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Abstract
Nonlinear entropy stability analysis is used to derive entropy stable no-slip wall boundary
conditions for the Eulerian model proposed by Svärd (Phys A Stat Mech Appl 506:350–375,
2018). The spatial discretization is based on entropy stable collocated discontinuousGalerkin
operators with the summation-by-parts property for unstructured grids. A set of viscous
test cases of increasing complexity are simulated using both the Eulerian and the classic
compressible Navier–Stokes models. The numerical results obtained with the two models
are compared, and similarities and differences are then highlighted. However, the differences
are very small and probably smaller than what the current experimental technology allows
to measure.

Mathematics Subject Classification 65M70

1 Introduction

The classical compressible Navier–Stokes (CNS) equations can be derived based on the
material (Lagrangian) derivative formulation [29]. In theLagrangian sense, diffusion between
gas pockets is non-existent, and thus, the continuity equation is hyperbolic. On the other hand,
in the Eulerian model of Svärd [32], air molecules diffuse into other parts of the domain, and
thus, the continuity equation is modeled as a parabolic equation.
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Generally speaking, entropy conservation and entropy stability are used to preserve the
second law of thermodynamics in the mathematical sense, i.e., the mathematical entropy
function, S, decreases monotonically outside the equilibrium. This yields entropy estimates
and bounds on S, which can be translated into bounds on the conservative variables, q , of
the underlying model [12,31]. In this work, nonlinear entropy stability and the summation-
by-parts (SBP) framework are used to derive entropy stable wall boundary conditions for the
Eulerian model for the viscous and heat-conducting compressible flows proposed by Svärd
[32] and their semidiscrete counterpart. As done in [25] for the classical CNS equations, a
semidiscrete entropy estimate for the entire domain is achieved when the new boundary con-
ditions are coupled with an entropy stable discrete interior operator. The data at the boundary
are weakly imposed using a penalty flux approach and a simultaneous-approximation-term
(SAT) penalty technique. At the semidiscrete level, the work in [25] was sharpened in [13] by
first constructing entropy conservative wall boundary conditions and then adding a precise
interior penalty term. Here, we follow the semidiscrete analysis and derivation presented in
[13,25] by using a collocated discontinuous Galerkin framework based on SBP operators
constructed at the Legendre–Gauss–Lobatto (LGL) points. We verify the entropy conserva-
tion property of the baseline boundary conditions by simulating the flow around a rotating
sphere placed in a cubic domain. In addition, to verify the accuracy of the proposed bound-
ary condition implementation, we present the convergence study for a three-dimensional test
case constructed using the method of manufactured solutions.

In Svärd [32], Dolejší and Svärd [15], numerical simulations were presented to highlight
the difference between the classical CNS equations and the Eulerian model. Here, we also
use a set of test cases of increasing complexity simulated using both the CNS and Eulerian
models. We use the hp, fully-discrete entropy stable SSDC solver described, validated, and
verified in [26]. The numerical results of the two models in regions near solid walls are
compared, and differences and similarities are then highlighted.

The paper is organized as follows. In Sect. 2, we present the Eulerian model in a general
form, andwe show its entropy stability analysis. Then, in Sect. 3, we derive the wall boundary
conditions at the continuous. Later, in Sect. 4, we discretize the system using SBP-SAT
operators and present a discrete entropy analysis of the Eulerian model. The latter step
sets the context for the construction of discrete entropy conservative and entropy stable wall
boundary conditions. Furthermore, in Sect. 5, a common SAT procedure is presented to allow
the use of a single subroutine for imposing interface coupling and wall boundary conditions.
In Sect. 6, we present a set of numerical results that demonstrate the efficacy and accuracy
of the new boundary conditions. In addition, we present a few more test cases that highlight
similarities and differences between the two models slightly away from solid walls. Finally,
conclusions are drawn in Sect. 7.

2 Entropy analysis of the Eulerianmodel

To analyze the Eulerian model, we begin by presenting its general form and then, using the
global entropy, its entropy analysis. The latter step will set the context for deriving solid wall
boundary conditions that preserve the nonlinear entropy stability.
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2.1 General form of the Eulerianmodel

Svärd [32] arrives at the following form of the Eulerianmodel for viscous and heat conducting
compressible flows:

∂ρ

∂t
+ ∂ρU j

∂x j
= ∂

∂x j

(
ν

∂ρ

∂x j

)
, (1a)

∂ρUi

∂t
+ ∂ρUiU j

∂x j
+ ∂ p

∂xi
= ∂

∂x j

(
ν
∂ρUi

∂x j

)
, (1b)

∂ρE
∂t

+ ∂ρEU j

∂x j
+ ∂ pU j

∂x j
= ∂

∂x j

(
ν
∂ρE
∂x j

)
, (1c)

where i, j = 1 : NDIM (in MATLAB notation), and ρ, Ui , p, and E are the density, the
velocity component in the xi direction, the thermodynamic pressure and the specific total
energy, respectively.

