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Abstract
This paper proposes a new spatial approximation method without the curse of dimensionality
for solving high-dimensional partial differential equations (PDEs) by using an asymptotic
expansionmethodwith a deep learning-based algorithm. In particular, themathematical justi-
fication on the spatial approximation is provided. Numerical examples for high-dimensional
Kolmogorov PDEs show effectiveness of our method.
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1 Introduction

Recently, for solving high-dimensional partial differential equations (PDEs), deep learning-
based algorithms have been actively proposed (see [2, 3] for instance). Moreover, a number
of papers for mathematical justification on the deep learning-based spatial approximations
have appeared, where the authors demonstrate that deep neural networks overcome the curse
of dimensionality in approximations of high-dimensional PDEs. For the related literature, see
[4–6, 11, 19] for example. In particular, theseworks treat some specific forms of PDEs such as
high-dimensional heat equations or Kolmogorov PDEs with constant diffusion and nonlinear
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drift coefficient. Also, integral kernels are assumed to have explicit forms for justification of
the spatial approximations for solutions to high-dimensional PDEs.

However, most high-dimensional PDEs may not have explicit integral forms in practice.
In other words, integral forms of solutions themselves should be approximated by a certain
method.

In the current paper, we give a new spatial approximation using an asymptotic expansion
method with a deep learning-based algorithm for solving high-dimensional PDEs without
the curse of dimensionality. More precisely, we follow approaches given in [40] and the
literature such as [8, 17, 18, 23, 24, 26, 27, 30, 32, 33, 35, 38, 39, 41, 43]. Particularly, we
provide a uniform error estimate for the asymptotic expansion for solutions of Kolmogorov
PDEs with nonlinear coefficients, motivated by the works of [2, 11, 31]. For a solution to a
d-dimensional Kolmogorov PDE with a small parameter λ, namely uλ : [0, T ] × R

d → R

given by uλ(t, x) = E[ f (Xλ,x
t )] for (t, x) ∈ [0, T ]×R

d where {Xλ,x
t }t≥0 is a d-dimensional

diffusion process starting from x , we justify the following spatial approximation on a range
[a, b]d :

uλ(t, ·) ≈ “high-dimensional asymptotic expansion” E[ f (X̄λ,·
t )Mλ,·

t ] (1.1)

≈ “deep neural network approximation” R(φ)(·), (1.2)

by applying an appropriate neural network φ. Here, for t > 0 and x ∈ R
d , X̄λ,x

t is a
certain Gaussian random variable and Mλ,x

t is a stochastic weight for the expansion given
based on Malliavin calculus. In order to chose the network φ, the analysis of “product of
neural networks" and a dimension analysis of asymptotic expansion with Malliavin calculus
are crucial in our approach. We show a precise error estimate for the approximation (1.1)
and prove that the complexity of the neural network grows at most polynomially in the
dimension d and the reciprocal of the precision ε of the approximation (1.1). Moreover, we
give an explicit form of the asymptotic expansion in (1.1) and show numerical examples to
demonstrate effectiveness of the proposed scheme for high-dimensional Kolmogorov PDEs.

The organization of the paper is as follows. Section2 is dedicated to notation, definitions
and preliminary results on deep learning and Malliavin calculus. Section3 provides the main
result, namely, the deep learning-based asymptotic expansion for solving Kolmogorov PDEs.
The proof is shown in Sect. 4. Section5 introduces the deep learning implementation. Various
numerical examples are shown in Sect. 6. The useful lemmas onMalliavin calculus andReLU
calculus are summarized, and furthermore the sample code is listed in Appendix.

2 Preliminaries

We first prepare notation. For d ∈ N and for a vector x ∈ R
d , we denote by ‖x‖ the

Euclidean norm. Also, for k, � ∈ N and for a matrix A ∈ R
k×�, we denote by ‖A‖ the

Frobenius norm. For d ∈ N, let Id be the identity matrix. For m, k, � ∈ N, let C(Rm,Rk×�)

(resp., C([0, T ] × R
m,Rk×�)) be the set of continuous functions f : Rk → R

k×� (resp.,
f : [0, T ]×R

m → R
k×�) and CLip(R

m,Rk×�) be the set of Lipschitz continuous functions
f : Rm → R

k×�. Also, we define C∞
b (Rm,R�) as the set of smooth functions f : Rm →

R
k×� with bounded derivatives of all orders. For amulti-index α, let |α| be the length ofα. For

a bounded function f : Rm → R
k×�, we define ‖ f ‖∞ = supx∈Rm‖ f (x)‖. For m, k, � ∈ N,

for a function f ∈ CLip(R
m,Rk×�), we denote byCLip[ f ] theLipschitz continuous constant.

For d ∈ N and for a smooth function f : Rd → R, we define ∂i f = ∂
∂xi

f for i = 1, . . . , d ,
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moreover we define ∂α f = ∂α1 · · · ∂αk f for α = (α1, . . . , αk) ∈ {1, . . . , d}k , k ∈ N. For
a, b ∈ R, we may write a ∨ b = max{a, b}.

2.1 Deep neural networks

Let us prepare notation and definitions for deep neural networks. Let N be the set of deep
neural networks (DNNs):

N = ∪L∈N∩[2,∞) ∪(N0,N1,...,NL )∈NL+1 N N0,N1,...,NL
L , (2.1)

where N N0,N1,...,NL
L = ×L

�=1(R
N�×N�−1 × R

N� ).
Let � ∈ C(R,R) be an activation function, and for k ∈ N, define �k(x) =

(�(x1), . . . , �(xk)), x ∈ R
k .

We define R : N → ∪m,n∈NC(Rm,Rn), C : N → N, L : N → N, dimin : N → N and
dimout : N → N as follows:

For L ∈ N ∩ [2,∞), N0, . . . , NL ∈ N, ψ = ((W1, B1), . . . , (WL , BL)) ∈ N N0,N1,...,NL
L ,

let L(ψ) = L , dimin(ψ) = N0, dimout(ψ) = NL , C(ψ) = ∑L
�=1N�(N�−1 + 1), and

R(ψ)(·) = AWL ,BL ◦ �NL−1 ◦ AWL−1,BL−1 ◦ · · · ◦ �N1 ◦ AW1,B1 (·) ∈ C(RN0 ,RNL ), (2.2)

where AWk ,Bk (x) = Wkx + Bk , x ∈ R
Nk−1 , k = 1, . . . , L .

2.2 Malliavin calculus

We prepare basic notation and definitions on Malliavin calculus following Bally [1] Ikeda
and Watanabe [16], Malliavin [25], Malliavin and Thalmaier [26] and Nualart [29].

Let 
d = {ω : [0, T ] → R
d ; ω is continuous, ω(0) = 0}, Hd = L2([0, T ],Rd) and

let μd be the Wiener measure on (
d ,B(
d)), where B(
d) is the Borel σ -field induced by
the topology of the uniform convergence on [0, T ]. We call (
d , Hd , μd) the d-dimensional
Wiener space. For a Hilbert space V with the norm ‖·‖V and p ∈ [1,∞), the L p-space of V -
valuedWiener functionals is denoted by L p(
d , V ), that is, L p(
d , V ) is a real Banach space
of allμd -measurable functionals F : 
d → V such that ‖F‖p = E[‖F‖p

V ]1/p < ∞with the
identification F = G if and only if F(ω) = G(ω), a.s.When V = R, we write L p(
d). For a
real separable Hilbert space V and F : 
d → V , we write ‖F‖p,V = E[‖F‖pV ]1/p, in particular,
‖F‖p when V = R. Let Bd = {Bd

t }t be a coordinate process defined by Bd
t (ω) = ω(t),

ω ∈ 
d , i.e. Bd is a d-dimensional Brownian motion, and Bd(h) be the Wiener integral
Bd(h) = ∑d

j=1

∫ T
0 h j (s)dBd, j

s for h ∈ Hd .

LetS (
d) denote the class of smooth random variables of the form F = f (Bd(h1), . . . ,
Bd(hn)) where f ∈ C∞

b (Rn,R), h1, . . . , hn ∈ Hd , n ≥ 1. For F ∈ S (
d), we define the
derivative DF as the H -valued random variable DF = ∑n

j=1 ∂ j f (Bd(h1), . . . , Bd(hn))h j ,
which is regarded as the stochastic process:

Di,t F =
n∑

j=1
∂ j f (Bd(h1), . . . , Bd(hn))hij (t), i = 1, . . . , d, t ∈ [0, T ]. (2.3)

For F ∈ S (
d) and j ∈ N, we set D j F as the (Hd)⊗ j -valued random variable obtained by
the j-times iteration of the operator D. For a real separable Hilbert space V , consider SV

of V -valued smooth Wiener functionals of the form F = ∑�
i=1 Fivi , vi ∈ V , Fi ∈ S (
d),

i ≤ �, � ∈ N. Define D j F = ∑�
i=1 D

j Fi ⊗ vi , j ∈ N. Then for j ∈ N, D j is a closable
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operator fromSV into L p(
d , (Hd)⊗ j ⊗V ) for any p ∈ [1,∞) (see p. 31 of Nualart [29]).
For k ∈ N, p ∈ [1,∞), we define ‖F‖p

k,p,V = E[‖F‖p
V ] +∑k

j=1 E[‖D j F‖p
(Hd )⊗ j⊗V

],
F ∈ SV . Then, the space Dk,p(
d , V ) is defined as the completion of SV with respect to
the norm ‖ · ‖k,p,V . Moreover, let D∞(
d , V ) be the space of smooth Wiener functionals in
the sense of Malliavin D∞(
d , V ) = ∩p≥1 ∩k∈N D

k,p(
d , V ). We write Dk,p(
d), k ∈ N,
p ∈ [1,∞) and D

∞(
d), when V = R. Let δ be an unbounded operator from L2(
d , Hd)

into L2(
d) such that the domain of δ, denoted by Dom(δ), is the set of Hd -valued square
integrable random variables u such that |E[〈DF, u〉Hd ]| ≤ c‖F‖1,2 for all F ∈ D

1,2(
d)

where c is some constant depending on u, and if u ∈ Dom(δ), there exists δ(u) ∈ L2(
d)

satisfying

E[〈DF, u〉Hd ] = E[Fδ(u)] (2.4)

for any F ∈ D
1,2(
d). For u = (u1, . . . , ud) ∈ Dom(δ), δ(u) = ∑d

i=1δ
i (ui ) is called the

Skorohod integral of u, and it holds that E[∫ T
0 Di,s Fuisds] = E[Fδi (ui )], i = 1, . . . , d for

all F ∈ D
1,2 (see Proposition 6 of Bally [1]). For all k ∈ N ∪ {0} and p > 1, the operator δ

is continuous from D
k+1,p(
d , Hd) into D

k,p(
d) (see Proposition 1.5.7 of Nualart [29]).
For G ∈ D

1,2(
d) and h ∈ Dom(δ) such that Gh ∈ L2(
d , Hd), it holds that

δi (Ghi ) = Gδi (hi ) −
∫ T

0
Di,sGhisds, i = 1, . . . , d, (2.5)

and in particular, if h ∈ Dom(δ) is an adapted process, δi (hi ) is given by the Itô integral, i.e.
δi (hi ) = ∫ T

0 hisdB
d,i
s for i = 1, . . . , d (e.g. see Section 3.1.1 of Bally [1], Proposition 1.3.3

and Proposition 1.3.11 of Nualart [29]).
For F = (F1, . . . , Fd) ∈ (D∞(
d))d , define the Malliavin covariance matrix of F ,

σ F = (σ F
i j )1≤i, j≤d , by σ F

i j = 〈DFi , DF j 〉Hd = ∑d
k=1

∫ T
0 Dk,s Fi Dk,s F j ds, 1 ≤ i, j ≤

d . We say that F ∈ (D∞(
d))d is nondegenerate if the matrix σ F is invertible a.s. and
satisfies ‖(det σ F )−1‖p < ∞, p > 1. Malliavin’s theorem claims that if F ∈ (D∞(
d))d

is nondegenerate, then F has the smooth density pF (·). Malliavin calculus is further refined
by Watanabe’s theory. Let S(Rd) be the Schwartz space or the space of rapidly decreasing
functions and S ′(Rd) be the dual of S(Rd), i.e. S ′(Rd) is the space of Schwartz tempered
distributions. For a tempered distribution T ∈ S ′(Rd) and a nondegenerateWiener functional
in the sense of Malliavin F ∈ (D∞(
d))d , T (F) = T ◦ F is well-defined as an element
of the space of Watanabe distributions D−∞(
d), that is the dual space of D∞(
d) (e.g.
see p. 379, Corollary of Ikeda and Watanabe [16], Theorem of Chapter III 6.2 of Malliavin
[25], Theorem 7.3 of Malliavin and Thalmaier [26]). Also, for G ∈ D

