd ) ∀g ∈ D[h]}

and

h[ f , g] = 〈H f , g〉L2(Rd ), f ∈ D(H), g ∈ D[h].

Since V (x) → ∞ as |x | → ∞, it is well known that H has purely discrete spectrum, see,
e. g., [48, Proposition 12.7]. Moreover, a form core for H is given by C∞

c (Rd), see, e. g., [8,
Theorem 1.13], that is, every function in D[h] can be approximated in the form norm for
H by functions in C∞

c (Rd); a simple proof of this fact for the current type of potential (in
particular, V ∈ L∞

loc(R
d)) can also be obtained from [24, Lemma 2.2].

Classic elliptic regularity results (see, e. g., [7, Theorem S2.2.1]) imply that D(H) ⊂
H2
loc(R

d) with H f = −� f + V f almost everywhere on Rd for all f ∈ D(H). In addition,
if H f ∈ H1

loc(R
d) for some f ∈ D(H), then f ∈ H3

loc(R
d).

The main objective of the present section is now to prove Theorem 1.4. In this course, if
desired, the dependence of C ′ in Theorem 1.4 on the parameters τ1, c1, ν, Mν can be traced
explicitly from the proof. We refrain from doing so here for simplicity and brevity.
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3.2 Weighted inequalities

We prove Theorem 1.4 by establishing L2-estimates for f and |∇ f | with an exponential
weight. As a preparation, we need the following technical lemma.

Lemma 3.1 (see [24, Lemma 2.1]) Suppose that for some φ ∈ L2(Rd) and λ ≥ 0 the
function f ∈ H2

loc(R
d) ∩ L2(Rd) satisfies −� f + V f − λ f = φ almost everywhere. Then,

f ∈ D[h] and for all g ∈ D[h] we have
h[ f , g] − λ〈 f , g〉L2(Rd ) = 〈φ, g〉L2(Rd ).

Proof The fact that f ∈ D[h] follows from
∫

Rd
(|∇ f |2 + V | f |2) ≤ ‖φ‖L2(Rd )‖ f ‖L2(Rd ) + λ‖ f ‖2L2(Rd )

,

which is proved verbatim as in [24, Lemma 2.1]; the smoothness of the potential V assumed
there is actually not used and not needed.

For g ∈ C∞
c (Rd) we then obtain by integration by parts that

h[ f , g] = a[ f , g] + v[ f , g] =
∫

Rd
(−� f + V f )g =

∫

Rd
(φ + λ f )g

= 〈φ + λ f , g〉L2(Rd ),

and the latter extends to all g ∈ D[h] by approximation since C∞
c (Rd) is a form core for H ;

cf. the discussion after Lemma 2.2 in [24]. ��
The next result is now at the core of our proof of Theorem 1.4 and is a quantitative version

of the statement in [24, Lemma 2.3]. Its proof is also extracted from that reference.

Lemma 3.2 Let λ ≥ 0, μ > 0, and R ≥ 1 be such that V (x) ≥ μ2 + λ + 1 whenever
|x | ≥ R. Moreover, suppose that f ∈ H2

loc(R
d) ∩ L2(Rd) satisfies −� f + V f − λ f = φ

almost everywhere with some φ ∈ L2(Rd). Then, if e2μ|x |φ ∈ L2(Rd), we have

‖eμ|x | f ‖2L2(Rd )
≤ 1

2
‖e2μ|x |φ‖2L2(Rd\B(0,R))

+ (4μ + 6)e2μ(R+1)‖ f ‖2L2(Rd )
. (3.1)

Proof According to Lemma 3.1, f belongs to D[h]. We first suppose that f is real-valued.
Choose an infinitely differentiable function χ : Rd → [0, 1] with χ(x) = 0 for |x | ≤ R and
χ(x) = 1 for |x | ≥ R + 1 such that ‖|∇χ |‖L∞(Rd ) ≤ 2. For ε > 0 let w(x) = wε(x) =
μ|x |/(1 + ε|x |). Then w is bounded and infinitely differentiable on R

d \ {0}. Accordingly,
the same is true for χew and χe2w. Therefore, χe2w f , χ2e2w f , and g := χew f are all
real-valued, belong to D[h], and vanish in the ball B(0, R). In particular, the choice of R
implies that v[g, g] ≥ (μ2 + λ + 1)‖g‖2

