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Abstract
The objective in this paper is to determine analytically a maximally sustainable pro-rata
density-dependent harvest rate of a hypothetical biological species on the spatial boundary
of a protected habitat (i.e. no harvesting of the species is allowed in the interior of the
spatial domain). This is achieved by analysing an initial-boundary value model involving a
reaction-diffusion equation in which the reaction term is a concave function of the population
density, depends periodically on time, and varies spatially. Themodel is equipped with Robin
boundary conditions modelling a continuum of potential pro-rata density-dependent harvest
rates on the spatial boundary. A set of necessary and sufficient criteria for the existence of
a unique positive periodic attractor of solutions to the model is established by employing
the theory of comparison principles and monotone iteration schemes. Thereafter, a long-time
asymptotic analysis of the population density is undertaken by invoking classical results
from the theory of eigenproblems. In this way, the aforementioned necessary and sufficient
conditions are rendered more practical in terms of an upper bound on the maximal allowable
pro-rata density-dependent harvest rate. Moreover, important properties of the time-periodic
attractor of solutions are established to guarantee the existence of a density pro-rata harvest
rate which maximises the total harvest per unit time at equilibrium.
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1 Introduction

It is well known that as the global population increases, so too does its demand for natural
resources—both on land and in the oceans. As a result, the stock of marine fish have, for
instance, been in sharp decline since the early 1900s as a direct result of over-harvesting
these populations [11, 17]. In recent years, marine ecologists and fishery industrialists have
debated the necessity of enforcing harvesting quotas or no-harvesting protection zones to
protect marine species in a bid to circumvent the collapse of fishing industries [2, 9]. In
an attempt to contribute objectively to the aforementioned debate, mathematical models are
often derived which are capable of describing the spatio-temporal evolution of biological
species.

There are two commonly adopted approaches in such a modelling endeavour, namely
the derivation of abstract models and the construction of practical models [13]. Abstract
models are derived with a conscious effort directed at keeping assumptions to a minimum,
resulting in an apparently simple mathematical model, allowing for an elegant mathematical
treatment of the model [18]. In contrast, practical models are based on realistic assumptions
and usually involve inelegant parametrisations of the interrelationships of a large number of
variables. Simulationsmay be employed to capture the long-term spatio-temporal behaviours
of solutions to suchmodels in special cases [18]. In this paper,we focus squarely on an abstract
model, more specifically—a reaction-diffusion model.

There have been a number of studies in which reaction-diffusion models were employed
to determine the effects of harvesting on the prediction of persistence or extinction of a bio-
logical species [5–8, 12, 14]. The objectives of these studies have included findingmaximally
allowable harvest rates distributed over the interior of the species habitat and determining
the size of a protection zone within the habitat such that unrestricted harvesting may occur in
the interior of the habitat outside of this protection zone. There have also been studies aimed
at finding a spatial harvesting distribution in the interior of the habitat which maximises the
total catch of the species over time at equilibrium. In contrast, there have been comparatively
few studies in which harvesting is allowed only on the boundary of an otherwise protected
zone. We consider this type of harvesting scenario in the current paper. We show that the
creation of a protection zone per se may not be enough to guarantee survival of the species
if it is harvested too heavily on the spatial boundaries of this protection zone.

We consider a single biological population exploiting natural resources for the purpose
of survival in a bounded, m-dimension isotropic spatial domain � with a smooth boundary
∂� (typically, in applications, m = 2 or 3). Let u(x, t) denote the population density of the
population at position x = [x1, . . . , xm]T ∈ � at time t ∈ [0,∞). Then the spatio-temporal
evolution of the population density u may be modelled abstractly by the initial-boundary
value problem

D.E.
∂u

∂t
= �u + g(u, x, t), x ∈ � \ ∂�, t ≥ 0, (1)

B.C.
∂u

∂η
+ κu = 0, x ∈ ∂�, t ≥ 0, (2)

I.C. u(x, 0) = f (x) > 0, x ∈ �, (3)

where� is the Laplace operator, κ is a positive constant called the pro-rata boundary harvest
rate, ∂/∂η is the directional derivative of u in the direction of η, an outward-pointing unit
normal vector on the boundary surface ∂� of �, and f (x) is a prescribed initial condition
with a finite p-norm. In this paper we assume the reaction term g(u, x, t) to be Lipschitz
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continuous in u, measurable in x and periodic in t . In particular, it is assumed that there exists
a positive real number T such that the function g is T -periodic in t , in the sense that

g(u, x, t) = g(u, x, t + kT ) for all u ≥ 0, t ≥ 0 and x ∈ �, for any k ∈ N. (4)

It is also assumed that

g(u, x, t) and
∂g

∂u
(u, x, t)

are Lipschitz continuous and of class Cα(� × [0, T ]) uniformly for u in a bounded subset
of R, and that

g(0, x, t) = g(1, x, t) = 0 and
∂2g

∂u2 (u, x, t) < 0 (5)

for all u > 0, x ∈ � and any t > 0, so that u ≡ 0 is a subsolution of (1)–(3) and that any
constant greater than 1 is a supersolution of (1)–(3), implying that the state space u ∈ [0, 1]
is positively invariant. The notions of sub- and supersolutions are defined as in Theorem 1.19
of [3].

