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Abstract

This paper proposes a new spatial approximation method without the curse of dimensionality
for solving high-dimensional partial differential equations (PDEs) by using an asymptotic
expansion method with a deep learning-based algorithm. In particular, the mathematical justi-
fication on the spatial approximation is provided. Numerical examples for high-dimensional
Kolmogorov PDEs show effectiveness of our method.
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1 Introduction

Recently, for solving high-dimensional partial differential equations (PDEs), deep learning-
based algorithms have been actively proposed (see [2, 3] for instance). Moreover, a number
of papers for mathematical justification on the deep learning-based spatial approximations
have appeared, where the authors demonstrate that deep neural networks overcome the curse
of dimensionality in approximations of high-dimensional PDEs. For the related literature, see
[4-6, 11, 19] for example. In particular, these works treat some specific forms of PDEs such as
high-dimensional heat equations or Kolmogorov PDEs with constant diffusion and nonlinear
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drift coefficient. Also, integral kernels are assumed to have explicit forms for justification of
the spatial approximations for solutions to high-dimensional PDEs.

However, most high-dimensional PDEs may not have explicit integral forms in practice.
In other words, integral forms of solutions themselves should be approximated by a certain
method.

In the current paper, we give a new spatial approximation using an asymptotic expansion
method with a deep learning-based algorithm for solving high-dimensional PDEs without
the curse of dimensionality. More precisely, we follow approaches given in [40] and the
literature such as [8, 17, 18, 23, 24, 26, 27, 30, 32, 33, 35, 38, 39, 41, 43]. Particularly, we
provide a uniform error estimate for the asymptotic expansion for solutions of Kolmogorov
PDEs with nonlinear coefficients, motivated by the works of [2, 11, 31]. For a solution to a
d-dimensional Kolmogorov PDE with a small parameter A, namely u; : [0, T] X RY > R
givenby u, (¢, x) = E[f(Xt}"x)] for (¢, x) € [0, T] x R? where {th,x }1>01s a d-dimensional
diffusion process starting from x, we justify the following spatial approximation on a range
[a, b]*:

u, (t, -) ~ “high-dimensional asymptotic expansion” E[f()_(,k")M;\"] (1.1)
~ “deep neural network approximation” R(¢)(-), (1.2)

by applying an appropriate neural network ¢. Here, for t > 0 and x € R?, )_(;\’X is a
certain Gaussian random variable and M?"X is a stochastic weight for the expansion given
based on Malliavin calculus. In order to chose the network ¢, the analysis of “product of
neural networks" and a dimension analysis of asymptotic expansion with Malliavin calculus
are crucial in our approach. We show a precise error estimate for the approximation (1.1)
and prove that the complexity of the neural network grows at most polynomially in the
dimension d and the reciprocal of the precision € of the approximation (1.1). Moreover, we
give an explicit form of the asymptotic expansion in (1.1) and show numerical examples to
demonstrate effectiveness of the proposed scheme for high-dimensional Kolmogorov PDEs.

The organization of the paper is as follows. Section?2 is dedicated to notation, definitions
and preliminary results on deep learning and Malliavin calculus. Section 3 provides the main
result, namely, the deep learning-based asymptotic expansion for solving Kolmogorov PDE:s.
The proof is shown in Sect. 4. Section 5 introduces the deep learning implementation. Various
numerical examples are shown in Sect. 6. The useful lemmas on Malliavin calculus and ReLU
calculus are summarized, and furthermore the sample code is listed in Appendix.

2 Preliminaries

We first prepare notation. For d € N and for a vector x € R4, we denote by |lx]| the
Euclidean norm. Also, for k, ¢ € N and for a matrix A € R¥*¢, we denote by ||A|l the
Frobenius norm. For d € N, let I; be the identity matrix. For m, k, £ € N, let C(R", Rkx£y
(resp., C([0, T] x R™, R¥*t)) be the set of continuous functions f : R¥ — Rkx¢ (resp.,
f:[0, TIxR™ —» R¥*¢yand € Lip(R™, Rk*¢) be the set of Lipschitz continuous functions
f:R" —» Rk<E . Also, we define CP(R™, RY) as the set of smooth functions f R" —»
R¥*¢ with bounded derivatives of all orders. For a multi-index e, let || be the length of «. For
a bounded function f : R” — R¥*t we define || /o0 = sup,cgm | f(x)||. Form, k, £ e N,
forafunction f € Cpr;, (R™, R¥*t) we denote by Cprip[ f]the Lipschitz continuous constant.
For d € N and for a smooth function f : RY — R, we define 9 f = 3%[]’ fori=1,...,d,
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moreover we define 9% f = 0y, -+ - g, f for o = (ay,...,04) € {1,...,d}k, k € N. For
a,b € R, we may write a V b = max{a, b}.

2.1 Deep neural networks

Let us prepare notation and definitions for deep neural networks. Let N be the set of deep
neural networks (DNNs):

No,N1,.. N
N = ULenn2.00) Yng. vy, Npyent+t Ny on o te, 2.1

.....

whereNIiVO'N' """ Ne xb_ (RNONe-t 5 RNty

Let o € C(R,R) be an activation function, and for k € N, define gr(x) =
(0(x1), ..., 0(xp)), x € R,

We define R : N — Uy penCR™, R"), C: N > N, L : N — N, dimj, : N > Nand
dimgy : N — N as follows:

For L € NN[2,00), No, ..., N € N,y = (W1, By), ..., (Wp, Br)) € NNt NL,

let L(y) = L, dimin() = No, dimou(¥) = Nz, C(¥) = Y5 Ne(Ne—1 + 1), and
RW() = Aw, B, 00N, ©Aw, B, © - oan, o Aw, 5 () € CRY RN)  (22)

where Ay, p, (x) = Wgx + By, x e RM-1 k=1,..., L.

2.2 Malliavin calculus

We prepare basic notation and definitions on Malliavin calculus following Bally [1] Ikeda
and Watanabe [16], Malliavin [25], Malliavin and Thalmaier [26] and Nualart [29].

Let Q¢ = {0 : [0, T] — R? w is continuous, w(0) = 0}, H? = L*([0, T], RY) and
let 14 be the Wiener measure on (¢, B(29)), where B(2?) is the Borel o -field induced by
the topology of the uniform convergence on [0, T']. We call (29, H?, u?) the d-dimensional
Wiener space. For a Hilbert space V with the norm || - ||y and p € [1, 00), the L?-space of V-
valued Wiener functionals is denoted by L? (Q4, V), thatis, L? (Q4, V) is areal Banach space
of all 4?-measurable functionals F : Q¢ — V such that lFllp, = E[||F||€]1/P < oo with the
identification F = G if and only if F(w) = G(w), a.s. When V = R, we write L? (29).Fora
real separable Hilbert space v and F : Q¢ — v, we write || F||, v = E[|F|}1"/?, in particular,
IFl, when Vv = R. Let B = {B,d}, be a coordinate process defined by Btd(a)) = w(t),
w € Q4 ie. B is a d-dimensional Brownian motion, and B¢ (h) be the Wiener integral
By = Y4, Jo ni(s)d B forh € HY.

Let .7 ($2¢) denote the class of smooth random variables of the form F = f(B4(h1), ...,
B%(hy)) where f € C°(R",R), hy,...,h, € H,n > 1.For F € .7(Q9), we define the
derivative D F as the H-valued random variable DF = Z;f:l ij(Bd (h), ..., Bd(hn))hj,
which is regarded as the stochastic process:

Di F = ia,»f(Bd(hl),...,Bd(h,,))hj.(t), i=1,...,d, te[0,T] (2.3)

j=l1

For F € (2% and j € N, we set D/ F as the (H¢)®/-valued random variable obtained by
the j-times iteration of the operator D. For a real separable Hilbert space V, consider .y
of V-valued smooth Wiener functionals of the form F = Zle Fivi,vieV,FeY (Qd),

i < ¢, ¢ € N.Define D/F = Zle D/F; ® v;, j € N. Then for j € N, D/ is a closable

@ Springer



27 Page4of31 Partial Differential Equations and Applications (2023) 4:27

operator from .y into L” (4, (H?)®/ @ V) forany p € [1, o) (see p. 31 of Nualart [29]).
Fork € N, p € [1,00), we define |F|} , = ElIFI}y]+ Z’;:, E[||D/F||f’Hd)®j®v],
F € #y. Then, the space Dk-p (Qd, V) is defined as the completion of .y with respect to
the norm || - |l p,v. Moreover, let D® (94, V) be the space of smooth Wiener functionals in
the sense of Malliavin D®(Q9, V) = N> Nkeny DXP(Q4, V). We write D7 (Q7), k € N,
p € [1, 00) and D®(Q?), when V = R. Let § be an unbounded operator from L2(Q4, HY)
into L2(Q?) such that the domain of 8, denoted by Dom(§), is the set of H d_yalued square
integrable random variables u such that |E[(DF, u)ya]| < c||F|12 forall F € DL2(Q4)
where c is some constant depending on u, and if u € Dom(§), there exists §(u) € L2(Q9)
satisfying

E[(DF,u)gal = E[Fé(u)] 2.4)

forany F € D"2(Q9). Foru = (u', ..., u?) € Dom(3), §(u) = Y98 (u') is called the
Skorohod integral of u, and it holds that E[fOTD,-,sFuéds] = E[F8w)],i=1,...,dfor
all F € D2 (see Proposition 6 of Bally [1]). For all k € NU {0} and p > 1, the operator §
is continuous from D17 (Q4, H?) into DF7 () (see Proposition 1.5.7 of Nualart [29]).
For G € D'2(Q?) and h € Dom(8) such that Gh € L2(Q¢, H?), it holds that
T
§'(Gh'y = G§'(h') — / D; sGhids, i=1,...,d, (2.5)
0

and in particular, if # € Dom(8) is an adapted process, 8 (k') is given by the Itd integral, i.e.
sH(hY) = fOThf;dBf’i fori =1,...,d (e.g. see Section 3.1.1 of Bally [1], Proposition 1.3.3
and Proposition 1.3.11 of Nualart [29]).