L2(Rd )
. Moreover, with the relation ∇(e±wg) =

e±w∇g ± ge±w∇w and the identity ‖|∇w|‖L∞(Rd\{0}) = μ we obtain

∇(e−wg) · ∇(ewg) = |∇g|2 − |g|2|∇w|2 ≥ −μ2|g|2,
so that

h[χ f , χe2w f ] = h[e−wg, ewg] = a[e−wg, ewg] + v[g, g] ≥ (λ + 1)‖g‖2L2(Rd )
.

The latter can be rewritten as

‖χew f ‖2L2(Rd )
≤ h[χ f , χe2w f ] − λ〈 f , χ2e2w f 〉L2(Rd ). (3.2)
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Clearly, v[χ f , χe2w f ] = v[ f , χ2e2w f ]. Moreover, a straightforward computation
shows that ∇(χ f ) · ∇(χe2w f ) = ∇ f · ∇(χ2e2w f ) + ηe2w| f |2 with

η := 2χ∇χ · ∇w + |∇χ |2. (3.3)

Taking into account Lemma 3.1, we therefore have

h[χ f , χe2w f ] = h[ f , χ2e2w f ] + 〈 f , ηe2w f 〉L2(Rd )

= 〈φ + λ f , χ2e2w f 〉L2(Rd ) + 〈 f , ηe2w f 〉L2(Rd ).

Plugging the latter into (3.2) gives

‖χew f ‖2L2(Rd )
≤ 〈φ, χ2e2w f 〉L2(Rd ) + 〈 f , ηe2w f 〉L2(Rd )

= 〈χ2e2wφ, f 〉L2(Rd ) + 〈 f , ηe2w f 〉L2(Rd )

≤ ‖χ2e2wφ‖L2(Rd )‖ f ‖L2(Rd ) + ‖ηe2w‖L∞(Rd )‖ f ‖2L2(Rd )
.

(3.4)

The function η in (3.3) vanishes outside of the annulus R < |x | < R + 1 and satisfies
|η| ≤ 2|∇χ ||∇w| + |∇χ |2 ≤ 4(μ + 1). Hence,

‖ηe2w‖L∞(Rd ) ≤ 4(μ + 1)e2μ(R+1).

We thus conclude from (3.4) that

‖ew f ‖2L2(Rd )
= ‖ew f ‖2L2(B(0,R+1)) + ‖ew f ‖2L2(Rd\B(0,R+1))

≤ e2μ(R+1)‖ f ‖2L2(Rd )
+ ‖χew f ‖2L2(Rd )

≤ ‖χ2e2wφ‖L2(Rd )‖ f ‖L2(Rd ) + (4μ + 5)e2μ(R+1)‖ f ‖2L2(Rd )

≤ ‖e2wφ‖L2(Rd\B(0,R))‖ f ‖L2(Rd ) + (4μ + 5)e2μ(R+1)‖ f ‖2L2(Rd )

≤ 1

2
‖e2wφ‖2L2(Rd\B(0,R))

+ (4μ + 6)e2μ(R+1)‖ f ‖2L2(Rd )
,

where we used Young’s inequality for the last estimate. Since w(x) = wε(x) → μ|x | as
ε → 0 pointwise and monotonically, (3.1) now follows by monotone convergence theorem.

If f is not real-valued, we proceed analogously for Re f and Im f separately and combine
the obtained inequalities to arrive again at (3.1). ��

Applying Lemma 3.2 with φ = 0 allows us to obtain the desired weighted L2-estimates
for eigenfunctions of H , where R can be computed from λ and the constants in part (i) of
Assumption A.