In what follows, we assume thermodynamically perfect (or ideal) gas. Thus, the thermo-
dynamic pressure, p, is given by

p = ρRT , (2)

where R is the gas constant. The specific total energy, E , is given by the following equation

E = cvT + 1

2
UiUi , (3)

where cv is the heat capacity at constant volume and T is the temperature. The heat capacity at
constant pressure, cp , is related to cv through the gas constant, i.e., R = cp−cv . Furthermore,
the generalized form of the kinematic viscosity, ν, is given by

ν = αμ

ρ(x, t)
+ β(ρ, T ), (4)

where μ is the dynamic viscosity, α ∈ [1, 4
3 ], and β is an additional diffusion coefficient.

Finally, the speed of sound, c, is defined as

c = √
γ RT , (5)

where γ = cp
cv
.

Remark 1 Equation (4) is the most general expression of the kinematic viscosity of the
Eulerian model. However, in practice, Svärd [32] chooses β = 0 and thus, Eq. (4) reduces
to a scaled kinematic viscosity coefficient

ν = αμ

ρ(x, t)
. (6)

2.2 Entropy analysis

We cover the entropy analysis of the Eulerian model (1) by rewriting it using the following
compact form,

∂q

∂t
+ ∂ f (I )

i

∂xi
= ∂ f (V )

i

∂xi
, (7)

where f (I )
i and f (V )

i are the inviscid and viscous fluxes in the xi direction, respectively.
The next theorem ensures that the Eulerian model is entropy stable.
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Theorem 1 The following boundary integral∫
Γ

(
w�

(
ν
dq

dw

)
∂w

∂xi
− Fi

)
dΓ (8)

bounds the time derivative of the entropy function, S, of the Eulerian model (1).

Proof Given an entropy pair (S,Fi ) that symmetrizes the Eulerian model (see [32]), we
define the entropy variable w� = dS

dq . Then, using the matrix dq
dw

, we change the variables
of system (1) to q := q(w). These steps yield the symmetric form

dq

dw

∂w

∂t
+ ∂g(I )

i

∂xi
= ∂g(V )

i

∂xi
, (9)

where g(I )
i , and g(V )

i are the symmetrized inviscid and viscous fluxes, respectively. Next, we
multiply the symmetric system (9) from the left by the entropy variables. Thus, using the
chain rule, the term associated with the time derivative reads

w� dq

dw

∂w

∂t
= dS

dq

dq

dw

∂w

∂t
= ∂S

∂t
. (10)

Further, as shown by Tadmor [35], the contribution of the symmetrized inviscid flux term
yields

w� ∂g(I )
i

∂xi
= ∂Fi

∂xi
, (11)

i.e., the divergence of the entropy flux. Lastly, the viscous term contribution can be manipu-
lated to obtain the following expression:

w� ∂g(V )
i

∂xi
= w� ∂

∂xi

((
ν
dq

dw

)
∂w

∂xi

)
. (12)

Therefore, using Eqs. (10)–(12), the scalar partial differential equation for the entropy func-
tion, S, integrated over a generic domain Ω with boundary Γ reads∫

Ω

∂S
∂t

+ ∂Fi

∂xi
dx =

∫
Ω

w� ∂

∂xi

((
ν
dq

dw

)
∂w

∂xi

)
dx . (13)

Now, using the fundamental theorem of calculus on ∂Fi
∂xi

, and the integration-by-parts rule on

w� ∂g(V )
i

∂xi
gives ∫

Ω

∂S
∂t

=
∫

Γ

(
w�

(
ν
dq

dw

)
∂w

∂xi
− Fi

)
dΓ − DT , (14)

where

DT =
∫

Ω

∂w�

∂xi

(
ν
dq

dw

)
∂w

∂xi
dx . (15)

Because the kinematic viscosity, ν, is positive and the matrix dq
dw

is symmetric positive-

definite, the product
(
ν
dq
dw

)
is also a positive-definite matrix. Thus, DT is positive and

appropriately bounded (see [31]). We obtain the following expression∫
Ω

∂S
∂t

dx ≤
∫

Γ

(
w�

(
ν
dq

dw

)
∂w

∂xi
− Fi

)
dΓ (16)

which completes the proof.
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In the next section, we derive solid wall boundary conditions such that the boundary
integral on the left-hand side of (16) is bounded by data.

