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Abstract
We consider the sharp interface limit of a convective Allen–Cahn equation, which can be part
of a Navier–Stokes/Allen–Cahn system, for different scalings of the mobility mε = m0ε

θ

as ε → 0. In the case θ > 2 we show a (non-)convergence result in the sense that the
concentrations converge to the solution of a transport equation, but they do not behave like a
rescaled optimal profile in normal direction to the interface as in the case θ = 0. Moreover,
we show that an associatedmean curvature functional does not converge to the corresponding
functional for the sharp interface. Finally, we discuss the convergence in the case θ = 0, 1
by the method of formally matched asymptotics.

Keywords Two-phase flow · Diffuse interface model · Allen–Cahn equation · Sharp
interface limit
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1 Introduction

In this contribution we consider the so-called sharp interface limit, i.e., the limit ε → 0, of
the convective Allen–Cahn equation

∂t c
ε + v · ∇cε = mε

(
Δcε − ε−2 f (cε)

)
in Ω × (0, T ), (1)

cε|∂Ω = −1 on ∂Ω × (0, T ), (2)

cε
∣∣
t=0 = cε

0 in Ω. (3)

Here v : Ω ×[0, T ) → R
d is a given smooth divergence free velocity field with n ·v|∂Ω = 0

and cε : Ω × [0, T ) → R is an order parameter, which will be close to the “pure states” ±1
for small ε > 0. Here f = F ′, where F : R → R is a suitable double well potential with
global minima ±1, e.g. F(c) = (1 − c2)2. cε can describe the concentration difference of
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two different phases in the case of phase transitions, where the total mass of each phase is not
necessarily conserved. Moreover, Ω ⊆ R

d is assumed to be a bounded domain with smooth
boundary, mε is a (constant) mobility coefficient and ε > 0 is a parameter that is proportional
to the “thickness” of the diffuse interface {x ∈ Ω : |cε(x, t)| < 1 − δ} for δ ∈ (0, 1).

The convective Allen–Cahn equation (1) is part of the following diffuse interface model
for the two-phase flow of two incompressible Newtonian, partly miscible fluids with phase
transition

∂tvε + vε · ∇vε − div(ν(cε)Dvε) + ∇ pε = −εdiv(∇cε ⊗ ∇cε), (4)

div vε = 0, (5)

∂t c
ε + vε · ∇cε = mε

(
Δcε − ε−2 f (cε)

)
(6)

in Ω × (0, T ), where vε : Ω × [0, T ) → R
d is the velocity of the mixture, Dvε = 1

2 (∇vε +
(∇vε)T ), pε : Ω ×[0, T ) → R is the pressure, and ν(cε) > 0 is the viscosity of the mixture.
This model can be considered as a model for a two-phase flow with phase transition or an
approximation of a classical sharp interface model for a two-phase flow of incompressible
fluids with surface tension. Here the densities of the two separate fluids are assumed to be
the same. A derivation of this model in a more general form with variable densities can be
found in Jiang et al. [10]. We refer to Gal and Grasselli [6] for the existence of weak solutions
and results on the longtime behavior of solutions for this model and to Giorgini et al. [7] for
analytic results for a volume preserving variant with different densities. Mathematically, this
system arises if one replaces the Cahn–Hilliard equation in the well-known “model H”, cf.
e.g. [1,8], by an Allen–Cahn equation.

With the aid of formally matched asymptotic expansions one can formally show that
solutions of this system converge to solutions of the following free boundary value problem

∂tv + v · ∇v − div(ν± Dv) + ∇ p = 0 in Ω±(t), t ∈ (0, T ), (7)

div v = 0 in Ω±(t), t ∈ (0, T ), (8)

[v]Γt = 0 on Γt , t ∈ (0, T ), (9)

− [
nΓt · (ν± Dv − pId)

]
Γt

= σ HΓtnΓt on Γt , t ∈ (0, T ), (10)

VΓt − nΓt · v = m0HΓt on Γt , t ∈ (0, T ), (11)

when mε = m0 > 0 and

∂tv + v · ∇v − div(ν± Dv) + ∇ p = 0 in Ω±(t), t ∈ (0, T ), (12)

divv = 0 in Ω±(t), t ∈ (0, T ), (13)

[v]Γt = 0 on Γt , t ∈ (0, T ), (14)

− [
nΓt · (ν± Dv − pId)