Proposition 3.3 Suppose that f ∈ D(H) with H f = λ f for some λ ≥ 0, and choose R ≥ 1
such that Rτ1 ≥ (λ + 2)/c1. Then, we have

‖e|x |/2 f ‖2L2(Rd )
≤ 8eR+1‖ f ‖2L2(Rd )

.

Proof According to the discussion in Subsection 3.1, the function f belongs to H2
loc(R

d) and
satisfies −� f + V f − λ f = 0 almost everywhere. Applying Lemma 3.2 with μ = 1/2 and
φ = 0 therefore proves the claim. ��

In order to obtain by means of Lemma 3.2 an analogous result for the partial derivatives
of an eigenfunction, we follow the approach of [24] and differentiate the eigenvalue equation
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H f = λ f . Indeed, since H f ∈ H2
loc(R

d), we know that, in fact, f belongs to H3
loc(R

d), and
it follows that each ∂ j f ∈ H2

loc(R
d), j = 1, . . . , d , satisfies

− �∂ j f + V ∂ j f − λ∂ j f = − f ∂ j V (3.5)

almost everywhere. This allows to apply Lemma 3.2 to ∂ j f with a corresponding right-hand
side and, thus, leads to the following result.

Proposition 3.4 Let f ∈ D(H) with H f = λ f for some λ ≥ 0, and choose R ≥ 1 such that
Rτ1 ≥ ((ν + 1)2 + λ + 1)/c1. Then, we have

‖e|x |/2|∇ f |‖2L2(Rd )
≤ (

8λ + (2ν + 5)M2
ν

)
e2(1+ν)(R+1)‖ f ‖2L2(Rd )

.

Proof Denote by φ j := − f ∂ j V the right-hand side of (3.5).
In light of the hypothesis on R, we may first apply Lemma 3.2 to f with μ = ν + 1 and

φ = 0 to obtain

‖e(1+ν)|x | f ‖2L2(Rd )
≤ (4ν + 10)e2(1+ν)(R+1)‖ f ‖2L2(Rd )

. (3.6)

Since |φ j (x)| ≤ Mνeν|x || f | on R
d \ B(0, 1), we conclude that e|x |φ j ∈ L2(Rd \ B(0, 1)).

In view of (3.5), we may then again apply Lemma 3.2, this time to ∂ j f with μ = 1/2 and
φ = φ j = − f ∂ j V , which gives

‖e|x |/2∂ j f ‖2L2(Rd )
≤ 1

2
‖e|x |φ j‖2L2(Rd\B(0,1)) + 8eR+1‖∂ j f ‖2L2(Rd )

. (3.7)

Taking into account (3.6) and that

‖|∇ f |‖2L2(Rd )
= a[ f , f ] ≤ h[ f , f ] = 〈H f , f 〉L2(Rd ) = λ‖ f ‖2L2(Rd )

,

summing over j then yields

‖e|x |/2|∇ f |‖2L2(Rd )
≤ 1

2
‖e|x | f |∇V |‖2L2(Rd\B(0,1)) + 8eR+1‖|∇ f |‖2L2(Rd )

≤ M2
ν

2
‖e(1+ν)|x | f ‖2L2(Rd\B(0,1)) + 8λeR+1‖ f ‖2L2(Rd )

≤ (
8λ + (2ν + 5)M2

ν

)
e2(1+ν)(R+1)‖ f ‖2L2(Rd )

,

which proves the claim. ��

3.3 Proof of Theorem 1.4

Recall that H has purely discrete spectrum, and let (λk)k∈N be an enumeration of its spectrum
σ(H) in nondecreasing order (without multiplicities). With

N (λ) := #(σ (H) ∩ (−∞, λ]),
we may then expand every f ∈ Ran Pλ(H) as

f =
N (λ)∑
k=1

fk (3.8)

where fk = 1{λk }(H) f for k ∈ {1, . . . , N (λ)}. Note that we have the simple bound

