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Abstract
The Cauchy problem in R

n , n ≥ 1, for the degenerate parabolic equation

ut = u p�u (�)

is considered for p ≥ 1. It is shown that given any positive f ∈ C0([0,∞)) and g ∈
C0([0,∞)) satisfying

f (t) → +∞ and g(t) → 0 as t → ∞,

one can find positive and radially symmetric continuous initial data with the property that
the initial value problem for (�) admits a positive classical solution such that

t
1
p ‖u(·, t)‖L∞(Rn) → ∞ and ‖u(·, t)‖L∞(Rn) → 0 as t → ∞,

but that

lim inf
t→∞

t
1
p ‖u(·, t)‖L∞(Rn)

f (t)
= 0

and

lim sup
t→∞

‖u(·, t)‖L∞(Rn)

g(t)
= ∞.
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1 Introduction

The nonlinear diffusion equation

vt = ∇ · (vm−1∇v), m ∈ R\{1}, (1.1)

has been understood quite thoroughly in regimes of solutions emanating from L p initial data.
Classical findings in this regard have asserted that the asymptotic behavior of finite-mass
solutions to an associated Cauchy problem in R

n essentially coincides with that of certain
explicit self-similar solutions, the so-called Barenblatt solutions, both in the case m > 1 in
which (1.1) becomes the porous medium equation, and in the case when m ∈ ( n−2

n , 1) [13,
20, 21]. Further examples have revealed a substantially more colorful picture in the more
singular range m ≤ n−2

n , including more complex large time behavior of positive solutions
[15, 16], phenomena of nonuniqueness, mass loss and finite-time extinction [8, 19, 21], and
even instantaneous extinction in the flavor of results on nonexistence when m ≤ 0 [6, 7];
especially subtleties of finite-time extinction mechanisms in dependence of spatial decay
features of the initial data have been the object of study in a considerable part of the recent
literature [2–5, 9, 10, 14].

In comparison to this, the knowledge about possibly nontrivial facets of solution behav-
ior in the presence of initial data which grow near spatial infinity seems noticeably more
restricted, mainly concentrating on the analysis of explicit examples [1], and of essentially
one-dimensional wave-like transport mechanisms ([1]; see also [26, 27] for examples on
propagation at non-constant speeds). In order to describe two exceptions in this direction
recently achieved for m < 0, let us reformulate (1.1) in a way that appears convenient in this
framework by involving bounded quantities rather than unbounded functions. Specifically,
we shall subsequently be concerned with the full initial value problem{

ut = u p�u, x ∈ R
n, t > 0,

u(x, 0) = u0(x), x ∈ R
n,

(1.2)

with p ≥ 1 and a prescribed positive function u0, recalling that when p > 1, via the

substitution u = v
− 1

p−1 the PDE herein becomes equivalent to that in (1.2) with m =
− 1

p−1 < 0.

In this setting, it is known that whenever u0 ∈ C0(Rn)∩ L∞(Rn) is positive, the problem
(1.2) possesses a minimal classical solution u ([6, 11]; cf. also Lemma 2.1 below for a precise
statement), and that if in addition

u0(x) → 0 as |x | → ∞, (1.3)

then
‖u(·, t)‖L∞(Rn) → 0 as t → ∞ (1.4)

[24]. On the other hand, in [11, Proposition 1.3] it has been found that any positive classical
solution of (1.2) has the property that

t
1
p ‖u(·, t)‖L∞(Rn) → ∞ as t → ∞, (1.5)

so that, roughly speaking, any initial data satisfying (1.3) will lead to solution behavior
somewhere between mere decay, as expressed in (1.4), and decrease at a rate near that of

0 < t 
→ t−
1
p , subject to the limitation in (1.5). That this latter restriction indeed is essentially

sharp has recently been confirmed in [12, 28], where it has been seen that given any positive
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f ∈ C0([0,∞)) such that f (t) → +∞ as t → ∞, one can find initial data such that the
corresponding minimal solution of (1.2) satisfies

t
1
p ‖u(·, t)‖L∞(Rn)

f (t)
→ 0 as t → ∞ (1.6)

(see also Proposition 3.2 below).

Mainresults. The intentionof the present note now is to provide an examplewhich indicates
that both the above two extremal types of decay behavior can actually be found approached
by single trajectories. In fact, by means of a recursive design of initial data following the
construction in the seminal work by Poláčik and Yanagida [18], we shall find a solution to
(1.2), of quite simple basic structure by being radially symmetric and radially nonincreasing,
which on the one hand exhibits arbitrarily slow decay along some unbounded sequence of
times, and which on the other hand decreases at a close-to-maximum speed in the style of
(1.6) along some further divergent time sequence. By fully acting within the realm of strictly
positive smooth solutions, unlike previous discoveries of degeneracy-supported large-time
oscillations in related problems [22, 25] this result does not rely on the presence of prescribed
singular behavior at any point in space.