In [19], we considered a special case of (1)–(3) where � was taken as the unit interval
and the reaction term g was allowed to depend only on the local population density (i.e. it
was explicitly independent of space and time). In this paper, we consider the more general
situation where the habitat � may consist of any finite number of spatial dimensions, where
the reaction term g is spatially heterogeneous, and depends periodically in time. In this
context, we establish a maximally sustainable pro-rata harvest rate for which a globally
stable periodic attractor of the model exists, attracting all other solutions. Moreover, we
establish important properties of this periodic attractor guaranteeing the existence of a pro-
rata harvest rate which maximises the total harvest over a single interval of periodicity. The
model we considered in [19] and the more general model in this paper are different from
those in previous studies where reaction-diffusion models were employed to determine the
effects of species harvesting on the prediction of persistence or extinction of a biological
species. The main difference is that in this paper we assume that the habitat � is protected
and that the population may only be harvested on the spatial boundary ∂�. We are not aware
of literature pertaining models where the population is only harvested on boundary of its
habitat ∂�.

The remainder of this paper is organised as follows. A necessary and sufficient condition
is established in Sect. 2 (in terms of the sign of the principal eigenvalue) for the existence of
a unique positive T -periodic attractor of solutions to (1)–(3) corresponding to any non-zero
initial condition f (x). This is followed by a long-term asymptotic analysis of the solution
to (1)–(3), in which the necessary and sufficient condition of Sect. 2 for the existence of
a unique positive, T -periodic attractor of solutions to (1)–(3) is rendered more practical in
Sect. 3 by relating it to a maximal allowable pro-rata boundary harvest rate κ∗. Thereafter,
we establish a number of fundamental properties of the aforementioned periodic attractor in
Sect. 4. These properties include establishing that the periodic attractor of solutions to (1)–(3)
is spatially symmetric, provided that � and g(u, x, t) are also spatially symmetric, and that
this periodic attractor is a monotonically decreasing function of the pro-rata harvest rate κ .
Finally, we establish the existence of a pro-rata harvest rate in Sect. 5 which maximises the
total harvest yield over a single interval of periodicity. The paper finally closes in Sect. 6
with a brief summary of its contents.
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2 Existence of a unique positive periodic solution

The function g(u, x, t) may be expressed as a Taylor expansion around the point u ≡ 0 as

g(u, x, t) = g(0, x, t) + ∂g

∂u
(0, x, t)u + g1(u, x, t)u2 (6)

for some negative, continuous function g1(u, x, t) as a result of the conditions in (5), upon
which the questions of the existence and stability of a positive T -Periodic solution to (1)–(3)
may be settled in terms of the sign of the principal eigenvalue μ = μ1 of the corresponding
linearised periodic eigenvalue problem

∂φ

∂t
− �φ − b(x, t)φ = μφ, x ∈ � \ ∂�, (7)

∂φ

∂η
+ κφ = 0, x ∈ ∂�, (8)

φT -periodic in t, (9)

where

b(x, t) = ∂g

∂u
(0, x, t). (10)

It is known, for any function g(u, x, t) for which b(x, t) in (10) is T -periodic, that the
principal eigenvalue μ = μ1 of (7) is real and that its corresponding eigenfunction φ1(x, t)
is positive on � × (0,∞) [10, 16]. The stability properties of the trivial solution u ≡ 0 in
terms of the principal eigenvalue of (7)–(9), is summarised as follows.

Lemma 2.1 (Stability of the trivial solution to (1)–(3) [10, p. 67]) If the principal eigenvalue
μ = μ1 of (7)–(9) is strictly positive, then the trivial solution u ≡ 0 to (1)–(3) is linearly
stable and hence locally asymptotically stable. If, however, this eigenvalue is strictly negative,
then the aforementioned trivial solution is linearly unstable and hence globally unstable.

The following properties of sub- and supersolutions of (1)–(3) are required in order to derive a
general result on the existence and asymptotic stability of a time-periodic solution to (1)–(3).

Lemma 2.2 (Sub- and supersolutions [3, p. 80]) If u, u ∈ C2,1 (� × (0, T ]) ∩
C

(
� × [0, T ]) with

∂u

∂t
− �u ≥ g(u, x, t), (11)

∂u

∂t
− �u ≤ g(u, x, t), (12)

u(x, 0) ≥ u(x, 0) on �, and either u(x, t) ≥ u(x, t) or

κu + ∂u

∂η
≥ κu + ∂u

∂η
(13)

on ∂� × (0, T ], then either u ≡ u or u > u uniformly on � × (0, T ].
If the functions u and u satisfy the hypotheses of Lemma 2.2, then u is a supersolution and
u is a subsolution of (1)–(3). The following lemma guarantees the existence of at least one
stable periodic solution between any subsolution and supersolution to (1)–(3).
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Lemma 2.3 (Existence of a stable periodic solution [10, p. 67]) If strict sub- and superso-
lutions u < u to (1)–(3) exist, then there exists a stable T -periodic solution u∗ ∈ (u, u)

to (1)–(3) for all x ∈ � and all t > 0.

This result implies that if μ1 < 0, then the function u = εφ1 is a strict subsolution to (1)–(3)
for any positive, sufficiently small constant ε, while any constant larger than the carrying
capacity u ≡ 1 is a strict supersolution to (1)–(3). It therefore follows from Lemmas 2.1
and 2.3 that there exists at least one stable T -periodic solution u∗ ∈ (u, u) to (1)–(3) for all
x ∈ � and all t > 0 if μ1 < 0. It similarly follows from Lemma 2.1 that the trivial solution
u ≡ 0 is asymptotically stable if μ1 > 0.