For F = (F!,..., F%) e (D*(Q9))?, define the Malliavin covariance matrix of F,
of = (Ui]F-)lgi,jgd, by Uif = (DF!, DFi)ya = Y0, fOT Dy sF' Dy Flds, 1 <i,j <
d. We say that F € (D®(Q) is nondegenerate if the matrix o7 is invertible a.s. and
satisfies ||(detaF)_1||p < 00, p > 1. Malliavin’s theorem claims that if F' € (D> (Q9))4
is nondegenerate, then F has the smooth density p* (-). Malliavin calculus is further refined
by Watanabe’s theory. Let S(RY) be the Schwartz space or the space of rapidly decreasing
functions and S’ (R?) be the dual of S(RY), i.e. S'(RY) is the space of Schwartz tempered
distributions. For a tempered distribution 7 € S’(R¢) and a nondegenerate Wiener functional
in the sense of Malliavin F € (D®(Q9))4, T(F) = T o F is well-defined as an element
of the space of Watanabe distributions D~ (Q4), that is the dual space of D> (Q9) (e.g.
see p. 379, Corollary of Ikeda and Watanabe [16], Theorem of Chapter III 6.2 of Malliavin
[25], Theorem 7.3 of Malliavin and Thalmaier [26]). Also, for G € ID)OO(Qd), a (generalized)
expectation E[7 (F)G] is understood as a pairing of 7 (F) € D=®(Q7) and G € D®(Q9),
namely pe (7 (F), G)p-, and it holds that

- {T(F), G)p = s(T, E[GIF = -Ip" ())s (2.6)

where (-, -)s is the bilinear form on S'(RY) and S(R?), E[G|F = &] is the conditional
expectation of G conditioned on the set {w; F(w) = &} (e.g. see Chapter III 6.2.2 of Malli-
avin [25], (7.5) of Theorem 7.3 of Malliavin and Thalmaier [26]). In particular, we have
p-{8y(F), pe = s/(8y, pF ())s = pF'(y) for y € RY, and thus p’ is not only smooth
but also in S(RY), i.e. a rapidly decreasing function (see Theorem 9.2 of Ikeda and Watanabe
[16]), Proposition 2.1.5 of Nualart [29]). For anondegenerate F € (]D)OO(SZd))d, G e D*® (Qd)
and a multi-index y = (y1, ..., ¥), there exists H,, (F, G) € D% (Q4) such that

(37T (F), G)p> = p-oo(T(F), H,(F, G))p= 2.7)
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forall 7 e S'(RY) (e.g. see Chapter 4.4 and Theorem 7.3 of Malliavin and Thalmaier [26]),
where Hy, (F, G) is given by H, (F, G) = H(,)(F, Hey,,... ) (F, G)) with

,,,,,

Hiy(F,G) = a(szzl(aF);leFiG). (2.8)

3 Main result

Leta € R, b € (a,00) and T > 0. For d € N, consider the solution to the following
stochastic differential equation (SDE) driven by a d-dimensional Brownian motion B¢ =
(Bd'l, R Bd*d) on the d-dimensional Wiener space (Qd, HY, Md):

dX{ = ph (X Nde + oy (XA BE, XM =x e RY, 3.1)

where u/ : R — RY and o} : RY — R?*? are Lipschitz continuous functions depending
on a parameter A € (0, 1]. The solution X;i’)"x = (X;i’)"x’l, e, X;i’)"x’d) is equivalently

written in the integral form as:

' d
d,h,x,j Ao Aj i d.\x,j
x0T = +/O g (XEPNyds + ) :/O oy (X¢HNdBS Xgt = xj eR,
i=1

(3.2)

for j = 1,...,d. Furthermore, for a given appropriate continuous function f; : RY — R
and for A € (0, 1], we consider ujf € C([0,T] x R, R) given by

u (1, x) = ELfa(X{"")] (3:3)

for ¢ € [0, T] and x € R?, which is a solution of Kolmogorov PDE:
dus (t,x) = LM ud (1, x), (3.4)

forall (z,x) € (0, T) x R? and u‘f(O, ) = fa(-), where L9+ is the following second order
differential operator:

d 0 1 & 92
. Z Aj Z A j A j
i Ha '0) 9x: 2 Gd’ijl (.)Ud”‘]z(.) Axj 0x (3-5)
j=1 ! i1, jo=1 N

Our purpose is to show a new spatial approximation scheme of uﬁ{(t, -) fort > 0 by using
asymptotic expansion and deep neural network approximation. The main theorem (Theorem
1) is stated at the end of this section.

3.1 Asymptotic expansion

We first put the following assumptions on {u()j}ke(g,l], {03‘},\5(0,1] and fy.

Assumption 1 (Assumptions for the family of SDEs and asymptotic expansion) Let C > 0.

Ford € N, let {u}}c0,11 C CrLip(R?, RY) and {0} },c0,1) € CripR?, RY*) be families

of functions, and f; € Cr;p (Rd, R) be a function satisfying

1. there are Vg0 € Ci°(RY, RY) and Vy = (Vg1 ..., Vag) € Ci°(RY, R¥*?) such that
(6)) /Lﬁ = AV40 and oj = AVg forall A € (0,1], (ii) Crip[Vaol V CrLip[Val = C
and ||Va.00) | vV V20| < C, (i) |0%Vg,illoc < C for any multi-index « and i =
0,1,....d;
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2. YL o) () ®0)(x) = 22 forall x € RY and A € (0, 1];
3. CLiplfal = Cand || f4(0)]| < C.

Remark 1 Assumption 1 justify an asymptotic expansion under the uniformly elliptic con-
dition for the solutions of the perturbed systems of PDEs. Assumption 1.3 is also useful for
constructing deep neural network approximations for the family of PDE solutions.

From Assumption 1.2, we may write each SDE (3.1) ford € N as

d
X[ =Y Vaa (X dB (3.6)
i=0

with Xg‘)"x = x € R?, where the notation dB,d‘O = dt is used. We define

BY* :/ dBI . dBI 120, 0 €(0,1,...,d)" keN, (37)
O<ty <<ty <t

d j 9 1vd j i 02 d j )
and Ld}(): Zj:l Vd],O()E—i_f Zi,j].,jz:l Vd],lt()vtiji() ale 8)(_,‘2 s Ld,i= Zj:l Vdj,l()m’
i=1,...,d. We define

d .
XY = x 2 Vai@) B (3.8)
i=0
Proposition 1 (Asymptotic expansion and the error bound) For m € N U {0}, there exists
¢ > 0 such that foralld e N, t > 0, » € (0, 1],

sup | ELfa (X! 01 — {E[ fa(X )
xela,bld
m () d ok
+ X HE[LE Y i (X vaiws! TT 3 vws)]f
j=1 BE 4 ® i=0 e=1|a|=
< Cdc)»m+lt(m+l)/2, (3.9)

where V¢ ,(x) = Laa, -+ La.a,, Vi () e € {1,....d}, @ € {1,....d), and

% :Xj: > > % j=1

BBy ®) k=1 pRI=(By,...,B) s.t. Bi++Pr=j+k.Bi=2 y O =(yi,... ) ell,...d}

Proof See Sect.4. O

The weights in the expansion terms in Proposition 1 can be represented by some poly-
nomials of Brownian motion. We show it through distribution theory on Wiener space. Let
deN,fort e (0,T]and a = (1, ..., ) € {0, l,...,d}k,k e NN[2, 00), let

t
B¢ = g (B (1)) = gl kg on i) _f Doy B Vs, (3.11)

0
with B»©@ = B4l \hich can be obtained by (2.5). For example, we have B®©11%2) —
BB _ 1y g0 for @ = (@1,) € {0,1,...,d}% Let oy € RY, £ =
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0,1,...,d and ¥ be a matrix given by %;; = Z[ 1crgoz,l < i,j <= d
and satlsfymg detS > 0. Let T € S'(RY). We show an efficient computation of
D-o° T(Zz=0 o;B B% l), H, (Zz=0 o;B d i , ]B%fl “))pe in order to give a polynomial represen-
tation of the Malliavin weights in the expansion terms of the asymptotic expansion in
Proposition 1. Note that we have

d d )
D*M(T(ZUiB;i’i), HV(ZO'iBtd*i, Btd’a>>Doo = D’w<3yT(ZUiij’i>,B,d’“>Dw

i=0 i=0 i=0
d
= /(0" T(ooB"* +0 ), E[BM|BY = -1p% ())s. (3.12)
by (2.7) and (2.6), where o is the matrix o = (o1, ...,04), and for y € R4, it holds that

d d
E[B“|B = y1pP (y) = /{8y, E[B"|BS = - 1p% ()5 = p-o (85 (B, B “)pee,

by (2.6). Also, one has

* 1
Do By (BB “)pre = pooo (8 8y (B). 1)po 1"

1
= p-oo {8y (BY), Hor (BY, 1) w—r —D-oowy(B;i),EB?*“moo,
(3.13)

by (2.5), (2.7) and (2.8), where «* is a multi-index such that «* = (af, ..., ozz(a)) =
@)y -0 @y satisfying £(@) = #{ize; # 0} and @, # 0,0 = 1,...,€(@). Then,
we have

d d
d,i d,i md,
D7W<T(§ o0; By ”), Hy< E 0B B! “>>Dw
i=0 i=0

1 d
= S/<3V7<c;03t‘"0 +o ) EE[B?*“lB,d = - 1p”i (-)>
! s

d d
d,i d,i

= D_oo<8VT(ZU,-B, ’) BB >]D)oo = D_w<7<zai3, ’),

i= i=0

<Zal Bdl 7Bd a>>D°°
d - i d( Bls-sBiy1)
_ X N jq Aoy o, B, 7l
_DOO<T<X(;GZBZ )7 Z [‘Vl 1_[ Vq ]l[ ﬂq k‘ [ >D005
i=

Jlseeos Jiy s Blse-ss By =1
(3.14)

where, we iteratively used (2.5), (2.6), (2.7) and (2.8). An explicit polynomial representation
of the asymptotic expansion is derived through (3.14). For instance, the first order expansion
(m = 1) as follows:
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(First order asymptotic expansion with Malliavin weight)

d d ) d
E[faX {1403 Hop (Yo Vai B! Y Laiay Vi oy 0B 02 ) ]

=1 i=0 ap,0p=0

[fd(xd“ +AZ/ fa(x +1y) Z Lday Vif @)

ap,0p=0
d

d . .
D_oo<ay (Z Vd’,'(x)Btd’l)  Hp) ( > Vi BH, Bf'(“l’”)»moody

=0

[fd(xd“ +AZ/ Ja(x +1y) Z La.a Vif gy @)

a,0p=0

d d d
i 1 d, (1,07,
a3= ':
d

i=0
d
{fa(xd“ [1+A >y

d
d,
Z La O‘IVd a* [Ad ]z](x)Vd 0y OB (@paga3) | |
L j=1aj,ay=0a3=1

Thus, the first order expansion is expressed with a Malliavin weight given by third order
polynomials of Brownian motion. In general, we have the following representation.