]
Γt

= σ HΓtnΓt on Γt , t ∈ (0, T ), (15)

VΓt − nΓt · v = 0 on Γt , t ∈ (0, T ), (16)

when mε = m0ε, m0 > 0. We will discuss this formal result in the appendix in more detail,
cf. Remark 2 below. Here ν± > 0 are viscosity constants, Ω±(t) ⊂ Ω are open and disjoint
such that ∂Ω−(t) = Γt = ∂Ω+(t) ∩ Ω , nΓt denotes the outer normal of ∂Ω−(t) and the
normal velocity and the mean curvature of Γt are denoted by VΓt and HΓt , respectively, taken
with respect to nΓt . Furthermore, [ . ]Γt denotes the jump of a quantity across the interface in
the direction of nΓt , i.e., [ f ]Γt

(x) = limh→0( f (x + hnΓt ) − f (x − hnΓt )) for x ∈ Γt .
In the case ν+ = ν− and that theNavier–Stokes equation is replacedby a (quasi-stationary)

Stokes system Liu and the author proved rigorously in [4] that the convergence holds true in
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the first case mε = m0 > 0 for sufficiently small times and for well-prepared initial data.
More precisely, it was shown that in a neighborhood of Γt

cε(x, t) = θ0

(
dΓt (x) − εhε(x, t)

ε

)
+ O(ε) (17)

(even with O(ε2)), where dΓt is the signed distance function to Γt and hε are correction
terms, which are uniformly bounded in ε ∈ (0, 1), and θ0 : R → R is the so-called optimal
profile that is determined by

−θ ′′
0 + f (θ0) = 0 in R, θ0(0) = 0, lim

z→±∞ θ0(z) = ±1. (18)

This form is important in order to obtain in the limit ε → 0 the Young-Laplace law (15), cf.
e.g. [2, Section 4].

It is the goal of the present contribution to show that in the case mε = m0ε
θ with θ > 2

the solutions of the convective Allen–Cahn equation (1)–(2) do not have the form (17) in
general. Moreover, we will show that the functional

〈
H ε,ϕ

〉 := ε

∫

Ω

∇cε ⊗ ∇cε : ∇ϕ dx

does not converge to the mean curvature functional

2σ
∫

Γt

nΓt ⊗ nΓt : ∇ϕ dHd−1 = −2σ
∫

Γt

(Id−nΓt ⊗ nΓt ) : ∇ϕ dHd−1

= −2σ
∫

Γt

HΓtnΓt · ϕ dHd−1 (19)

for all ϕ ∈ C∞
0,σ (Ω) = {

f ∈ C∞
0 (Ω)d : div f = 0

}
, where

σ = 1

2

∫

R

(
θ ′
0(z)

)2
dz.

We note that H ε is the weak formulation of the right-hand side of (4), which should converge
to a weak formulation of the right-hand side of (15). Therefore there is no hope that solutions
of the full system (4)–(6) converge to solutions of the corresponding limit system with (15)
as ε → 0 in the case that mε = m0ε

θ , θ > 2. We note that this effect was first observed
for the corresponding Navier–Stokes/Cahn–Hilliard system by Schaubeck and the author in
[5] in the case θ > 3. These results are also contained in the PhD-thesis of Schaubeck [11].
It is not difficult to show that 〈H ε,ϕ〉 converges to (19) if (17) holds true in a sufficiently
strong sense. Moreover, in the case θ > 3 non-convergence of the Navier–Stokes/Cahn–
Hilliard system in the case of radial symmetry and an inflow boundary condition was shown
by Lengeler and the author in [3, Section 4]. We note that the latter counter example can be
adapted to the present case of a Navier–Stokes/Allen–Cahn equation in the case θ > 2.

The structure of this contribution is as follows: in Sect. 2we summarize some preliminaries
and notation. Afterwards we prove the nonconvergence result in Sect. 3. Finally, in Sect. 4
we discuss briefly the sharp interface limit of the convective Allen–Cahn equation in the case
mε = m0ε

θ with θ = 0, 1.
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2 Preliminaries and notation

We denote a ⊗b = (
ai b j

)d
i, j=1 for a, b ∈ R

d and A : B = ∑d
i, j=1 Ai j Bi j for A, B ∈ R

d×d .