∞(
d), a (generalized)
expectation E[T (F)G] is understood as a pairing of T (F) ∈ D

−∞(
d) and G ∈ D
∞(
d),

namely D∞〈T (F),G〉D−∞ , and it holds that

D−∞〈T (F),G〉D∞ = S ′ 〈T , E[G|F = ·]pF (·)〉S (2.6)

where S ′ 〈·, ·〉S is the bilinear form on S ′(Rd) and S(Rd), E[G|F = ξ ] is the conditional
expectation of G conditioned on the set {ω; F(ω) = ξ} (e.g. see Chapter III 6.2.2 of Malli-
avin [25], (7.5) of Theorem 7.3 of Malliavin and Thalmaier [26]). In particular, we have

D−∞〈δy(F), 1〉D∞ = S ′ 〈δy, pF (·)〉S = pF (y) for y ∈ R
d , and thus pF is not only smooth

but also in S(Rd), i.e. a rapidly decreasing function (see Theorem 9.2 of Ikeda andWatanabe
[16]), Proposition2.1.5 ofNualart [29]). For a nondegenerate F ∈ (D∞(
d))d ,G ∈ D

∞(
d)

and a multi-index γ = (γ1, . . . , γk), there exists Hγ (F,G) ∈ D
∞(
d) such that

D−∞〈∂γ T (F),G〉D∞ = D−∞〈T (F), Hγ (F,G)〉D∞ (2.7)
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for all T ∈ S ′(Rd) (e.g. see Chapter 4.4 and Theorem 7.3 of Malliavin and Thalmaier [26]),
where Hγ (F,G) is given by Hγ (F,G) = H(γk )(F, H(γ1,...,γk−1)(F,G)) with

H(i)(F,G) = δ(
∑d

j=1(σ
F )−1

i j DF jG). (2.8)

3 Main result

Let a ∈ R, b ∈ (a,∞) and T > 0. For d ∈ N, consider the solution to the following
stochastic differential equation (SDE) driven by a d-dimensional Brownian motion Bd =
(Bd,1, . . . , Bd,d) on the d-dimensional Wiener space (
d , Hd , μd):

dXd,λ,x
t = μλ

d(X
d,λ,x
t )dt + σλ

d (Xd,λ,x
t )dBd

t , Xd,λ,x
0 = x ∈ R

d , (3.1)

where μλ
d : Rd → R

d and σλ
d : Rd → R

d×d are Lipschitz continuous functions depending

on a parameter λ ∈ (0, 1]. The solution Xd,λ,x
t = (Xd,λ,x,1

t , . . . , Xd,λ,x,d
t ) is equivalently

written in the integral form as:

Xd,λ,x, j
t = x j +

∫ t

0
μ

λ, j
d (Xd,λ,x

s )ds +
d∑

i=1

∫ t

0
σ

λ, j
d,i (Xd,λ,x

s )dBd,i
s , Xd,λ,x, j

0 = x j ∈ R,

(3.2)

for j = 1, . . . , d . Furthermore, for a given appropriate continuous function fd : Rd → R

and for λ ∈ (0, 1], we consider udλ ∈ C([0, T ] × R
d ,R) given by

udλ(t, x) = E[ fd(Xd,λ,x
t )] (3.3)

for t ∈ [0, T ] and x ∈ R
d , which is a solution of Kolmogorov PDE:

∂t u
d
λ(t, x) = Ld,λudλ(t, x), (3.4)

for all (t, x) ∈ (0, T ) × R
d and udλ(0, ·) = fd(·), where Ld,λ is the following second order

differential operator:

Ld,λ =
d∑

j=1

μ
λ, j
d (·) ∂

∂x j
+ 1

2

d∑

i, j1, j2=1

σ
λ, j1
d,i (·)σ λ, j2

d,i (·) ∂2

∂x j1∂x j2
. (3.5)

Our purpose is to show a new spatial approximation scheme of udλ(t, ·) for t > 0 by using
asymptotic expansion and deep neural network approximation. The main theorem (Theorem
1) is stated at the end of this section.

3.1 Asymptotic expansion

We first put the following assumptions on {μλ
d}λ∈(0,1], {σλ

d }λ∈(0,1] and fd .

Assumption 1 (Assumptions for the family of SDEs and asymptotic expansion) Let C > 0.
For d ∈ N, let {μλ

d}λ∈(0,1] ⊂ CLip(R
d ,Rd) and {σλ

d }λ∈(0,1] ⊂ CLip(R
d ,Rd×d) be families

of functions, and fd ∈ CLip(R
d ,R) be a function satisfying

1. there are Vd,0 ∈ C∞
b (Rd ,Rd) and Vd = (Vd,1, . . . , Vd,d) ∈ C∞

b (Rd ,Rd×d) such that
(i) μλ

d = λVd,0 and σλ
d = λVd for all λ ∈ (0, 1], (ii) CLip[Vd,0] ∨ CLip[Vd ] = C

and ‖Vd,0(0)‖ ∨ ‖Vd(0)‖ ≤ C , (iii) ‖∂αVd,i‖∞ ≤ C for any multi-index α and i =
0, 1, . . . , d;
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2.
∑d

i=1σ
λ
d,i (x) ⊗ σλ

d,i (x) ≥ λ2 Id for all x ∈ R
d and λ ∈ (0, 1];

3. CLip[ fd ] = C and ‖ fd(0)‖ ≤ C .

Remark 1 Assumption 1 justify an asymptotic expansion under the uniformly elliptic con-
dition for the solutions of the perturbed systems of PDEs. Assumption 1.3 is also useful for
constructing deep neural network approximations for the family of PDE solutions.

From Assumption 1.2, we may write each SDE (3.1) for d ∈ N as

dXd,λ,x
t = λ

d∑

i=0

Vd,i (X
d,λ,x
t )dBd,i

t , (3.6)

with Xd,λ,x
0 = x ∈ R

d , where the notation dBd,0
t = dt is used. We define

B
d,α
t =

∫

0<t1<···<tk<t
d Bd,α1

t1 · · · dBd,αk
tk , t ≥ 0, α ∈ {0, 1, . . . , d}k, k ∈ N, (3.7)

and Ld,0=∑d
j=1 V

j
d,0(·) ∂

∂x j
+ 1

2

∑d
i, j1, j2=1 V

j1
d,i (·)V j2

d,i (·) ∂2

∂x j1 ∂x j2
, Ld,i=∑d

j=1 V
j
d,i (·) ∂

∂x j
,

i = 1, . . . , d . We define

X̄d,λ,x
t = x + λ

d∑

i=0

Vd,i (x)B
d,i
t . (3.8)

Proposition 1 (Asymptotic expansion and the error bound) For m ∈ N ∪ {0}, there exists
c > 0 such that for all d ∈ N, t > 0, λ ∈ (0, 1],

sup
x∈[a,b]d

∣
∣
∣E[ fd(Xd,λ,x

t )] −
{
E
[
fd(X̄

d,λ,x
t )]

+
m∑

j=1

λ j E
[
fd(X̄

d,λ,x
t )

( j)∑

β(k),γ (k)

Hγ (k)

( d∑

i=0

Vd,i (x)B
d,i
t ,

k∏

�=1

∑

|α|=β�

V̂ γ�

d,α(x)Bd,α
t

)]}∣
∣
∣

≤ cdcλm+1t (m+1)/2, (3.9)

where V̂ e
d,α(x) = Ld,α1 · · · Ld,αr−1V

e
d,αr

(x), e ∈ {1, . . . , d}, α ∈ {1, . . . , d}p, and
( j)∑

β(k),γ (k)

=
j∑

k=1

∑

β(k)=(β1,...,βk ) s.t . β1+···+βk= j+k,βi≥2

∑

γ (k)=(γ1,...,γk )∈{1,...,d}k

1

k! , j ≥ 1.

(3.10)

Proof See Sect. 4. ��
The weights in the expansion terms in Proposition 1 can be represented by some poly-

nomials of Brownian motion. We show it through distribution theory on Wiener space. Let
d ∈ N, for t ∈ (0, T ] and α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k , k ∈ N ∩ [2,∞), let

Bd,α
t = δαk (Bd,(α1,...,αk−1)

t ) = Bd,αk
t Bd,(α1,...,αk−1)

t −
∫ t

0
Dαk ,sB

d,(α1,...,αk−1)
t ds, (3.11)

with Bd,(α1)
t = Bd,α1

t , which can be obtained by (2.5). For example, we have Bd,(α1,α2)
t =

Bd,α1
t Bd,α2

t − t1α1=α2 �=0 for α = (α1, α2) ∈ {0, 1, . . . , d}2. Let σ� ∈ R
d , � =
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0, 1, . . . , d and � be a matrix given by �i, j = ∑d
�=1σ

i
�σ

j
� , 1 ≤ i, j ≤ d

and satisfying det� > 0. Let T ∈ S ′(Rd). We show an efficient computation of

D−∞〈T (
∑d

i=0 σi B
d,i
t ), Hγ (

∑d
i=0 σi B

d,i
t ,B

d,α
t )〉D∞ in order to give a polynomial represen-

tation of the Malliavin weights in the expansion terms of the asymptotic expansion in
Proposition 1. Note that we have

D−∞
〈

T
( d∑

i=0

σi B
d,i
t

)

, Hγ

( d∑

i=0

σi B
d,i
t ,B

d,α
t

)〉

D∞ = D−∞
〈

∂γ T
( d∑

i=0

σi B
d,i
t

)

,B
d,α
t

〉

D∞

= S ′ 〈∂γ T (σ0B
d,0
t + σ ·), E[Bd,α

t |Bd
t = · ]pBd

t (·)〉S , (3.12)

by (2.7) and (2.6), where σ is the matrix σ = (σ1, . . . , σd), and for y ∈ R
d , it holds that

E[Bd,α
t |Bd

t = y]pBd
t (y) = S ′ 〈δy, E[Bd,α

t |Bd
t = · ]pBd

t (·)〉S = D−∞〈δy(Bd
t ),B

d,α
t 〉D∞ ,

by (2.6). Also, one has

D−∞〈δy(Bd
t )B

d,α
t 〉D∞ = D−∞〈∂α�

δy(B
d
t ), 1〉D∞

1

k! t
k

= D−∞〈δy(Bd
t ), Hα�(Bd

t , 1)〉D∞
1

k! t
k = D−∞〈δy(Bd

t ),
1

k!B
d,α
t 〉D∞ ,

(3.13)

by (2.5), (2.7) and (2.8), where α� is a multi-index such that α� = (α�
1, . . . , α

�
�(α)) =

(α j1 , . . . , α j�(α)
) satisfying �(α) = #{i;αi �= 0} and α ji �= 0, i = 1, . . . , �(α). Then,

we have

D−∞
〈

T
( d∑

i=0

σi B
d,i
t

)

, Hγ

( d∑

i=0

σi B
d,i
t ,B

d,α
t

)〉

D∞

= S ′
〈

∂γ T
(

σ0B
d,0
t + σ ·

)

,
1

k! E[Bd,α
t |Bd

t = · ]pBd
t (·)

〉

S

= D−∞
〈

∂γ T
( d∑

i=0

σi B
d,i
t

)

,
1

k!B
d,α
t

〉

D∞ = D−∞
〈

T
( d∑

i=0

σi B
d,i
t

)

,

Hγ

( d∑

i=0

σi B
d,i
t ,

1

k!B
d,α
t

)〉

D∞

=D−∞
〈

T
( d∑

i=0

σi B
d,i
t

)

,

d∑

j1,..., j|γ |,β1,...,β|γ |=1

1

t |γ |
|γ |∏

q=1

�−1
γq , jq

σ
jq

βq

1

k!B
d,(α1,...,αk ,β1,...,β|γ |)
t

〉

D∞ ,

(3.14)

where, we iteratively used (2.5), (2.6), (2.7) and (2.8). An explicit polynomial representation
of the asymptotic expansion is derived through (3.14). For instance, the first order expansion
(m = 1) as follows:
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(First order asymptotic expansion with Malliavin weight)

E
[
fd (X̄d,λ,x

t )
{
1 + λ

d∑

�=1

H(�)

( d∑

i=0

Vd,i (x)B
d,i
t ,

d∑

α1,α2=0

Ld,α1V
�
d,α2

(x)B
d,(α1,α2)
t

)}]

= E
[
fd (X̄d,λ,x

t )
]

+ λ

d∑

�=1

∫

Rd
fd (x + λy)

d∑

α1,α2=0

Ld,α1V
�
d,α2

(x)

D−∞
〈
δy

⎛

⎝
d∑

i=0

Vd,i (x)B
d,i
t

⎞

⎠ , H(�)

( d∑

i=0

Vd,i (x)B
d,i
t ,B

d,(α1,α2)
t

)〉

D∞dy

= E
[
fd (X̄d,λ,x

t )
]

+ λ

d∑

�=1

∫

Rd
fd (x + λy)

d∑

α1,α2=0

Ld,α1V
�
d,α2

(x)

D−∞
〈
δy

⎛

⎝
d∑

i=0

Vd,i (x)B
d,i
t

⎞

⎠ ,

d∑

α3=1

d∑

j=1

1

2t
[A−1

d ]� j (x)V j
d,α3

(x)Bd,(α1,α2,α3)
t

〉

D∞dy

= E

⎡

⎣ fd (X̄d,λ,x
t )

⎧
⎨

⎩
1 + λ

d∑

�, j=1

d∑

α1,α2=0

d∑

α3=1

Ld,α1V
�
d,α2

(x)
1

2t
[A−1

d ]� j (x)V j
d,α3

(x)Bd,(α1,α2,α3)
t

⎫
⎬

⎭

⎤

⎦ .