Proposition2 Form e N,d e N, A€ (0,1],t € (0, T]and x € R4, there exists a Malliavin
weight Mzi"’)\(t, X, Btd) such that
E[fa(X{H )M (1, x, B

m )

e S IED DS Hy@(i Vi () B, ]_[ > e,

j=1 gk K i=0 t=1|al=p¢
(3.15)

and
Mt x, BY =1+ Y AP ge(t)he (x)Poly, (Bf) (3.16)

for some integers n(m) € Nand p(e) e N, e =1, ..., n(m), polynomials Poly, : RY - R,
e =1,...,n(m), continuous functions g, : (0,T] - R, e = 1, ..., n(m), and continuous
functions h, : RI 5 Re=1,..., n(m) constructed by some products ofAJl, {Va.iYo<i<a
and {0 Va iYo<i<d aefl,...d) e<om §iven in Assumption 1 of the form:

.....

ge e d
X > h(x) = cee]_[]Ld,aZl L vdfgg e(x)szl[A;l]y;f(x)vjl(x) (3.17)
= ’ Py =

with some constants c, € (0, 00), g, € Nand some multi-indices (y{, ..., y;) € {l,..., dyt
and (of 4, ..., O(; pg) e{0,1,..., d}pz with p; € N, £ =1, ..., e, which satisfies that for
' Py
p=>1
sup M5t x, BHp < cd® (3.18)

(t,x)€(0,T1x[a,b]d,1€(0,1]

for some constant ¢ > 0 independent of d.
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Proof See Sect.4. ]

Remark 2 (Remark on computation of Malliavin weights) Malliavin weight is initially used
in Fournie et al. [ 7] in sensitivity analysis in financial mathematics, especially in Monte-Carlo
computation of “Greeks". Then a discretization scheme for probabilistic automatic differen-
tiation using Malliavin weights is analyzed in Gobet and Munos [10]. The computation of
asymptotic expansion with Malliavin weights is developed in Takahashi and Yamada [35,
37], and is further extended to weak approximation of SDEs in Takahashi and Yamada [38].
Note that a PDE expansion is shown in Takahashi and Yamada [36] to partially connect it with
the stochastic calculus approach. The computation method of the expansion with Malliavin
weights is improved in Yamada [41], Yamada and Yamamoto [42], Naito and Yamada [27,
28], Iguchi and Yamada [17, 18], and Takahashi et al. [34] where technique of stochastic
calculus is refined. The main advantages of the stochastic calculus approach are that (i) it
provides efficient computation scheme using Watanabe distributions on Wiener space as in
(3.13) and (3.14), (ii) it enables us to give precise bounds for approximations of expectations
or the corresponding solutions of PDEs. Actually, the computational effort of the expansions
is much reduced in the sense that Itd’s iterated integrals are transformed into simple polyno-
mials of Brownian motion, and also the desired deep neural network approximation will be
obtained in the next subsection through the approach.

3.2 Deep neural network approximation

In order to construct a deep neural network approximation for the function with respect to
the space variable of the asymptotic expansion, i.e. x — E[ fg (X;j’)"x)/\/lzl’/\(t, X, Bld)], we
consider the further assumptions.

Assumption 2 (Assumptions for deep neural network approximation) Suppose that Assump-
. . Va.i
tion I holds. There exista constant « > 0 and sets of networks {1/, :1" Jee(0,1),deN,ief0,1,....d) C

%V, A7l 3
NoAY: 4 “Vee.)denicton. ..y aeit...ayt CNAWe ! Yee.1).den C Nand (¥} eco.1),

deNC N suchthat
I forall e € (0,1),d € N, C(y%") < kd*s,i = 0,1,....d, Cy’ ") < wd<e,
-1
=01, doac{l.. . d\ L eN.CO") < kde™, and CYL") < wds™:
2. foralle € (0,1),d € N, x € RY, | Va.i(x) — Vd{i(x)” < ekd. i =0.1.....d.
and 0%Vyi(x) — V5, (Il < exd“,i =0,1,....d,a €{l,....d}", £ € N, where
Va.i 3“V,,'
Ve =R@We") € CRILR) and V5, , = R(Y: ) € C(RY, RY);
3. foralle € (0,1),d € N, x € R?, ||A;1(x) — A;L(x)ll < exd®, where AJI(.) s the

-1
inverse matrix of Ag(-) == Y9 V() ® Va.i(-) and A;}E = R(wg‘d ) € C(RY, Ré*d),
andforalle € (0,1),d € N, Sque[a,b]d”A;i(X)” < kd";

4. foralle € (0.1),d € N, x € RY, | fa(x) — f5(x)| < exd®, where f§ = R(y{") €
CR?,R).

Remark 3 Assumption 2 provides the deep neural network approximation of the asymptotic
expansion with an appropriate complexity. Note that Assumption 1.1, 1.3, 2.2 and 2.4 give
that there exists n > 0 such that | f7(x)| < nd"(1 + |lx])) forall ¢ € (0,1),d € N, and
supxe[a,b]dllei(x)Il <nd"foralli =0,1,...,d, sup,cpg ppl Vj’i’a(x)ll < nd" for all
i=0,1,...,.d,a e{l,..., d}e with £ € N. In the following, Assumption 2.2, 2.3 and 2.4
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plays an important role for the analysis of “product of neural networks" in the construction
of the approximation with asymptotic expansion.

Remark 4 1n particular, Assumption 2.3 is satisfied for the cases Ay(x) = Iy and Ay(x) =
s(d)I; with a function s : N — R. For instance, the case Az(x) = I corresponds to
the d-dimensional heat equation when V; o = 0. Also, the SDEs with the diffusion matrix
Vg = (l/ﬂ)ld discussed in Section 5.1 and Section 5.2 of [9] and Section 5.2 of [13]
are examples of (3.1) (or (3.6)). For those cases, the neural network approximations in
Assumption 2 are not necessary, since Vd ni=1,...,d and hence A, do not depend on the
state variable x, whence V; ; . and A, d e are Vg i and Ay ! themselves. Furthermore, in such
cases (e.g. the high-dimensional heat equations) the asymptotic expansion will be simply
obtained (usually as the Gaussian approximation), which are exactly reduced to the methods
in Beck et al. [2] and Gonon et al. [11].

The main result of the paper is summarized as follows.

Theorem 1 (Deep learning-based asymptotic expansion overcomes the curse of dimension-
ality) Suppose that Assumptions 1 and 2 hold. Let m € N. For d € N, consider the SDE
(3.1) on the d-dimensional Wiener space and let u‘)f € C([0, T] x R4, R) given by (3.3) be
a solution to the Kolmogorov PDE (3.4). Then we have

sup |ud(t,x) — E[fa(X{" )M, (2, x, BH] = 0"+ D2 (3.19)

xela,bld

Furthermore, fort € (0, T] and ) € (0, 1], there exist {([)S*d}ge(o,l),deN CNandc >0
which depend only on a, b, C, m, k, t and A, such that for all ¢ € (0, 1) and d € N, we have
R(¢*9) € CRY,R), C(¢*?) < ce™“d" and

sup |ELfa(XH )M, (1, x, BD] = R ()] <ee. (3.20)
x€la,b]

Proof See Sect.4. O

We provide the weight MZ” NG S Btd ) with m = 0, 1 in Theorem 1 for our scheme (the
expression for general m will be given in Sect. 4 below). That is, ford e N, A € (0, 1], > 0
and x € R9,

MY, x, B =1, (3.21)

ML x, B =1+ Z Z Z LdO,lVdaz(x)[Ad Nej )V 4, ()

a,00=003=1¢,j= l
d,a| pd,ar pd,a; d,a d,a
{B""'B;"*B;"" —t B, 1y=a; 20 — t By “* 1o =az 20 — ¢

X Btd’OlS 11)(1:0(2#0}’ (322)
where
1 d . . 52
Lao= Z Viol ) > VOV ——. (3.23)
2 = ’ ’ ax]'] axh
Jj=1 i,j1,2=1
Lai=Y V05 i=1..d 3.4
d,i—; d,i(')gj’ i=1,...,d. (3.24)
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Hence, the weightform = 0, i.e. Mg 5@ x, B,d) = 1 provides a simple (but coarse) Gaussian
approximation, and the Malliavin weight for m = 1 will be worked as the correction term
for the Gaussian approximation. The derivation is provided in the next section.

4 Proofs of Propositions 1, 2 and Theorem 1

We give the proofs of Propositions 1, 2 and Theorem 1. Before providing full proofs, we
show their brief outlines below.

e Proposition 1 (Asymptotic expansion)

— take a family of uniformly non-degenerate functionals F&** = (X4*% — x)/a,
A € (0, 1], as the family X;~ d.2.x , A € (0, 1] itself degenerates when A | 0, and
consider the expansion F&"** = Fd 0.x 4 ... inD>.