We employ a standard monotone iteration generation scheme to show that there, in fact,
exists a unique, stable positive T -periodic solution to (1)–(3). By starting at a suitable initial
iteration u(0), it is possible to construct a sequence of solutions u(1), u(2), u(3), . . . succes-
sively to the linear initial-boundary value problems

D.E.
∂u(n)

∂t
− u(n)� = g(u(n−1), x, t), x ∈ � \ ∂�, t > 0, (14)

B.C.
∂u(n)

∂η
+ κu(n) = 0, x ∈ ∂�, t ≥ 0, (15)

I.C. u(n)(x, 0) = f (x) ≥ 0, x ∈ � (16)

for all n ∈ N. Note that since g(u, x, t) is T -periodic for all t > 0, it follows that
g(u(n−1), x, t) in (14) is also T -periodic for all n ∈ N.Denote the sequence corresponding to
u(0) = u by {u(n)}n∈N0 , where u is a supersolution of (1)–(3), and call it an upper sequence.
Similarly, denote the sequence corresponding to u(0) = u by {u(n)}n∈N0 , where u is a sub-
solution of (1)–(3), and call it a lower sequence. It can be shown that if, for some bounded
functions c(x, t) and c(x, t), the function g(u, x, t) satisfies the condition

− c(x, t)(u1 − u2) ≤ g(u1, x, t) − g(u2, x, t) ≤ c(x, t)(u1 − u2) (17)

for all u ≤ u2 ≤ u1 ≤ u and all (x, t) ∈ (� \ ∂�) × [0, T ], then each of the two sequences
converges monotonically to a unique solution of (1)–(3). This claim follows from the next
four lemmas due to Pao [16]. The first lemma establishes the well-posedness of the lower
and upper sequences defined above.

Lemma 2.4 (Well-posedness of the lower and upper sequences) If the condition in (17) is
satisfied, then the two sequences {u(n)}n∈N0 and {u(n)}n∈N0 are well-defined, and both u(n)

and u(n) are of class Cα(� \ ∂� × [0, T ]) for each n ∈ N0.

Let S denote the closure of the set S. Then the following result guarantees the monotonicity
of the lower and upper sequences.

Lemma 2.5 (Monotonicity of the lower and upper sequences)The lower and upper sequences
{u(n)}n∈N0 and {u(n)}n∈N0 satisfy the monotone property

u ≤ u(n) ≤ u(n+1) ≤ u(n+1) ≤ u(n) ≤ u (18)

for all (x, t) ∈ � \ ∂� × [0, T ] and all n ∈ N0.

The next lemma guarantees that the lower and upper sequences converge to minimal and
maximal solutions of (1)–(3), respectively.
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Lemma 2.6 (Convergence of solutions to (1)–(3)) The limits limn→∞ u(n) = u∗ and
limn→∞ u(n) = u∗ exist and satisfy the relation

u ≤ u(n) ≤ u(n+1) ≤ u∗ ≤ u∗ ≤ u(n+1) ≤ u(n) ≤ u (19)

for all (x, t) ∈ � \ ∂� × [0, T ] and all n ∈ N0.

It is next shown that the limits in Lemma 2.6 converge towards the unique T -periodic attractor
of solutions to (1)–(3). This is accomplished by invoking the following positivity lemma.

Lemma 2.7 (Positivity of solutions [15, p. 54]) Let c be a bounded function in � × (0, T ].
Suppose further that w ∈ C(� × (0, T ]) ∩ C2,1(� × (0, T ]) and that w satisfies

D.E.
∂w

∂t
− �w ≥ 0, x ∈ � \ ∂�, (20)

B.C.
∂w

∂η
+ κw ≥ 0, x ∈ ∂�, (21)

I.C. w(x, 0) = f (x) ≥ 0, x ∈ �. (22)

Then w(x, t) ≥ 0 uniformly on �×(0, T ]. Moreover, w(x, t) > 0 uniformly on �×(0, T ],
unless w(x, t) ≡ 0.

Based on the results above, we show that u∗ = u∗ = u∗ following an argument of Pao [15,
p. 55].

Lemma 2.8 (Nature of the lower and upper sequence limits) If the limits u∗ and u∗ are
solutions to (1)–(3), then u∗ = u∗ = u∗, which is the unique solution to (1)–(3) in the
interval u ∈ (u, u).

Proof Let w = u∗ − u∗ ≤ 0. Then w satisfies the relation

∂w

∂t
− �w = g(u∗, x, t) − g(u∗, x, t) ≥ c(u∗ − u∗) = cw (23)

on � \ ∂� × [0, T ] and the boundary condition

∂w

∂η
+ κw = 0, w ∈ ∂� (24)

for all t ∈ [0, T ] as well as the initial condition w(0, x) = 0 on �. It therefore follows from
Lemma 2.7 that w ≥ 0 uniformaly on � × [0,∞). This implies, by the definition of w,
that u∗ = u∗. Suppose that u∗ is another solution to (1)–(3) in the interval u∗ ∈ (u, u). The
functions u∗ and u are therefore ordered super- and subsolutions, respectively, of (1)–(3)
and since the sequence {u(n)}n∈N0 corresponding to u(0) = u∗ consists of the same function
for any n ∈ N0, it follows that u∗ ≥ u∗. Similarly, by considering u∗ and u as sub- and
supersolutions, respectively, it follows by the same argument that u∗ ≤ u∗. Consequently
u∗ = u∗ = u∗. 
�
The following result is a direct consequence of Lemmas 2.1–2.8.

Theorem 2.9 (The existence of a unique, positive periodic attractor)The model (1)–(3) admits
a positive T -periodic solution u∗(x, t) if and only if the principal eigenvalue μ1 of (7)–(9) is
strictly negative and there exists a positive supersolution u to (1)–(3). Moreover, this positive
T -periodic solution u∗(x, t) is unique and globally asymptotically stable. If, however, the
above eigenvalue is non-negative, then the trivial solution u(x, t) ≡ 0 is globally asymptot-
ically stable.
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3 Asymptotic analysis of model solution

If the principal eigenvalue μ = μ1 to the eigenvalue problem (7)–(9) corresponding to (1)–
(3) is negative, then it follows fromTheorem 2.9 that there exists a unique positive T -periodic
solution u∗(x, t) which is globally attractive among all solutions to (1)–(3) for each positive
choice of κ , provided that μ1 remains negative. In this section, the latter requirement is
reformulated in terms of the existence of a maximally sustainable pro-rata harvest rate κ∗.