Thus, the first order expansion is expressed with a Malliavin weight given by third order
polynomials of Brownian motion. In general, we have the following representation.

Proposition 2 For m ∈ N, d ∈ N, λ ∈ (0, 1], t ∈ (0, T ] and x ∈ R
d , there exists a Malliavin

weight Mm
d,λ(t, x, B

d
t ) such that

E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )]

= E
[
fd(X̄

d,λ,x
t )

{
1 +

m∑

j=1

λ j
( j)∑

β(k),γ (k)

Hγ (k)

( d∑

i=0

Vd,i (x)B
d,i
t ,

k∏

�=1

∑

|α|=β�

V̂ γ�

d,α(x)Bd,α
t

)}]
,

(3.15)

and

Mm
d,λ(t, x, B

d
t ) = 1 +∑

e≤n(m)λ
p(e)ge(t)he(x)Polye(B

d
t ) (3.16)

for some integers n(m) ∈ N and p(e) ∈ N, e = 1, . . . , n(m), polynomials Polye : Rd → R,
e = 1, . . . , n(m), continuous functions ge : (0, T ] → R, e = 1, . . . , n(m), and continuous
functions he : Rd → R, e = 1, . . . , n(m) constructed by some products of A−1

d , {Vd,i }0≤i≤d

and {∂αVd,i }0≤i≤d,α∈{1,...,d}�,�≤2m given in Assumption 1 of the form:

x �→ he(x) = ce
qe∏

�=1
Ld,αe

�,1
· · · Ld,αe

�,pe
�
−1
V

γ e
�

d,αe
�,pe

�

(x)
d∑

ξ,ι=1
[A−1

d ]γ e
� ,ξ (x)V

ξ
d,ι(x) (3.17)

with some constants ce ∈ (0,∞), qe ∈ N and somemulti-indices (γ e
1 , . . . , γ e

� ) ∈ {1, . . . , d}�
and (αe

�,1, . . . , α
e
�,pe�

) ∈ {0, 1, . . . , d}pe� with pe� ∈ N, � = 1, . . . , e, which satisfies that for

p ≥ 1,

sup
(t,x)∈(0,T ]×[a,b]d ,λ∈(0,1]

‖Mm
d,λ(t, x, B

d
t )‖p ≤ cdc (3.18)

for some constant c > 0 independent of d.
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Proof See Sect. 4. ��
Remark 2 (Remark on computation of Malliavin weights) Malliavin weight is initially used
in Fournie et al. [7] in sensitivity analysis in financial mathematics, especially inMonte-Carlo
computation of “Greeks". Then a discretization scheme for probabilistic automatic differen-
tiation using Malliavin weights is analyzed in Gobet and Munos [10]. The computation of
asymptotic expansion with Malliavin weights is developed in Takahashi and Yamada [35,
37], and is further extended to weak approximation of SDEs in Takahashi and Yamada [38].
Note that a PDE expansion is shown in Takahashi andYamada [36] to partially connect it with
the stochastic calculus approach. The computation method of the expansion with Malliavin
weights is improved in Yamada [41], Yamada and Yamamoto [42], Naito and Yamada [27,
28], Iguchi and Yamada [17, 18], and Takahashi et al. [34] where technique of stochastic
calculus is refined. The main advantages of the stochastic calculus approach are that (i) it
provides efficient computation scheme using Watanabe distributions on Wiener space as in
(3.13) and (3.14), (ii) it enables us to give precise bounds for approximations of expectations
or the corresponding solutions of PDEs. Actually, the computational effort of the expansions
is much reduced in the sense that Itô’s iterated integrals are transformed into simple polyno-
mials of Brownian motion, and also the desired deep neural network approximation will be
obtained in the next subsection through the approach.

3.2 Deep neural network approximation

In order to construct a deep neural network approximation for the function with respect to
the space variable of the asymptotic expansion, i.e. x �→ E[ fd(X̄d,λ,x

t )Mm
d,λ(t, x, B

d
t )], we

consider the further assumptions.

Assumption 2 (Assumptions for deep neural network approximation) Suppose that Assump-

tion 1 holds. There exist a constant κ > 0 and sets of networks {ψVd,i
ε,d }ε∈(0,1),d∈N,i∈{0,1,...,d} ⊂

N , {ψ∂αVd,i
ε,d }ε∈(0,1),d∈N,i∈{0,1,...,d},α∈{1,...,d}N ⊂ N , {ψ A−1

d
ε }ε∈(0,1),d∈N ⊂ N and {ψ fd

ε }ε∈(0,1),
d ∈ N ⊂ N such that

1. for all ε ∈ (0, 1), d ∈ N, C(ψ
Vd,i
ε,d ) ≤ κdκε−κ , i = 0, 1, . . . , d , C(ψ

∂αVd,i
ε,d ) ≤ κdκε−κ ,

i = 0, 1, . . . , d , α ∈ {1, . . . , d}�, � ∈ N, C(ψ
A−1
d

ε ) ≤ κdκε−κ , and C(ψ
fd

ε ) ≤ κdκε−κ ;
2. for all ε ∈ (0, 1), d ∈ N, x ∈ R

d , ‖Vd,i (x) − V ε
d,i (x)‖ ≤ εκdκ , i = 0, 1, . . . , d ,

and ‖∂αVd,i (x) − V ε
d,i,α(x)‖ ≤ εκdκ , i = 0, 1, . . . , d , α ∈ {1, . . . , d}�, � ∈ N, where

V ε
d,i = R(ψ

Vd,i
ε ) ∈ C(Rd ,Rd) and V ε

d,i,α = R(ψ
∂αVd,i
ε ) ∈ C(Rd ,Rd);

3. for all ε ∈ (0, 1), d ∈ N, x ∈ R
d , ‖A−1

d (x) − A−1
d,ε(x)‖ ≤ εκdκ , where A−1

d (·) is the
inverse matrix of Ad(·) := ∑d

i=1Vd,i (·)⊗Vd,i (·) and A−1
d,ε = R(ψ

A−1
d

ε ) ∈ C(Rd ,Rd×d),

and for all ε ∈ (0, 1), d ∈ N, supx∈[a,b]d‖A−1
d,ε(x)‖ ≤ κdκ ;

4. for all ε ∈ (0, 1), d ∈ N, x ∈ R
d , | fd(x) − f ε

d (x)| ≤ εκdκ , where f ε
d = R(ψ

fd
ε ) ∈

C(Rd ,R).

Remark 3 Assumption 2 provides the deep neural network approximation of the asymptotic
expansion with an appropriate complexity. Note that Assumption 1.1, 1.3, 2.2 and 2.4 give
that there exists η > 0 such that | f ε

d (x)| ≤ ηdη(1 + ‖x‖) for all ε ∈ (0, 1), d ∈ N, and
supx∈[a,b]d‖V ε

d,i (x)‖ ≤ ηdη for all i = 0, 1, . . . , d , supx∈[a,b]d‖V ε
d,i,α(x)‖ ≤ ηdη for all

i = 0, 1, . . . , d , α ∈ {1, . . . , d}� with � ∈ N. In the following, Assumption 2.2, 2.3 and 2.4
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plays an important role for the analysis of “product of neural networks" in the construction
of the approximation with asymptotic expansion.

Remark 4 In particular, Assumption 2.3 is satisfied for the cases Ad(x) = Id and Ad(x) =
s(d)Id with a function s : N → R. For instance, the case Ad(x) = Id corresponds to
the d-dimensional heat equation when Vd,0 ≡ 0. Also, the SDEs with the diffusion matrix
Vd = (1/

√
d)Id discussed in Section 5.1 and Section 5.2 of [9] and Section 5.2 of [13]

are examples of (3.1) (or (3.6)). For those cases, the neural network approximations in
Assumption 2 are not necessary, since Vd,i , i = 1, . . . , d and hence Ad do not depend on the
state variable x , whence Vd,i,ε and A−1

d,ε are Vd,i and A−1
d themselves. Furthermore, in such

cases (e.g. the high-dimensional heat equations) the asymptotic expansion will be simply
obtained (usually as the Gaussian approximation), which are exactly reduced to the methods
in Beck et al. [2] and Gonon et al. [11].

The main result of the paper is summarized as follows.

Theorem 1 (Deep learning-based asymptotic expansion overcomes the curse of dimension-
ality) Suppose that Assumptions 1 and 2 hold. Let m ∈ N. For d ∈ N, consider the SDE
(3.1) on the d-dimensional Wiener space and let udλ ∈ C([0, T ] × R

d ,R) given by (3.3) be
a solution to the Kolmogorov PDE (3.4). Then we have

sup
x∈[a,b]d

|udλ(t, x) − E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )]| = O(λm+1t (m+1)/2). (3.19)

Furthermore, for t ∈ (0, T ] and λ ∈ (0, 1], there exist {φε,d}ε∈(0,1),d∈N ⊂ N and c > 0
which depend only on a, b,C,m, κ, t and λ, such that for all ε ∈ (0, 1) and d ∈ N, we have
R(φε,d) ∈ C(Rd ,R), C(φε,d) ≤ cε−cdc and

sup
x∈[a,b]d

|E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )] − R(φε,d)(x)| ≤ ε. (3.20)

Proof See Sect. 4. ��
We provide the weight Mm

d,λ(t, x, B
d
t ) with m = 0, 1 in Theorem 1 for our scheme (the

expression for general m will be given in Sect. 4 below). That is, for d ∈ N, λ ∈ (0, 1], t > 0
and x ∈ R

d ,

M0
d,λ(t, x, B

d
t ) = 1, (3.21)

M1
d,λ(t, x, B

d
t ) = 1 + λ

d∑

α1,α2=0

d∑

α3=1

d∑

�, j=1

1

2t
Ld,α1V

�
d,α2

(x)[A−1
d ]� j (x)V j

d,α3
(x)

{Bd,α1
t Bd,α2

t Bd,α3
t − t Bd,α1

t 1α2=α3 �=0 − t Bd,α2
t 1α1=α3 �=0 − t

× Bd,α3
t 1α1=α2 �=0}, (3.22)

where

Ld,0 =
d∑

j=1

V j
d,0(·)

∂

∂x j
+ 1

2

d∑

i, j1, j2=1

V j1
d,i (·)V j2

d,i (·)
∂2

∂x j1∂x j2
, (3.23)

Ld,i =
d∑

j=1

V j
d,i (·)

∂

∂x j
, i = 1, . . . , d. (3.24)
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Hence, theweight form = 0, i.e.M0
d,λ(t, x, B

d
t ) = 1provides a simple (but coarse)Gaussian

approximation, and the Malliavin weight for m = 1 will be worked as the correction term
for the Gaussian approximation. The derivation is provided in the next section.

4 Proofs of Propositions 1, 2 and Theorem 1

We give the proofs of Propositions 1, 2 and Theorem 1. Before providing full proofs, we
show their brief outlines below.

• Proposition 1 (Asymptotic expansion)

– take a family of uniformly non-degenerate functionals Fd,λ,x
t = (Xd,λ,x

t − x)/λ,
λ ∈ (0, 1], as the family Xd,λ,x

t , λ ∈ (0, 1] itself degenerates when λ ↓ 0, and
consider the expansion Fd,λ,x

t = Fd,0,x
t + · · · in D

∞.
– expand δy(F

d,λ,x
t ) ∼ δy(F

d,0,x
t ) + · · · in D

−∞ and take expectation to obtain the

expansion of the density pF
d,λ,x
t (y) = E[δy(Fd,λ,x

t )] ∼ E[δy(Fd,0,x
t )] + · · · in R.

– derive precise expression of the right-hand side of E[ fd(Xd,λ,x
t )] = cd,λ,t

0 + cd,λ,t
1 +

· · · + cd,λ,t
m + Residuald,λ,t

m by using Malliavin’s integration by parts.
– give a precise estimate for Residuald,λ,t

m (x) (w.r.t λ, t and the dimension d) uniformly
in x by using the key inequality onMalliavinweight (Lemma 5 inAppendixA)which
yields a sharp upper bound of Residuald,λ,t

m (x).