More precisely, our main result can be formulated as follows.

Theorem 1.1 Let n ≥ 1 and p ≥ 1, and let f ∈ C0([0,∞)) and g ∈ C0([0,∞)) be positive
and such that

f (t) → +∞ and g(t) → 0 as t → ∞. (1.7)

Then there exists a radially symmetric positive function u0 ∈ C0(Rn) such that

u0(x) → 0 as |x | → ∞, (1.8)

and that the corresponding minimal solution u ∈ C0(Rn × [0, T )) ∩ C2,1(Rn × (0, T )) of
(1.2) has the properties that{

0 < u(x, t) < 1 for all x ∈ R
n and t ≥ 0 and

u(x, t) ≤ u(y, t) for all x ∈ R
n, y ∈ R

n and t ≥ 0 such that |x | ≥ |y|, (1.9)

that

t
1
p ‖u(·, t)‖L∞(Rn) → ∞ and ‖u(·, t)‖L∞(Rn) → 0 as t → ∞, (1.10)

but that with some (t j ) j∈N ⊂ (0,∞) fulfilling t j → ∞ as j → ∞ we have

t
1
p
2k+1‖u(·, t2k+1)‖L∞(Rn)

f (t2k+1)
→ 0 as k → ∞ (1.11)

and ‖u(·, t2k)‖L∞(Rn)

g(t2k)
→ +∞ as k → ∞. (1.12)

2 Minimal solutions: radial and radially nonincreasing data

To begin with, let us briefly recall from [11] a regularization-based construction of minimal
solutions to (1.2) thatwill be appropriate for our purposes:Given an arbitrary family (u0R)R>0

of functions satisfying
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⎧⎪⎨
⎪⎩
u0R ∈ C3(B̄R(0)) for all R > 0,

0 < u0R < u0 in BR(0) and u0R = 0 on ∂BR(0) for all R > 0 as well as
u0R ↗ u0 in R

n as R ↗ ∞,

(2.1)

for R > 0 and ε ∈ (0, 1) we consider the non-degenerate initial-boundary value problems⎧⎪⎨
⎪⎩
uRεt = u p

Rε�uRε, x ∈ BR(0), t > 0,

uRε(x, t) = ε, x ∈ ∂BR(0), t > 0,

uRε(x, 0) = u0R(x) + ε, x ∈ BR(0),

(2.2)

and the corresponding limit problems⎧⎪⎨
⎪⎩
uRt = u p

R�uR, x ∈ BR(0), t > 0,

uR(x, t) = 0, x ∈ ∂BR(0), t > 0,

uR(x, 0) = u0R(x), x ∈ BR(0).

(2.3)

On the basis thereof, the following statement on global existence of minimal solutions to
(1.2) enjoying some convenient approximation features can be found proved in [11, Lemma
2.1, Proposition 1.1] (cf. also [6]).

Lemma 2.1 Let n ≥ 1, p ≥ 1 and u0 ∈ C0(Rn) ∩ L∞(Rn) be positive. Then given any
family (u0R)R>0 with the properties in (2.1), for each R > 0 and ε ∈ (0, 1) one can find
a positive classical solution uRε ∈ C0(B̄R(0) × [0,∞)) ∩ C2,1(B̄R(0) × (0,∞)) of (2.2).
These solutions satisfy uRε ↘ uR in B̄R(0) × [0,∞) as ε ↘ 0, where uR ∈ C0(B̄R(0) ×
[0,∞)) ∩ C2,1(BR(0) × (0,∞)) is a positive classical solution of (2.3).

Moreover, there exists a positive function u ∈ C0(Rn × [0,∞)) ∩ C2,1(Rn × (0,∞))

which is such that uR ↗ u in R
n × (0,∞) as R ↗ ∞, and that u is a minimal solution of

(1.2) in the sense that u solves (1.2) classically, and that whenever v ∈ C0(Rn × [0,∞)) ∩
C2,1(Rn ×(0,∞)) is positive and such that vt = v p�v inRn ×(0,∞)with v(x, 0) = u0(x)
for all x ∈ R

n, we must have v ≥ u in R
n × (0,∞).

Having thus singled out a uniquely identifiable object to be dealt with subsequently, let us
attach to this a convenient label that will facilitate notation in some places below.

Definition 2.1 Let n ≥ 1 and p ≥ 1. Then given any positive u0 ∈ C0(Rn) ∩ L∞(Rn), we
let

(Su0)(x, t) := u(x, t), x ∈ R
n, t ≥ 0, (2.4)

where u denotes the minimal solution of (1.2) according to Lemma 2.1.