Let b̃(t) = minx∈� b(x, t) and consider the eigenvalue problem

∂φ

∂t
− �φ − b̃(t)φ = μφ, x ∈ � \ ∂�, (25)

∂φ

∂η
+ κφ = 0, x ∈ ∂�, (26)

φT -periodic in t, (27)

with corresponding principal eigenvalue μ = μ1 and since b(x, t) ≥ ˜b(t) it follows that
μ1 ≤ μ1 [9]. Moreover, let φ(x, t) = α(t)ϕ1(x), where ϕ1(x) is the principal eigenfunction
of

− �ϕ = γ ϕ, x ∈ � \ ∂�, (28)

∂ϕ

∂η
+ κφ = 0, x ∈ ∂�, (29)

with corresponding principal eigenvalue γ = γ1. Combining (7) and (28) yields

ϕ1
dα

dt
+ γ1α(t)ϕ1 − b̃(t)α(t)ϕ1 = μα(t)ϕ1, (30)

from which it follows that

α(t) = α(0)e
∫ t
0 b̃(τ ) dτ−γ1t+μt (31)

and since φ is T -periodic in t , the requirement
∫ T

0
b̃(τ ) dτ − γ1T + μT = 0 (32)

must hold, or equivalently

μ = 1

T

(
γ1T −

∫ T

0
b̃(τ ) dτ

)
. (33)

The problem with the expression for the principal eigenvalue μ = μ1 in (33) is that it is
expressed in terms of the the principal eigenvalue γ = γ1 of (28)–(29). The following result
due to Cantrell and Cosner [4], however, provides an estimate for γ1 upon consideration of
the variational formulation of (28)–(29).

Theorem 3.1 (The principal eigenvalue of (28)–(29) [4, p. 98]) If ∂� is piecewise continuous
of class C2,α , � satisfies the interior cone condition1 and κ ≥ 0, then the principal eigenvalue
γ = γ1 of (28)–(29) is

γ1 = min
ϕ∈W 1,2(�)

ϕ �≡0

[∫
�
|∇ϕ|2 dx + κ

∫
∂�

ϕ2 ds
∫
�

ϕ2 dx

]

. (34)

1 The interior cone condition requires that there exists a hypercone of fixed size that can be orientated to lie
entirely inside � with its vertex at any point on ∂�.
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Moreover, the eigenfunction φ1 is positive on �, γ1 depends continuously on κ with respect
to L∞(∂�) and γ1 is simple, in the sense that the eigenspace associated with γ1 is one-
dimensional.

Upon substituting the test function ϕ ≡ 1 into (34), it follows that γ1 ≤ κ|∂�|/|�|, where
the term |∂�|/|�| is the perimeter-to-area ratio of�. Consequently, it follows from (33) that

μ1 ≤ 1

T

(
κ|∂�|
|�| T −

∫ T

0
b̃(τ ) dτ

)
. (35)

Therefore, since μ ≤ μ, it follows that μ1 < 0 if

1

T

(
κ|∂�|
|�| T −

∫ T

0
b̃(τ ) dτ

)
< 0, (36)

which may be rewritten as

κ <
|�|

|∂�|T
∫ T

0
b̃(τ ) dτ = κ∗. (37)

Although the upper bound on μ1 is somewhat rough as a result of the choice of test function
ϕ ≡ 1, it is clear that there exists a largest value of κ , denoted by κ∗, for which μ1 < 0.
Theorem2.9 consequently implies the existenceof a uniquepositive periodic solutionu∗(x, t)
to (1)–(3) which is globally asymptotically stable if f (x) �≡ 0 for all κ < κ∗. Moreover, it
follows from the comparison principle that μ1 is increasing in κ and as a result there exists
some other κ∗∗ ≥ κ∗ such μ1 > 0. Therefore, if κ ≥ κ∗∗, then the solution to (1)–(3) is
attracted to the zero equilibrium. The analysis above is summarised in the following result,
which contains a necessary condition on the pro-rata rate of boundary harvesting of the
population in order for it to persist as t → ∞.

Theorem 3.2 (Existence of a unique attractor of solutions to (1)–(3))Let u(x, t) be the unique
solution to (1)–(3) corresponding to some initial condition f (x) �≡ 0. If κ ∈ [0, κ∗), then
there exists a unique positive function u∗(x, t), defined on � × [0,∞) and T -periodic in t ,
such that limt→∞|u(x, t) − u∗(x, t)|= 0 uniformly for all x ∈ �.

The result of Theorem 3.2 is confirmed by means of a numerical example in the special case
of a single spatial dimension, where � = [0, 1].

Example 1 (Numerical example for the case where m = 1 and κ > 0) Two numerical
approximations of solutions to (1)–(3) in the special case of m = 1 spatial dimension are
illustrated graphically inFig. 1, corresponding to twodifferent choices ofκ whilstmaintaining
the same reaction term and initial condition in each example. The initial condition is chosen
as f (x) = 0.5(1+sin(4πx)) and it is assumed that g(u, x, t) = u(1−u)(0.5+x −x2)(0.5+
0.49 sin(0.5t)), from which it follows that T = 4π and that b(x, t) = (0.5+ x − x2)(0.5+
0.49 sin(0.5t)). In Fig. 1a, the value of κ is chosen as 0.18 > κ∗∗ and in Fig. 1b, the value
of κ is chosen as 0.16 < κ∗. In the former case, the solution decays to the zero-equilibrium
solution, as expected, while in the latter, the solution indeed converges to a 4π-periodic
attractor, as guaranteed by Theorem 3.2. �
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(a) u(x, t) for κ = 0.18 > κ∗∗
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(b) u(x, t) for κ = 0.16 < κ∗