We assume that Ω ⊂ R
d is a bounded domain with smooth boundary ∂Ω . Furthermore, we

define ΩT = Ω × (0, T ) and ∂T Ω = ∂Ω × (0, T ) for T > 0. Moreover, n∂Ω denotes the
exterior unit normal on ∂Ω . For a hypersurface Γt ⊂ Ω , t ∈ [0, T ], without boundary such
that Γt = ∂Ω−(t) for a domain Ω−(t) ⊂⊂ Ω , the interior domain is denoted by Ω−(t) and
the exterior domain by Ω+(t) := Ω\(Ω−(t) ∪ Γt ), i.e., Γt separates Ω into an interior and
an exterior domain. nΓt is the exterior unit normal on ∂Ω−(t) = Γt . The mean curvature of
Γt with respect to nΓt is denoted by HΓt . In the following dΓt is the signed distance function
to Γt chosen such that dΓt < 0 inΩ−(t) and dΓt > 0 inΩ+(t). By this convention we obtain
∇dΓt = nΓt on Γt . Moreover, we define

Q± := {(x, t) ∈ ΩT : d(x, t) ≷ 0} .

The “double-well” potential F : R → R is a smooth function taking its global minimum 0
at ±1. For its derivative f (c) = F ′(c) we assume

f (±1) = 0, f ′(±1) > 0,
∫ u

−1
f (s) ds =

∫ u

1
f (s) ds > 0 (20)

for all u ∈ (−1, 1). In Eq. (1) the given velocity field satisfies v ∈ C0
b ([0, T ]; C4

b (Ω))d with
div v = 0 and v · n∂Ω = 0 on ∂Ω and the mobility constant mε has the form mε = m0ε

θ for
some θ ≥ 0 and m0 > 0. In Eq. (3) we choose the special initial value

cε
∣∣
t=0 = ζ

(
dΓ0
δ

)
θ0

(
dΓ0
ε

)
+

(
1 − ζ

(
dΓ0
δ

)) (
2χ{

dΓ0≥0
} − 1

)
in Ω, (21)

where we determine the constant δ > 0 later. Here ζ ∈ C∞
0 (R) is a cut-off function such that

ζ(z) = 1 if |z| <
1

2
, ζ(z) = 0 if |z| > 1, zζ ′(z) ≤ 0 in R, (22)

and θ0 is the unique solution to (18). This choice of the initial value is natural in view of (17).

3 Nonconvergence result

Our main result is:

Theorem 1 Let θ > 2, Ω ⊂ R
d be a bounded domain with smooth boundary ∂Ω , Γ0 a

smooth hypersurface such that Γ0 = ∂Ω−
0 for a domain Ω−

0 ⊂⊂ Ω and let cε be the
solution to the convective Allen–Cahn equation (1), (2) with initial condition (21). Then for
every T > 0 and for all ϕ ∈ C∞([0, T ];D(Ω)d) with divϕ = 0 we have

∫ T

0

〈
H ε,ϕ

〉
dt →ε→0 2σ

∫ T

0

∫

Γt

∣∣∇(dΓ0(X−1
t ))

∣∣ nΓt ⊗ nΓt : ∇ϕ dHd−1 dt .

Here the evolving hypersurface Γt , t ∈ [0, T ], is the solution of the evolution equation

VΓt (x) = nΓt (x, t) · v(x, t) for x ∈ Γt , t ∈ (0, T ], Γ (0) = Γ0,

where VΓt is the normal velocity of Γt , and Xt : Ω → Ω is defined by Xt (y0) = y(t; y0) for
y0 ∈ Ω , t ∈ [0, T ], where y(·; y0) is the solution of

d

ds
y(s; y0) = v(y(s; y0), s), s ∈ [0, T ], y(0; y0) = y0.
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Moreover, it holds
∥
∥cε − (2χQ+ − 1)

∥
∥2

L2(ΩT )
= O(ε) as ε → 0.

Remark 1 In general
∣
∣
∣∇(dΓ0(X−1

t ))

∣
∣
∣ =

∣
∣
∣DX−T

t ∇dΓ0 ◦ X−1
t

∣
∣
∣ �= 1, we refer to [5, Remark 1]

for a proof. This shows that the weak formulation of H ε does not converge to the weak
formulation of the right-hand side of the Young-Laplace law (15) in general.

To prove the theorem we follow the same strategy as in [5]: First we construct a family
of approximate solutions

{
cε

A

}
0<ε≤1. Afterwards we estimate the difference ∇(cε − cε

A),
which will enable us to prove the assertion of the theorem. We start with the observation that
Γt := Xt (Γ0) is the solution to the evolution equation.