These minimal solutions satisfy a favorable comparison principle:

Lemma 2.2 Let n ≥ 1 and p ≥ 1, and suppose that u0 and v0 belong to C0(Rn) ∩ L∞(Rn)

and satisfy 0 < u0(x) ≤ v0(x) for all x ∈ R
n. Then Su0 ≤ Sv0 in R

n × (0,∞).

Proof Let (u0R)R>0 be such that (2.1) holds. Then for each R > 0, the assumed positivity of
v inRn ×[0,∞) ensures that for the solutions of (2.3) from Lemma 2.1 we have the ordering
0 = uR(x, t) < v(x, t)both for all (x, t) ∈ ∂BR(0)×[0,∞) and for any (x, t) ∈ B̄R(0)×{0}.
Since D2v is bounded in BR(0) × (0, T ) for each T > 0, the comparison principle recorded
in [23, Section 3.1] therefore applies and guarantees that uR ≤ v in BR(0) × (0,∞) for
each R > 0, so that the claim results from the approximation part in Lemma 2.1, according
to which, namely, we know that uR(x, t) → u(x, t) as R → ∞ for all x ∈ R

n and t > 0. ��
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The following observation will later on, in conjunction with Lemma 2.2, be used to make
sure that minimal solutions cannot become unexpectedly small when initially bounded from
below by positive constants.

Lemma 2.3 Let n ≥ 1, p ≥ 1, a > 0 and u0(x) := a for x ∈ R
n. Then Su0 ≡ a.

Proof We let u := Su0 and then first obtain that u ≤ a in R
n × (0,∞) by Lemma 2.1,

because Rn × [0,∞) � (x, t) 
→ a solves (1.2) and u is minimal.
To see that for each x0 ∈ R

n, t0 > 0 and η ∈ (0, a) we also have

u(x0, t0) ≥ a − η, (2.5)

given such x0, t0 and η we pick R > 0 large enough such that{(
a − η

2

)−p + 2np

R2 · t0
}− 1

p ≥ a − η, (2.6)

and introduce
u(x, t) := y(t)ϕ(x), x ∈ B̄R(x0), t ≥ 0, (2.7)

with

y(t) :=
{(

a − η

2

)−p + 2np

R2 · t
}− 1

p
, t ≥ 0, (2.8)

and

ϕ(x) := 1 − |x − x0|2
R2 , x ∈ B̄R(x0). (2.9)

Then using that �ϕ ≡ −2n
R2 , that ϕ p−1 ≤ 1 according to our assumption p ≥ 1, and that

y′ ≡ − 2n
R2 · y p+1, we see that

ut − u p�u = y′(t)ϕ(x) − y p+1(t)ϕ p(x)�ϕ(x)

= ϕ(x) ·
{
y′(t) + 2n

R2 ϕ p−1(x)y p+1(t)
}

≤ ϕ(x) ·
{
y′(t) + 2n

R2 · y p+1(t)
}

= 0 for all x ∈ BR(x0) and t > 0,

whileu lies belowu on the correspondingparabolic boundary in thatu(x, t) = 0 < u(x, t) for
all x ∈ ∂BR(x0) and t > 0 as well as u(x, 0) = y(0)ϕ(x) = (a− η

2 )ϕ(x) ≤ a− η
2 < u(x, 0)

for all x ∈ BR(x0). As D2u evidently is bounded, the comparison principle from [23, Section
3.1] therefore becomes applicable so as to ensure that u ≤ u in B̄R(x0) × [0,∞), and that
thus (2.5) results upon an evaluation thereof at (x, t) = (x0, t0), using (2.6) and recalling
(2.7)–(2.9). ��

Inwhat follows, for convenience in presentationwe shall restrictmost of our considerations
to conveniently smooth radially symmetric and radially nonincreasing initial data by saying
that a function ϕ : Rn → R satisfies (H) if{

ϕ ∈ C0(Rn) ∩ W 1,∞
loc (Rn) is positive with ϕ|∂Br (0) = const . for all r > 0, and such that

ϕ(x) ≤ ϕ(y) whenever x ∈ R
n and y ∈ R

n satisfy |x | ≥ |y|.
(H)

Bymaking use of the freedom to choose in (2.3) and (2.2) any family (u0R)R>0 fulfilling (2.1),
we can readily verify that when present initially, this property (H) is conserved throughout
evolution:
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Lemma 2.4 Let n ≥ 1 and p ≥ 1. If u0 complies with (H), then the minimal solution u = Su0
of (1.2) has the property that also u(·, t) satisfies (H) for all t > 0. In particular,

‖u(·, t)‖L∞(Rn) = u(0, t) for all t > 0. (2.10)