N (λ) ≤ #{k : λk ≤ λ} ≤
∑

k : λk≤λ

(λ + 1 − λk) ≤
∑

k : λk≤λ+1

(λ + 1 − λk)
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and in light of the lower bound V (x) ≥ c1|x |τ1 on the potential in part (i) of Assumption A,
the right hand side can be estimated explicitly by means of the classic Lieb-Thirring bound
from [36, Theorem 1]. More precisely, for λ ≥ 1 we have

∑
k : λk≤λ+1

(λ + 1 − λk) �d

∫

Rd
max{λ + 1 − V (x), 0}d/2+1 dx

≤
∫

B(0,((λ+1)/c1)1/τ1 )

(λ + 1)d/2+1 dx

�d,τ1,c1 λ1+d(1/2+1/τ1),

and, therefore,
N (λ) �d,τ1,c1 λ1+d(1/2+1/τ1). (3.9)

Remark 3.5 Note that the Lieb-Thirring bound actually also takes into account multiplicities.
It is worth to mention that for d ≥ 3 the classic Cwikel-Lieb-Rozenblum bound provides a
sharper bound on N (λ), but the above is more than sufficient for our purposes.

We are now in position to prove the main result of this section.

Proof of Theorem 1.4 For every r > 0, we have

‖ f ‖2H1(Rd\B(0,r)) = ‖ f ‖2L2(Rd\B(0,r)) + ‖|∇ f |‖2L2(Rd\B(0,r))

≤ e−r (‖e|x |/2 f ‖2L2(Rd )
+ ‖e|x |/2|∇ f |‖2L2(Rd )

)
.

Moreover, using the expansion (3.8) and Hölder’s inequality, we may estimate

‖e|x |/2 f ‖2L2(Rd )
≤

(N (λ)∑
k=1

‖e|x |/2 fk‖L2(Rd )

)2

≤ N (λ)

N (λ)∑
k=1

‖e|x |/2 fk‖2L2(Rd )

and similarly, taking into accout |∇ f | ≤ ∑N (λ)
k=1 |∇ fk |,

‖e|x |/2|∇ f |‖2L2(Rd )
≤ N (λ)

N (λ)∑
k=1

‖e|x |/2|∇ fk |‖2L2(Rd )
.

We choose R := ((ν + 1)2 + λ + 1)1/τ1/c1 �ν,τ1,c1 λ1/τ1 , which meets the requirement
on R in both Propositions 3.3 and 3.4 for all eigenfunctions corresponding to eigenvalues
not exceeding λ. In particular, this is the case for the functions fk in the expansion (3.8).

Since
∑N (λ)

k=1 ‖ fk‖2L2(Rd )
= ‖ f ‖2

L2(Rd )
and in light of (3.9), applying Propositions 3.3

and 3.4 for each fk separately therefore implies that there is a constant C̃ > 0, depending
only on c1, τ1, ν, Mν , and d , such that

‖ f ‖2H1(Rd\B(0,r)) ≤ e−reC̃λ1/τ1 ‖ f ‖2L2(Rd )
.

Choosing r := log 2 + C̃λ1/τ1 ≤ (C̃ + log 2)λ1/τ1 then proves the claim with the constant
C ′ = C̃ + log 2. ��
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4 Proof of the spectral inequality

Due to Theorem 1.4 it is sufficient to derive an analog of the spectral inequality on a large,
but finite cube. Once the potential V is restricted to the cube, it is a bounded function.
This is the situation for which Section 3 of [42] provides appropriate interpolation and
spectral inequality fromequidistributed sets.Note that [44] extends these results to unbounded
domains including R

d , which is of relevance to us since the operator H is defined on Rd .
Our proof of Theorem 1.1 relies on an adaptation of these estimates, which we present

next.