• Proposition 2 (Representation and property of Malliavin weight)

– use the formula (3.14) to prove that cd,λ,t
0 + cd,λ,t

1 + · · · + cd,λ,t
m above can be

represented by an expectation E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )]with aMalliavinweight

Mm
d,λ(t, x, B

d
t ) constructed by polynomials of Brownian motion.

– check that the moment of the Malliavin weightMm
d,λ(t, x, B

d
t ) grows polynomially

in d from the representation.

• Theorem 1 (Deep learning-based asymptotic expansion overcomes the curse of dimen-
sionality)

– (0) for d ∈ N, first check the expansion E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )] obtained in

Proposition 1 and 2 gives an approximation for uλ
d(t, x) on the cube [a, b]d with a

sharp asymptotic error bound.
– (1) for an error precision ε, construct an approximation E[ fd(X̄d,λ,x

t )Mm
d,λ

(t, x, Bd
t )] ≈ E[ f δ

d (X̄d,λ,x,δ
t )Mm

d,λ,δ(t, x, B
d
t )] on the cube [a, b]d by using stochas-

tic calculus, where f δ
d , X̄

d,λ,x,δ
t andMm

d,λ,δ(t, x, B
d
t ) are given by replacing {Vd,i }i ,

A−1
d , {Vd,i,α}i,α with their neural network approximations {V δ

d,i }i , A−1
d,δ , {Vd,i,α,δ}i,α

with δ = (εcd−c) for some c > 0 independent of ε and d .
– (2) for an error precision ε, construct a realization of theMonte-Carlo approximation

E[ f δ
d (X̄d,λ,x,δ

t )Mm
d,λ,δ

(t, x, Bd
t )] ≈ 1

M

∑M
�=1 f δ

d (X̄d,λ,x,δ,(�)
t (ωε,d))Mm,δ

d,λ (t, x, Bd,(�)
t (ωε,d)) on the cube

[a, b]d with a choice M = O(ε−cdc) for some c > 0 independent of ε and d , by
using stochastic calculus.

– (3) for an error precision ε, construct a realization of the deep neural network approx-
imation 1

M

∑M
�=1 f δ

d (X̄d,λ,x,δ,(�)
t (ωε,d))Mm,δ

d,λ (t, x, Bd,(�)
t (ωε,d)) ≈ R(φε,d)(x) on
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the cube [a, b]d whose complexity is bounded by C(φε,d) ≤ cε−cdc for some c > 0
independent of ε and d , where ReLU calculus (Lemma 9, 10, 12 in Appendix B) is
essentially used.

– apply (0), (1), (2) and (3) to obtain the main result.

In the proof, we frequently use an elementary result: supx∈[a,b]d‖x‖ ≤ d1/2 max{|a|, |b|},
which is obtained in the proof of Corollary 4.2 of [11].

4.1 Proof of Proposition 1

For x ∈ R
d , t ∈ (0, T ] and λ ∈ (0, 1], let Fd,λ,x

t = (Fd,λ,x,1
t , . . . , Fd,λ,x,d

t ) ∈ (D∞(
d))d

be given by Fd,λ,x, j
t = (Xd,λ,x, j

t − x j )/λ, j = 1, . . . , d . We note that {Fd,λ,x
t }λ is a

family of uniformly non-degenerate Wiener functionals (see Theorem 3.4 of [40]). Then,
for T ∈ S ′(Rd), the composition T (Fd,λ,x

t ) is well-defined as an element of D−∞(
d),

and the density of Fd,λ,x
t , namely pF

d,λ,x
t ∈ S(Rd) has the representation pF

d,λ,x
t (y) =

D−∞〈δy(Fd,λ,x
t ), 1〉D−∞ for y ∈ R

d . Then, for x ∈ R
d , t > 0 and λ ∈ (0, 1], it holds that

E[ fd(Xd,λ,x
t )] =

∫

Rd
fd(x + λy)D−∞〈δy(Fd,λ,x

t ), 1〉D−∞dy. (4.1)

For x ∈ R
d , t ∈ (0, T ], let Fd,0,x

t = ∑d
i=0Vd,i (x)B

d,i
t . Thus, for S ∈ S ′(Rd), the composi-

tion S(Fd,λ,x
t ) is well-defined as an element of D−∞(
d) and has an expansion:

D−∞〈δy(Fd,λ,x
t ), 1〉D∞ = D−∞〈δy(Fd,0,x

t ), 1〉D∞

+
m∑

j=1

λ j

j !
∂ j

∂λ j D
−∞〈δy(Fd,λ,x

t ), 1〉D∞|λ=0 + λm+1Ed,λ,x,y
m,t , (4.2)

for x ∈ R
d , t > 0 and λ ∈ (0, 1], where

Ed,λ,x,y
m,t =

∫ 1

0

(1 − u)m

m!
∂m+1

∂ηm+1 D
−∞〈δy(Fd,η,x

t ), 1〉D∞|η=λudu. (4.3)

By the integration by parts (2.7) and Theorem 2.6 of [35] yield that

1

j !
∂ j

∂λ j D
−∞〈δy(Fd,λ,x

t ), 1〉D∞|λ=0

=
j∑

i (k),γ (k)

D−∞
〈

δy(F
d,0,x
t ), Hγ (k)

(

Fd,0,x
t ,

k∏

�=1

1

i�!
∂ i�

∂λi�
Fd,λ,x,γ�
t |λ=0

)〉

D∞ . (4.4)

where
∑ j

i (k),γ (k) = ∑ j
k=1

∑
i (k)=(i1,...,ik ) s.t . i1+···+ik= j,ie≥1

∑
γ (k)=(γ1,...,γk )∈{1,··· ,d}k 1

k! With
a calculation

1

i !
∂ i

∂λi
Fd,λ,x, j
t |λ=0 =

∑

|α|=i+1

Ld,α1 · · · Ld,αr−1V
j
d,αr

(x)Bd,α
t (4.5)
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for j = 1, . . . , d and i ∈ N, it holds that

D−∞〈δy(Fd,λ,x
t ), 1〉D∞ = D−∞〈δy(Fd,0,x

t ), 1〉D∞

+
m∑

j=1

λ j
j∑

i (k),γ (k)

D−∞〈δy(Fd,0,x
t ), Hγ (k)

×
(

Fd,0,x
t ,

k∏

�=1

∑

|α|=i�

Ld,α1 · · · Ld,αr−1V
γ�

d,αr
(x)Bd,α

t

)

〉D∞

+ λm+1Ed,λ,x,y
m,t , (4.6)

Again by the integration by parts (2.7), ∂m+1

∂ηm+1 D−∞〈δy(Fd,λ,x
t ), 1〉D∞|η=λu (with λu ∈ (0, 1])

in Ed,λ,x,y
m,t in (4.3) is given by a linear combination of the expectations of the form

D−∞
〈

δy(F
d,λu,x
t ), Hγ

(

Fd,λu,x
t ,

∏k
�=1

1
β�!∂

β�
η Fd,η,x,γ�

t |η=λu

)〉

D∞

with k ≤ m + 1, γ ∈ {1, . . . , d}k and β1, . . . , βk ≥ 1 such that
∑k

�=1β� = m + 1. By the
inequality of Lemma 5 with k = 0 in Appendix A, we have for all p ≥ 1 and multi-index γ ,
there are c > 0, p1, p2, p3 > 1 and r ∈ N satisfying

‖Hγ (Fd,λ,x
t ,G)‖p ≤ cdc‖ det(σ Fd,λ,x

t )−1‖rp1‖DFd,λ,x
t ‖2dr−|γ |

|γ |,p2,Hd ‖G‖|γ |,p3 , (4.7)

for all G ∈ D
∞, t ∈ (0, T ], λ ∈ (0, 1] and x ∈ [a, b]d . In order to show the upper bound of

the weight appearing in the residual term of the expansion, we list the following results:

Lemma 1

1. For all p > 1, there exists κ1 > 0 such that for all d ∈ N, t ∈ (0, T ], x ∈ [a, b]d and
λ ∈ (0, 1],

‖ det(σ Fd,λ,x
t )−1‖p ≤ κ1d

κ1 t−d . (4.8)

2. For all p > 1, r ∈ N, there exists κ2 > 0 such that for all d ∈ N, t ∈ (0, T ], x ∈ [a, b]d
and λ ∈ (0, 1],

‖DFd,λ,x
t ‖r ,p,H ≤ κ2d

κ
2 t

1/2. (4.9)

3. For all � ∈ N, p > 1 and r ∈ N, there exists η > 0 such that for all d ∈ N, t ∈ (0, T ],
x ∈ [a, b]d and λ ∈ (0, 1],

‖∂�
λF

d,λ,x
t ‖r ,p ≤ ηdηt (�+1)/2. (4.10)

Proof For d ∈ N, letVd : Rd → R
d×d be such thatVd = (Vd,1, . . . , Vd,d) and forλ ∈ (0, 1],

let V λ
d : Rd → R

d×d be such that V λ
d = (V λ

d,1, . . . , V
λ
d,d). Moreover, for d ∈ N, we use the

notation J0→t = ∂
∂x X

d,λ,x
t = ( ∂

∂xi
Xd,λ,x, j
t )1≤i, j≤d for x ∈ R

d , t > 0 and λ ∈ (0, 1].
1. Note that for d ∈ N, t ∈ (0, T ], x ∈ R

d and λ ∈ (0, 1], we have

σ Fd,λ,x
t =

∫ t

0
[Ds(X

d,λ,x
t − x)/λ][Ds(X

d,λ,x
t − x)/λ]�ds (4.11)

=
∫ t

0
J0→t J

−1
0→sVd(X

d,λ,x
s )Vd(X

d,λ,x
s )� J−1

0→s
�
J�
0→t ds. (4.12)
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Under the condition σλ
d (·)σ λ

d (·)� ≥ λ2 Id , (i.e. Vd(·)Vd(·)� ≥ Id ) in Assumption 1.3,
we have that there is c > 0 such that

sup
x∈[a,b]d

‖(det σ Fd,λ,x
t )−1‖p ≤ cdct−d , (4.13)

for all d ∈ N, t ∈ (0, T ] and λ ∈ (0, 1], by Theorem 3.5 of Kusuoka and Stroock [22].
2. We recall that for d ∈ N, λ ∈ (0, 1] and 0 ≤ s < t , Ds(X

d,λ,x
t − x)/λ =

J0→t J
−1
0→sV (Xd,λ,x

s ). Then, there is c > 0 such that

sup
x∈[a,b]d

‖DFd,λ,x
t ‖k,p,Hd ≤ cdct1/2, (4.14)

for all d ∈ N, t ∈ (0, T ] and λ ∈ (0, 1], by Theorem 2.19 of Kusuoka and Stroock [22].
3. Note that

1

�!
∂�

∂λ�
Xd,λ,x,r
t =

�−1∑

i (k),γ (k)

∫ t

0

k∏

e=1

1

ie!
∂ ie

∂λie
Xd,λ,x,γe
t

d∑

j=0

∂γ (k)
V r
j (X

d,λ,x
s )dBd, j

s (4.15)

+ λ

�∑

i (k),γ (k)

∫ t

0

k∏

e=1

1

ie!
∂ ie

∂λie
Xd,λ,x,γe
t

d∑

j=0

∂γ (k)
Vr
j (X

d,λ,x
s )dBd, j

s .

(4.16)

Since the above is a linear SDE, it has the explicit form and we have

sup
x∈[a,b]d

∥
∥
∥
1

�!
∂�

∂λ�
Xd,λ,x
t

∥
∥
∥
k,p

≤ cdct�/2, (4.17)

for some c > 0 independent of t and d , due to the result:

sup
x∈[a,b]d

∥
∥
∥

�−1∑

i (k),γ (k)

∫ t

0
J0→t J

−1
0→s

k∏

e=1

1

ie!
∂ ie

∂λie
Xd,λ,x,γe
t

d∑

j=0

∂γ (k)
Vj (X

d,λ,x
s )dBd, j

s

∥
∥
∥
k,p

≤ cdct�/2, (4.18)

which is obtained by using Lemmas 6 and 7 in Appendix A. Then, the process

1

�!
∂�

∂λ�
Fd,λ,x
t =

�∑

i (k),γ (k)

∫ t

0

k∏

e=1

1

ie!
∂ ie

∂λie
Xd,λ,x,γe
t

d∑

j=0

∂γ (k)
Vj (X

d,λ,x
s )dBd, j

s , t

≥ 0, x ∈ R
d (4.19)

satisfies

sup
x∈[a,b]d

∥
∥
∥
1

�!
∂�

∂λ�
Fd,λ,x
t

∥
∥
∥
k,p

≤ cdct (�+1)/2, (4.20)

for some c > 0 independent of t and d .