Lemma 1 Let Γ0 ⊂ Ω be a given smooth hypersurface such that Γ0 = ∂Ω−
0 for a domain

Ω−
0 ⊂⊂ Ω . Then the evolving hypersurface Γt := Xt (Γ0) ⊂ Ω , t ∈ [0, T ], is the solution

to the problem

VΓt = nΓt · v on Γt , t ∈ (0, T ), Γ (0) = Γ0.

We refer to [5, Lemma 3] for the proof.
For the following let PΓt (x) be the orthogonal projection of x onto Γt . Then there exists

a constant δ > 0 such that Γt (δ) := {
x ∈ Ω : ∣∣dΓt (x))

∣∣ < δ
} ⊂ Ω and τt : Γt (δ) →

(−δ, δ) × Γt defined by τt (x) = (dΓt (x), PΓt (x)) is a smooth diffeomorphism, cf. e.g. [9,
Chapter 4.6].

We will need the following result:

Lemma 2 For e : ⋃
t∈[0,T ] Xt (Γ0(δ)) × {t} → R defined by e(x, t) := dΓ0(X−1

t (x)) the
following properties hold:

1. d
dt e(x, t) = −v(x, t) · ∇e(x, t) for all (x, t) ∈ ⋃

t∈[0,T ] Xt (Γ0(δ)) × {t} .
2. e(x, t) is a level set function for Γt , i.e., e(x, t) = 0 if and only if x ∈ Γt .

We refer to [5, Lemma 4] for the proof.
As mentioned in Sect. 2, let θ0 be the solution to (18) and let ζ be a cut-off function as in

(22). Then we define

cε
A(x, t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

±1 in Q± ∩ ⋃

t∈[0,T ]
Xt (Ω\Γ0(δ)) × {t},

ζ
( e

δ

)
θ0

( e
ε

) ± (1 − ζ
( e

δ

)
) in Q± ∩ ⋃

t∈[0,T ]
Xt (Γ0(δ)\Γ0

(
δ
2

)
) × {t},

θ0
( e

ε

)
in

⋃

t∈[0,T ]
Xt (Γ0

(
δ
2

)
) × {t}.

Then we have cε
A(., 0) = cε(., 0) since e(., 0) = dΓ0 and

∂t c
ε
A + v · ∇cε

A = 0 in ΩT

since ∂t e + v · ∇e = 0. Moreover, by the construction

cε
A = 0 on ∂Ω.

Furthermore, we define the approximate mean curvature functional by

〈
H ε

A,ϕ
〉 = ε

∫

Ω

∇cε
A ⊗ ∇cε

A : ∇ϕ dx .

for all ϕ ∈ D(Ω)d with divϕ = 0. Then we have:
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Lemma 3 Let cε
A be defined as above. Then there exists some constant C > 0 independent

of ε and ε0 ∈ (0, 1] such that the estimates

∥
∥Δcε

A(., t)
∥
∥

L2(Ω)
≤ Cε− 3

2 , (23)
∥
∥∇cε

A(., t)
∥
∥

L2(Ω)
≤ Cε− 1

2 , (24)
∥
∥ f (cε

A(., t))
∥
∥

L2(Ω)
≤ Cε

1
2 , (25)

∥
∥cε

A(., t) − (2χQ+(., t) − 1)
∥
∥

L2(Ω)
≤ Cε

1
2 (26)

hold for all t ∈ [0, T ] and ε ∈ (0, ε0).

We refer to [5, Lemma 5] for the proof.
Now we are able to prove the central lemma for the proof of Theorem 1.

Lemma 4 Let cε
A be defined as above and let cε be the unique solution to (1), (2) with initial

condition (21). Then, for θ ≥ 2, there exists some constant C > 0 independent of ε and
ε0 > 0 such that

ε
∥∥∇(cε − cε

A)
∥∥2

L2(ΩT )
≤ Cεθ−2 and (27)

∥∥cε − cε
A

∥∥
L∞(0,T ;L2(Ω))

≤ Cεθ− 3
2 (28)

for all ε ∈ (0, ε0].

Proof First of all, we note that cε(x, t), cε
A(x, t) ∈ [−1, 1] for all x ∈ Ω , t ∈ (0, T ). For cε

A
this follows from the construction and for cε by the maximum principle.