3 Entropy stable wall boundary condition

In this section, we derive the boundary conditions for preserving the entropy stability of the
system (1) for a solid wall. The analysis presented next closely follows the works of [13,25].

The entropy–entropy flux pair (S,Fi ) = (−ρs,−ρUi s), used in [13,25], is the only pair
that admits a diffusive entropy flux for the CNS model [32]. Therefore, it is the only suitable
pair for a comparison between the CNS and Eulerian systems of equations. This pair is also
used in this work. Thus, the entropy variables are computed as [9,17]

w =
(
h

T
− s − UiUi

2T
,−U1

T
,−U2

T
,−U3

T
,− 1

T

)�
, (17)

where h = cprT is the enthalpy.

Remark 2 The entropy–entropy flux pair for the Eulerian model is not necessarily restricted
to (S,Fi ) = (−ρs,−ρUi s). Svärd [32] mentions that the Eulerian model admits a diffusive
entropy flux for all Harten’s generalized entropies.

To simplify, we rewrite the Eulerian form (7) as

∂q

∂t
+ ∂ f (I )

i

∂xi
= ∂

∂xi

(
ν

∂q

∂xi

)
. (18)

From the proof of Theorem 1, we arrive at

∂S
∂t

+ ∂Fi

∂xi
= w� ∂

∂xi

((
ν
dq

dw

)
∂w

∂xi

)
. (19)

Integrating the previous expression over a cubical domain,Ω = (0, 1)× (0, 1)× (0, 1), and,
without loss of generality, considering a solid wall located at xi = 0, we get the following
contributions [25]∫

Ω

∂S
∂t

dx = −
∫
xi=0

[
w�

(
ν
dq

dw

)
∂w

∂xi
− Fi

]
dx j dxk − DT , (20)

where j, k �= i . From the proof of Theorem 1, DT ≥ 0. Thus, we get the bound∫
Ω

∂S
∂t

dx ≤ −
∫
xi=0

[
w�

(
ν
dq

dw

)
∂w

∂xi
− Fi

]
dx j dxk . (21)

To bound the time derivative of the entropy, the right-hand-side of (21) requires boundary
data. For a solid viscouswall, assuming linear analysis, five independent boundary conditions
are required [32]. Four boundary conditions are the three no-slip boundary conditions, as the
CNS case, and one on the density flux presented below. The fifth condition is the gradient
of the temperature normal to the wall (Neumann boundary condition; e.g., the adiabatic
wall), or the temperature of the wall (the Dirichlet or isothermal wall boundary condition),
or a mixture of Dirichlet and Neumann conditions (the Robin boundary condition). The last
condition is the same as for the CNS model [3,32,33]. These five boundary conditions lead
to linear stability of both the CNS and Eulerian model [3,32,33]. In the remainder of this
section, we will show the type and the form of the wall boundary conditions that have to be
imposed to bound the estimate (21) and, hence, to attain entropy stability.
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3.1 Inviscid contribution

The inviscid contribution to the time rate of change of the entropy function,∫
xi=0

Fi dx j dxk, (22)

appearing on the RHS of (21), is treated as in [13, Theorem 2.2]. However, for clarity of
presentation and completeness, we report it here.

Theorem 2 The no-slip boundary conditions Ui = 0 and U j = Uwall
j , where j �= i, bound

the inviscid contribution of the time derivative of the entropy function, i.e.

Fi = 0, (23)

for an inviscid solid wall with an outfacing normal vector pointing in the xi direction.

Proof The proof of this theorem can be found in [13, Theorem 2.2].

3.2 Viscous contribution

In this subsection, we derive the viscous boundary conditions for a no-slip wall associated
to the first term of the RHS of (21), i.e.,

−
∫
xi=0

w�
(

ν
dq

dw

)
∂w

∂xi
dx j dxk . (24)

The main result is provided in the following theorem.

Theorem 3 The boundary conditions

g(t) = μ
1

T
∂T
∂xi

, and
1

ρ

∂ρ

∂xi
= 0, (25)

bound the viscous contribution to the time derivative of the entropy function for a no-slip
solid wall with an outfacing normal vector pointing in the xi direction.