Fig. 1 The long-term asymptotic behaviour of solutions to (1)–(3) in the special case of a single spatial
dimension with pro-rata harvesting on the spatial boundaries and with a 4π -periodic reaction term g(u, t) =
u(1 − u)(0.5 + x − x2)(0.5 + 0.49 sin(0.5t)) and the non-zero initial condition f (x) = 0.5(1 + sin(4πx))

4 Properties of the periodic attractor

In Sect. 2 is was shown that the unique, positive solution to (1)–(3) is attracted to a unique,
positive T -periodic solution u∗(x, t) if κ < κ∗. The T -periodic attractor u∗(x, t) of solutions
to (1)–(3) satisfies the boundary value problem

D.E.
∂u∗

∂t
= �u∗ + g(u∗, x, t), x ∈ � \ ∂�, t ≥ 0, (38)

B.C.
∂u∗

∂η
+ κu∗ = 0, x ∈ ∂�, t ≥ 0, (39)

P.C. g(u, x, t) = g(u, x, t + kT ), t ≥ 0, k ∈ N. (40)
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It is shown in this section that the unique positive T -periodic attractor of solutions to (1)–(3)
is a spatially symmetric function on � if � and g exhibit spatial symmetry.

Theorem 4.1 (Symmetry of the T -periodic attractor to (1)–(3)) Suppose g(u∗, x, t) is sym-
metric on � and that � is a symmetric domain in R

m, in the sense that there exists an
(m − 1)-dimensional hyperplane  of symmetry for �. Let s : � �→ � be a symmetry
mapping which maps any point x ∈ � to its mirror image s(x) ∈ � orthogonally across the
hyperplane of symmetry . Then the unique positive periodic attractor u∗ to (1)–(3) is itself
symmetric on � in the sense that it satisfies the relationship u∗(s(x), t) = u∗(x, t) for any
x ∈ �.

Proof The function u∗(x, t) satisfies (38)–(40). Moreover, the mirror image s(∂x) of any
boundary point ∂x ∈ ∂� is again a boundary point of � and satisfies the relationship

∂u∗

∂η

∣∣
∣
x=∂x

= ∂u∗

∂η

∣∣
∣
x=s(∂x)

for all t ∈ [(k − 1)T , kT ] and any k ∈ N

by symmetry, while the mirror image s(x) of any internal point x ∈ � \ ∂� is again an
interior point of � and similarly satisfies the relationship

∇u∗(s(x)) = −∇u∗(x) for all t ∈ [(k − 1)T , kT ] and k ∈ N.

The symmetry mapping s implies that the temporal derivative of u∗ remains unchanged after
the transformation, in the sense that

∂u∗(x, t)

∂t
= ∂u∗(s(x), t)

∂t

for all x ∈ � and all t ∈ [(k − 1)T , kT ], with k ∈ N. It therefore follows that

∂u∗

∂t
− �u∗(s(x), t) − g

(
u∗(s(x), s(x), t), t

)

= ∂u∗

∂t
− ∇ · ∇u∗(s(x), s(x), t) − g

(
u∗(s(x)), t

)

= ∂u∗

∂t
− (−1)2�u∗(x, t) − g

(
u∗(x), x, t

)

= 0

for all x ∈ � and all t ∈ [(k − 1)T , kT ], with k ∈ N, and that

κu∗(s(∂x), t) = κu∗(∂x, t) = −∂u∗

∂η

∣∣∣
x=∂x

= −∂u∗

∂η

∣∣∣
x=s(∂x)

for all x ∈ ∂� and all t ∈ [(k − 1)T , kT ], for any k ∈ N. As a result, u∗ also satisfies the
boundary value problem

D.E.
∂u∗
∂t

= �u∗(s(x), t) + g(u∗(s(x), t), s(x), t), x ∈ � \ ∂�, t ≥ 0,

B.C.
∂u∗(s(x), t)

∂η
+ κu∗(s(x), t) = 0, x ∈ ∂�, t ≥ 0,

P.C. g(u, t) = g(u, t + kT ), u ≥ 0, t ≥ 0, k ∈ N.

This shows that u∗ is invariant under the transformation x �→ s(x). 
�
The result of Theorem 4.1 is demonstrated by means of a numerical example for the special
case of a spatial domain of dimension m = 1.
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(a) u∗(x, t) for g(u∗, x, t) = u∗(1− u∗)(1− x+x2)(0.5+0.49 sin(0.5t))
and κ = 0.1
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(b) u∗(x, t) for g(u∗, x, t) = u∗(e1−eu∗
)(1−x+x2)(0.5+0.49 sin(0.5t))

and κ = 0.1

Fig. 2 An illustration of the positive 4π -periodic attractor for t ∈ [20π, 24π ] of solutions to (1)–(3) in the
special case of a single spatial dimension and with the 4π -periodic reaction term g(u∗, x, t) = u∗(1−u∗)(1−
x + x2)(0.5 + 0.49 sin(0.5t)) in (a) and the 4π -periodic reaction term g(u∗, x, t) = u∗(e1 − eu∗

)(1 − x +
x2)(0.5 + 0.49 sin(0.5t)) in (b), for κ = 0.1 in both cases

Example 2 (Numerical examples of the symmetry of u∗ for m = 1) Two numerical examples
are provided in Fig. 2 corresponding to two different choices of the function g(u∗, x, t),
whilst keeping the value of κ the same in each example. More specifically, the spatial
domain � is assumed to have dimension m = 1, taken as the unit interval [0, 1]. In this
case, the 0-dimensional hyperplane x = 1/2 is a hyperplane  of symmetry, and the func-
tion s : � �→ �, defined as s(x) = 1 − x , maps any point x ∈ � to its mirror image
1 − x ∈ � across . In Fig. 2a, the T -periodic attractor u∗(x, t) is illustrated graphically
for the symmetric choice g(u∗, x, t) = u∗(1 − u∗)(1 − x + x2)(0.5 + 0.49 sin(0.5t)),
while in Fig. 2b, the periodic attractor u∗(x, t) is illustrated graphically for the asymmet-
ric choice g(u∗, x, t) = u∗(e1 − eu∗