We denote by u = cε − cε
A the difference between exact and approximate solution, which

solves

∂t c
ε
A + v · ∇cε

A = 0 in ΩT .

We multiply the difference of the differential equations for cε and cε
A by u and integrate the

resulting equation over Ω . Then we get for all t ∈ (0, T )

0 =
∫

Ω

u
[
∂t u + v · ∇u − m0ε

θΔu − m0ε
θΔcε

A + m0ε
θ−2 f (cε)

]
dx

=
∫

Ω

(
∂t

|u|2
2 − v · ∇ |u|2

2 + m0ε
θ |∇u|2

)
dx

+
∫

Ω

(
m0ε

θ∇u · ∇cε
A + m0ε

θ−2 f (cε)u
)

dx

= 1

2

d

dt

∫

Ω

|u|2dx + m0ε
θ

∫

Ω

|∇u|2dx −
∫

Ω

(
m0ε

θ uΔcε
A − m0ε

θ−2u f (cε)
)

dx,

where we have used u = 0 on ∂Ω as well as div v = 0 in Ω . By Hölder’s and Young’s
inequalities we obtain

1

2

d

dt

∫

Ω

|u|2 dx + m0

2
εθ

∫

Ω

|∇u|2 dx

≤ 1

2
‖u‖2L2(Ω)

+ m2
0ε

2θ

2
‖Δcε

A‖2L2(Ω)
+ m0ε

θ−2
∣∣∣∣

∫

Ω

f (cε)u dx

∣∣∣∣ (29)
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for all ε ∈ (0, ε0), where
∣
∣
∣
∣

∫

Ω

f (cε)u dx

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

Ω

f (cε
A)u dx

∣
∣
∣
∣ + C‖u‖2L2(Ω)

≤ ∥
∥ f (cε

A)
∥
∥

L2(Ω)
‖u‖L2(Ω) + C ‖u‖2L2(Ω)

≤ Cε
1
2 ‖u‖L2(Ω) + C ‖u‖2L2(Ω)

(30)

since f ′ is Lipschitz continuous on [−1, 1]. Hence (29) together with (30) and (23) yield

1

2

d

dt

∫

Ω

|u|2 dx + m0ε
θ

∫

Ω

|∇u|2 dx

≤ C
(
‖u‖2L2(Ω)

+ ε2θ−3 + εθ−2‖u‖2L2(Ω)

)
≤ C1

(
‖u‖2L2(Ω)

+ ε2θ−3
)

since θ ≥ 2 for some C1 > 0 independent of ε and t ∈ [0, T ]. Hence the Gronwall inequality
implies

sup
0≤t≤T

‖u‖2L2(Ω)
+ εθ‖∇u‖2L2((0,T )×Ω)

≤ Cε2θ−3

for some C = C(T ) > 0 independent of ε. Therefore the lemma is proved. ��
Now we can show that H ε − H ε

A converges to 0 as ε goes to zero.

Lemma 5 Let H ε and H ε
A be defined as above and let θ > 2. Then it holds

∣∣∣∣

∫ T

0

〈
H ε − H ε

A,ϕ
〉
dt

∣∣∣∣ →ε→0 0,

for all ϕ ∈ C∞([0, T ];D(Ω)d).

Proof The proof is almost the same as in [5, Lemma 6]. But we include it for the convenience
of the reader since the argument is central for our main result. Let ϕ ∈ C∞([0, T ];D(Ω)d)

and set u = cε − cε
A. Then

ε

∣∣∣∣

∫

ΩT

(∇cε ⊗ ∇cε − ∇cε
A ⊗ ∇cε

A

) : ∇ϕ dx

∣∣∣∣

≤ ε

∣∣∣∣

∫

ΩT

(∇cε ⊗ ∇u
) : ∇ϕ dx

∣∣∣∣ + ε

∣∣∣∣

∫

ΩT

(∇u ⊗ ∇cε
A

) : ∇ϕ dx

∣∣∣∣

≤ ε ‖∇ϕ‖L∞(ΩT ) ‖∇u‖L2(ΩT )

(∥∥∇cε
∥∥

L2(ΩT )
+ ∥∥∇cε

A

∥∥
L2(ΩT )

)
.

Because of Lemmas 3 and 4, we have
∥∥∇cε

∥∥
L2(ΩT )

≤ ∥∥∇cε
A

∥∥
L2(ΩT )

+ ‖∇u‖L2(ΩT ) ≤ C
(
ε− 1

2 + ε
θ−3
2

)
.