— expand 8),(F,d Xy Sy(F,d 0%y 4 ... in D= and take expectation to obtain the
expansion of the density thM'X (y) = E[5y (Fd’)"x)] ~ E[8, (Fd’0 NN+ inR.
dxx)] _Ctoikt+ctlikt+

S Re51duald by using Malliavin’s integration by parts.

— give a precise estimate for Residual,,; ot (x) (w.r.t A, r and the dimension d) uniformly
in x by using the key inequality on Malhavm weight (Lemma 5 in Appendix A) which
yields a sharp upper bound of Remdualm ").

— derive precise expression of the right-hand side of E[ fz(X
d,At

e Proposition 2 (Representation and property of Malliavin weight)

— use the formula (3.14) to prove that cg My cf’)‘” + -+ c,’fl)‘ " above can be

represented by an expectation E| fy (X ;1 As x)/\/lzl”_ 5, x, B,d )] with a Malliavin weight
. x, B,d ) constructed by polynomials of Brownian motion.

— check that the moment of the Malliavin weight MZ’! 2 x, Btd ) grows polynomially
in d from the representation.

e Theorem 1 (Deep learning-based asymptotic expansion overcomes the curse of dimen-
sionality)

- (0) for d € N, first check the expansion E[ fd()_(f’x’x)/\/tg” (¢, x, BY)] obtained in
Proposition 1 and 2 gives an approximation for ufl(t, x) on the cube [a, b]? with a
sharp asymptotic error bound.

— (1) for an error precision &, construct an approximation E| fd()_(f’k'x)/\/lgf N

(t.x, BO1 ~ ELf2 (X0 M2, (t.x, BY)] onthe cube [a, b]? by using stochas-

tic calculus where fd , d hoxd

and MG, st x, BY) are given by replacing {V, ;};,
Ad s {Vaialtia with thelr neural network approximations {iji},-, A;‘}S, {(Va,iastia
with § = (e°d™°) for some ¢ > 0 independent of ¢ and d.

— (2) for an error precision €, construct a realization of the Monte-Carlo approximation
E[fd XdAxS)MdAS
(t, x, Btd)] M Zz | fd (Xd A%, (Z)(cz)‘E d))Md ) S(t, x, Bd (e)(a)g 4)) on the cube
[a, b]? with a choice M = O (e~¢d¢) for some ¢ > 0 independent of ¢ and d, by
using stochastic calculus.

— (3) for an error precision ¢, construct a realization of the deep neural network approx-

imation 27 Y00, f2(XTH 0O e )M (1, x, B (0e,0) & R(¢e.a)(x) on
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the cube [a, b]¢ whose complexity is bounded by C(¢¢ 4) < ce~“d® for some ¢ > 0
independent of ¢ and d, where ReLU calculus (Lemma 9, 10, 12 in Appendix B) is
essentially used.

— apply (0), (1), (2) and (3) to obtain the main result.

In the proof, we frequently use an elementary result: sup, ., pi¢ X[ < d'2 max{lal, |b|},
which is obtained in the proof of Corollary 4.2 of [11].

4.1 Proof of Proposition 1

Forx e Rt € (0, T]and A € (0, 1], let F*** = (F&*>1  pdhxdy ¢ poo(qdy)d
be given by F/* = (x®hwd x)/h j = 1,...,d. We note that {F{"**}; is a
family of uniformly non-degenerate Wiener functionals (see Theorem 3.4 of [40]). Then,
for 7 € S'(RY), the composition T(F,d’)"x) is well-defined as an element of D~ (Q9),

. d,k,x Fd,k.x d . Fd.)\,.x _
and the density of F;,"™", namely p* € S(R?) has the representation p“t  (y) =
D—co (Sy(F,d’}"x), 1)p-o fory € R4, Then, for x € R?, ¢ > 0 and A € (0, 1], it holds that

ELfa(X]")1 = fR  JaCr A By (F), poacdy. .1

Forx e R?,t € (0, T, let F,d’o’x = Z?:O Vd,,-(x)B,d’i. Thus, for § € S'(R%), the composi-
tion S (F,d’}"x ) is well-defined as an element of D~°°(2¢) and has an expansion:

Do {8y (FA2), 1)poo = oo (8, (F0), 1)poe

YARY d.h,
+memfw(5y(ﬂd'k’x) Do g + AHELRTY - 42)
j=t 7

forx e R, ¢t > 0 and A € (0, 1], where

(1 u)m 3m+1 .
eny™ / — mﬂmw<ay(F,d“>,1>Doo|n:xudu. (4.3)

By the integration by parts (2.7) and Theorem 2.6 of [35] yield that

1 9/
oD (8y (FM%), 1)pee lhzo
/ d,0 d,0 £ g iy
—_ ,U, X sU,x (4
= E ]D)*00<8y(Ft ), Hy(k) (Ft ) l? it F, [x=0 >> 0. “4.4)
=1

iy ®

J _\J 1 .
where Zi("),y(k) = Dkmt 2oi0=(iy,ig) 5.t itk jie =1 2oy O =(n -yl d)t T Wit
a calculation

19" aaxj

SaF o= 30 Laen o L Vi, OB 4.5)

lor|=i+1
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forj=1,...,dandi € N, it holds that

Do (8y (F™), 1)peo = pos (8, (F0), 1) pee
J

m
+Y M Y oG (F), Hyw

j=1 i, ®

k
X (de’o’xv 1_[ Z Ld,otl . Ld o 1V0}/£ (X)Bd 0())

0=1 |o|=i

4 pmHlgdhoxy (4.6)

m,t

Again by the integration by parts (2. 7), 3 m+l D 0 (éy(Ftd”\’X), 1)pee |p=pu (with Au € (0, 17)

in Ed PR (4.3) is given by a linear combination of the expectations of the form

d,
Doo<8 (Fd)\ux) Hy< dkux l—[Z |7 1aﬂgF nxw|n o )>]D)oo

withk <m+1,y € {1,...,d}Y* and By, ..., B > 1 such that 3"5_ By = m + 1. By the
inequality of Lemma 5 with k = 0 in Appendix A, we have for all p > 1 and multi-index y,
there are ¢ > 0, p1, p2, p3 > 1 and r € N satisfying

d,x, dihx d,h,x 2dr—
| Hy (F )l < ed® [ det(@ ™) M IDE I 701G e A7)

forall G e D*°,r € (0,T], A € (0,1] and x € [a, b]d. In order to show the upper bound of
the weight appearing in the residual term of the expansion, we list the following results:

Lemmal
1. Forall p > 1, there exists k1 > 0 such that foralld e N, t € (0,T], x € [a, b]d and
A€ (0,1],
d,,x
| det(oft ™ )7, < kd€17. (4.8)
2. Forall p > 1,r €N, there exists k3 > 0 such that foralld e N, t € (0,T], x € [a, b]d
and A € (0, 1],
IDE* v por < radse'/2. 4.9)

3. Forallt € N, p > 1 andr € N, there exists n > 0 such that foralld e N, t € (0, T],
x € [a,b]? and 1 € (0, 1],
10 F{ N, p < "D, (4.10)
Proof Ford e N,letV, : R? — R¥*?besuchthat Vy = (Vy.1, ..., Va.q)andfor € (0, 1],
let V’\ R4 — R4*4 pe such that VdA (Vj], .. Vd’\d) Moreover, for d € N, we use the
= a"xX‘“x = (dx XAy, j<aforx e R% ¢t > 0and A € (0, 1].
1. Note thatford e N,r € (0, T], x € R and ) € (0, 1], we have

notation Jy_;

d,hx
F

t
o = / [Dy (X4 — x)/M[Dy (X8 — x) /2] T dss (4.11)

(=)
~

:/ JoostJgt Va (XI5 vy (x 25T JO;IY Jo, ds. (4.12)
0
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Under the condition cr[?(~)cr[§\(~)—r > 221y, (e. Vy(OHVa()T > 1) in Assumption 1.3,
we have that there is ¢ > 0 such that

sup [[(deto ™)), < cat, (4.13)

x€la,b)¢

foralld e N,t € (0, T] and A € (0, 1], by Theorem 3.5 of Kusuoka and Stroock [22].

2. We recall that ford € N, A € (0,1] and 0 < s < 1, DS(X T - x)/A =
JQQ,JOHYV(X‘] »¥) Then, there is ¢ > 0 such that
sup [|DE* g popga < cdt'?, (4.14)
xela,b)d

3.

foralld e N,t € (0, T] and A € (0, 1], by Theorem 2.19 of Kusuoka and Stroock [22].
Note that

k : d
1 9¢ d,x t 1 gl d At oye e do dj
0 3)& Z / H il o X; Za ViXgmHdBg (4.15)
i® y<k> =1 20
(1 g y -k 4 ® dn 4,
— i be Y r JALX s
4 Z / l_[ i, OMie Xt Za Vj (X )d By
i® 5 ® 70 =1 )
(4.16)

Since the above is a linear SDE, it has the explicit form and we have

PR < edert?, (4.17)

k,p

w |7
celappd €1 9A

for some ¢ > 0 independent of t and d, due to the result:
k 1 9l d d ®) d
’ hoX, Ve J
sup E / JOQ,JO_)S l_[ D SRt E a7 Vj(Xf’)“x)st J Hk )

7’ a)\‘le
xela bl ", m j=0

< cdt?, (4.18)

which is obtained by using Lemmas 6 and 7 in Appendix A. Then, the process

d
1 gk ve ® d.j
P > /H,vam AR DU T SV N

i), ®) Jj=0
>0, x € RY 4.19)
satisfies
1% gox (+1)/2
sup || —— FMY < edr D2, (4.20)
welappd I €19 k.p

for some ¢ > 0 independent of # and d.