Proof In the present situation, in (2.3) we can choose (u0R)R>0 in such a way that, besides
the requirements in (2.1), for each R > 0 the function u0R = u0R(r) is radially symmetric in
BR(0) and satisfies ∂r u0R(r) ≤ 0 for all r ∈ (0, R). A standard argument applied to the non-
degenerate problems (2.2) and their differentiated counterparts then shows that uRε(·, t) =
uRε(r , t) is radially symmetric for all t > 0, R > 0 and ε ∈ (0, 1), and that ∂r uRε(r , t) ≤ 0
for all r ∈ (0, R), t > 0, R > 0 and ε ∈ (0, 1). In view of Lemma 2.1, taking ε ↘ 0 and
then R ↗ ∞ therefore yields the claim. ��

3 Preparing the inductive step: a result on continuous dependence

Besides the basic comparison property from Lemma 2.2, a second ingredient of crucial
importance in our recurvive constructionwill be the following statement onmonotone approx-
imation that can be viewed as documenting a certain type of continuous dependence of
solutions on the initial data.

Lemma 3.1 Let n ≥ 1 and p ≥ 1, let M > 0, and suppose that (u0 j ) j∈N ⊂ C0(Rn) is such
that

0 ≤ u0 j (x) ≤ M for all x ∈ R
n and j ∈ N, (3.1)

and that
either u0 j ↘ u0 in R

n or u0 j ↗ u0 in R
n as j → ∞ (3.2)

with some positive u0 ∈ C0(Rn). Then the corresponding minimal solutions u j := Su0 j and
u := Su0 of (1.2) satisfy

u j → u in C0
loc(R

n × (0,∞)) as j → ∞. (3.3)

Proof We detail the proof only for the case when u0 j ↘ u0 as j → ∞, as the situation in
which u0 j ↗ u0 as j → ∞ can be covered by minor and obvious modification.
We fix any α > n

2 and observe that then

ϕ(x) := 1

(|x |2 + 1)α
, x ∈ R

n,

defines a positive function ϕ ∈ C∞(Rn) which is such that

c1 :=
∫
Rn

ϕ(x)dx (3.4)

is finite, and which moreover satisfies

∣∣∇ϕ(x)
∣∣ = 2α|x |

(|x |2 + 1)α+1 = 2α|x |
|x |2 + 1

· 1

(|x |2 + 1)α
≤ αϕ(x) for all x ∈ R

n (3.5)
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and

�ϕ(x) = 4α(α + 1)|x |2
(|x |2 + 1)α+2 − 2nα

(|x |2 + 1)α+1 ≤ 4α(α + 1)|x |2
(|x |2 + 1)2

· 1

(|x |2 + 1)α
≤ α(α + 1)ϕ(x)

(3.6)
for all x ∈ R

n , because ξ

ξ2+1
≤ 1

2 and ξ

(ξ+1)2
≤ 1

4 for all ξ ≥ 0.

Apart from that, taking any nonincreasing ζ ∈ C∞([0,∞)) such that ζ ≡ 1 on [0, 1
2 ] and

supp ζ ⊂ [0, 1) we let

χR(x) := ζ
( |x |
R

)
, x ∈ R

n, R > 0,

and note that then∣∣∇χR(x)
∣∣ ≤ c2

R
and

∣∣�χR(x)
∣∣ ≤ c3

R2 for all x ∈ R
n and R > 0 (3.7)

with c2 := ‖ζ ′‖L∞((0,1)) and c3 := ‖ζ ′′‖L∞((0,1)) + 2(n − 1)‖ζ ′‖L∞((0,1)), because

∇χR(x) = 1

R
ζ ′( |x |

R

)
and �χR(x) = 1

R2 ζ ′′( |x |
R

)
+ n − 1

Rr
ζ ′( |x |

R

)
for all x ∈ R

n and R > 0,

and because |x | ≥ R
2 whenever R > 0 and ζ ′( |x |

R ) �= 0.
We now introduce

H(ξ) :=
∫ ξ

1

dσ

σ p
for ξ > 0, (3.8)

to rewrite the respective versions of (1.2) according to ∂t H(u j ) = �u j and ∂t H(u) = �u,
and to thereby obtain that since supp (χRϕ) is bounded for all R > 0,

d

dt

∫
Rn

{
H(u j ) − H(u)

}
· χRϕdx =

∫
Rn

�(u j − u) · χRϕdx

=
∫
Rn

(u j − u) · �(χRϕ)dx

=
∫
Rn

(u j − u)χR�ϕdx + 2
∫
Rn

(u j − u)∇χR · ∇ϕdx

+
∫
Rn

(u j − u)�χR · ϕdx (3.9)

for all t > 0, R > 0 and j ∈ N. Here we may use that from Lemma 2.2 and the monotone
approximation feature in (3.2) we already know that

u(x, t) ≤ u j (x, t) for all x ∈ R
n, t > 0 and j ∈ N,

to see that due to (3.6) and the inequalities 0 ≤ χR ≤ 1 for R > 0,∫
Rn

(u j − u)χR�ϕdx ≤ α(α + 1)
∫
Rn

(u j − u)χRϕdx

≤ α(α + 1)
∫
Rn

(u j − u)ϕdx for all t > 0, R > 0 and j ∈ N,

(3.10)
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while combining (3.7) with (3.5) and (3.4) we obtain that