4.1 Ghost dimension

We make use of the so-called ghost dimension construction, which was first introduced in
[25]. Following the proofs in [12, 42, 44], we denote by (Ft )t∈R the family of unbounded
selfadjoint operators

Ft =
∫

R

st (μ) dPμ(H), st (μ) =
{ sinh(

√
μt)√

μ
, μ > 0,

t, μ = 0,

in L2(Rd). For fixed f ∈ Ran Pλ(H), λ ≥ 0, we then define F : Rd × R → C by

F(·, t) = Ft f ∈ Ran Pλ(H) ⊂ D(H). (4.1)

Expanding f as in (3.8) we clearly have

F(x, t) =
N (λ)∑
k=1

fk(x)st (λk), (x, t) ∈ R
d × R. (4.2)

From this,we easily see that F ismeasurable andbelongs to H2
loc(R

d+1).Moreover,we clearly
have ∂t F(·, t) ∈ Ran Pλ(H). Taking into account that ∂t st (μ)|t=0 = 1 and ∂2t st (μ) = μst (μ)

for all μ ≥ 0, it also follows that
(∂t F)(·, 0) = f , (4.3)

as well as
H(F(·, t)) = (∂2t F)(·, t) for all t ∈ R. (4.4)

The following lemma is an analogue to [42, Proposition 3.6], [44, Proposition 2.9], and
[12, Lemma 6.1] and connects the extended function F to the original function f .

Lemma 4.1 Let f ∈ Ran Pλ(H), and let F : Rd × R → C be defined as in (4.1). Then, for
every � > 0 the restriction of F to R

d × (−�, �) belongs to the Sobolev space H1(Rd ×
(−�, �)) with

2�‖ f ‖2L2(Rd )
≤ ‖F‖2H1(Rd×(−�,�))

≤ 2�(1 + (1 + λ)�2)e2�
√

λ‖ f ‖2L2(Rd )
.

Proof Using |sinh(√μt)| ≤ |t |√μ cosh(
√

μt), 1 ≤ cosh(
√

μt) ≤ e|t |√μ, and the identity
∂t st (μ) = cosh(

√
μt) for all t ∈ R and μ ≥ 0, we easily obtain from the expansion (4.2)

that
‖F(·, t)‖2L2(Rd )

≤ t2e2|t |
√

λ‖ f ‖2L2(Rd )
≤ �2e2�

√
λ‖ f ‖2L2(Rd )

, (4.5)

as well as

‖ f ‖2L2(Rd )
≤ ‖∂t F(·, t)‖2L2(Rd )

≤ e2|t |
√

λ‖ f ‖2L2(Rd )
≤ e2�

√
λ‖ f ‖2L2(Rd )

(4.6)
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for all t ∈ (−�, �).
Taking into account that F(·, t) ∈ Ran Pλ(H) ⊂ D(H) for all t ∈ R, we now clearly

have
d∑

k=1

‖∂k F(·, t)‖2L2(Rd )
≤ 〈HF(·, t), F(·, t)〉L2(Rd ) ≤ λ‖F(·, t)‖2L2(Rd )

≤ λ�2e2�
√

λ‖ f ‖2L2(Rd )
.

Combining the latter with (4.5) and the upper bound in (4.6) and integrating over t ∈ (−�, �)

proves that F |Rd×(−�,�) belongs to H1(Rd × (−�, �)) satisfying the upper bound in the
claim.

For the lower bound, we simply observe that

‖F‖2H1(Rd×(−�,�))
≥

∫ �

−�

‖∂t F(·, t)‖2L2(Rd )
dt ≥ 2�‖ f ‖2L2(Rd )

by the lower bound in (4.6), which completes the proof. ��

4.2 Proof of Theorem 1.1

Let λ ≥ 1 and f ∈ Ran Pλ(H) \ {0}, and define F as in (4.2). We infer from Theorem 1.4
that there is a constant C ′ > 0, depending on τ1, c1, ν, Mν , and d , such that

‖g‖2H1(Rd )
≤ 2‖g‖2

H1(B(0,C ′λ1/τ1 ))
and ‖g‖2L2(Rd )

≤ 2‖g‖2
L2(B(0,C ′λ1/τ1 ))

for all g ∈ Ran Pλ(H). Applying the latter for each t ∈ (−1, 1) to g = F(·, t) and g =
∂t F(·, t), respectively, yields

‖F‖2H1(Rd×(−1,1)) ≤ 2‖F‖2
H1(B(0,C ′λ1/τ1 )×(−1,1))