��
Using above, we have that for all k ≤ m + 1, γ ∈ {1, . . . , d}k and β1, . . . , βk ≥ 1 such

that
∑k

�=1β� = m + 1, p > 1 and multi-index γ , there exists ν > 0 such that

‖Hγ (Fd,λ,x
t ,

∏k
�=1

1
β�!∂

β�

λ Fd,λ,x,γ�
t )‖p ≤ νdν t−k/2t (β1+···+βk+k)/2 = νdν t (m+1)/2, (4.21)
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for all t ∈ (0, T ], x ∈ [a, b]d and λ ∈ (0, 1]. Let us define rd,λ,x
m,t for t ∈ (0, T ], x ∈ [a, b]d

and λ ∈ (0, 1] from (4.1) and (4.6) as

rd,λ,x
m,t = E[ fd (Xd,λ,x

t )]

− E
[
fd (X̄d,λ,x

t )
{
1 +

m∑

j=1

λ j
( j)∑

β(k),γ (k)

H
γ (k)

×
( d∑

i=0

Vd,i (x)B
d,i
t ,

k∏

�=1

∑

|α|=β�

Ld,α1 · · · Ld,αr−1V
γ�
d,αr

(x)Bd,α
t

)}]

= λm+1
∫ 1

0

(1 − u)m

m! E[ fd (X̃d,λ,u,x
t )Wd,λ,u,x

m+1,t ]du, (4.22)

where X̃d,λ,u,x
t = x + λFd,λu,x

t , u ∈ [0, 1] and

Wd,λ,u,x
m+1,t =

[m+1]∑

β(k),γ (k)

Hγ

(

Fd,λu,x
t ,

k∏

�=1

1

β�!∂
β�
η Fd,η,x,γ�

t |η=λu

)

, u ∈ [0, 1], (4.23)

with
∑[m+1]

β(k),γ (k) := (m + 1)!∑ j
k=1

∑
β(k)=(β1,...,βk )s.t .

∑k
�=1 β�= j,βi≥1

∑
γ (k)=(γ1,...,γk )∈{1,··· ,d}k

1
k! .

Here, Xd,λ,u,x
t , u ∈ [0, 1] and Wd,λ,u,x

m+1,t , u ∈ [0, 1] satisfy that for p ≥ 1, there exists
η > 0 such that

supx∈[a,b]d ,u∈[0,1]‖Xd,λ,u,x
t ‖p ≤ ηdη and supx∈[a,b]d ,u∈[0,1]‖Wd,λ,u,x

m+1,t ‖p ≤ ηdηt (m+1)/2

for all λ ∈ (0, 1] and t > 0. Therefore, there exists c > 0 such that

sup
x∈[a,b]d

|rd,λ,x
m,t | ≤ cdcλm+1t (m+1)/2, (4.24)

for all λ ∈ (0, 1] and t ∈ (0, T ], and then the assertion of Proposition 1 holds.

4.2 Proof of Proposition 2

For d ∈ N and for m ∈ N, first note that the following representation holds:

E
[
fd(X̄

d,λ,x
t )Hγ

( d∑

i=0

Vd,i (x)B
d,i
t ,

k∏

�=1

∑

|α|=β�

Ld,α1 · · · Ld,αr−1V
γ�

d,αr
(x)Bd,α

t

)]
(4.25)

=
∫

Rd
fd(x + λy)D−∞

〈

δy

( d∑

i=0

Vd,i (x)B
d,i
t

)
(4.26)

Hγ

( d∑

i=0

Vd,i (x)B
d,i
t ,

k∏

�=1

∑

|α|=β�

Ld,α1 · · · Ld,αr−1V
γ�

d,αr
(x)Bd,α

t

)〉

D∞dy, (4.27)

for t ∈ (0, T ], x ∈ R
d , λ ∈ (0, 1], k = 1, . . . , j ≤ m, β1, . . . , βk ≥ 2 such that β1 +

· · · + βk = j + k, and γ ∈ {1, . . . , d}k . Using the Itô formula for the products of iterated
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integrals (Proposition 5.2.3 of [21] for example) and the formula from (3.14): for a multi-
index γ ∈ {1, . . . , d}p and a multi-index α ∈ {0, 1, . . . , d}q ,

D−∞
〈

δy

( d∑

i=0

Vd,i (x)B
d,i
t

)

, Hγ

( d∑

i=0

Vd,i (x)B
d,i
t ,B

d,α
t

)〉

D∞

= D−∞
〈

δy

( d∑

i=0

Vd,i (x)B
d,i
t

)

,

d∑

j1,..., j|γ |,β1,...,β|γ |=1

1

t |γ |
|γ |∏

q=1

[A−1
d ]γq , jq (x)V

jq
d,βq

(x)

1

k!B
d,(α1,...,αk ,β1,...,β|γ |)
t

〉

D∞

iteratively, we have (3.15) and the representation (3.16).
We can see that for p ≥ 1 and e = 1, . . . , n(m), ‖ge(t)Polye(Bd

t )‖p = O(tνr /2) for some
νr ≥ 1, and by Assumption 1 and 2 and the expression of he, there is η > 0 independent of
d such that |he(x)| ≤ ηdη for all e = 1, . . . , n(m) and x ∈ [a, b]d . Then, for p ≥ 1, there
exists c > 0 independent of d such that

‖Mm
d,λ(t, x, B

d
t )‖p ≤ cdc, (4.28)

uniformly in (t, x) ∈ (0, T ] × [a, b]d and λ ∈ (0, 1].

4.3 Proof of Theorem 1

The first statement is immediately obtained by combining Propositions 1 with 2:

sup
x∈[a,b]d

|udλ(t, x) − E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )]| = O(λm+1t (m+1)/2). (4.29)

Hereafter, we fix t ∈ (0, T ] and λ ∈ (0, 1]. For d ∈ N, x ∈ R
d , δ ∈ (0, 1), let

X̄d,λ,x,δ
t = x + λ

∑d
i=0V

δ
d,i (x)B

d,i
t (4.30)

and Mm,δ
d,λ (t, x, Bd

t ) ∈ D
∞(
d) be a functional which has the form:

Mm,δ
d,λ (t, x, Bd

t ) = 1 +∑
e≤n(m)λ

p(e)ge(t)hδ
e(x)Polye(B

d
t ), (4.31)

where hδ
e : R

d → R, e = 1, . . . , n(m) are functions constructed by some products of
A−1
d,δ , {V δ

d,i }0≤i≤d and {V δ
d,i,α}0≤i≤d,α∈{1,...,d}�,�≤2m in Assumption 2, by replacing with A−1

d ,
{Vd,i }0≤i≤d and {Vd,i,α}0≤i≤d,α∈{1,...,d}�,�≤2m in Proposition 2, satisfying

E[ fd(X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )]

= E

[

fd(X̄
d,λ,x,δ
t )

{

1 +
m∑

j=1

λ j
j∑

k=1

∑

β1+···+βk= j+k,βi≥2

∑

(γ1,...,γk )∈{1,...,d}k

1

k!

H(γ1,...,γk )

( d∑

i=1

V δ
d,i (x)B

d,i
t ,

k∏

�=1

∑

|α|=β�

Lδ
d,α1

· · · Lδ
d,αr−1

V δ,γ�

d,αr
(x)Bd,α

t

)}]

. (4.32)

Next, we prepare the following lemmas (Lemmas 2, 3 and 4) to prove the second assertion
((3.20)) in Theorem 1.
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Lemma 2 There exists c1 > 0 which depends only on a, b,C,m, κ, t and λ such that for all
ε ∈ (0, 1), d ∈ N, δ = O(εc1d−c1),

sup
x∈[a,b]d

|E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )] − E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )]| ≤ ε, (4.33)

where f δ
d = R(ψ

fd
δ ) ∈ C(Rd ,R) is defined in Assumption 2.4.

Proof In the proof, we use a generic constant c > 0 which depends only on a, b,C,m, κ, t
and λ. Note that for x ∈ [a, b]d ,

|E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )] − E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )]|

≤ |E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )] − E[ fd(X̄d,λ,x,δ

t )Mm
d,λ(t, x, B

d
t )]|

+|E[ fd(X̄d,λ,x,δ
t )Mm

d,λ(t, x, B
d
t )] − E[ f δ

d (X̄d,λ,x,δ
t )Mm

d,λ(t, x, B
d
t )]|

+|E[ f δ
d (X̄d,λ,x,δ

t )Mm
d,λ(t, x, B

d
t )] − E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )]|. (4.34)

By 2 of Assumption 2 (with Assumption 1), it holds that

|E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )] − E[ fd(X̄d,λ,x,δ

t )Mm
d,λ(t, x, B

d
t )]|

≤ C‖X̄d,λ,x
t − X̄d,λ,x,δ

t ‖2‖Mm
d,λ(t, x, B

d
t )‖2 ≤ δcdc, (4.35)

for all x ∈ [a, b]d . By 4 of Assumption 2 (with Assumption 1), it holds that

|E[ fd(X̄d,λ,x,δ
t )Mm

d,λ(t, x, B
d
t )] − E[ f δ

d (X̄d,λ,x,δ
t )Mm

d,λ(t, x, B
d
t )]| ≤ δcdc, (4.36)

for all x ∈ [a, b]d . Here, the estimate ‖Mm
d,λ(t, x, B

d
t )‖2 ≤ cdc in (3.18) is used in (4.35)

and (4.36). By 2, 3, 4 of Assumption 2 (with Assumption 1), (3.16) and (4.31), we have that
for p ≥ 1,

‖Mm
d,λ(t, x, B

d
t ) − Mm,δ

d,λ (t, x, Bd
t )‖p ≤ δcdc (4.37)

and

|E[ f δ
d (X̄d,λ,x,δ

t )Mm
d,λ(t, x, B

d
t )] − E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )]| ≤ δcdc, (4.38)

for all x ∈ [a, b]d . Then, by taking δ = (1/3)c−1
1 εc1d−c1 with c1 = max{1, c} where c is

the maximum constant appearing in (4.35), (4.36) and (4.38)), we have

sup
x∈[a,b]d

|E[ fd(X̄d,λ,x
t )Mm

d,λ(t, x, B
d
t )] − E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )]| ≤ ε. (4.39)

��
Lemma 3 For d ∈ N, t ∈ (0, T ] and M ∈ N, let Bd,(�)

t , � = 1, . . . , M be independent

identically distributed random variables such that Bd,(�)
t

law= Bd
t . There exists c2 > 0 which

depends only on a, b,C,m, κ, t and λ such that for ε ∈ (0, 1), d ∈ N and M = O(ε−c2dc2),
there is ωε,d ∈ 
d satisfying

sup
x∈[a,b]d

∣
∣
∣
∣E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )] − 1

M

M∑

�=1

f δ
d (X̄d,λ,x,δ,(�)

t (ωε,d))Mm,δ
d,λ (t, x, Bd,(�)

t

× (ωε,d))

∣
∣
∣
∣ ≤ ε, (4.40)

where δ = O(εc1d−c1) with the constant c1 in Lemma 2.
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Proof There exists a constant c > 0 which depends only on a, b,C,m, κ, t and λ such that
for all x ∈ [a, b]d and M ∈ N,

E
[∣
∣
∣E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )] − 1

M

M∑

�=1

f δ
d (X̄d,λ,x,δ,(�)

t )Mm,δ
d,λ (t, x, Bd,(�)

t )

∣
∣
∣
2]

(4.41)

≤ 1

M
E[| f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )|2] ≤ cdc

M
.

(4.42)

Then, by choosing c2 = max{1, c}, we have that for all ε ∈ (0, 1), d ∈ N andM = c2ε−c2dc2 ,

E
[∣
∣
∣E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )] − 1

M

M∑

�=1

f δ
d (X̄ x,δ,(�)

t )Mm,δ
d (t, x, B(�)

t )

∣
∣
∣
2]1/2 ≤ ε,

(4.43)

for all x ∈ [a, b]d , and therefore, there is ωε,d ∈ 
d satisfying

sup
x∈[a,b]d

∣
∣
∣E[ f δ

d (X̄d,λ,x,δ
t )Mm,δ

d,λ (t, x, Bd
t )]

− 1

M

M∑

�=1

f δ
d (X̄ x,δ,(�)

t (ωε,d))Mm,δ
d (t, x, B(�)

t (ωε,d))

∣
∣
∣ ≤ ε. (4.44)

��
Lemma 4 For d ∈ N, t ∈ (0, T ] and M ∈ N, let Bd,(�)

t , � = 1, . . . , M be independent identi-

cally distributed random variables such that Bd,(�)
t

law= Bd
t . There exist {φε,d}ε∈(0,1),d∈N ⊂ N

and c > 0 (which depends only on a, b,C,m, κ, t and λ) such that for all ε ∈ (0, 1), d ∈ N,
we have C(φε,d) ≤ cε−cdc, and for a realization ωε,d ∈ 
d given in Lemma 3, it holds that

sup
x∈[a,b]d

∣
∣
∣
1

M

M∑

�=1

f δ
d (X̄d,λ,x,δ,(�)

t (ωε,d ))Mm,δ
d (t, x, Bd,(�)

t (ωε,d )) − R(φε,d )(x)
∣
∣
∣ ≤ ε, (4.45)

where δ = O(εc1d−c1) and M = O(ε−c2dc2) with the constants c1 and c2 in Lemmas 2 and
3.