2
∫
Rn

(u j − u)∇χR · ∇ϕdx ≤ 2c2αM

R

∫
Rn

ϕdx

= 2c1c2αM

R
for all t > 0, R > 0 and j ∈ N, (3.11)

and that∫
Rn

(u j − u)�χR · ϕdx ≤ c3M

R2

∫
Rn

ϕdx = c1c3M

R2 for all t > 0, R > 0 and j ∈ N,

(3.12)

because (3.1) together with Lemma 2.2 implies that

u j (x, t) ≤ M for all x ∈ R
n, t > 0 and j ∈ N. (3.13)

From (3.9)–(3.12) we thus infer that

d

dt

∫
Rn

{
H(u j ) − H(u)

}
· χRϕdx ≤ α(α + 1)

∫
Rn

(u j − u)ϕdx

+2c1c2αM

R
+ c1c3M

R2 for all t > 0, R > 0 and j ∈ N,

and that hence∫
Rn

{
H

(
u j (·, T )

) − H
(
u(·, T )

)} · χRϕdx

≤
∫
Rn

{
H(u0 j ) − H(u0)

}
· χRϕdx + α(α + 1)

∫ T

0

∫
Rn

(u j − u)ϕdxdt

+
(2c1c2αM

R
+ c1c3M

R2

)
· T for all T > 0, R > 0 and j ∈ N. (3.14)

We now make full use of (3.2) to conclude, again by Lemma 2.2, that

u j (x, t) ↘ ũ(x, t) as j → ∞ for all x ∈ R
n and t ≥ 0 (3.15)

with some limit function ũ on R
n × [0,∞) which satisfies

ũ(x, t) ≥ u(x, t) for all x ∈ R
n and t ≥ 0, (3.16)

and hence particularly is strictly positive. We may therefore rely on Beppo Levi’s theorem,
as well as on (3.2) explicitly once again, in turning (3.14) into the inequality

∫
Rn

{
H

(̃
u(·, T )

) − H
(
u(·, T )

)} · χRϕdx ≤ α(α + 1)
∫ T

0

∫
Rn

(̃u − u)ϕdxdt

+
(2c1c2αM

R
+ c1c3M

R2

)
· T for all T > 0 and R > 0,

in which using the same token we may let R ↗ ∞ to obtain that

∫
Rn

{
H

(̃
u(·, T )

) − H
(
u(·, T )

)} · ϕdx ≤ α(α + 1)
∫ T

0

∫
Rn

(̃u − u)ϕdxdt for all T > 0.

123



Partial Differential Equations and Applications (2022) 3 :47 Page 9 of 15 47

But since (3.8) in conjunction with the mean value theorem, (3.15) and (3.13) guarantees
that for all x ∈ R

n and T > 0 we can find ξ(x, T ) ∈ (u(x, T ), ũ(x, T )) ⊂ [0, M] such that
H

(̃
u(x, T )

) − H
(
u(x, T )

) = H ′(ξ(x, T )
) ·

{
ũ(x, T ) − u(x, T )

}
≥ 1

Mp
·
{
ũ(x, T ) − u(x, T )

}
for all x ∈ R

n and T > 0,

this implies that∫
Rn

{
ũ(·, T ) − u(·, T )

}
· ϕdx ≤ α(α + 1)Mp

∫ T

0

∫
Rn

(̃u − u)ϕdxdt for all T > 0.

As thus ∫
Rn

{
ũ(·, T ) − u(·, T )

}
· ϕdx = 0 for all T > 0

according to Grönwall’s lemma, thanks to the strict positivity of ϕ this shows that, again in
view of (3.16), we must have ũ = u a.e. in R

n × (0,∞).
To conclude as intended, we only need to finally note that (3.15) and (3.13) together with
(1.2) and standard parabolic regularity theory [17, Theorem V.1.1] warrant that for each

compact subset K of Rn × (0,∞), the sequence (u j ) j∈N is bounded in Cθ, ϑ
2 (K ) with some

θ ∈ (0, 1), and hence relatively compact in C0(K ) by the Arzelà-Ascoli theorem. ��
In order to prepare an appropriate application of the previous lemma to particular classes

of initial data, let us first recall a known feature of (1.2) with respect to the large time behavior
of solutions corresponding to initial data that decay sufficiently fast in space. The following
statement in this regard extracts from [12, Theorem 1.3] and [28, Lemma 2.6] what will be
needed here.