. (4.7)

Let 
 be the smallest cube of integer sidelength centered at the origin that contains
B(0,C ′λ1/τ1). For technical reasons, we from now on suppose that C ′ ≥ 5, so that 
 has
sidelength at least 5. Hence 
 := (−L, L)d with 2L ∈ {5, 6, 7, . . .} and C ′λ1/τ1 ≤ L ≤
C ′λ1/τ1 + 1. Set K := K(λ) := {k ∈ Z

d : k ∈ 
}. Then, |k| ≤ √
dC ′λ1/τ1 + √

d for all
k ∈ K, so that

δ1+|k|α ≥ δ2(2
√
dC ′)αλα/τ1 =: θ for all k ∈ K. (4.8)

Moreover, the closure of
 agreeswith the union
⋃

k∈K(k+[−1/2,+1/2]d), and the hypoth-
esis on ω implies that for each k ∈ K the intersection ω ∩ (k + (−1/2,+1/2)d) contains a
ball of radius θ . In particular, ω ∩ 
 is θ -equidistributed (in 
) in the sense of [12, 42, 44].

The next interpolation result is a consequence of the Carleman estimates from [25, 33,
41] and relies on the fact that by the upper bound in part (i) of Assumption A the potential
V can be bounded on 
 (or a suitably scaled version thereof) by a multiple of (λ1/τ1)τ2 . The
situation therefore morally boils down to the one of bounded potentials, so that the proof can
be extracted from [42, 44] and is omitted here. We refer, however, to [10, Proposition 6.14]
for a detailed presentation.

Proposition 4.2 Let θ be as in (4.8), and set R := 9e
√
d. Then, there is κ ∈ (0, 1) satisfying

1/κ �d log(1/θ) and a constant D ≥ 1, depending on c2, τ2,C ′, and the dimension d, such
that

‖F‖H1(
×(−1,1)) ≤ θ−κDλ2τ2/3τ1 ‖F‖1−κ/2
H1(Rd×(−R,R))

‖ f ‖κ/2
L2(ω∩
)

.
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Remark 4.3 The appearance of the power λ2τ2/3τ1 in Proposition 4.2 is due to the following:
Once we insert in the upper bound ‖V ‖∞,
 ≤ c2dτ2/2 Lτ2 on the potential on the box

 := (−L, L)d the bound on the sidelength L ≤ C ′λ1/τ1 + 1, we obtain ‖V ‖∞,
 � λτ2/τ1 .
The sup of the potential enters the interpolation inequality via the Carleman estimate and
appears in the scaling ‖V ‖2/3∞,
, giving rise to the term λ2τ2/3τ1 .

With Proposition 4.2 at hand, we are finally in position to prove the main result of this
note.

Proof of Theorem 1.1 We adopt the notation established in the preceding part of the current
section.

The lower bound in Lemma 4.1 for � = R = 9e
√
d gives

‖ f ‖2L2(Rd )
≤ 1

2R
‖F‖2H1(Rd×(−R,R))

.

In order to estimate the right-hand side further, we combine the lower bound in Lemma 4.1
for � = 1 with the corresponding upper bound for � = R and obtain

‖F‖2
H1(Rd×(−R,R))

‖F‖2
H1(Rd×(−1,1))

≤ R(1 + (1 + λ)R2)e2R
√

λ ≤ eKλ1/2

with some constant K depending only on the dimension. Together with (4.7) and the bound
from Proposition 4.2 this yields

‖F‖2H1(Rd×(−R,R))
≤ eKλ1/2‖F‖2H1(Rd×(−1,1)) ≤ 2eKλ1/2‖F‖2H1(
×(−1,1))

≤ e2Kλ1/2θ−2κDλ2τ2/3τ1 ‖F‖2−κ

H1(Rd×(−R,R))
‖ f ‖κ

L2(ω∩
)
,

that is,

‖F‖H1(Rd×(−R,R)) ≤ e2Kλ1/2/κθ−2Dλ2τ2/3τ1 ‖ f ‖L2(ω∩
).