Proof In the proof, we use a generic constant c > 0 which depends only on a, b,C,m, κ, t
and λ. Let ε ∈ (0, 1), d ∈ N, � = 1, . . . , M , let δ = O(εc1d−c1), M = O(ε−c2dc2)
where c1 and c2 are the constants appearing in Lemmas 2 and 3, let ωε,d be a realization
given in Lemma 3, and let bd,(�) = Bd,(�)

t (ωε,d). Since there exists η
(�)
δ,d ∈ N such that

R(η
(�)
δ,d)(x) = x + λR(ψ

V0
δ,d)(x)t + λ

∑d
i=1R(ψ

Vi
δ,d)(x)b

d,(�),i for x ∈ R
d and C(η

(�)
δ,d) =

O(δ−cdc) (by Lemma 9 in Appendix B), there exists ψ
δ,d
1,(�) ∈ N such that R(ψ

δ,d
1,(�))(x) =

R(ψ
f

δ,d)(R(η
(�)
δ,d)(x)) = f δ

d (X̄d,λ,x,δ
t (ωε,d)) for x ∈ R

d and C(ψ
δ,d
1,(�)) = O(δ−cdc) (by

Lemma 10 in Appendix B). Next, we recall that by (4.31), the weightMm,δ
d,λ (t, x, bd,(�)), x ∈

R
d has the formMm,δ

d,λ (t, x, bd,(�)) = 1 +∑
e≤n(m)λ

p(e)ge(t)hδ
e(x)Polye(b

d,(�)) constructed

by some products of A−1
d,δ , {V δ

d,i }0≤i≤d and {V δ
d,i,α}0≤i≤d,α∈{1,...,d}�,�≤2m in Assumption 2.

Using Lemmas 12, 9 in Appendix B and Assumption 2, there is a neural network ψ
ε,d
2,(�) ∈ N
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such that supx∈[a,b]d |Mm,δ
d,λ (t, x, bd,(�)) − R(ψ

ε,d
2,(�))(x)| ≤ ε/2 and C(ψ

ε,d
2,(�)) = O(ε−cdc).

Hence, we have

sup
x∈[a,b]d

| f δ
d (X̄d,λ,x,δ,(�)

t (ωε,d ))Mm,δ
d,λ

(t, x, bd,(�)) − R(ψ
δ,d
1,(�))(x)R(ψ

ε,d
2,(�))(x)| ≤ ε/2. (4.46)

We again use Lemma 12 in Appendix B to see that there exists �
ε,d
(�) ∈ N such that

|R(ψ
δ,d
1,(�))(x)R(ψ

ε,d
2,(�))(x) − R(�

ε,d
(�) )(x)| ≤ ε/2, (4.47)

for all x ∈ [a, b]d , and C(�
ε,d
(�) ) = O(ε−cdc). Finally, applying Lemma 9 gives the desired

result, i.e. there exist {φε,d}ε∈(0,1),d∈N ⊂ N and c > 0 such that for all ε ∈ (0, 1), d ∈ N,
we have C(φε,d) ≤ cε−cdc, and for a realization ωε,d ∈ 
d given in Lemma 3, it holds that

sup
x∈[a,b]d

∣
∣
∣
1

M

M∑

�=1

f δ
d (X̄d,λ,x,δ,(�)

t (ωε,d))Mm,δ
d (x, Bd,(�)

t (ωε,d)) − R(φε,d)(x)
∣
∣
∣ ≤ ε.

(4.48)

��
Proof The first assertion (in (3.19)) follows from (4.29). The second assertion (in (3.20)) is
obtained by combining Lemmas 2, 3 and 4. ��

5 Deep learning implementation

We briefly provide the implementation scheme for the approximation in Theorem 1.
Let ξ be a uniformly distributed random variable, i.e. ξ ∈ U ([a, b]d), and define
X

ξ
t = ξ + λ

∑d
i=0 Vi,d(ξ)Bi,d

t , t ≥ 0. For t > 0, the m-th order asymptotic expansion
of Theorem 1 can be represented by

um(t, ·) = argminψ∈C([a,b]d )E[|ψ(ξ) − f (Xξ
t )Mm

d,λ(t, ξ, Bd
t )|2], (5.1)

which is obtained by Theorem 1 of this paper combining with Proposition 2.2 of Beck et al.
[2]. We construct a deep neural network uNN ,θ∗

(t, ·) to approximate the function um(t, ·)
given by for a depth L ∈ N and N0, N1, . . . , NL ∈ N,

uNN ,θ (t, x) = AW θ
L ,Bθ

L
◦ �NL−1 ◦ AW θ

L−1,B
θ
L−1

◦ · · · ◦ �N1 ◦ AW θ
1 ,Bθ

1
(x), x ∈ R

d , (5.2)

whereAW θ
k ,Bθ

k
(x) = W θ

k x+Bθ
k , x ∈ R

Nk−1 , k = 1, . . . , L with ((W θ
1 , Bθ

1 ), . . . , (W θ
L , Bθ

L)) ∈
N N0,N1,...,NL

L given by

AW θ
k ,Bθ

k
(x) =

⎛

⎜
⎜
⎝

θq+1 · · · θq+Nk−1

.

.

.
. . .

.

.

.

θq+(Nk−1)Nk−1+1 · · · θq+Nk Nk−1

⎞

⎟
⎟
⎠

⎛

⎜
⎝

x1
.
.
.

xNk−1

⎞

⎟
⎠+

⎛

⎜
⎜
⎝

θq+Nk Nk−1+1

.

.

.

θq+Nk Nk−1+Nk

⎞

⎟
⎟
⎠ , (5.3)

and the optimized parameter θ∗ obtained by the following minimization problem:

θ∗ = argmin
θ∈R

∑L
�=1 N�(N�−1+1) E[|uNN ,θ (t, ξ) − f (Xξ

t )Mm
d,λ(t, ξ, Bd

t )|2]. (5.4)
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Table 1 Comparison in deep learning methods for d = 100

AE m = 1 Beck et al. n = 16 Beck et al. n = 32

Relative error 0.0048 0.0056 0.0017

Runtime 75.49s 217.79s 352.79s

In the implementation of the deep neural network approximation, we use stochastic gradient
descent method and the Adam optimizer [20] as in Sects. 3 and 4 of Beck et al. [2]. In
Appendix C, we list the sample code of the scheme for a high-dimensional PDE with a
nonlinear coefficient in Sect. 6.2 (which includes linear coefficient case).

6 Numerical examples

In the section, we perform numerical experiments in order to demonstrate the accuracy of our
scheme.We compare the deep learning method of Beck et al. [2] where the Euler–Maruyama
scheme is used with the stochastic gradient descent method with the Adam optimizer. All
experiments are performed in Google Colaboratory using Tensorflow.

6.1 High-dimensional Black–Scholes model

6.1.1 Uncorrelated case

First,we examine our scheme for a high-dimensionalBlack–Scholesmodel (geometricBrow-
nian motion) whose corresponding PDE is given by

∂t u
d
λ(t, x) = λ

d∑

i=1

μxi
∂

∂xi
udλ(t, x) + λ2

2

d∑

i=1

c2i x
2
i

∂2

∂x2i
udλ(t, x), udλ(0, x) = fd (x), (6.1)

where fd(x) = max{max{x1 − K }, . . . ,max{xd − K }}. Let d = 100, t = 1.0, a = 99.0,
b = 101.0, K = 100.0, λ = 0.3, μ = 1/30 (or r := λ × μ = 0.01), ci = 1.0 (or
σi := λ× ci = 0.3), i = 1, . . . , 100. We approximate the function udλ(t, ·) (or the maximum
option price e−r t udλ(t, ·) in financial mathematics) on [a, b]d by constructing a deep neural
network (1 input layer with d-neurons, 2 hidden layers with 2d-neurons each and 1 output
layer with 1-neuron) based on Theorem 1 with m = 1 and Sect. 5. For the experiment,
we use the batch size M = 1, 024, the number of iteration steps J = 5, 000 and the
learning rate γ ( j) = 10−11[0,0.3J ]( j) + 10−21(0.3J ,0.6J ]( j) + 10−31(0.6J ,J ]( j), j ≤ J for
the stochastic gradient descent method. After we estimate the function udλ(t, ·), we input x0 =
(100.0, . . . , 100.0) ∈ [a, b]d to check the accuracy.We compute the mean of 10 independent
trials and estimate the relative error, i.e. |(udeep,dλ (t, x0)−ure f ,dλ (t, x0))/u

re f ,d
λ (t, x0)|where

the reference value ure f ,dλ (t, x0) is computed by the Itô formula with Monte-Carlo method
with 107-paths. The same experiment is applied to the method of Beck et al. [2]. Table 1
provides the numerical results (the relative errors and the runtimes) for AE m = 1 and the
method in Beck et al. [2] with the Euler–Maruyama discretization n = 16, 32 (Beck et al.
n = 16, Beck et al. n = 32 in the table).
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Table 2 Comparison in deep learning methods for d = 100

AE m = 1 Beck et al. n = 32 Beck et al. n = 64

Relative error 0.0039 0.0042 0.0035

Runtime 83.56s 470.73s 848.43s

6.1.2 Correlated case

We next provide a numerical example for a Black-Scholes model with correlated noise in
high-dimension. Let us consider the following PDE:

∂t u
d
λ(t, x)=λ

d∑

i=1

μxi
∂

∂xi
udλ(t, x)+λ2

2

d∑

i, j,k=1

σ i
kσ

j
k xi x j

∂2

∂xi∂x j
udλ(t, x), udλ(0, x)= fd(x),

(6.2)

where fd(x) = max{K − 1
d

∑d
i=1 xi , 0} and σ = [σ j

k ]k, j ∈ R
d×d satisfies σi j = 0 for i < j ,

σi i > 0 for i = 1, . . . , d and

σσ� =

⎛

⎜
⎜
⎜
⎝

1 ρ · · · ρ

ρ 1 ρ ρ
...

...
. . .

...

ρ ρ ρ 1

⎞

⎟
⎟
⎟
⎠

∈ R
d×d . (6.3)

Let d = 100, t = 1.0, a = 99.0, b = 101.0, K = 90.0, λ = 0.3, μ = 0.0, ρ = 0.5.
We approximate the function udλ(t, ·) (the basket option price in financial mathematics) on
[a, b]d by constructing a deep neural network (1 input layer with d-neurons, 2 hidden layers
with 2d-neurons each and 1 output layer with 1-neuron) based on Theorem 1 (m = 1)
with the expansion technique of the basket option price given in Section 3.1 of Takahashi
[32] and Sect. 5. For the experiment, we use the batch size M = 1, 024, the number of
iteration steps J = 5, 000 and the learning rate γ ( j) = 5.0 × 10−21[0,0.3J ]( j) + 5.0 ×
10−31(0.3J ,0.6J ]( j) + 5.0 × 10−41(0.6J ,J ]( j), j ≤ J for the stochastic gradient descent
method. After we estimate the function udλ(t, ·), we input x0 = (100.0, . . . , 100.0) ∈ [a, b]d
to check the accuracy. We compute the mean of 10 independent trials and estimate the
relative error, i.e. |(udeep,dλ (t, x0) − ure f ,dλ (t, x0))/u

re f ,d
λ (t, x0)| where the reference value

ure f ,dλ (t, x0) is computed by the Itô formula with Monte-Carlo method with 107-paths. The
same experiment is applied to the method of Beck et al. [2]. Table 2 provides the numerical
results (the relative errors and the runtimes) for AE m = 1 and the method in Beck et al. [2]
with the Euler–Maruyama discretization n = 32, 64 (Beck et al. n = 32, Beck et al. n = 64
in the table).