Proof The explicit evaluation of the viscous contribution gives

− w�
(

ν
dq

dw

)
∂w

∂xi
= μ

1

T
∂T
∂xi

− μ(s + (γ − 1))
1

ρ

∂ρ

∂xi
(26)

that contributes positively to the time derivative of the entropy function. Then, setting 1
ρ

∂ρ
∂xi

=
0 yields the boundary condition

− w�
(

ν
dq

dw

)
∂w

∂xi
= μ

1

T
∂T

∂xi
= g(t) (27)

which completes the proof.

For the CNSmodel, the viscous contribution to the time derivative of the entropy function
can be bounded by only setting κ 1

T
∂T
∂xi

[25]. However, for the Eulerian model, we require

the imposition of two boundary conditions, i.e. g(t) = μ 1
T

∂T
∂xi

and 1
ρ

∂ρ
∂xi

= 0.
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In practice with the above boundary conditions, the time derivative of the entropy function
satisfies the following relation∫

Ω

∂S
∂t

dx ≤ μ
1

T
∂T
∂xi

= g(t) = DATA. (28)

Bound (28) can be translated into a bound for the conserved quantities [12,31], and hence,
for the primitive variables.

4 Semidiscrete entropy stable framework

Herein, using summation-by-parts (SBP)operators [34] and the simultaneous-approximation-
technique (SAT) [8,22], we provide an entropy stable framework of any order for the
semidiscretization of the Eulerian model (1) using unstructured grids.

4.1 SBP operators

The one-dimensional SBP operator for the first derivative in the direction xi is defined as the
following.

Definition 1 Summation-by-parts (SBP) operator for the first derivative: A matrix operator
with constant coefficients, D ∈ R

N×N , is a linear SBP operator of degree p approximating
the derivative ∂

∂xi
on the domain xi ∈ [a, b] with nodal distribution x having N nodes, if

1. Dx j
i = j x j−1

i , j = 0, 1, . . . , p;
2. D = P−1Q, where the norm matrix P is symmetric positive-definite;
3. Q + Q� = B, where B = diag [−1, 0, . . . , 0, 1].

In other words, an SBP operator of degree p is one that exactly differentiates monomials
up to degree p.

In this work, a collocated discontinuous Galerkin approach is used. Specifically, diagonal
norm SBP operators are constructed on the LGL nodes. The one-dimensional SBP operators
used in this work are explicitly constructed in [10] with N = p + 1. Their extension to two-
and three-dimensions is achieved using tensor product operations [10,25]:

Dx1 = DN ⊗ IN ⊗ IN ⊗ I5, · · · Dx3 = IN ⊗ IN ⊗ DN ⊗ I5,
Qx1 = QN ⊗ IN ⊗ IN ⊗ I5, · · · Qx3 = IN ⊗ IN ⊗ QN ⊗ I5,
Bx1 = BN ⊗ IN ⊗ IN ⊗ I5, · · · Bx3 = IN ⊗ IN ⊗ BN ⊗ I5,
Δx1 = ΔN ⊗ IN ⊗ IN ⊗ I5, · · · Δx3 = IN ⊗ IN ⊗ ΔN ⊗ I5,
Px1 = PN ⊗ IN ⊗ IN ⊗ I5, · · · Px3 = IN ⊗ IN ⊗ PN ⊗ I5,

Px1,x2 = PN ⊗ PN ⊗ IN ⊗ I,5 · · · Px2,x3 = IN ⊗ PN ⊗ PN ⊗ I5,
Px1,x2,x3 = PN ⊗ PN ⊗ PN ⊗ I5,

(29)

whereDN ,QN ,BN ,ΔN andPN are the one-dimensional SBPoperators, andIN is the identity
operator.1 In this context, we choose a diagonal PN . By the definition of SBP operators
DN = P−1

N QN and BN = Q�
N + QN . The matrices B(·) pick off the interface terms in the

1 In this work, we use N = 5 because in three dimensions the number of partial differential equations is five
for both the CNS and Eulerian model.
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respective directions. For the spectral element discretization considered in this paper, the B(·)
matrices take on a particularly simple form. For example the matrix Bx1 reads

Bx1 = B+
x1 − B−

x1 ,

B−
x1 = diag (1, 0, . . . , 0) ⊗ IN ⊗ IN ⊗ I5,

B+
x1 = diag (0, . . . , 0, 1) ⊗ IN ⊗ IN ⊗ I5.

For a high-order accurate scheme constructed on tensor product cell, these matrices pick off
the values of the vector they act on (typically the solution or the flux vectors) at the nodes of
the two opposite faces multiplied by the orthogonal component of the unit normal.