In light of 1/κ �d log(1/θ), 2τ2/3τ1 ≥ 2/3 > 1/2, and the definition of θ in (4.8), the claim
follows upon a suitable choice of the constant C depending on C ′, D, and the dimension d .

��

5 Partial confinement potentials

The above proof can easily be adapted to more general anisotropic potentials V , such as
certain partial confinement potentials. By the latter we mean potentials that behave like in
Assumption A only with respect to certain coordinate directions. For simplicity, we demon-
strate this in the case

H = −� + V with V (x1, x2) = W (x1), (x1, x2) ∈ R
d1 × R

d−d1 , (5.1)

where d1 ∈ N, d1 < d , and where W ∈ W 1,∞
loc (Rd1) satisfies Assumption A with d replaced

by d1.
Since the operator H no longer has purely discrete spectrum, an expansion as in (4.2) for

the extension F of f ∈ Ran Pλ(H) via the ghost dimension construction is not available.
However, straightforward adaptations of the arguments in [12, 44] show that we still have
F ∈ H2

loc(R
d+1), F(·, t), ∂t F(·, t) ∈ Ran Pλ(H) for all t ∈ R, as well as (4.3) and (4.4).

Also an analogue to Lemma 4.1 remains valid verbatim.
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Following the reasoning in the proof of [16, Lemma A.2], we see that H admits the tensor
representation

H = H1 ⊗ I2 + I1 ⊗ H2,

where H1 = −� + W in L2(Rd1) and H2 = −� in L2(Rd−d1), and where I1 and I2
denote the identity operators in L2(Rd1) and L2(Rd−d1), respectively. Consequently, as in
[16, Corollary A.5] (cf. also the proof of [18, Lemma 2.3]), every function h ∈ Ran Pλ(H)

can be written as a finite sum

h =
∑
k

φk ⊗ ψk

with suitable φk ∈ Ran Pλ(H1) and ψk ∈ Ran Pλ(H2). Applying this to h = F(·, t) and
∂t F(·, t) implies that ∂t F(·, x2, t) and ∂α

x2F(·, x2, t), |α| ≤ 1, belong to Ran Pλ(H1) for all
t ∈ R and (almost) all x2 ∈ R

d−d1 . Theorem 1.4 for H1 instead of H therefore provides an
analogue to (4.7) with respect to the first d1 coordinates, that is,

‖F‖2H1(Rd×(−1,1)) ≤ 2‖F‖2
H1(B(d1)(0,C ′λ1/τ1 )×R

d−d1×(−1,1))
, (5.2)

where B(d1)(0,C ′λ1/τ1) ⊂ R
d1 . After that, wemay follow our proof of Theorem 1.1 verbatim

to get a statement analogous to Theorem 1.1, which also covers Theorem 1.5 above. We here
just give the corresponding result and refer to [10] for more details.

Theorem 5.1 Let H be as in (5.1), and let ω ∈ R
d be measurable such that for some

δ ∈ (0, 1/2) and α ≥ 0 each intersection ω ∩ (k + (−1/2, 1/2)d), k = (k1, k2) ∈ Z
d ,

contains a ball of radius δ1+|k1|α . Then there is a constant C > 0 depending only on the
dimension d and the parameters τ1, τ2, c1, c2, ν, Mν connected to W such that for all λ ≥ 1
and all f ∈ Ran Pλ(H) we have

‖ f ‖L2(Rd ) ≤
(1

δ

)C1+α ·λ(α+2τ2/3)/τ1

‖ f ‖L2(ω).