[m}

Using above, we have that forallk <m + 1,y € {1,...,d}k and B, ..., Br = 1 such

that Zlgzl Be =m + 1, p > 1 and multi-index y, there exists v > 0 such that

||Hy(Fd JAux l‘[( 13 l aﬂeFd Aox, VZ)”P < vdVt k2Bt Btk /2 — vdv[(m+l)/2’ 4.21)

@ Springer



Partial Differential Equations and Applications (2023) 4:27 Page 150f31 27

forallt € (0, T], x € [a,b]? and A € (0, 1]. Let us deﬁner A fort e 0,T1], x €[a,b]?
and A € (0, 1] from (4.1) and (4.6) as

d,A

rd 2 = E[fa(x@hr

)]
m (j)

*E[fd()_ffl’x’x){ﬂrzkj Y Hw

=1 g L0

d k
<(Svaseos TT X Lo Laa Vi, w58)]]

t=1la|=p¢

m+l / (1 E[f (Xd JALu, X)Wdi]ufx]d”’ (422)

where f(fl”\’”‘x =x+ )LF,d’M’x, u € [0, 1] and

[m+1] k
L g pd.
Wi = 0 Hy<Ff““ H 5, 20, "”"”|n=xu), welo, 1, (423
FIGRYG)

.....

[m+1]

with} gy e = (m+ DY 1 0=, st Sy frmi iz 2oy D=1l )
1
-

Here, X{"***, u € [0, 1] and W&, u € [0, 1] satisfy that for p > 1, there exists
n > 0 such that

d,\u,

SUP,ea, b1t uero, 1111X7 " Il p < nd" and sup,erq pid e, 111V, +1 “llp < ndr D/

for all A € (0, 1] and # > 0. Therefore, there exists ¢ > 0 such that

sup |rm, T < edamtl D2, (4.24)
x€la,b)d

forall A € (0, 1] and ¢ € (0, T], and then the assertion of Proposition 1 holds.

4.2 Proof of Proposition 2

For d € N and for m € N, first note that the following representation holds:

d k
E[ fa® D H, (3o Vai B TT Y0 L+ Loy Vi, 0B) | 425)
i=0

=1 la|=p,
d .
= /d falx + Ay)Dfoo<8y ( > Vd,i(x)BrdJ) (4.26)
R i=0
d ) k
H, ( S VaiBM T Y. Law - Laa V), (x)B?’“>>Docdy, (4.27)
i=0 =1 |a|=B¢

forr € (0,T], x e R4 A e (0,11, k =1,...,j <m, Bi1,..., Bx > 2 such that B +
-+ P =j+kandy € {1,...,d}* Using the Itd formula for the products of iterated
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integrals (Proposition 5.2.3 of [21] for example) and the formula from (3.14): for a multi-

index y € {1, ..., d}? and a multi-index « € {0, 1, ..., d}9,
d ) d '
D_oo<6y < 2 Vai (X)B’d’l)’ H, < > Vai(0)B, Bfl’a>>moo
i=0 i=0
d 4 d L '
i j
= ]D)—oo<5y ( Z Va,i (x) By > Z i 1_[ qujq (x)Vdf’ﬁq (x)
i=0 JUsees JiylsBLses Bly =1 g=1
i d. (1., B, Bly))
kU

iteratively, we have (3.15) and the representation (3.16).

We cansee thatfor p > lande =1, ..., n(m), ||ge(t)Polye(Btd)||p = O(t"/?) for some
v, > 1, and by Assumption 1 and 2 and the expression of %,, there is n > 0 independent of
d such that |h.(x)| < nd" foralle = 1, ...,n(m) and x € [a, b]¢. Then, for p > 1, there
exists ¢ > 0 independent of d such that

MG (&, x, Btd)||p < cd, (4.28)

uniformly in (¢, x) € (0, T] % [a, b1? and A € (0, 1].

4.3 Proof of Theorem 1

The first statement is immediately obtained by combining Propositions 1 with 2:

sup [uf (t,x) — E[fa(X{PH )M (1 x, BHI = 0 mHD/2) (429

xela, bl
Hereafter, we fix t € (0, T]and A € (0, 1]. Ford e N, x € RY s e 0, 1), let
X0 = x4y V2 () B (4.30)
and M?,{S (t, x, BY) € D*®(Q?) be a functional which has the form:

/\/l’d":;f(t, x,BH=1+Y AP g, (1)h(x)Poly, (BY), (4.31)

e<n(m)

where he RY — R, e = 1,...,n(m) are functions constructed by some products of
Ad 5 {Vd i}o<i<d and {Vd i a}0<,<d we(leed)t L<2m in A§§umpti0n .2, by replacing with A;l,
{Vd,,}gs,fd and {Vd.l.a}OSSd,ae{l )t e<om 0 Proposition 2, satisfying

.....

ELfa(X{ M, x, B

m J
_ . 1
d,\x,8
o IS S DO
j=1 k=1 B+ +B=j+k.Bi=2 (y1,...y)e(l,..d}k
d

Hepy .. m(Z v} (0B, ]_[ Sond,, lvj,’gf(x)ma;fﬁ”. (4.32)

i=1 e=1 |a|=p;

Next, we prepare the following lemmas (Lemmas 2, 3 and 4) to prove the second assertion
((3.20)) in Theorem 1.
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Lemma 2 There exists c; > 0 which depends only on a, b, C,m, k, t and A such that for all
e€(0,1),deN §=0("d™ ),

sup |E[fa (XM (tx, BT = ELFJ (XM x,  BDY < e, (433)
xela,b)d

where fd = R(w 9y e C(RY,R) is defined in Assumption 2.4.

Proof In the proof, we use a generic constant ¢ > 0 which depends only on a, b, C,m, k, t
and X. Note that for x € [a, b]?,

|ELfa (XM x, BT = ELF (XML @, x, B
< |ELfa(XPP MY, (2, x, BD] = ELfa(X{H52 )M, (2, x, BO|
HELfa (X0 MY, (2, x, BO] — ELFS (XM, (1 x, B
HIELFS X MY (1 x, BOT = ELFS (X0 M (2, x, BDI.L (4.34)
By 2 of Assumption 2 (with Assumption 1), it holds that
\ELfa(XIH M, (t,x, BDT = ELfa(X{ 5 )M, (2, x, BO]
< CIXIH — X | ME, (1 x, B2 < ede, (4.35)
for all x € [a, b]¢. By 4 of Assumption 2 (with Assumption 1), it holds that
|ELfa (XM, (1 x, BO] = ELL (XYM (. x, BD]| < dcd®, (4.36)

for all x € [a, b]¢. Here, the estimate ||Mf1",)\(f» X, Btd)||2 < c¢d€ in (3.18) is used in (4.35)
and (4.36). By 2, 3, 4 of Assumption 2 (with Assumption 1), (3.16) and (4.31), we have that
for p > 1,

IME (. x, BEY = MYt x, BOIlp < Scd® 4.37)
and

[ELFY XM, (tx, BDT = ELE (XM (1, x, B < 8ed®, (4.38)

for all x € [a, b]?. Then, by taking § = (1/3)01_18610?’”1 with ¢; = max{1, ¢} where c is
the maximum constant appearing in (4.35), (4.36) and (4.38)), we have

sup |ELfa(X{H MY x, BD — ELfS X OMY (e, x, BDI < 6. (4.39)
xela,b)d

m}

Lemma3 Ford € N, t € (0,T] and M € N, let Bd © , € =1,..., M be independent

identically distributed random variables such that Bd © ldw Bd There exists co > 0 which

depends onlyona,b, C,m, «,t and A such that for ¢ € (0, 1), d e Nand M = O(e~2d?),
there is wg g € Q7 satisfying

M
sup |EL£J (XM M), x, BH] — — Zfﬁ()??’k’*’s’(f’(ws,d))MdA(r B

x€la,b)d

<e, (4.40)

X (ws,d))

where § = O (e1d ") with the constant c| in Lemma 2.
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Proof There exists a constant ¢ > 0 which depends only on a, b, C, m, k, t and A such that
forall x € [a,b]? and M € N,

M
_ " 1 . 2
E[|EUI G DM B = 22 D & O, 5O
=1
(4.41)
d, 02,8y gm,8 dy2y — C4°
MEHfd X My @ x, BOITT = i
(4.42)

Then, by choosing ¢, = max{l1, c}, we have thatforalle € (0, 1),d € Nand M = cpe~2d“?,

M
_ 1 _ 1/2
E[ | B M, B = 2 30 R OMp a x ”)H <e,
=1
(4.43)

for all x € [a, b]?, and therefore, there is Wed € Q4 satisfying

sup

od,Ax,8 8
) YXHEO ML, x, B
x€la,b]

M
1Zf X2 (e a DM (1. x, B (0e.a))| < & (4.44)
(=1

[m}

Lemma4 Ford e N,t € (0,Tland M € N, let Bd’(z) £ =1,..., M beindependent identi-

cally distributed random variables such that Bd @ law Bd There exist {¢s d}ec(0,1),deN C N
and ¢ > 0 (which depends only on a, b, C,m, k, t and A) such that forall e € (0,1),d €N,
we have C(¢¢.q) < ce”d, and for a realization wg 4 € Qd given in Lemma 3, it holds that

sup \—Zfd(xd“‘”‘)(wmw 1., BV (0e.0) - R@e) )| <&, (445)

x€la,b)d

where § = O (e“'d™°") and M = O (e~2d“?) with the constants c| and c; in Lemmas 2 and
3.

Proof 1In the proof, we use a generic constant ¢ > 0 which depends only on a, b, C,m, «, t
and A. Lete € (0,1),d e N, £ =1,...,M,let § = O(ld™1), M = O(e~2d?)
where ¢; and ¢, are the constants appearing in Lemmas 2 and 3, let a)g d be a realization
given in Lemma 3, and let 4O = d © (wg.q). Since there exists n € N such that
RyD@) = x + AR ) (01 + A2, RO )(x)bd @ for x € ]Rd and C(ny ) =
0(57¢d°) (by Lemma 9 in Appendlx B), there exists 1//1 @ € N such that R(w1 (Z))(x)
RO DROGNE) = X (@e.a)) for x € RY and C(Y () = 0(67¢d€) (by
Lemma 10 in Appendix B). Next, we recall that by (4.31), the weight ./\/ld’/\ (t, x, b (K)), X €
R? has the form M0 (¢, x, b ©) = 1 + Ze<n(m)xﬂ<e>ge(z)hs(x)Polye(bdw)constructed

by some products of Ad 5 {Vd ;Jo<i<a and {le wl0<i<d.ae(l,...d)! £<2m N Assumption 2.