When applying any of the operators (29) to the scalar entropy equation in space, a hat will
be used to differentiate the scalar operator from the full vector operator, e.g.

P̂ = (PN ⊗ PN ⊗ PN ) .

We finally note that in the present work, the quadrature nodes and solution nodes are collo-
cated.

4.2 Semidiscretization of the Eulerianmodel

Using the operators shown in (29), we can write the semidiscretization of (1) as

∂qi
∂t

= Dxi

(
f (V )
i − f (I )i

)
+ P−1

xi

(
g(b)
xi + g(I n)

xi

)
, (30)

where vectors g(b)
xi enforce the boundary conditions, while g(I n)

xi patches interfaces together
using a SAT approach [25]. Boldface letters represent quantities, q, and functions, f and g
for all nodes in an element. Note that the definition gxi involves the use of operators B− or
B+ (see the following section), which nonzero out only the contribution of the nodes located
at the interfaces.

Following [9,17], we use the telescoping property of an SBP operator,

Dxi f
(I )
i = P−1

xi Qxi f
(I )
i = P−1

xi Δxi IStoF f
(I )
i = P−1

xi Δxi f̄
(I )
i , (31)

to re-write (30) as

∂q
∂t

=
(
Dxi f

(V )
i − P−1

xi Δxi f̄
(I )
i

)
+ P−1

xi

(
g(b)
xi + g(I n)

xi

)
. (32)

The vector f̄ (I )i is defined as f̄ (I )i = IStoF f (I )i and the one-dimensional telescoping operator,
ΔN , is given by

ΔN =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
0 −1 1 0 0 0

0 0
. . .

. . . 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠

.

The operator IStoF interpolates the value at the solution nodes to the interfaces between
nodes as shown in Fig. 1.

123



Partial Differential Equations and Applications (2021) 2 :77 Page 9 of 27 77

x1 x2 x3 x4 x5

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

u0 u1 u2 u3 u4

f1 f2 f3 f4 f5

f̄0 f̄1 f̄2 f̄3 f̄4 f̄5

−1 −9
10 −

√
3
7

−16
45 0−16
45

+16
45 +

√
3
7

+9
10 +1

Fig. 1 One dimensional discretization using LGL points of order p = 4. · and × denote solution and flux
points, respectively. Reprinted from [9] with permission

Additionally, we define
[
dq
dw

]
as a block diagonal matrix applied to all LGL points in an

element. The kinematic viscosity ν is a scalar and we can bring it inside the matrix
[
dq
dw

]
,

i.e.,
[
ν
dq
dw

]
.

Using the procedure based on local discontinuous Galerkin (LDG) and interior penalty
(IP) approach described in [13,25], the semidiscretization (32) can be recast as

∂qi
∂t

+ P−1
xi Δxi f̄

(I )
i,sc − Dxi

[
ν
dq

dw

]
�xi = P−1

xi

(
g(b),q
xi + g(I n),q

xi

)
, (33a)

�xi − Dxiw = P−1
xi

(
g(b),Θ
xi + g(I n),Θ

xi

)
, (33b)

where the symbol �xi is the penalized gradient of the entropy variables in the xi direction

[25]. The terms g(b),q
xi , g(I n),q

xi , and g(b),Θ
xi , g(I n),Θ are the SAT penalty boundary (b) and

interface (I n) terms on the conservative variables, q , and the gradient of the entropy variables,
Θ , respectively. The contributions of the interface penalty terms are non-zero only for the
interface nodes in the normal direction to the interface.

Remark 3 To build a high-order entropy conservative semidiscretization, the linear interpo-
lation operator IStoF is replaced with a nonlinear interpolation operator [9,17,25]. Thus, the
operator P−1

xi Δxi f̄
(I )
i,sc is a nonlinear operator that is a discrete counterpart to the term that

appears in Theorem 2. Thus, we arrive at the following relation

1�PP−1
xi Δxi f̄

(I )
i,sc = 1�P̂x j ,xk B̂xiFxi �

∫
xi=1

Fi dx j dxk −
∫
xi=0

Fi dx j dxk . (34)

The flux vector f̄ (I )i,sc is constructed using an entropy conservative two-point flux [35], and

therefore, it satisfies the relation (11). In the case of an entropy stable flux, f̄ (I )i,ss , the resulting
term is entropy dissipative [13].