6.2 High-dimensional CEVmodel (nonlinear volatility case)

We consider a Kolmogorov PDE with nonlinear diffusion coefficients whose corresponding
stochastic process is called the CEV model:

∂t u
d
λ(t, x) = λ

d∑

i=1

μxi
∂

∂xi
udλ(t, x) + λ2

2

d∑

i=1

γ 2
i c

2
i x

2βi
i

∂2

∂x2i
udλ(t, x), udλ(0, x) = fd(x),

(6.4)

123



27 Page 22 of 31 Partial Differential Equations and Applications (2023) 4 :27

Table 3 Comparison in deep learning methods for d = 100

AE m = 1 Beck et al. n = 64 Beck et al. n = 128

Relative error 0.0006 0.0019 0.0006

Runtime 83.09s 764.76s 1265.26s

where fd(x) = max{max{x1 − K }, . . . ,max{xd − K }}. Let d = 100, t = 1.0, a = 99.0,
b = 101.0, K = 100.0, λ = 0.3, μ = 1/30 (or r := λ × μ = 0.01), βi = 0.5, γi = K 1−βi ,
ci = 1.0 (or σi := λ × ci = 0.3), i = 1, . . . , d . We approximate the function udλ(t, ·) (or the
maximum option price e−r t udλ(t, ·)) on [a, b]d by constructing a deep neural network (1 input
layerwith d-neurons, 2 hidden layerswith 2d-neurons each and 1 output layerwith 1-neuron,)
based on Theorem 1 with m = 1. For the experiment, we use the batch size M = 1024, the
number of iteration steps J = 5000 and the learning rate γ ( j) = 5.0 × 10−11[0,0.3J ]( j) +
5.0×10−21(0.3J ,0.6J ]( j)+5.0×10−31(0.6J ,J ]( j), j ≤ J for the stochastic gradient descent
method. After we estimate the function udλ(t, ·), we input x0 = (100.0, . . . , 100.0) ∈ [a, b]d
to check the accuracy. We compute the mean of 10 independent trials and estimate the
relative error, i.e. |(udeep,dλ (t, x0) − ure f ,dλ (t, x0))/u

re f ,d
λ (t, x0)| where the reference value

ure f ,dλ (t, x0) is computed by Monte-Carlo method with the Euler–Maruyama scheme with
time-steps 210 and 107-paths. The same experiment is applied to the method of Beck et al.
[2]. Table 3 provides the numerical results (the relative errors and the runtimes) for AEm = 1
and the method in Beck et al. [2] with the Euler-Maruyama discretization n = 32, 64 (Beck
et al. n = 32, Beck et al. n = 64 in the table).

6.3 High-dimensional Hestonmodel

We finally show an example for a small time asymptotic expansion for a high-dimensional
Heston model:

∂t u
2d
λ (t, x) = L2d,λu2dλ (t, x), u2dλ (0, x) = f2d(x), (6.5)

where f2d(x) = max{max{x1 − K }, . . . ,max{x2d−1 − K }} and L2d,λ is a generator given
by

L2d,λ = λ

d∑

i=1

[

κi (θi − x2i )
∂

∂x2i

]

+ λ2
d∑

i=1

[
1

2
x2i x

2
2i−1

∂2

∂x22i−1

+ ρiνi x2i−1x2i
∂2

∂x2 j−1∂x2i
+ 1

2
ν2i x2

∂2

∂x22i

]

. (6.6)

Let d = 25 (2d = 50), t = 0.5, a = 99.0, b = 101.0, a′ = 0.035, b′ = 0.045,
K = 100.0, λ = 1.0, κi = 1.0, θi = 0.04, νi = 0.1, ρi = −0.5, i = 1, . . . , d . We
approximate the function udλ(t, ·) on [a, b]d by constructing a deep neural network (1 input
layer with 2d-neurons, 2 hidden layers with 4d-neurons each and 1 output layer with 1-
neuron) based on Theorem 1 with m = 1 and Sect. 5. For the experiment, we use the
batch size M = 1, 024, the number of iteration steps J = 5, 000 and the learning rate
γ ( j) = 5.0× 10−21[0,0.3J ]( j) + 5.0× 10−31(0.3J ,0.6J ]( j) + 5.0× 10−41(0.6J ,J ]( j), j ≤ J
for the stochastic gradient descent method. After we estimate the function udλ(t, ·), we input
x0 = (100.0, 0.04, . . . , 100.0, 0.04) ∈ ([a, b]×[a′, b′])d to check the accuracy.We compute
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Table 4 Comparison in deep learning methods for 2d = 50

AE m = 1 Beck et al. n = 16 Beck et al. n = 32

Relative error 0.0006 0.0034 0.0007

Runtime 46.96s 119.37s 201.61s

the mean of 10 independent trials and estimate the relative error, i.e. |(udeep,dλ (t, x0) −
ure f ,dλ (t, x0))/u

re f ,d
λ (t, x0)| where the reference value ure f ,dλ (t, x0) is computed by Monte-

Carlo method with the Euler–Maruyama scheme with time-steps 210 and 107-paths. The
same experiment is applied to the method of Beck et al. [2]. Table 4 provides the numerical
results (the relative errors and the runtimes) for AE m = 1 and the method in Beck et al. [2]
with the Euler–Maruyama discretization n = 16, 32 (Beck et al. n = 16, Beck et al. n = 32
in the table).

7 Conclusion

In the paper, we introduced a new spatial approximation for solving high-dimensional PDEs
without the curse of dimensionality, where an asymptotic expansion method with a deep
learning-based algorithm is effectively applied. The mathematical justification for the spatial
approximation was provided using Malliavin calculus and ReLU calculus. We checked the
effectiveness of our method through numerical examples for high-dimensional Kolmogorov
PDEs.

More accurate deep learning-based implementations based on the method of the paper
should be studied as a next research topic. We believe that higher order asymptotic expansion
or higher order weak approximation (discretization) will give robust computation schemes
without the curse of dimensionality, which should be proved mathematically in the future
work. Also, applying our method to nonlinear problems as in [14, 15] will be a challenging
and important task.
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Appendix A: Malliavin calculus

In the following, we provide precise estimates of Wiener functionals, which are useful for
proving and computing the deep learning-based approximation with our asymptotic expan-
sion.

Lemma 5 Let d ∈ N, F ∈ (D∞(
d))d be a non-degenerate Wiener functional, G ∈
D

∞(
d), α = (α1, . . . , α�) ∈ {1, . . . , d}� with length � ∈ N. For k ∈ N ∪ {0} and p ≥ 1,
there exist c = c(k, p) > 0, q1 = q1(k, p) > 1, q2 = q2(k, p, d) > 1, q3 = q3(k, p) > 1
and r = r(k) ∈ N such that

‖Hα(F,G)‖k,p ≤ cdc‖ det(σ F )−1‖rq1‖DF‖2dr−|α|
k+|α|,q2,Hd ‖G‖k+|α|,q3 . (A.1)

Proof For i ∈ {1, . . . , d}, we have

‖H(i)(F,G)‖k,p ≤
d∑

j=1

‖δ([σ F ]−1
i j DF jG)‖k,p ≤ ck,p

d∑

j=1

‖[σ F ]−1
i j DF jG‖k+1,p,Hd ,

(A.2)

for some universal constant ck,p > 0. Let p1 and p2 be real numbers such that p−1
1 + p−1

2 =
p−1. Hereafter, we use a generic constant C > 0 such that C = cdc for some c > 0
depending on k and p, whose value varies from line to line. Since it holds that

‖[σ F ]−1
i j DF j‖k+1,p1,Hd ≤ C‖ det(σ F )−1‖e2(k+2)p1‖DF‖2de−1

k+1,2(2d(k+2)−1)p1,Hd , (A.3)

for some e ∈ N depending on k, we have

‖H(i)(F,G)‖k,p ≤ C‖ det(σ F )−1‖e2(k+2)p1
‖DF‖2de−1

k+1,2(2d(k+2)−1)p1,Hd ‖G‖k+1,p2 . (A.4)

For α = (α1, . . . , α�) ∈ {1, . . . , d}�, we have
‖H(α1,...,α�)(F,G)‖k,p = ‖H(α�)(F, H(α1,...,α�−1)(F,G))‖k,p

≤ C‖ det(σ F )−1‖e2(k+2)p1‖DF‖2de−1
k+1,2(2d(k+2)−1)p1,Hd‖H(α1,...,α�−1)(F,G)‖k+1,p2 .

(A.5)

Then, iterating this procedure, we have that for k ∈ N∪{0} and p ≥ 1, there exist q1, q2, q3 >

1 and r ∈ N such that

‖Hα(F,G)‖k,p ≤ C‖ det(σ F )−1‖rq1‖DF‖2dr−|α|
k+|α|,q2,Hd ‖G‖k+|α|,q3 . (A.6)

��
Lemma 6 For d ∈ N, i = 1, 2, let {Gd,x,i

t }t∈(0,T ],x∈Rd ⊂ D
∞(
d) satisfy that for k ≥ 1

and p ∈ [1,∞), there exist ci , si > 0 independent of d such that supx∈[a,b]d‖Gd,x,i
t ‖k,p ≤

ci dci t si /2 for all t ∈ (0, T ]. Then, we have that for k ≥ 1 and p ∈ [1,∞), there exists c
independent of d such that for all t ∈ (0, T ], supx∈[a,b]d‖

∏2
i=1 G

d,x,i
t ‖k,p ≤ rdr t (s1+s2)/2

and supx∈[a,b]d‖
∑2

i=1 G
d,x,i
t ‖k,p ≤ cdctmin{s1,s2}/2.

Proof We only prove the former case. By Proposition 1.5.6 of Nualart [29], for k ≥ 1 and
p ∈ [1,∞), ‖∏2

i=1G
d,x,i
t ‖k,p ≤ ck,p‖Gd,x,1

t ‖k,p1‖Gd,x,2
t ‖k,p2 for some constant ck,p > 0

depending only on k and p, where p1, p2 > 1 satisfies 1/p1 + 1/p2 = 1/p. Then, by the
assumptions, supx∈[a,b]d‖

∏2
i=1 G

d,x,i
t ‖k,p ≤ rdr t (s1+s2)/2. ��
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Lemma 7 For d ∈ N, let {ud,x
t }t∈(0,T ],x∈Rd ⊂ D

∞(
d) satisfy that for t ∈ (0, T ], x ∈
R
d , j = 1, . . . , d,

∫ t
0 u

d,x
s dBd, j

s ∈ D
∞(
d) and that for k ≥ 1 and p ∈ [1,∞), there

exist q, ν > 0 independent of d such that supx∈[a,b]d‖ud,x
t ‖k,p ≤ qdq tν/2 for all t ∈

(0, T ]. Then, for k ≥ 1 and p ∈ [1,∞), there exists c > 0 independent of d such that
for all t ∈ (0, T ], supx∈[a,b]d‖

∫ t
0 u

d,x
s dBd,0

s ‖k,p ≤ cdct (ν+2)/2 and for j = 1, . . . , d,

supx∈[a,b]d‖
∫ t
0 u

d,x
s dBd, j

s ‖k,p ≤ cdct (ν+1)/2.

Proof We only prove the latter case. Note that for r = 1, . . . , k, Dr
∫ t
0 u

d,x
s dBd, j

s =
Dr−1ud,x· + ∫ t

0 Drud,x
s dBd, j

s . Then, it holds that E[‖Dr
∫ t
0 u

d,x
s dBd, j

s ‖p
(Hd )⊗r ]

= E[‖Dr−1ud,x· ‖p
(Hd )⊗r ] +E[‖ ∫ t0 Drud,x

s dBd, j
s ‖p

(Hd )⊗r ]. Here, E[‖Dr−1ud,x· ‖p
(Hd )⊗r ] ≤

ηdηt p−1
∫ t
0 E[‖Dr−1ud,x

s ‖p
(Hd )⊗(r−1) ]ds for some η (independent of d) and

E[‖∫ t0 Drud,x
s dBd, j

s ‖p
(Hd )⊗r ] ≤ cpt p/2−1

∫ t
0 E[‖Drud,x

s ‖p
(Hd )⊗r ]ds for some cp > 0 (inde-

pendent of d) by Hölder inequality and Burkholder-Davis-Gundy inequality. By the assump-
tions, supx∈[a,b]d E[‖Dr−1ud,x· ‖p

(Hd )⊗r ] ≤ ηdηt p−1
∫ t
0q

pd pqs pν/2ds ≤ cdct p(ν/2+1) and

supx∈[a,b]d E[‖∫ t0 Drud,x
s dBd, j

s ‖p
(Hd )⊗r ] ≤ cpt p/2−1

∫ t
0q

pd pqs pν/2ds ≤ cdct p(ν+1)/2. Then,

we have supx∈[a,b]d‖
∫ t
0 u

d,x
s dBd, j

s ‖k,p ≤ cdct (ν+1)/2. ��

Appendix B: ReLU calculus

Appendix B gives some results on ReLU calculus which are basic in the analysis of our paper.
We prepare the following result from Lemma A.7 of [5].