Proposition 3.2 Let n ≥ 1 and p ≥ 1, and suppose that f ∈ C0([0,∞)) is positive and
such that f (t) → ∞ as t → ∞. Then there exists L ∈ C0([0, 1)) ∩ C2((0, 1)) with the
properties that

L(0) = 0 as well as L(s) > 0 and L′(s) > 0 for all s ∈ (0, 1), (3.17)

and that whenever u0 satisfies (H) and is such that u0 < 1 in R
n as well as∫

Rn
L(u0) < ∞, (3.18)

the minimal classical solution u of (1.2) satisfies

t
1
p ‖u(·, t)‖L∞(Rn)

f (t)
→ 0 as t → ∞. (3.19)

On the basis of this, we can design a template for infinitely many parts of the initial data to
be finally used in the proof of Theorem 1.1.

Lemma 3.3 Let f ∈ C0([0,∞)) be positive and such that f (t) → +∞ as t → ∞. Then
for all a ∈ (0, 1) there exists φa ∈ C1([0,∞)) such that

φa(0) = a as well as φa(ρ) > 0 and φ′
a(ρ) < 0 for all ρ ≥ 0, (3.20)

and such that when u0 satisfies (H) with u0 < 1 in R
n and

u0(x) ≤ φa(|x | − R) for all x ∈ R
n \ BR(0) (3.21)
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with some R ≥ 0, the corresponding minimal solution u of (1.2) has the property that (3.19)
holds.

Proof With L taken from Proposition 3.2, for fixed a ∈ (0, 1) we choose any ψa ∈
C1([0,∞)) such that ψa(0) = L(a) and ψ ′

a(ρ) < 0 for all ρ > 0 as well as∫ ∞

0
(ρ + 1)n−1ψa(ρ)dρ < ∞, (3.22)

and define
φa(ρ) := L−1(ψa(ρ)

)
, ρ ≥ 0, (3.23)

noting that the existence of a strictly increasing inverse L−1 ∈ C0([0,L(1)])∩C1((0,L(1))
of L is asserted by (3.17). While the properties in (3.20) thus immediately result from (3.23),
to verify (3.19) for u = Su0 with arbitrary u0 ∈ C0(Rn) fulfilling 0 < u0 < 1 as well as
(3.21) with some R > 0, we only need to observe that again by monotonicity of L, these
asumptions ensure that according to (3.22),∫

Rn\BR(0)
L(u0) ≤

∫
Rn\BR(0)

L
(
φa(|x | − R)

)
dx

= n|B1(0)|
∫ ∞

R
rn−1L

(
φa(r − R)

)
dr

= n|B1(0)|
∫ ∞

R
rn−1ψa(r − R)dr

= n|B1(0)|
∫ ∞

0
(ρ + R)n−1ψa(ρ)dρ

≤ n|B1(0)| · (
max{R, 1})n−1

∫ ∞

0
(ρ + 1)n−1ψa(ρ)dρ

< ∞,

and that hence (3.18) holds due to the evident fact that
∫
BR(0) L(u0) ≤ L(1) · |BR(0)|. ��

Having these preliminaries at hand, we can proceed to design the two basic nuclei of our
construction, throughout the sequel making repeated use of the two different truncation and
extension processes described in the following:

Lemma 3.4 Let n ≥ 1, and suppose that ϕ is such that (H) holds with ϕ(x) < 1 for all
x ∈ R

n. Then with (φa)a∈(0,1) taken from Lemma 3.3, for R > 0 letting

(
TRϕ

)
(x) :=

{
ϕ(x), x ∈ BR(0),

ϕ|∂BR(0), x ∈ R
n \ BR(0),

(3.24)

and (
T̂Rϕ

)
(x) :=

{
ϕ(x), x ∈ BR(0),

φϕ|∂BR (0) (|x | − R), x ∈ R
n \ BR(0),

(3.25)

defines functions TRϕ and T̂Rϕ on R
n which satisfy (H).

Proof This is an evident consequence of the fact that φa is positive and nonincreasing for all
a ∈ (0, 1) by Lemma 3.3. ��
Thanks to the continuous dependence feature documented in Lemma 3.1, deviations encoun-
tered when performing the first of these operations can conveniently be estimated:
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Lemma 3.5 Let n ≥ 1 and p ≥ 1, and let ũ0 be such that (H) holds. Then given any R� > 0
and T > 0, one can find R > R� such that u0 := TRũ0 has the property that ũ := Sũ0 and
u := Su0 satisfy

u(0, T ) ≤ 2ũ(0, T ). (3.26)

Proof Writing

h(r , R) :=
{
ũ0|∂Br (0), r ∈ [0, R), R > 0,
ũ0|∂BR(0), r ≥ R, R > 0,

and fixing R1 > 0 and R2 > R1, we see that

h(r , R1) = ũ|∂Br (0) = h(r , R2) for all r ∈ [0, R1),

and that since 0 ≤ r 
→ ũ0|∂Br (0) is nonincreasing by (H),

h(r , R1) = ũ0|∂BR1 (0) ≥ ũ0|∂Br (0) = h(r , R2) for all r ∈ [R1, R2)

as well as

h(r , R1) = ũ0|∂BR1 (0) ≥ ũ0|∂BR2 (0) = h(r , R2) for all r ≥ R2.