4.3 Time derivative of entropy function

Following the entropy analysis detailed in [9,24,25], the semidiscretization (33) yields the
following expression for the time derivative of the entropy function, S:

d

dt
1�P̂S + DT = � (35)
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where

DT =
∥∥∥∥∥
[
ν
dq

dw

] 1
2

�xi

∥∥∥∥∥
2

P
, (36)

and

� = −1�P̂x j ,xk B̂xiFxi

+ w�Px j ,xkBxi

[
ν
dq

dw

]
�xi

+ w�Px j ,xk

(
g(b),q
xi + g(I n),q

xi

)

+
([

ν
dq

dw

]
�xi

)�
Px j ,xk

(
g(b),Θ
xi + g(I n),Θ

xi

)
.

(37)

The full derivation of (35) is detailed in Appendix A.
Now, consider a cubic element of length 1 with a solid wall with a normal vector in the

xi direction, we have that the interface penalty terms are zero, i.e., g(I n),q
xi = g(I n),Θ

xi = 0.
Therefore, Eq. (37) reduces to

� = −1�P̂x j ,xk B̂xiFxi

+ w�Px j ,xkBxi

[
ν
dq

dw

]
�xi

+ w�Px j ,xkg
(b),q
xi

+
([

ν
dq

dw

]
�xi

)�
Px j ,xkg

(b),Θ
xi .

(38)

4.4 Entropy stable wall boundary conditions for the semidiscrete system

The boundary condition penalty term with respect to the conservative variables is split into
three design-order terms plus one source boundary term:

g(b),q
xi = g(b,I ),q

xi + g(b,V ),q
xi + M(b,V ) + L(b,V ). (39)

The first component of each term is computed from the numerical solution, and the second
component is constructed from a combination of the numerical solution and five independent
boundary data, as done in [25]. Without loss of generality, in this section, we assume a wall
at xi = 0; thus, we use the operator B− to single out the contribution of the cell nodes to the
wall nodes.

In the following, we define the inviscid, g(b,I ),q
xi , and viscous, g(b,V ),q

xi and g(b,V ),Θ
xi , con-

tributions in cell notation. Then, we use the point-wise notation to define the remaining
terms,M(b,V ) andL(b,V ), which are only applied to the boundary interface nodes using the
operators B−, or B+, i.e.,

M(b,V ) = −B−M(b,V ), (40)

and
L(b,V ) = −B−L(b,V ). (41)

The first term enforces Euler no-penetration wall

g(b,I ),q
xi = −1

2
B−
xi

(
f (I )i − f (b,I )i,sc (v(E), v(b,I ))

)
, (42)
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where f (b,I )i,sc is the entropy conservative flux and v represent the primitive variables. The
manufactured inviscid states are defined as in [25] for i = 1, without loss of generality,

v(E) = diag([1,−1, 1, 1, 1]), and v(b,I ) = (ρ,−U1,U2,U3, T )� . (43)

The viscous boundary term is given as

g(b,V ),q
xi = 1

2
B−
xi

([
ν
dq

dw

]
�xi − f (b,V )

i

)
, (44)

where f (b,V )
i will be defined later in this section. Together with (44), the following term

g(b,V ),Θ
xi = 1

2
B−
xi

(
w − w(b,V )

)
, (45)

enforce the no-slip boundary condition weakly. The analysis of the previous viscous terms
match the analysis described by [13,25] since the entropy variables are the same, and the

matrix
[
ν
dq
dw

]
is symmetric positive-definite.

The remaining terms are defined in point-wise notation, and thus the bold notation is
dropped. The analysis of their contributions is summarized next.

• The manufactured viscous flux is defined as

f (b,V )
i =

(
ν
dq

dw

(
v(b,V )

))
Θ̃xi , (46)

where the manufactured viscous boundary primitive variables, v(b,V ), is defined, as in
[13], by

v(b,V ) = (
ρ,−U1 + 2Uwall

1 ,−U2 + 2Uwall
2 ,−U3 + 2Uwall

3 , T
)�

. (47)

The change of variables matrix, dq
dw

(v), as a function of the primitive variables, v, is
defined in Appendix B. The term Θ̃xi is the manufactured gradient of the entropy vari-
ables. The construction of Θ̃xi is summarized in Appendix C.

• The dissipative IP term is an averaged state of the viscous flux evaluated at the primitive
state, v, and the manufactured primitive state, v(b,V ),

M(b,V ) = −β
f (V )(v) + f (V )(v(b,V ))

2
, (48)

where β is a positive constant that is scaled with the inverse of the element length in the
normal direction, controlling the strength of the penalty term [13].