Lemma 8 Let n, d, L ∈ N and for i = 1, . . . , n, let di ∈ N and φi ∈ N with L(φi ) = L,
dimin(φi ) = d and dimout(φi ) = di . Then, there exists ψ ∈ N such that L(ψ) = L,
C(ψ) ≤ ∑n

i=1C(φi ), dimin(ψ) = d and dimout(ψ) = ∑n
i=1di and

R(ψ)(x) = (R(φ1)(x), . . . ,R(φn)(x)), x ∈ R
d . (B.1)

Also, we list Lemma 5.1 in [12] and Lemma 5.3 in [6].

Lemma 9 Let L, n, N0, NL ∈ N, {a�}n�=1 ⊂ R and {φ�}n�=1 ⊂ N be DNNs such that
L(φ�) = L, dimin(φ�) = N0 and dimout(φ�) = NL for � = 1, . . . , n. Then, there exists
ψ ∈ N such that L(ψ) = L, C(ψ) ≤ n2C(φ1) and

R(ψ)(x) =
n∑

�=1

a�R(φ�)(x), x ∈ R
N0 . (B.2)

Lemma 10 Let L1, L2, N 1
0 , N 2

0 , N 1
L1

, N 2
L2

∈ N and φ1, φ2 ∈ N be DNNs such thatL(φ1) =
L1, L(φ2) = L2, dimin(φ1) = N 1

0 , dimout(φ1) = N 1
L1
, dimin(φ2) = N 2

0 , dimout(φ2) = N 2
L2

and N 2
L2

= N 1
0 . Then, there exists ψ ∈ N such that L(ψ) = L1 + L2, C(ψ) ≤ 2(C(φ1) +

C(φ2)) and

R(ψ)(x) = R(φ1)(R(φ2)(x)), x ∈ R
N2
0 . (B.3)

The following result of Theorem 6.3 of [6] is useful.
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Lemma 11 Let M ∈ N ∩ [2,∞) and D ∈ [1,∞). There exist DNNs {ψε}ε∈(0,1) ⊂ N
and a constant c > 0 (independent of M and D) such that for all ε ∈ (0, 1), C(ψε) ≤
cM(| log(ε)| + M log(D) + log(M)) and

sup
x1,...,xM∈[−D,D]

|R(ψε)(x1, . . . , xM ) −
M∏

i=1

xi | ≤ ε. (B.4)

In our analysis, the next result will be applied.

Lemma 12 Let a ∈ R, b ∈ (a,∞), c > 0, m ∈ N ∩ [2,∞), d, L ∈ N and {φ�}m�=1 ⊂ N
be DNNs such that for i ∈ {1, . . . ,m}, L(φi ) = L, dimin(φi ) = d, dimout(φi ) = 1,
C(φi ) ≤ cdc and supx∈[a,b]d |R(φi )(x)| ≤ cdc. Then, there exist {ψε,d}ε∈(0,1),d∈N ⊂ N and
κ > 0 (independent of d) such that for all ε ∈ (0, 1) and d ∈ N, we have C(ψε,d) ≤ κε−1dκ

and

sup
x∈[a,b]d

∣
∣
∣R(ψε,d)(x) −

m∏

�=1

R(φ�)(x)
∣
∣
∣ ≤ ε. (B.5)

Proof First we use Lemma 11. Let ϕ(d) := cdc. Then, there exist a set of DNNs
{�ϕ(d),ε}ε∈(0,1) ⊂ N and a constant c′ > 0 (independent of m and ϕ(d)) such that for
all ε ∈ (0, 1), C(�ϕ(d),ε) ≤ c′m2ε−1dc and

|R(�ϕ(d),ε)(R(φ1)(x), . . . ,R(φm)(x)) −
m∏

�=1

R(φ�)(x)| ≤ ε, (B.6)

for any x ∈ [a, b]d . By Lemma 8, there exists � ∈ N such that C(�) ≤ mcdc and

R(�)(x) = (R(φ1)(x), . . . ,R(φm)(x)), x ∈ R
d . (B.7)

By Lemma 10, there exist {ψε,d}ε∈(0,1),d∈N ⊂ N and κ > 0 such that for all ε ∈ (0, 1) and
d ∈ N, we have C(ψε,d) ≤ κε−1dκ ,

R(ψε,d)(x) = R(�ϕ(d),ε)(R(�)(x)), x ∈ R
d , (B.8)

and

sup
x∈[a,b]d

∣
∣
∣R(ψε,d)(x) −

m∏

�=1

R(φ�)(x)
∣
∣
∣ ≤ ε. (B.9)

��

Appendix C: Sample code

We show the sample Python code used in the numerical computation in Sect. 6.2.
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Listing 1 model.py

1 import tensorflow as tf
2 from tensorflow. contrib. layers . python . layers import

initializers
3 from tensorflow. python . training. moving_averages \
4 import assign_moving_average
5 from tensorflow. contrib. layers . python . layers import utils
6
7 import time
8
9 import numpy as np
10 import math
11 from scipy.stats import multivariate_normal as normal
12 from tensorflow.python.ops import control_flow_ops
13 from tensorflow import random_normal_initializer as norm_init
14 from tensorflow import random_uniform_initializer as unif_init
15 from tensorflow import constant_initializer as con
16
17
18 def neural_net(y, neurons, name, is_training,
19 reuse=tf.AUTO_REUSE, decay =0.9, dtype=tf. float32):
20 def batch_normalization(x):
21 beta = tf. get_variable( ’beta’, [x. get_shape()[ -1]],

dtype,
22 tf. zeros_initializer ())
23 gamma = tf. get_variable(
24 ’gamma’, [x. get_shape()[ -1]], dtype,
25 tf. ones_initializer ())
26 mv_mean = tf. get_variable(
27 ’mv_mean’, [x. get_shape()[ -1]], dtype=dtype,
28 initializer=tf. zeros_initializer (), trainable= False)
29 mv_var = tf. get_variable(
30 ’mv_var’, [x. get_shape()[ -1]], dtype =dtype,
31 initializer=tf. ones_initializer(), trainable= False)
32 mean, variance = tf.nn. moments(x, [0], name=’moments’)
33 tf. add_to_collection(
34 tf. GraphKeys. UPDATE_OPS,
35 assign_moving_average(mv_mean, mean, decay,
36 zero_debias= True ))
37 tf. add_to_collection(
38 tf. GraphKeys. UPDATE_OPS,
39 assign_moving_average(mv_var, variance, decay,
40 zero_debias= False ))
41 mean, variance = utils. smart_cond( is_training,
42 lambda : (mean, variance

),
43 lambda : (mv_mean,

mv_var ))
44 return tf.nn. batch_normalization(x, mean, variance,
45 beta, gamma, 1e-6)
46 def layer(x, out_size, activation):
47 w = tf. get_variable(
48 ’weights’, [x. get_shape(). as_list()[ -1], out_size

],
49 dtype, initializers. xavier_initializer ())
50 return activation( batch_normalization(tf. matmul (x, w )))
51 with tf. variable_scope(name, reuse = reuse ):
52 y = batch_normalization(y)
53 for i in range (len( neurons) - 1):
54 with tf. variable_scope(’layer_%i_’ % (i + 1)):
55 y = layer (y, neurons[i], tf.nn. relu)
56 with tf. variable_scope(’layer_%i_’ % len( neurons)):
57 return layer (y, neurons[ -1], tf. identity)
58
59 def nn_model(XT, Xini, weight, K, f, neurons, dtype=tf. float32):
60
61 nn = neural_net(Xini, neurons, ’v’, True, dtype= dtype )
62 loss = (nn - tf. stop_gradient(f(K,XT)*weight) ) ** 2
63
64 return tf. reduce_mean(loss)
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65
66 def simulate(Simtype, T, n, d, X_min, X_max, X_valid, K, SDE, f,

neurons, train_steps, batch_size, lr_boundaries, lr_values,
epsilon=1e-8):

67
68 tf. reset_default_graph ()
69
70 Xini = tf.random_uniform((batch_size, d), minval=X_min, maxval=

X_max)
71 XT, weight = SDE(Xini, T, d, n, Simtype)
72
73 loss = nn_model(XT, Xini, weight, K, f, neurons)
74
75 global_step = tf. get_variable(
76 ’global_step’, [], tf.int32,
77 tf. zeros_initializer(), trainable= False )
78
79 learning_rate = tf. train . piecewise_constant(
80 global_step, lr_boundaries, lr_values)
81 update_ops = tf. get_collection(
82 tf. GraphKeys. UPDATE_OPS, ’v’)
83 with tf. control_dependencies( update_ops):
84 train_op = tf. train . AdamOptimizer(
85 learning_rate, epsilon= epsilon). minimize(
86 loss, global_step= global_step)
87
88 with tf. Session() as sess:
89
90 sess. run(tf. global_variables_initializer ())
91 var_list_n = tf. get_collection(
92 tf. GraphKeys. GLOBAL_VARIABLES, ’v’)
93
94 for _ in range(train_steps):
95 sess. run(train_op)
96
97 v = sess.run(neural_net(tf.cast(X_valid, tf.float32),

neurons, ’v’, False))
98
99 return np.reshape(v, [-1])

Listing 2 CEV.py

1 from model import simulate
2 import numpy as np
3 import time
4 import tensorflow as tf
5
6 def f(K, x):
7 return tf.exp(-r*T)* tf.maximum(tf.reduce_max(x, 1, keepdims =

True) -K, 0.0)
8
9 def SDE(Xini, T, d, n, Simtype):
10
11 X = Xini
12 Weight = 1.0
13
14 if Simtype == ’Euler-Maruyama’:
15 for _n in range (n):
16 dW = tf. random_normal(( batch_size , d), stddev =np.

sqrt(T/n))
17 X = X + r*X*T/n + sigma *K**(1.0-beta)*X**beta*dW
18 X = tf.maximum(X, 0.0)
19
20 elif Simtype == ’AE’:
21 dW = tf. random_normal(( batch_size, d), stddev =np. sqrt(T)

)
22 Weight = M_weight(X, T, dW)
23 X = X + r*X*T + sigma *K**(1.0-beta)*X**beta*dW
24 X = tf.maximum(X, 0.0)
25
26 return X, Weight
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65
66 def M_weight(x, T, dW):
67
68 inv = 1.0/(sigma *K**(1.0-beta)*x**beta)
69 L0V0 = r**2*x
70 L0Vi = r*beta*sigma*K**(1.0-beta)*x**beta + 1.0/2.0*beta*(beta

-1.0)*sigma**3*K**(3.0*(1.0-beta))*x**(3.0*beta-2.0)
71 LiV0 = r*sigma*K**(1.0-beta)*x**beta
72 LiVi = beta*sigma**2*K**(2.0*(1.0-beta))*x**(2.0*beta-1.0)
73 w11 = dW*dW-T
74 w001 = dW*T**2.0
75 w011 = w11*T
76 w111 = dW**3-3.0*dW*T
77
78 A = 1.0 / (2.0 * T) * tf.reduce_sum(inv * ( L0V0 * w001 + L0Vi *

w011 + LiV0 * w011 + LiVi * w111 ) ,1 ,keepdims=True)
79
80 return 1.0 + A
81
82 T, d, K = 1.0, 100, 100.0
83 r, sigma, beta = 0.01, 0.3, 0.5
84 X_min, X_max = 99.0, 101.0
85
86 grid = 10
87 X_valid = np.ones((1,d))*np.expand_dims(np.linspace(X_min, X_max,

grid+1), axis=1)
88
89 batch_size = 1024
90 train_steps = 5000
91 neurons = [2*d, 2*d, 1]
92 lr_values = [0.5 , 0.05, 0.005]
93 lr_boundaries = [train_steps // 10 * 3 ,train_steps // 10 * 6]
94
95 for Simtype in [’Euler-Maruyama’, ’AE’]:
96 if Simtype == ’Euler-Maruyama’:
97 n_range = [1,2,4,8,16,32,64,128]
98 else:
99 n_range = [1]

100
101 for n in n_range:
102 print (’batch size, train steps, lr_values 1, lr_values 2,

lr_values 3, d, x, K, T, n, value, time, Simtype’)
103 t_0 = time. time ()
104 vv = simulate(Simtype, T, n, d, X_min, X_max, X_valid, K,

SDE, f, neurons, train_steps, batch_size,lr_boundaries,
lr_values)

105 t_1 = time. time ()
106
107 for i in range(grid+1):
108 print (’%i, %i, %.1f, %.2f, %.3f, %i, %.1f, %.1f, %.1f, %

i, %.6f, %.2f, %s’ %(batch_size, train_steps,
lr_values[0], lr_values[1], lr_values[2], d, X_valid[
i,0], K, T, n, vv[i], t_1 - t_0, Simtype))

109 print(’’)
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