Using Lemma 4 we conclude
∣∣∣∣

∫ T

0

〈
H ε − H ε

A,ϕ
〉
dt

∣∣∣∣ ≤ Cε
θ−2
2

(
1 + ε

θ−2
2

)

for some constant C = C(ϕ) > 0 and for all ε small enough. Since θ > 2, the assertion
follows. ��
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Lemma 6 Let H ε
A and cε

A be defined as above. Then it holds for all ϕ ∈ D(Ω)d and t ∈ [0, T ]
〈
H ε

A,ϕ
〉 →ε→0 2σ

∫

Γt

∣
∣∇(dΓ0(X−1

t ))
∣
∣ nΓt ⊗ nΓt : ∇ϕ dHd−1.

We refer to [5, Lemma 8] for the proof.

Proof of Theorem 1 The first assertion of the theorem immediately follows by Lemmas 5 and
6 . The second assertion is a consequence of Lemmas 3 and 4 since θ > 2. ��

4 Formal asymptotics

In this section we will use the method of formally matched asymptotic expansions to identify
the sharp interface limit of the convective Allen–Cahn equation (1), (2) in the cases mε =
m0ε

θ for θ = 0, 1 and some m0 > 0. We follow similar arguments as in [2, Section 4]. In
particular we assume that there are smoothly evolving hypersurfaces Γt , t ∈ (0, T ), such that
Γt = ∂Ω−(t), and we have the following expansions: Outer expansion: “Away from Γt” we
assume that cε has an expansion of the form:

cε(x, t) =
∞∑

k=0

εkc±
k (x, t) for every x ∈ Ω±(t).

Inner expansion: In a neighborhood Γt (δ), δ > 0, of Γt cε has an expansion of the form:

cε(x, t) =
∞∑

k=0

εkck(
dΓt
ε

, PΓt (x), t) for all x ∈ Γt (δ).

Matching condition:

lim
z→±∞ ck(z, x, t) = c±

k (x, t) for all x ∈ Γt , k = 0, 1,

lim
z→±∞ ∂zc0(z, x, t) = 0 for all x ∈ Γt .

Moreover, all functions in the expansions above are assumed to be sufficiently smooth.
In the following we will use the expansions above and the matching conditions, insert

them into the convective Allen–Cahn equation (1) and equate all terms of same order in
order to determine the leading parts in the inner and outer expansions formally.

4.1 Outer expansion

First we use a power series expansion of cε due to the outer expansion. Then

f ′(cε(x, t)) = f ′(c±
0 (x, t))c±

1 (x, t) + ε f ′′(c±
0 (x, t))c±

1 (x, t) + O(ε2)

and we obtain from (1)

1

ε2−k
f ′(c±

0 (x, t)) + 1

ε1−k
f ′′(c±

0 (x, t))c±
1 (x, t) + O(1) = 0

for all x ∈ Ω±(t). This yields
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(i) At order 1
ε2−k we obtain f ′(c±

0 (x, t)) = 0. Thus c±
0 (x, t) ∈ {±1, 0

}
. Here we exclude

the case c±
0 (x, t) = 0 since 0 is unstable and define Ω±(t) such that

c±
0 (x, t) = ±1 for all x ∈ Ω±(t).

(ii) If k = 0, we obtain at order 1
ε
that f ′′(c0(x, t))c±

1 (x, t) = 0. Since f ′′(±1) > 0, we
conclude

c±
1 (x, t) = 0 for all x ∈ Ω±(t).

If k = 1, the corresponding term is of order O(1) and we do not use this information.
Moreover, we will not determine c±

1 and c1 in this case.

4.2 Inner expansion

In Γt (δ) we use the inner expansion in (1) in order to determine the leading coefficients
c0(ρ, s, t) and, in the case k = 0, c1(ρ, s, t), where s := s(x) := PΓt (x). To this end we use

v · ∇c j (ρ, s, t) = 1

ε
v · ∇dΓt (ρ, s, t) + O(1),

Δc j (ρ, s, t) = 1

ε2
(∂2ρc j ) (ρ, s, t) + 1

ε
(∂ρc j ) (ρ, s, t) ΔdΓt (x) + O(1),

∂t c j (ρ, s, t) = 1

ε
(∂ρc j ) (ρ, s, t) ∂t dΓt (x) + O(1)

on Γt , where ρ = dΓt (x,t)
ε

and

∇dΓt = nΓt , ΔdΓt = −HΓt , ∂t dΓt = −VΓt on Γt .