• The source term
L(b,V ) = − (0, 0, 0, 0, 1)� g(t), (49)

imposes the heat flux boundary condition, as done in [25].

We summarize the results for the RHS of (35) in the following three theorems. The first
theorem is a result from [25] and is reprinted here for completeness

Theorem 4 The penalty inviscid flux contribution, g(b,I ),q , is entropy conservative if the
vector v(b,I ) is defined as in (43).

Proof The proof of this theorem can be found in [25, Theorem 5.1].
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Theorem 5 The penalty terms for the viscous flux in the conserved variables, g(b,V ),q , and
the gradient of entropy variables, g(b,V ),Θ, are

• entropy conservative if the wall is adiabatic, i.e. g(t) = 0,
• entropy stable in the presence of a heatflux, g(t) �= 0, where g(t) is a given L2 function.

Proof Substituting the expressions for g(b,V ),q , and, g(b,V ),Θ into (38), yields

d

dt
1�P̂S + DT = 1�P̂x j ,xk g(t). (50)

The function g(t) for an adiabatic wall is g(t) = 0. Thus the RHS is zero, and the scheme
is entropy conservative. Otherwise, the term g(t) is bounded by data. Hence, the RHS is
bounded, completing the proof.

The full details on the computation of (50) are reported in Appendix C.

Theorem 6 The IP term, M(b,V ), added to (39) is entropy dissipative.

Proof By expanding the penalty terms with respect to the conservative variables, g(b,V ),q ,
and focusing only on the dissipative IP term, M(b,V ), in (35), we arrive at

w�M(b,V ) = −2βαμ

RT 2 ‖ΔU‖2 (‖ΔU‖2 + RT
)
. (51)

Thus, M(b,V ) is entropy dissipative because all the parameters and variables appearing on
the RHS of (51) are positive. This completes the proof.

The full details on the computation of (51) are reported in Appendix D.

5 A common SAT procedure for the imposition of wall boundary
conditions and interior interface coupling

The proposed approach for imposing the solid wall boundary conditions allow for a SAT
implementation that is identical to the interface treatment shown in [24]. We can use a single
subroutine with different inputs corresponding to the imposition of the interior interface
couplings, or the adiabatic solid wall, or the wall with a prescribed heat entropy flow. In fact,
the interior interface coupling can be written as (see equations (16a–16d) in [24])

∂ql
∂t

+
(
P−1
xi,lΔxi,l f̄

(I )
i,l,sc − Dxi,l

[
ν
dq

dw

]
�xi,l

)
= P−1

xi,lg
(I n),q
xi,l , (52a)

�xi,l − Dxi,lw = P−1
xi,lg

(I n),Θ
xi,l , (52b)

∂qr
∂t

+
(
P−1
xi,r Δxi,r f̄

(I )
i,r ,sc − Dxi,r

[
ν
dq

dw

]
�xi,r

)
= P−1

xi,r g
(I n),q
xi,r , (52c)

�xi,r − Dxi,rw = P−1
xi,r g

(I n),Θ
xi ,r . (52d)

The above equations have exactly the same structure as the LDG-IP approach used for the
imposition of the solid wall boundary conditions except for the boundary penalty interface
terms, g(b),·

xi,r in Eq. (33), which are replaced by the interior penalty interface coupling terms,

g(I n),·
xi,r in Eqs. (52).
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Fig. 2 Axial velocity, U1, in a pipe with annular section; Eulerian model with Re = 1, Ma = 1e−3

6 Numerical results

In this section, we numerically investigate the proposed entropy stable wall boundary condi-
tions. The numerical experiments reported in this paper are performedwith the entropy stable
collocated Discontinuous Galerkin algorithm and relaxation Runge–Kutta schemes imple-
mented in the hp-adaptive, unstructured, curvilinear grid framework SSDC [26]. SSDC is
developed in the AANSLab, which is part of the Extreme Computing Research Center at
King Abdullah University of Science and Technology (KAUST). The core entropy stable
adaptive algorithms of SSDC are built on top of the Portable and Extensible Toolkit for
Scientific computing (PETSc) [2], its mesh topology abstraction (DMPLEX) [20], and its
scalable ODE/DAE solver library [1]. The SSDC framework uses a non-dimensional formal-
ism; thus, all quantities are scaled to units. For the Eulerian model, the kinematic viscosity is
scaled using α = 1. We use the two-point entropy conservative flux presented by [11]. Fur-
thermore, all the simulations have been performed in double (machine) precision. For all the
cases, we use the Runge–Kutta scheme of [5] with adaptive time-step and both relative and
absolute tolerances set to 10−8. The meshes are generated using Gmsh [19], and Pointwise
V18.3 released in September, 2019. The SSDC Eulerian and SSDC CNS data computed for
this section is available in http://doi.org/10.5281/zenodo.5041436.