)(1 − x + x2)(0.5 + 0.49 sin(0.5t)). It is evident from
these examples, that u∗ is symmetric on the unit interval in both cases, as guaranteed by
Theorem 4.1. �
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The symmetry of the positive T -periodic attractor yields insight into the spatial locations
of its maximum and minima. This is summarised formally in the following theorem.

Theorem 4.2 (Maximum of the T -periodic attractor to (1)–(3)) Let u∗(x, t) be the unique
positive T -periodic attractor of solutions to (1)–(3). If g(u∗, x, t) ≥ 0 for all (u∗, x, t) ∈
[0, 1]×�×[0, T ], then u∗(x, t) attains a global minimum on boundary points of � orthog-
onal to, and furthest away from,  and a global maximum at midpoints of  within � for
any κ ∈ [0, κ∗).

Proof It follows fromTheorem2.2 thatu ≡ 1 is a supersolution to (1)–(3) so thatu∗(x, t) < u
for any κ ∈ (0, κ∗). The condition g(u∗, x, t) ≥ 0 for all (u∗, x, t) ∈ [0, 1] × � × [0, T ]
implies, by (1), that ∂u∗/∂t − �u∗ ≥ 0 for all x ∈ � \ ∂�. Therefore, it follows from the
maximum principle that u∗ cannot attain a non-negative minimum M on � \ ∂� × (0, T ],
unless u∗ ≡ M . A constant solution is, however, incompatible with the boundary condition
in (39), unless κ = 0, and so, the periodic attractor u∗(x, t) is concave on �, uniformly for
all t ≥ 0, and achieves a minimum on mirror image boundary points across  (that is, on
points of ∂�) furthest away from  and a maximum midway along  within �. 
�
It is shown next that the positive T -periodic attractor is a monotonically decreasing function
of the pro-rata harvest rate κ .

Theorem 4.3 (Monotonicity of the T -periodic attractor to (1)–(3)) Let {u∗
n(x, t), κn}n∈N be a

bi-sequence of unique, positive T -periodic solutions to (1)–(3) corresponding to u∗
n(x, t) =

u∗(x, t) when κ = κn for n ∈ N, with κ1, κ2, κ3, . . . monotonically increasing such that
κn → κ∗ as n → ∞. Then u∗

n(x, t) approaches some positive T -periodic solution ε(x, t)
in the sense that u∗

n(x, t) → ε(x, t) as n → ∞, and u∗
n(x, t) > u∗

n+1(x, t) uniformly on
(x, t) ∈ � × [(k − 1)T , kT ] for all n ∈ N and any k ∈ N.

Proof Let u∗
i (x, t) and u∗

j (x, t) be the unique positive T -periodic attractors of solutions
to (38)–(40) corresponding to κ = κi and κ = κ j , respectively, for some pair i, j ∈ N with
j > i . Moreover, let c(x, t) be a bounded function on � × [0,∞) and let w = u∗

i − u∗
j . It

follows from (1) that

∂u∗
i

∂t
− ∂u∗

j

∂t
− �u∗

i + �u∗
j = g(u∗

i , x, t) − g(u∗
j , x, t) (41)

and hence by the mean-value theorem that

∂w

∂t
− �w + cw = cw + ∂g

∂u
(ζ, x, t)(u∗

i − u∗
j ) (42)

for some intermediate value ζ = ζ(x, t) between u∗
i (x, t) and u∗

j (x, t). Therefore,

∂w

∂t
− �w + cw = 0

by choosing

c(x, t) = −∂g

∂u
(ζ, t). (43)

Moreover, it follows from the boundary condition in (39) that

∂w

∂η
= −κi u

∗
i + κ j u

∗
j
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Fig. 3 Numerical approximations of the positive 4π -periodic solution u∗(x, t) to (38)–(40) corresponding to
four values of κ

= −ακ j u
∗
i + κ j u

∗
j

= −κ j (αu∗
i − u∗

j )

≥ −κ j (u
∗
i − u∗

j )

= −κ jw (44)

for some real number α ∈ (0, 1). Finally, by choosing u∗
i (x, 0) = u∗

j (x, 0), it follows from
the condition in (40) that w(x, T ) = w(x, kT ) ≥ 0 for any k ∈ N. Therefore, the function
w(x, t) satisfies the initial-boundary value problem

D.E.
∂w

∂t
− �w + cw = 0, x ∈ � \ ∂�, t > 0, (45)

B.C.
∂w

∂η
+ κw ≥ 0, x ∈ ∂�, (46)

I.C. w(x, T ) = w(x, kT ) ≥ 0, x ∈ �, k ∈ N, (47)

and so it follows that w > 0 uniformly on � for all t > 0 by Lemma 2.7. The desired result
therefore follows immediately. 
�

The result of Theorem 4.3 is demonstrated by means of a numerical example for the special
case of a single spatial dimension, where � = [0, 1].
Example 3 (Monotonicity of the T -periodic attractor to (1)–(3)) In this example, the contin-
uum of unique positive 4π -periodic solutions u∗ to (1)–(3) for κ ∈ (0, κ∗) is considered
in the case where � has dimension m = 1, taken as � = [0, 1], and g(u∗, x, t) =
u∗(1 − u∗)(1 − x + x2)(0.5 + 0.49 sin(0.5t)). Numerical approximations of the unique
positive 4π-periodic solutions u∗ to (1)–(3) are illustrated for four different values of κ in
Fig. 3. It is evident from the figure that the entire 4π -periodic solution u∗(x, t) decreases
with respect to increasing κ , as guaranteed by Theorem 4.3. �

123



82 Page 14 of 19 Partial Differential Equations and Applications (2022) 3 :82

5 An optimal harvesting yield

Theorem 4.3 implies that the positive T -periodic attractor of solutions to (1)–(3) is uniquely
determined by the pro-rata harvest rate κ and that the population density decreases every-
where in � × [(1 − k)T , kT ] as the harvest rate increases, for any k ∈ N. This leads to the
following question: Does there exist a pro-rata harvest rate that maximises the total harvest
over a single period in the long run and, if so, what is its value? The total harvest yield in the
long run over a single period of length T along the boundary of the spatial domain is given
by

z = κ

∫ T

0

∫

∂�

u∗(x, t) ds dt . (48)

We therefore consider the PDE-constrained optimisation problem

max
κ

z = κ

∫ T

0

∫

∂�

u∗(x, t) ds dt, (49)

s.t.
∂u∗

∂t
− �u∗ − g(u∗, t) = 0, x ∈ ∂�, t > 0, (50)

∂u∗

∂η
+ κu∗ = 0, x ∈ ∂�, t > 0, (51)

g(u, t) = g(u, t + kT ), t ≥ 0, u ≥ 0, k ∈ N, (52)

κ ∈ (0, κ∗). (53)

We show that there exists at least one choice κo ∈ (0, κ∗) which solves (49)–(53).

Theorem 5.1 (The existence of an optimal solution to (49)–(53)) There exists at least one
optimal solution κo ∈ (0, κ∗) to (49)–(53).

Proof Let h(κ) = ∫ T
0

∫
∂�

u∗(x, t) ds dt . The function h(κ) : (0, κ∗) �→ R
+ is a strictly

decreasing function of κ , as a result of Theorem 4.3, in the sense that

dh

dκ
< 0. (54)

Moreover, if κ = 0, it follows from (38)–(40) that u∗ ≡ 1 uniformly on �, showing that
h(0) = |∂�| T . It furthermore follows fromTheorem3.2 that limκ→κ∗ u∗(x, t) = 0, showing
that h(κ∗) = 0. Therefore, the function z(κ) = κh(κ) has two real roots, one at κ = 0 and
the other at κ = κ∗. Moreover, it follows from (49) that

dz

dκ
= h(κ) + κ

dh

dκ
, (55)

so that

dz

dκ

∣∣∣
κ=0

= |∂�|T > 0 (56)

and

dz

dκ

∣∣∣
κ=κ∗ = κ∗ dh

dκ
< 0. (57)

This implies, by the monotonicity of h(κ) as a function of κ , that there exists at least one
value κo ∈ (0, κ∗) that maximises the yield function z = z(κ). 
�
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Fig. 4 A numerical approximation of the objective function (49) for the parameters specified in Example 4

Theorem 5.1 demonstrates that the objective function (49) is a curve parametrised by κ ,
starting at the point (z, κ) = (0, 0) and initially increasing until it reaches the point (z, κ) =
(zo, κo),where zo = κoho andho = ∫ T

0

∫
∂�

uo(x, t) ds dt withuo(x, t)being the value of the
positive T -periodic attractor u∗(x, t) at (x, t) ∈ �×[(k −1)T , kT ] corresponding to κo. As
κ increases beyond κo, the curve decreases again. Theorem 5.1 does not, of course, guarantee
the existence of a unique solution κo to (49)–(53). The fact that the objective function z(κ)
is increasing when κ = 0 and is decreasing when κ = κ∗ nevertheless implies that there
exists at least one critical point of z(κ) on the interval (0, κ∗). The result of Theorem 5.1 is
illustrated by means of an example in the special case of m = 1 spatial dimension.

Example 4 (The case of optimal harvesting in the case where m = 1) In this example, the
special case of (49)–(53) is considered where � has dimension m = 1, taken as � = [0, 1],
and where g(u∗, x, t) = u∗(1 − u∗)(1 − x + x2)(0.5 + 0.49 sin(0.5t)). In this case, the
function h(κ) can be approximated by computing successive numerical approximations of
the function u∗(x, t) satisfying (50)–(52) for discrete choices of κ ∈ [0, κ∗]. The functional
form of the objective function in (49) for this specific case is illustrated in Fig. 4.

It is clear from the figure that (49) is unimodal and that the optimal solution (κo, uo(x, t))
to (49)–(53) is, in fact, unique in this case. For this reason, the well-known golden section
search algorithm is employed to approximate κo ≈ 0.105 with a corresponding yield value
zo ≈ 0.605. The output of the algorithm for a tolerance threshold value of 0.01 on the length
of the interval of uncertainty is provided in Table 1. Finally, a numerical approximation of
the optimal periodic solution uo(x, t) to (38)–(40), corresponding to the choice κ = κo, is
illustrated graphically in Fig. 5.