Note that this theorem relates to the spectral inequality for the partial harmonic oscillator
from [16] in the same way as Theorem 1.1 relates to the one for the harmonic oscillator from
[15].
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20. Egidi, M., Veselić, I.: Scale-free unique continuation estimates and Logvinenko–Sereda theorems on the

torus. Ann. Henri Poincaré 21(12), 3757–3790 (2020)
21. Germinet, F.: Recent advances about localization in continuum random Schrödinger operators with an

extension to underlying Delone sets. In: Mathematical results in quantum mechanics. World Scientific
Publishing Co Pte Ltd, Hackensack, 79–96 (2008)

22. Germinet, F., Klein, A.: A comprehensive proof of localization for continuous Anderson models with
singular random potentials. J. Eur. Math. Soc. (JEMS) 15(1), 53–143 (2013)

23. Gallaun, D., Seifert, C., Tautenhahn, M.: Sufficient criteria and sharp geometric conditions for observ-
ability in Banach spaces. SIAM J. Control Optim. 58(4), 2639–2657 (2020)

24. Gagelman, J., Yserentant, H.: A spectral method for Schrödinger equations with smooth confinement
potentials. Numer. Math. 122(2), 383–398 (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2012.04374
http://arxiv.org/abs/2212.10842v4


7 Page 18 of 18 Partial Differential Equations and Applications (2024) 5 :7

25. Jerison, D., Lebeau, G.: Nodal sets of sums of eigenfunctions. In: M. Christ, C. E. Kenig, C. Sadosky,
(eds) Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures inMath.,
pages 223–239. Univ. Chicago Press, Chicago, IL, Chicago (1999)

26. Jaming, P., Wang, Y.: Null-controllability of the Generalized Baouendi–Grushin heat like equations.
arXiv:2310.11215

27. È, V.: Kacnel’son. Equivalent norms in spaces of entire functions. Mat. Sb. (N.S.), 92(134):34–54 (1973)
28. Klein, A.: Unique continuation principle for spectral projections of Schrödinger operators and optimal

Wegner estimates for non-ergodic randomSchrödinger operators. Comm.Math. Phys. 323(3), 1229–1246
(2013)

29. Kovrijkine, O.: Some estimates of Fourier transforms. ProQuest LLC, Ann Arbor, MI, (2000). Thesis
(Ph.D.)–California Institute of Technology

30. Kovrijkine, O.: Some results related to the Logvinenko-Sereda theorem. Proc. Am. Math. Soc. 129(10),
3037–3047 (2001)

31. Klein, A., Tsang, C.S.S.: Local behavior of solutions of the stationary Schrödinger equation with singular
potentials and bounds on the density of states of Schrödinger operators. Comm. Partial Differ. Equ. 41(7),
1040–1055 (2016)

32. Lebeau, G., Moyano, I.: Spectral inequalities for the Schrödinger operator. Analysis & PDE (to appear).
Preprint arXiv:1901.03513

33. Lebeau, G., Robbiano, L.: Contrôle exact de léquation de la chaleur. Commu. Part. Differ. Equ. 20(1–2),
335–356 (1995)

34. Logunov, A., Malinnikova, E.: Lecture notes on quantitative unique continuation for solutions of second
order elliptic equations. In: Harmonic analysis and applications, volume 27 of IAS/Park City Math. Ser.,
1–33. Am. Math. Soc (2020)

35. Logvinenko, V.N., Sereda, Ju. F.: Equivalent norms in spaces of entire functions of exponential type. Teor.
Funkts. Funkts. Anal. Prilozh., 20(Vyp. 20):102–111 (1974)

36. Lieb, E.H., Thirring,W.E.: Inequalities for themoments of the eigenvalues of the SchrödingerHamiltonian
and their relation to Sobolev inequalities, 135–169. Springer, Berlin Heidelberg (1991)

37. Martin, J.: Spectral inequalities for anisotropic Shubin operators. arXiv:2205.11868
38. Martin, J.: Uncertainty principles inGelfand-Shilov spaces and null-controllability. J. Funct. Anal. 283(8),

48 (2022)
39. Miller, L.: Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability

from cones. Preprint: https://hal.science/hal-00411840 (2008)
40. Martin, J., Pravda-Starov, K.: Spectral inequalities for combinations of Hermite functions and null-

controllability for evolution equations enjoying Gelfand–Shilov smoothing effects. J. Inst. Math. Jussieu,
1–50 (2022)
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