.....

Using Lemmas 12, 9 in Appendix B and Assumption 2, there is a neural network 1//‘2E ’fz) eN
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such that sup, 1, ya| M5 (1, x, b4 ©) — R(Y5() ()| < /2 and C(Y5G,) = O(e~¢d").
Hence, we have

swp SFRE O e ML 3 b8 O) = RO ORWS 01 < 6/2. (4.46)
x€la,b]

We again use Lemma 12 in Appendix B to see that there exists \I’féf € N such that
IR} () YRS () () = ROGH ()] < e/2, (4.47)

for all x € [a, b]¢, and C (\Ilfl:;l ) = O(¢7¢d®). Finally, applying Lemma 9 gives the desired
result, i.e. there exist {¢¢.4}ee(0.1).deN C N and ¢ > 0 such that for all ¢ € (0, 1), d € N,
we have C ((j)a’d ) < ce”“d, and for a realization w; 4 € Q4 given in Lemma 3, it holds that

M
1 d d
sup | — 3 fI X O (g M (x, B (05.0) — R(ea) ()] < e.
x€la,bld =1

(4.48)
[m}

Proof The first assertion (in (3.19)) follows from (4.29). The second assertion (in (3.20)) is
obtained by combining Lemmas 2, 3 and 4. O

5 Deep learning implementation

We briefly provide the implementation scheme for the approximation in Theorem 1.
Let £ be a uniformly distributed random variable, i.e. £ € U([a,b]?), and define
Xf =&+ )»Zflzo V,-,d(é)B,i’d, t > 0. For t > 0, the m-th order asymptotic expansion
of Theorem 1 can be represented by

W™ (1, ) = argminy e qq. o, ENV () — FXHMY, (1, € B, (5.1)

which is obtained by Theorem 1 of this paper combining with Proposition 2.2 of Beck et al.
[2]. We construct a deep neural network uNN.6* (t, -) to approximate the function u™ (z, -)
given by for a depth L € Nand Ny, Ny, ..., Np € N,

NN _ 4
u (t,x) = AWE’BZ °ON,_, O'AWZ)_pBiq 000N, OAWf’,Bf(x)’ x eRY (5.2)

where Ay po (x) = Wlx+Bl,x e RN—1 k= 1,..., Lwith (W, BY), ..., (W{, BY)) e
/\/ZVO’N1 """ Ne given by
9(1+l 9‘1+Nk—1 X 9q+Nka,1+l
Ao po (¥) = : . : S : . (53)

9+ WNg=DNe—1+1 | gg+NgNi—1 XNe_y 99Nk Nk—1+Nk

and the optimized parameter 6* obtained by the following minimization problem:

0" =argmin_ 1 weve o ELENN0 @ ) — fOMY, 0,6, BHPL (5.4)
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Table 1 Comparison in deep learning methods for d = 100

AEm =1 Becketal.n =16 Becketal.n =32
Relative error 0.0048 0.0056 0.0017
Runtime 75.49s 217.79s 352.79s

In the implementation of the deep neural network approximation, we use stochastic gradient
descent method and the Adam optimizer [20] as in Sects.3 and 4 of Beck et al. [2]. In
Appendix C, we list the sample code of the scheme for a high-dimensional PDE with a
nonlinear coefficient in Sect. 6.2 (which includes linear coefficient case).

6 Numerical examples

In the section, we perform numerical experiments in order to demonstrate the accuracy of our
scheme. We compare the deep learning method of Beck et al. [2] where the Euler—Maruyama
scheme is used with the stochastic gradient descent method with the Adam optimizer. All
experiments are performed in Google Colaboratory using Tensorflow.

6.1 High-dimensional Black-Scholes model
6.1.1 Uncorrelated case

First, we examine our scheme for a high-dimensional Black—Scholes model (geometric Brow-
nian motion) whose corresponding PDE is given by

d l 9 4 P& L0, d 6.1
druy (¢, x) = )\izl,uxia—xiuk(t,x) + 71. 1Ci X; @ux(t,x), us (0, x) = fq(x), (6.1)
where f;(x) = max{max{x; — K}, ..., max{x; — K}}. Letd = 100, ¢t = 1.0, a = 99.0,
b =101.0, K = 100.0, A = 03, 0 = 1/30 (orr := A x u = 0.01), ¢; = 1.0 (or
oi :=Axc¢; =0.3),i =1,...,100. We approximate the function uf(t, -) (or the maximum
option price e’ u‘f (t,-) in financial mathematics) on [a, b]? by constructing a deep neural
network (1 input layer with d-neurons, 2 hidden layers with 2d-neurons each and 1 output
layer with 1-neuron) based on Theorem 1 with m = 1 and Sect.5. For the experiment,
we use the batch size M = 1,024, the number of iteration steps J = 5,000 and the
learning rate ¥ (j) = 107" 1(0,03/1(j) + 10721037,0.6s1(j) + 103 L0.67,51(j), j < J for
the stochastic gradient descent method. After we estimate the function uﬁ{(t, -), we input xo =

(100.0, ..., 100.0) € [a, b]? to check the accuracy. We compute the mean of 10 independent
trials and estimate the relative error, i.e. |(u;{ee’7’d(t, x0) — u;e‘f’d(t, xg))/uf\ef’d(t, x0)| where
f

the reference value uf\e ’d(t, Xo) is computed by the Itd formula with Monte-Carlo method
with 107-paths. The same experiment is applied to the method of Beck et al. [2]. Table 1
provides the numerical results (the relative errors and the runtimes) for AE m = 1 and the
method in Beck et al. [2] with the Euler-Maruyama discretization n = 16, 32 (Beck et al.
n = 16, Beck et al. n = 32 in the table).
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Table 2 Comparison in deep learning methods for d = 100

AEm =1 Becketal. n =32 Beck et al. n = 64
Relative error 0.0039 0.0042 0.0035
Runtime 83.56s 470.73s 848.43s

6.1.2 Correlated case

We next provide a numerical example for a Black-Scholes model with correlated noise in
high-dimension. Let us consider the following PDE:

d
atuk(t xX)= AZ/M, i uk(t x)+2zl Xk:lakakx,x]a 8; u,\(t Xx), uA(O xX)=fq(x),
- 6.2)
where fy(x) = max{K — 3 Z, 1Xi,0}ando = [ak] € R¥*4 gatisfies ojj =0fori < j,
oji >0fori=1,...,dand
lp-p
ool = [.) 1 _p [,) e RI*4, (6.3)
pp p 1

Letd = 100,¢t = 1.0,a = 99.0, b = 101.0, K = 90.0, A = 0.3, u = 0.0, p = 0.5.
We approximate the function u‘){(t, -) (the basket option price in financial mathematics) on
[a, b]? by constructing a deep neural network (1 input layer with d-neurons, 2 hidden layers
with 2d-neurons each and 1 output layer with 1-neuron) based on Theorem 1 (m = 1)
with the expansion technique of the basket option price given in Section 3.1 of Takahashi
[32] and Sect.5. For the experiment, we use the batch size M = 1,024, the number of
iteration steps J = 5, 000 and the learning rate y(j) = 5.0 x 10_21[0’0'3‘]](‘]') + 5.0 x
10*31(0,3130,6”(j) + 5.0 x 10741(051,1](]), j < J for the stochastic gradient descent

method. After we estimate the function u‘; (t,-), we input xo = (100.0, ..., 100.0) € [a, b4
to check the accuracy. We compute the mean of 10 independent trials and estimate the
deep,d re f.d

relative error, i.e. |(u, (t, x0)) /uref (t, xo)| where the reference value

lefd

(t, x0) —
(t, xp) is computed by the It6 formula with Monte-Carlo method with 107-paths. The
same experiment is applied to the method of Beck et al. [2]. Table 2 provides the numerical
results (the relative errors and the runtimes) for AE m = 1 and the method in Beck et al. [2]
with the Euler—-Maruyama discretization n = 32, 64 (Beck et al. n = 32, Beck et al. n = 64
in the table).

6.2 High-dimensional CEV model (nonlinear volatility case)

We consider a Kolmogorov PDE with nonlinear diffusion coefficients whose corresponding
stochastic process is called the CEV model:

?
dul(t, x) —AZuxl u/\(t N+ 2 Zy} 2 zﬂ’—u,\(t x), ud(0,x) = fa(x),
i=1 X

6.4)
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Table 3 Comparison in deep learning methods for d = 100

AEm =1 Beck etal. n = 64 Becketal.n =128
Relative error 0.0006 0.0019 0.0006
Runtime 83.09s 764.76s 1265.26s

where f;(x) = max{max{x; — K}, ..., max{x; — K}}. Letd = 100, ¢t = 1.0, a = 99.0,
b=101.0, K =100.0,A = 0.3, x = 1/30 (or r := A x u = 0.01), B; = 0.5, yi= K'=Fi,
¢i=10(ro; :==Axc; =0.3),i =1,...,d. We approximate the function u} (¢, .) (or the
maximum option price e u¢ 5, -))on [a b]d by constructing a deep neural network (1 input
layer with d-neurons, 2 hidden layers with 2d-neurons each and 1 output layer with 1-neuron,)
based on Theorem 1 with m = 1. For the experiment, we use the batch size M = 1024, the
number of iteration steps J = 5000 and the learning rate y (j) = 5.0 x 10_11[0,0,3J](j) +
5.0 x 10_21(0.31,0,61]0) +5.0x 10_31(0,6],J](j), j < J for the stochastic gradient descent
method. After we estimate the function uf\l (t, ), weinput xg = (100.0, ..., 100.0) € [a, b4

to check the accuracy. We compute the mean of 10 independent trials and estimate the
deep,d(t XO) _ ref d

relative error, i.e. |(u,

ref d(t Xp) is computed by Monte- Carlo method with the Euler-Maruyama scheme with
tlme steps 210 and 107-paths. The same experiment is applied to the method of Beck et al.
[2]. Table 3 provides the numerical results (the relative errors and the runtimes) for AEm = 1
and the method in Beck et al. [2] with the Euler-Maruyama discretization n = 32, 64 (Beck
etal. n = 32, Beck et al. n = 64 in the table).