6 Conclusion and discussion

In this paper, the sustainability of pro-rata harvesting of a theoretical population on the
boundary of a protected habitat was investigated. Our approach was to determine a maxi-
mally sustainable pro-rata harvest rate analytically which guarantees the persistence of the
population modelled as an abstract initial-boundary value problem involving a time-periodic
reaction-diffusion equation and spatial emigration on the boundary of a protected habitat in
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Table 1 The output of the golden section search algorithm when approximating the solution to the special
case of (49)–(53) in Example 4

Iteration I κ1 κ2 z(κ1) z(κ2) |I|
1 [0.000,0.300] 0.115 0.185 0.600 0.278 0.300

2 [0.000,0.185] 0.071 0.115 0.549 0.600 0.185

3 [0.071,0.185] 0.115 0.142 0.600 0.535 0.114

4 [0.071,0.142] 0.100 0.115 0.603 0.600 0.071

5 [0.071,0.115] 0.088 0.098 0.592 0.603 0.044

6 [0.088,0.115] 0.098 0.104 0.603 0.605 0.027

7 [0.098,0.115] 0.104 0.108 0.605 0.604 0.017

8 [0.102,0.108] 0.102 0.104 0.605 0.605 0.006

I is the interval of uncertainty, containing the value κo, while κ1 and κ2 are intermediate points used during
the golden section search to compute the next interval of uncertainty
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Fig. 5 A numerical approximation of the optimal solution uo(x, t) to (38)–(40) corresponding to κo = 0.105
for the parameters specified in Example 4

the form of Robin boundary conditions. As a result of studying this abstract model, which
is an over simplification of the mechanisms governing the migration and reproduction of a
biological population, a number of insights were gained into the long-term effectiveness of
a protection zone in which harvesting is only allowed along the boundary.

It is acknowledged that, for several reasons, the model derived in (1)–(3) is a highly
idealised abstraction of the growth and movement of real biological species. Therefore,
beforewe discuss the aforementioned insights into the long-term effectiveness of establishing
a protection zone for a biological species in more detail, we point out a few of the practical
limitations of the modelling assumptions underlying the derivation of our abstract model:

1. The first important limiting assumption is that the population density of the biological
species under consideration is modelled as a continuously differentiable function in both
the space and time domains. In applications, a real biological species typically consists of
finite numbers of discrete entities, in which case births and deaths may be noticeable as
immediate and discrete discontinuities in population numbers over time. The assumption
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of continuity is, however, required in order to bring to bear on the model the considerable
arsenal of analytic tools available within the mature realm of the differential calculus.

2. The second assumption pertains to the choice of the function g(u, x, t), which governs
the intrinsic growth rate of the population which is assumed to be zero only when the
population density is zero, but positive for any small, positive density. This assumption
is highly idealised because in reality if the population density u(x, t) approaches zero in
a specific region of the habitat at some time but not in other regions of the habitat at the
same point in time, species members are still expected to be able to find mates for the
purpose of reproduction. If, however, the species population density is, in fact, dwindling
uniformly within its habitat, the species members may not be successful in finding mates
while the population is still at a positive density. While the latter phenomenon may be
modelled by assuming that the intrinsic birth rate of the species becomes negative at low
population densities, a situation known as the allee effect [1], the model is nevertheless
simplified by assuming a birth rate that is concave as a function of population density,
because this renders the model amenable to analytic methods.

3. Another idealised assumption is related to the diffusion process describing the ease or
effectiveness of the movement of species members, which is assumed to be constant
over space and time as a result of the assumption of an isotropic spatial domain �. It is
acknowledged that in most applications, real biological species members may in certain
cases be able to move more easily through certain regions of a heterogeneous habitat than
through other regions, or that they may be able to move more easily through a particular
region of their habitat at certain times of the year than during other times due to the effects
of seasonality.

4. By not including the first-order differential operator ∂u(x, t)/∂x, sometimes referred to
as the drift operator, in our model we are inherently assuming an unbiased random walk
as the mechanism underlying the diffusion process, as opposed to a biased walk, in the
derivation of (1)–(3). The latter case would result in the incorporation of the drift operator.

5. Finally, we point out that the pro-rata harvesting of the species is modelled by a constant
Robin boundary condition, although in reality a spatially varying boundary may be more
realistic, especially in the case where portions of the boundary may be lethal.

Nevertheless, the model is useful in the sense that it lends itself to a long-term asymptotic
analysis fromwhich practical insightsmay be gained. Themathematical analysis commenced
in Sect. 2 with the establishment of a necessary and sufficient condition (in terms of the sign
of the principal eigenvalue) for the existence of a unique positive T -periodic attractor of
solutions to (1)–(3) corresponding to any non-zero initial condition f (x). This was followed
by a long-term asymptotic analysis of the solution to (1)–(3), in which the necessary and
sufficient condition of Sect. 2 for the existence of a unique positive, T -periodic attractor of
solutions to (1)–(3)was renderedmore practical in Sect. 3 by relating it to amaximal allowable
pro-rata boundary harvest rate κ∗. This is an interesting result from a substantiality point
of view because it shows that a no-harvest protection zone may be rendered futile if the
population is over exploited on the boundary of this protection zone.

Thereafter, we established a number of fundamental properties of the aforementioned
periodic attractor in Sect. 4. These properties included establishing that the periodic attractor
of solutions to (1)–(3) is spatially symmetric, provided that� and g(u, x, t) are also spatially
symmetric, and that this periodic attractor is a monotonically decreasing function of the pro-
rata harvest rate κ . The latter of these two results confirms the interesting and logical insight
that increasing the pro-rata harvest rate on the boundary of a protected habitat will decrease
the overall population density within the protection zone. This result is important for perhaps
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the most useful result of this paper where we established the existence of a pro-rata harvest
rate in Sect. 5 which maximises the total harvest yield over a single interval of periodicity.
In this case we showed that the pro-rata boundary harvest rate which maximises the total
harvest yield over a single interval of periodicity is, in fact, always less than the maximal
allowable pro-rata boundary harvest rate. This implies, in this case, that less is more because
if the species were to be harvested at any sustainable pro-rata boundary harvest rate which is
greater than the optimal harvest rate, then the population at the boundary will become small,
resulting in inefficient harvesting. This will result in a less than an optimal harvest in the long
run.
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