Therefore, 0 < R 
→ h(r , R) is nonincreasing for all r ≥ 0, so that(
TRũ0

)
(x) ↘ ũ0(x) as R ↗ ∞ for all x ∈ R

n .

The claim hence results from Lemma 3.1 upon observing that ũ(0, T ) is positive. ��
The effects of the second manipulation type from Lemma 3.4 can be controlled in quite a

similar fashion.

Lemma 3.6 Let n ≥ 1 and p ≥ 1, and suppose that beyond satisfying (H), the function ũ0
is such that ũ0 ≡ a in R

n\BR0(0) with some a ∈ (0, 1) and R0 > 0. Then for each R� > 0
and any T > 0 there exists R > R� such that writing u0 := T̂Rũ0, for the minimal solutions
ũ := Sũ0 and u := Su0 of (1.2) we have

u(0, T ) ≥ 1

2
· ũ(0, T ). (3.27)

Proof For R > R0, taking φa from Lemma 3.3 we let

h(r , R) :=
{
ũ0|∂Br (0), r ∈ [0, R),

φa(r − R), r ≥ R,

and note that then according to (3.25) we have(
T̂Rũ0

)
(x) = h(|x |, R) for all x ∈ R

n,

because ũ0|∂Br (0) = a for r ≥ R. Moreover, given R1 > R0 and R2 > R1, we evidently
have

h(r , R1) = h(r , R2) for all r ∈ [0, R1),

while since φa ≤ a,

h(r , R1) = φa(r − R1) ≤ a = h(r , R2) for all r ∈ [R1, R2).

As furthermore, due to the inequality φ′
a ≤ 0,

h(r , R1) = φa(r − R1) ≤ φa(r − R2) = h(r , R2) for all r ≥ R2,
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it follows that h(·, R2) ≥ h(·, R1)on [0,∞) for any such R1 and R2,meaning that T̂Rũ0 ↗ ũ0
in R

n as R ↗ ∞. As a consequence of Lemma 3.1, the inequality in (3.27) can thus be
achieved upon choosing R > R� suitably large. ��

4 Proof of themain results

Our concrete construction of initial data enforcing the claimed solution behavior now repeat-
edly combines Lemmas 3.5 and 3.6 in a style quite similar to that from [18] in its principal
strategy:

Proof of Theorem 1.1 Replacing f (t) with f̃ (t) := min
{
f (t) , (t + 1)

1
p
}
for t ≥ 0 if neces-

sary, we may assume throughout that

lim sup
t→∞

{
t−

1
p f (t)

}
< ∞. (4.1)

Then picking any a ∈ (0, 1) and taking φa as accordingly provided by Lemma 3.3, from said
lemma we infer that if we let

u(0)
0 (x) := φa(|x |), x ∈ R

n, (4.2)

then u(0) := Su(0)
0 satisfies

t
1
p ‖u(0)(·, t)‖L∞(Rn)

f (t)
→ 0 as t → ∞,

so that we can pick t1 > 0 such that

t
1
p
1 ‖u(0)(·, t1)‖L∞(Rn)

f (t1)
≤ 1

2
. (4.3)

Since evidently u(0)
0 satisfies (H), we may apply Lemma 3.5 to find R1 > 0 such that letting

u(1)
0 := TR1u

(0)
0 ,

for the corresponding solution u(1) := Su(1)
0 of (1.2) we have u(1)(0, t1) ≤ 2u(0)(0, t1),

which entails that

t
1
p
1 ‖u(1)(·, t1)‖L∞(Rn)

f (t1)
≤ 1 (4.4)

due to (4.3) and the fact that ‖u(0)(·, t1)‖L∞(Rn) = u(0)(0, t1), as implied by Lemma 2.4 in

view of the downward monotonicity of 0 ≤ r 
→ u(0)
0 |∂Br (0).