(t, x0))/ uref (t, x0)| where the reference value

6.3 High-dimensional Heston model

We finally show an example for a small time asymptotic expansion for a high-dimensional
Heston model:

dud(t, x) = L2 U241, x), u2(0,x) = fra(x), (6.5)

£2d,)»

where f4(x) = max{max{x; — K}, ..., max{xpy—1 — K}} and is a generator given

by

d
3
o =3y [K, 0 — x27) }
= x2i

+AZZ x x3 8724-,0‘1)')6' X‘872+1V-2xi (6.6)
2iX9i 1 3x22i71 i ViX2i—1X2i 3&,’-13)625 Vi Zaxgi . .
Let d =25Q2d = 50),t = 0.5,a = 99.0, b = 101.0, ' = 0.035, b’ = 0.045,
1000k_101<,_1091_004v,_01,0,_—051'_1 ,d. We
approx1mate the function u$ d(t,-) on [a, b]¢ by constructing a deep neural network (1 input
layer with 2d-neurons, 2 hidden layers with 4d-neurons each and 1 output layer with 1-
neuron) based on Theorem 1 with m = 1 and Sect.5. For the experiment, we use the
batch size M = 1,024, the number of iteration steps J = 5,000 and the learning rate
y(j) = 5.0 x 1072140,0.3/1(j) + 5.0 x 10731(0.37.0.6/1(j) + 5.0 x 10~ *L0.67.11(j), j < J
for the stochastic gradient descent method. After we estimate the function u‘; (t,-), we input
xo = (100.0, 0.04, ..., 100.0, 0.04) € ([a, b] x [da’, b'])* to check the accuracy. We compute
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Table4 Comparison in deep learning methods for 2d = 50

AEm =1 Becketal.n = 16 Becketal. n = 32
Relative error 0.0006 0.0034 0.0007
Runtime 46.96s 119.37s 201.61s
the mean of 10 independent trials and estimate the relative error, i.e. I(Mieep ’d(t, x0) —

u;ef Lt x0))/ ugef (¢, x0)| where the reference value u;ef (¢, xo) is computed by Monte-

Carlo method with the Euler-Maruyama scheme with time-steps 2! and 107-paths. The
same experiment is applied to the method of Beck et al. [2]. Table 4 provides the numerical
results (the relative errors and the runtimes) for AE m = 1 and the method in Beck et al. [2]
with the Euler—-Maruyama discretization n = 16, 32 (Beck et al. n = 16, Beck et al. n = 32
in the table).

7 Conclusion

In the paper, we introduced a new spatial approximation for solving high-dimensional PDEs
without the curse of dimensionality, where an asymptotic expansion method with a deep
learning-based algorithm is effectively applied. The mathematical justification for the spatial
approximation was provided using Malliavin calculus and ReLU calculus. We checked the
effectiveness of our method through numerical examples for high-dimensional Kolmogorov
PDEs.

More accurate deep learning-based implementations based on the method of the paper
should be studied as a next research topic. We believe that higher order asymptotic expansion
or higher order weak approximation (discretization) will give robust computation schemes
without the curse of dimensionality, which should be proved mathematically in the future
work. Also, applying our method to nonlinear problems as in [14, 15] will be a challenging
and important task.
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Appendix A: Malliavin calculus

In the following, we provide precise estimates of Wiener functionals, which are useful for
proving and computing the deep learning-based approximation with our asymptotic expan-
sion.

Lemma5 Let d € N, F € (D®(Q9))? be a non-degenerate Wiener functional, G €
D®QY), o = (ay, ..., 20) € {1,...,d}" withlength ¢ € N. Fork e NU{0} and p > 1,
there existc = c(k, p) > 0, q1 = qi1tk, p) > 1, ¢op = q2(k, p,d) > 1, g3 = q3(k, p) > 1
and r = r(k) € N such that

_ 2dr—
| Ha(F, G)llk.p < cdlldet(@ )™ I, IDFILT A L I Glkriangs: (AD)
Proof Fori € {1, ...,d}, we have
d d
1Hiy(F, G)llk.p < Y 18U 1 DFI Gl p < ckp D Mo "1 DFIGllgs o
j=1 j=1

(A2)

for some universal constant g , > 0. Let py and p, be real numbers such that pfl +py 1 -
p~ L. Hereafter, we use a generic constant C > 0 such that C = cd® for some ¢ > 0
depending on k and p, whose value varies from line to line. Since it holds that

Fq—1 j F\—1 2de—1
Mo 1 DF gt e < Cldet@™) ™ S gsay o IPF IR Saernypy. s (A3

for some e € N depending on k, we have

. F\—1 2de—1
HH(z)(F7 G)”k.p < C|det(c") ‘|§(k+2)pl HDF”k+1,2(2d(k+2)—l)p1,H‘[ “G”k+1,p2~ (A4)
Fora = (ai, ..., a¢) € {1,...,d}*, we have
||H(c(1 ..... Ot[)(F G)”k P — ”H(OQ)(F H(Dtl ..... otg_l)(F9 G))”k,p

Fy—1 2de—1
S C” det(a ) ||§(k+2)pl ”DF”k+el,2(2d(k+2)7l)p1,Hd ”H(Otl ..... No7/ 1)(F G)||k+l , P2
(A.5)

Then, iterating this procedure, we have that fork € NU{0} and p > 1, thereexistqi, ¢2, g3 >
1 and r € N such that

Fy\—1 2dr—|a|
|Ha(F, Gllk.p < Clldet@ ™) g IDFILE % ol Gllkrial.gs- (A.6)

m}

Lemma6 Ford € N,i = 1,2, let {G;l’x’i}te(oyT]'xeRd C D>®(Q9) satisfy that for k > 1
and p € [1, 00), there exist ¢;, s; > 0 independent of d such that sup,.c(, pa IIG?’x’i le,p <
c;ideirsil? forallt € (0, T]. Then, we have that for k > 1 and p € [1, 00), there exists ¢
independent of d such that for all t € (0, T], sup,cry e |l 22 GF ey < rdl 16192/
and sup, (4 pya Z?:l G,d’x’in,p < cd€ymin{si.l/2,

Proof We only prove the former case. By Proposmon 1.5.6 of Nualart [29], for k > 1 and
p e [l,00), ITTZ, G . » < ckp||G e G2 1. p, for some constant ¢, > 0

depending only on k and p, where p1, p2 > 1 satisfies 1/py + 1/p2 = 1/p. Then, by the
assumptions, sup, ¢4 py | M=, G p < rd tO1+)/2, O
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Lemma7 Ford € N, let {M?’X}te(o,T],xERd C D®(QY) satisfy that fort € (0,T], x €
RY, j=1,....d [, ul*dB € D®(Q4) and that for k > 1 and p € [1, 00), there
exist q,v > 0 independent of d such that supxe[u,b]d||u;j’x||k,p < qdit""? forall t €
(0, T). Then, for k > 1 and p € [1,00), there exists ¢ > 0 independent of d such that
for all t € (0T, supycpypyel IN ul dB\r., < cdt¥D2 and for j = 1,....d,

d, d,
SUpyefappell fi s dBS | p < cdt¥ D2,

Proof We only prove the latter case. Note that for r = 1,...,k, D" [, u§ dxgpdi =
Dt 4 [P DruddBdI. Then, it holds that E[||D’ gu‘f"dBdfn
= E[|D""! dxn(Hd)@,] +E[| [y D"ud B, o). Here, ELID™'ud !
nd"tP = [SELN D" s 1y o)
Elllf3 D ul*dBH)” Hd)®,] < cpt P SENID U 1 yayer

pendent of d) by Holder mequahty and Burkholder-Davis-Gundy inequality. By the assump-
tions, sup, (4 5y EL D’ Lydox) P ] < nd”tp_lfotqpa'pqsp”/zds < cdtP®/2HD and

(Hd)®r]

(Hd)®' (Hd)®' =

ds for some n (independent of d) and

]ds for some ¢, > 0 (inde-

Hd)@r
SUPyelq th[”fo D'u dBd J Il [-]d)@r] < cpt”/z—lftqup’fsp"/zds < CdCfP(V-H)/z. Then,
we have sup,.c(, pid |l /0 dBd J”k < cdttD/2, O

Appendix B: ReLU calculus

Appendix B gives some results on ReLU calculus which are basic in the analysis of our paper.
We prepare the following result from Lemma A.7 of [5].

Lemma8 Letn,d,L € Nandfori = 1,...,n, letd; € Nand ¢; € N with L(¢;) = L,
dimin(¢;) = d and dimgy(¢;) = d;. Then, there exists v € N such that L(y) = L
CY) < Y- Cehi), dimin () = d and dimoy (Y) = Y_i_d; and

RA)(x) = (R(P)(®), ... R()(x)), x € RY. (B.1)
Also, we list Lemma 5.1 in [12] and Lemma 5.3 in [6].

Lemma9 Let L,n, No, N € N, {a¢};_, C R and {¢¢};_, C N be DNNs such that
L(¢¢) = L, dimj,(¢¢) = No and dimey(¢py) = Ny for £ = 1, ..., n. Then, there exists
W € N such that L&) = L, C(Y) < n*C(¢1) and

ROUNE) =Y arR(@)(x). x € RN, (B.2)

=1

Lemma10 Let Ly, Ly, Ny, N§, N} , Ni, € Nand ¢1, 2 € N be DNNs such that L(¢1) =
L1, £(¢2) = Lo, dimin(§1) = N, dimou(¢1) = N}, dimin(d2) = Ng, dimou (¢2) = N7
and sz = Né. Then, there exists Y € N such that L(\y) = L1 + Ly, C(y) < 2(C(¢1) +
C(¢2)) and

R)() = RGD(R@G)(x), x € RV, (B.3)

The following result of Theorem 6.3 of [6] is useful.
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Lemma11 Ler M € NN [2,00) and D € [1,00). There exist DNNs {{z}ec0.1) C N
and a constant ¢ > 0 (independent of M and D) such that for all ¢ € (0,1), C(¥,) <
cM(|log(e)| + M log(D) + log(M)) and

M
sup IR, =[xl e (B.4)
i=1

In our analysis, the next result will be applied.