Hence inserting the inner expansion in (1) and equating terms of the same order yields for
all x ∈ Γt :

m0
[−∂2ρc0(ρ, s, t) + f ′(c0(ρ, s, t))

] · 1

ε2

+ m0
[−∂2ρc1(ρ, s, t) + f ′′(c0(ρ, s, t))c1(ρ, s, t)

] · 1
ε

+ [−∂ρc0(ρ, s, t)(VΓt − nΓt · v − m0HΓt )
] · 1

ε
= O(1)

in the case k = 0 and

[
m0

(−∂2ρc0(ρ, s, t) + f ′(c0(ρ, s, t))
) − (∂ρc0)(ρ, s, t)(VΓt − nΓt · v)] · 1

ε
= O(1)

in the case k = 1. For the following we distinguish the cases k = 0, 1.
Case k = 0: The O( 1

ε2
)-terms yield

−∂2ρc0(ρ, s, t) + f ′(c0(ρ, s, t)) = 0 for all ρ ∈ R, s ∈ Γt , t ∈ [0, T ].
Because of the matching condition, we obtain

lim
ρ→±∞ c0(ρ, s, t) = c±

0 (s, t) = ±1 for all s ∈ Γt , t ∈ [0, T ].
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In order to obtain thatΓt approximates the zero-level set of cε(x, t) = c0(
dΓt
ε

, s(x), t)+O(ε)

sufficiently well, we obtain c0(0, s, t) = 0. Hence

c0(ρ, x, t) = θ0(ρ) for all x ∈ Γt , ρ ∈ R.

Furthermore, the O( 1
ε
)-terms yield

m0
(−∂2ρc1(ρ, x, t) + f ′′(θ0(ρ))c1(ρ, x, t)

) = θ ′
0(ρ)(VΓt − nΓt · v − m0HΓt ) =: g(ρ)

Since θ ′
0 is in the kernel of the differential operator −∂2ρ + f ′′(θ0), this ODE has a bounded

solution if and only if
∫

R

g(ρ)θ ′
0(ρ)dρ = 0, (31)

which is equivalent to

VΓt − nΓt · v = HΓt on Γt .

Now the matching condition yields c1(ρ, x, t) →ρ→±∞ c±
1 ≡ 0. Hence c1 ≡ 0 since the

solution is unique. Altogether we obtain for the inner expansion

cε(x, t) = θ0

(
dΓt (x)

ε

)
+ O(ε2)

close to Γt .
Case k = 1: The O( 1

ε
)-terms yield

m0
(−∂2ρc0(ρ, s, t) + f ′(c0(ρ, s, t))

)

− ∂ρc0(ρ, s, t)(VΓt (s) − nΓt (s) · v(s, t)) = 0 (32)

for all s ∈ Γt . Testing with ∂ρc0(ρ, x, t) yields

0 =
∫

R

|∂ρc0(ρ, s, t)|2 dρ
(
VΓt (s) − nΓt · v(s, t)

)

since
∫

R

∂ρ

( |∂ρc0(ρ, s, t)|2
2

+ f (c0(ρ, s, t))

)
dρ = 0

because of the matching condition for ∂ρc0. Because of c0(ρ, s, t) →ρ→±∞ ±1, ∂ρc0 does
not vanish and we obtain

VΓt = nΓt · v on Γt .

Moreover, we obtain from (32)

−∂2ρc0(ρ, s, t) + f ′(c0(ρ, s, t)) = 0 for all s ∈ Γt , ρ ∈ R.

Hence we can conclude as in the case k = 0 that c0(ρ, s, t) = θ0(ρ) for all ρ ∈ R and s ∈ Γt ,
t ∈ [0, T ].
Remark 2 The formal calculations show that cε should have an expansion of the form (17) in
the case θ = 0, 1. This is important to obtain (15) in the limit. Actually, using c0(ρ, s, t) =
θ0(ρ) one can easily modify the results in [2, Section 4] to show formally convergence of
the Navier–Stokes/Allen–Cahn system (4)–(6) to (7)–(11) in the case θ = 0 and (12)–(16)
in the case θ = 1. A rigorous justification of this convergence under suitable assumptions
remains open.
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