Now since u(1)
0 (x) ≥ a1 := u(0)

0 |∂BR1 (0) for all x ∈ R
n according to the construction of

(TR)R>0 in (3.24), a combination of Lemma 2.3 with the comparison principle from Lemma
2.2 ensures that u(1)(x, t) ≥ a1 for all x ∈ R

n and t > 0, whence in particular

‖u(1)(·, t)‖L∞(Rn)

g(t)
≥ a1

g(t)
→ ∞ as t → ∞

thanks to our assumption on decay of g in (1.7). For some suitably large t2 > t1 + 1 we thus
have

‖u(1)(·, t2)‖L∞(Rn)

g(t2)
≥ 2, (4.5)
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and keeping this number t2 fixed, we may now rely on the fact that, again by definition of
(TR)R>0, we actually have u(1)

0 ≡ a1 in R
n\BR1(0). Therefore, namely, we can employ

Lemma 3.6 to find R2 > R1 + 1 with the property that

u(2)
0 := T̂Ru

(1)
0

and u(2) := Su(2)
0 satisfy u(2)(0, t2) ≥ 1

2u
(1)(0, t2) and thus

‖u(2)(·, t2)‖L∞(Rn)

g(t2)
≥ 1 (4.6)

by (4.5), because once more in view of Lemma 2.4, the downward radial monotonicity of
u(1)
0 guarantees that ‖u(1)(·, t2)‖L∞(Rn) = u(1)(0, t2).

Repeating the above two-step argument, we recursively obtain a sequence (u( j)
0 ) j∈{0,1,2,...}

of functions u( j)
0 fulfilling (H) for all j ∈ N, as well as (t j ) j∈{1,2,3,...} ⊂ (0,∞) and

(R j ) j∈{0,1,2,...} ⊂ (0,∞) such that

t j+1 > t j + 1 and R j+1 > R j + 1 for all j ≥ 1, (4.7)

that
u(2k+1)
0 = TR2k+1u

(2k)
0 and u(2k+2)

0 = T̂R2k+2u
(2k+1)
0 for all k ≥ 0, (4.8)

and that if in addition to the above we define

u( j) := Su( j)
0 for j ≥ 3, (4.9)

then

t
1
p
2k+1‖u(2k+1)(·, t2k+1)‖L∞(Rn)

f (t2k+1)
≤ 1

k + 1
for all k ≥ 0 (4.10)

and
‖u(2k)(·, t2k)‖L∞(Rn)

g(t2k)
≥ k for all k ≥ 1. (4.11)

Since (4.7) especially guarantees that R j → ∞ as j → ∞, and since (4.8) and the definitions
(3.24) and (3.25) of (TR)R>0 and (T̂R)R>0 imply that

u( j+1)
0 ≡ u( j)

0 in BRj+1(0) for all j ≥ 0, (4.12)

it follows that letting

u0(x) := u( j)
0 (x), x ∈ BRj (0), j ∈ N, (4.13)

we obtain a well-defined function on Rn which satisfies (H) as well as

u0(x) ≤ a for all x ∈ R
n (4.14)

according to (4.2), whence especially also (1.9) holds due to the conservation of radial
symmetry and radial nonincrease asserted byLemma2.4.Apart from that, (4.8) in conjunction
with the truncation features of (TR)R>0 and (T̂R)R>0 can readily be seen to ensure that

u(2k+1)
0 ≥ u(2k+3)

0 and u(2k)
0 ≤ u(2k+2)

0 in R
n for all k ≥ 0,

so that by (4.13),

u(2k+1)
0 ↘ u0 and u(2k)

0 ↗ u0 in R
n as k → ∞. (4.15)
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Two applications of Lemma 3.1 therefore reveal that in line with (4.9) we have

u(2k+1) → u and u(2k) → u in C0
loc(R

n × (0,∞)) as k → ∞, (4.16)

where u := Su0 satisfies

u(2k)(x, t) ≤ u(x, t) ≤ u(2k+1)(x, t) for all x ∈ R
n, t > 0 and k ≥ 0 (4.17)

due to Lemma 2.2, and where

0 < u(x, t) ≤ a < 1 for all x ∈ R
n and t > 0 (4.18)

because of (4.14), Lemma 2.2 and Lemma 2.3. Once more drawing on Lemma 2.4, we can
combine (4.10) and (4.11) with (4.17) to estimate

t
1
p
2k+1‖u(·, t2k+1)‖L∞(Rn)

f (t2k+1)
= t

1
p
2k+1u(0, t2k+1)

f (t2k+1)

≤ t
1
p
2k+1u

(2k+1)(0, t2k+1)

f (t2k+1)

≤ 1

k + 1
for all k ≥ 0

as well as

‖u(·, t2k)‖L∞(Rn)

g(t2k)
≥ ‖u(2k)(·, t2k)‖L∞(Rn)

g(t2k)
≥ k for all k ≥ 1,

from which (1.11) and (1.12) follow.
Finally, knowing now that (1.11) holds, and that hence in line with (4.1) we must have

‖u(·, t2k+1)‖L∞(Rn) → 0 as k → ∞,

we may a posteriori conclude that u0 also satisfies (1.8), for if the radial and radially nonin-
creasing function u0 had a positive lower bound, then sowould have u throughoutRn×(0,∞)

according to Lemma 2.2 and Lemma 2.3. The statements on asymptotics in (1.10) then only
record what therefore directly results from [11, 24]. ��
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