Lemma12 Leta € R, b € (a,00), ¢ > 0,m € NN[2,00),d,L € Nand {¢¢}}_;, C N
be DNNs such that for i € {1,...,m}, L(¢;) = L, dimj,(¢p;) = d, dimgy(¢;) = 1,
C(¢i) < cd® and sup,¢, pa| R(Pi)(x)| < cd®. Then, there exist {wg’d}ge(o,l),deN C N and
k > 0 (independent of d) such that for all ¢ € (0, 1) andd € N, we have C(ws’d) < ke~ lgx
and

m
sip [RHH) - [[RGOW)| <. (B.5)
xE[a,b]d =1
Proof First we use Lemma 11. Let ¢(d) := cd. Then, there exist a set of DNNs

{Wy),e}ee0,1) C N and a constant ¢’ > 0 (independent of m and ¢(d)) such that for
alle € (0, 1), C(Wya)e) < 'm?e~1d® and

R(Wy@),e) (R(@1)(X), ..., R(m)(x)) — l_[ R(p)(0)| < ¢, (B.6)

=1
for any x € [a, ble. By Lemma 8, there exists ® € N such that C(®) < mcd® and
R(®)(x) = (R(@)(), ... R(gm)(x)), x eRY. (B.7)

By Lemma 10, there exist {we'd}ge(oyl)ydgN C N and k > 0 such that for all ¢ € (0, 1) and
d € N, we have C(y®?) < ke~ 1d¥,

R (x) = R(Wyay,e) (R(P)(x)), x € RY, (B.8)
and
sip (R - [TR@OW)| <. (B.9)
x€la,b)d =1
O

Appendix C: Sample code

We show the sample Python code used in the numerical computation in Sect. 6.2.
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Listing 1 model.py
1 import tensorflow as tf
from tensorflow. contrib. layers . python . layers import
initializers
3 from tensorflow. python . training. moving_averages \
4 import assign_moving_average
5 from tensorflow. contrib. layers . python . layers import utils
6
7 import time
8
9 import numpy as np
10 import math
11 from scipy.stats import multivariate_normal as normal
12 from tensorflow.python.ops import control_ flow_ops
13 from tensorflow import random_normal_initializer as norm_init
14 from tensorflow import random_uniform_initializer as unif_init
15 from tensorflow import constant_initializer as con
16
17
18 def neural_net(y, neurons, name, is_training,
19 reuse=tf.AUTO_REUSE, decay =0.9, dtype=tf. float32):
20 def batch_normalization(x):
21 beta = tf. get_variable( 'be , [x. get_shape()[ -111,
dtype,
22 tf. zeros_initializer ())
23 gamma = tf. get_variable(
24 "gamma’, [x. get_shape()[ -111, dtype,
25 tf. ones_initializer ())
26 mv_mean = tf. get_variable(
27 ‘mv_mean’, [x. get_shape()[ -111, dtype=dtype,
28 initializer=tf. zeros_initializer (), trainable= False)
29 mv_var = tf. get_variable(
30 ‘mv_var'’, [x. get_shape()[ -111, dtype =dtype,
31 initializer=tf. ones_initializer (), trainable= False)
32 mean, variance = tf.nn. moments(x, [0], name='moments’)
33 tf. add_to_collection(
34 tf. GraphKeys. UPDATE_OPS,
35 assign_moving_average (mv_mean, mean, decay,
36 zero_debias= True ))
37 tf. add_to_collection(
38 tf. GraphKeys. UPDATE_OPS,
39 assign_moving_ average (mv_var, variance, decay,
40 zero_debias= False ))
41 mean, variance = utils. smart_cond( is_training,
42 lambda : (mean, variance
)
43 lambda : (mv_mean,
mv_var ))
44 return tf.nn. batch_normalization(x, mean, variance,
45 beta, gamma, le-6)
46 def layer(x, out_size, activation):
47 w = tf. get_variable(
48 ‘weights’, [x. get_shape(). as_list()[ -1], out_size
1,
49 dtype, initializers. xavier_initializer ())
50 return activation( batch_normalization(tf. matmul (x, w )))
51 with tf. variable_scope (name, reuse = reuse ):
52 y = batch_normalization (y)
53 for i in range (len( neurons) - 1):
54 with tf. variable_scope(’'layer %i_ " % (i + 1)):
55 vy = layer (y, neurons[i], tf.nn. relu)
56 with tf. variable_scope(’'layer %1’ % len( neurons)):
57 return layer (y, neurons|[ -1], tf. identity)
58
59 def nn_model (XT, Xini, weight, K, f, neurons, dtype=tf. float32):
60
61 nn = neural_net (Xini, neurons, 'v’, True, dtype= dtype )
62 loss = (nn - tf. stop_gradient (f (K,XT) *weight) ) ** 2
63
64 return tf. reduce_mean (loss)
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65

66 def simulate(Simtype, T, n, d, X_min, X max, X_valid, K, SDE, f,
neurons, train_steps, batch_size, lr_boundaries, lr_values,
epsilon=1e-8):

67

68 tf. reset_default_graph ()

69

70 Xini = tf.random_uniform( (batch_size, d), minval=X_min, maxval=

X_max)

71 XT, weight = SDE(Xini, T, d, n, Simtype)

72

73 loss = nn_model (XT, Xini, weight, K, f, neurons)

74

75 global_step = tf. get_variable(

76 , [1, tf.int32,

77 tf. zeros_initializer (), trainable= False )

78

79 learning_rate = tf. train . piecewise_constant (

80 global_step, lr_boundaries, lr_values)

81 update_ops = tf. get_collection(

82 tf. GraphKeys. UPDATE_OPS,

83 with tf. control_dependencies( update_ops) :

84 train op = tf. train . AdamOptimizer (

85 learning_rate, epsilon= epsilon). minimize (

86 loss, global_step= global_step)

87

88 with tf. Session() as sess:

89

90 sess. run(tf. global_variables_initializer ())

91 var_list_n = tf. get_collection(

92 tf. GraphKeys. GLOBAL_VARIABLES, )

93

94 for _ in range(train_steps):

95 sess. run(train_op)

96

97 v = sess.run(neural_net(tf.cast(X_valid, tf.float32),
neurons, , False))

98

99 return np.reshape(v, [-1])

Listing 2 CEV.py

from model import simulate

1

2 import numpy as np

3 import time

4 import tensorflow as tf

5

6 def f(K, x):

7 return tf.exp(-r*T)* tf.maximum(tf.reduce_max(x, 1, keepdims =

True) -K, 0.0)

8

9 def SDE(Xini, T, d, n, Simtype):

10

11 X = Xini

12 Weight = 1.0

13

14 if Simtype ==

15 for _n in range (n):

16 dw = tf. random_normal (( batch_size , d), stddev =np.

sqrt (T/n))

17 X = X + r*X*T/n + sigma *K** (1.0-beta) *X**beta*dw

18 X = tf.maximum(X, 0.0)

19

20 elif Simtype == :

21 dw = tf. random_normal (( batch_size, d), stddev =np. sqgrt(T)
)

22 Weight = M_weight (X, T, dw)

23 X = X + r*X*T + sigma *K**(1l.0-beta)*X**beta*dw

24 X = tf.maximum(X, 0.0)

25

26 return X, Weight
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65

66 def M_weight(x, T, dw):

67

68 inv = 1.0/ (sigma *K**(1l.0-beta)*x**beta)

69 LOVO = r**2*x

70 LOVi = r*beta*sigma*K** (1.0-beta)*x**beta + 1.0/2.0*beta* (beta
-1.0)*sigma**3*K** (3.0* (1.0-beta) ) *x**(3.0*beta-2.0)

71 LiV0 = r*sigma*K** (1.0-beta) *x**beta

72 LiVi = beta*sigma**2*K** (2.0* (1.0-beta))*x**(2.0*beta-1.0)

73 wll = dW*dw-T

74 w001l = dW*T**2.0

75 w01l = wll*T

76 wlll = dAW**3-3.0*dW*T

77

78 A=1.0/ (2.0 *T) * tf.reduce_sum(inv * ( LOVO * w001l + LOVi *
w01l + Liv0 * w01l + Livi * wlll ) ,1 ,keepdims=True)

79

80 return 1.0 + A

81

82 T, d, K =1.0, 100, 100.0

83 r, sigma, beta = 0.01, 0.3, 0.5

84 X_min, X_max = 99.0, 101.0

85

8 grid = 10

87 X_valid = np.ones((1,d)) *np.expand_dims (np.linspace (X_min, X_max,
grid+1l), axis=1)

88

890 batch_size = 1024

90 train_steps = 5000

91 neurons = [2*d, 2*d, 1]

92 1lr_values = [0.5 , 0.05, 0.005]

93 1lr_boundaries = [train_steps // 10 * 3 ,train_steps // 10 * 6]

94

95 for Simtype in [ , 1:
96 if Simtype == :
97 n_range = [1,2,4,8,16,32,64,128]
98 else:
99 n_range = [1]
100
101 for n in n_range:
102 print (
)
103 t_0 = time. time ()
104 vv = simulate(Simtype, T, n, d, X_min, X_max, X_valid, K,

SDE, f, neurons, train_steps, batch_size,lr_boundaries,
1lr _values)

105 t_1 = time. time ()

106

107 for 1 in range(grid+1l):
108 print (

% (batch_size, train_steps,
lr_values[0], lr_values[1l], lr_values([2], d, X validl[
i,0]1, K, T, n, vv[i], t_1 - t_0, Simtype))
109 print (')
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