6.1 Convergence study

In this section, we use themethod ofmanufactured solutions (MMS) to verify the accuracy
and correct implementation of the proposed boundary conditions. We use a pipe with an
annular section and length 1. Similarly to [13], this case is considered for two reasons. First,
it has an analytic solution for incompressible flow that cannot be represented in polynomial
space [27]. Because we use a compressible formulation instead, we calculate the appropriate
source term, giving us the manufactured solution. Second, it allows exercising the high-order
mesh capabilities and better approximate the circular geometry of the pipe. The following
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Table 1 Convergence study for the flow in a pipe with annular cross-section at Re = 1 and Ma = 1e−3

Grid L1 Rate L2 Rate L∞ Rate

4 8.36276e−04 – 1.77874e−03 – 5.70764e−03 –

8 1.25039e−04 −2.742 3.44481e−04 −2.368 1.49599e−03 −1.932

16 1.99325e−05 −2.649 5.46416e−05 −2.656 3.12259e−04 −2.260

32 2.64237e−06 −2.915 7.50755e−06 −2.864 5.07517e−05 −2.621

64 3.31631e−07 −2.994 9.65089e−07 −2.960 7.22735e−06 −2.812

128 4.12357e−08 −3.008 1.21565e−07 −2.989 9.60653e−07 −2.911

Axial velocity error; solution polynomial degree: p = 2

Table 2 Convergence study for the flow in a pipe with annular cross-section at Re = 1 and Ma = 1e−3

Grid L1 Rate L2 Rate L∞ Rate

4 2.00203e−04 – 3.85016e−04 – 1.54031e−03 –

8 2.71540e−05 −2.882 5.67563e−05 −2.762 3.16887e−04 −2.281

16 2.15610e−06 −3.655 5.69093e−06 −3.318 4.42491e−05 −2.840

32 1.24768e−07 −4.111 4.40714e−07 −3.691 4.63001e−06 −3.257

64 6.57969e−09 −4.245 2.86670e−08 −3.942 4.05012e−07 −3.515

128 2.95557e−10 −4.477 1.63672e−09 −4.131 3.12241e−08 −3.697

Axial velocity error; solution polynomial degree: p = 3

Table 3 Convergence study for the flow in a pipe with annular cross-section at Re = 1 and Ma = 1e−3

Grid L1 Rate L2 Rate L∞ Rate

4 4.54267e−05 – 9.55211e−05 – 4.70479e−04 –

8 4.47553e−06 −3.343 9.58936e−06 −3.316 6.31346e−05 −2.898

16 1.88611e−07 −4.569 5.68142e−07 −4.077 5.14343e−06 −3.618

32 5.97100e−09 −4.981 2.34227e−08 −4.600 2.75719e−07 −4.221

64 1.85738e−10 −5.007 7.90368e−10 −4.889 1.13276e−08 −4.605

128 5.76894e−12 −5.009 2.49773e−11 −4.984 3.99322e−10 −4.826

Axial velocity error; solution polynomial degree: p = 4

solution is used for the axial velocity:

U1 = G

4μ

(
(R2

1 − r2) + (R2
2 − R2

1)
log(r/R1)

log(R2/R1)

)
, (53)

where Ro = 0.5, Ro/Ri = 4, and G/μ = 1 (Fig. 2). We consider uniform density and
temperature, and zero nonaxial velocities. The parameters used are Re = 1, Ma = 1e−3
and α = 1. No-slip adiabatic wall boundary conditions are used on the outer and inner
cylinder whereas, periodic boundary conditions are used on the remaining boundaries. We
use Mathematica to compute the source term of the Eulerian model [36].
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Fig. 3 Spinning sphere enclosed in a cubical box; EulerianmodelwithRe = 1, andMa = 0.05. Themagnitude
of the point-wise velocity is used to scale the arrow glyphs vectors and to color the surface of the sphere
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(a) Evolution of the time derivative of the
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Fig. 4 Verification of the entropy conservation for the spinning sphere enclosed in a cubical box; Eulerian
model with Re = 1, and Ma = 0.05

The error calculation uses the following discrete norms

Discrete L1: ‖U‖L1 = ‖Ω‖−1
K∑

k=1

1�
Nk
PkJkabs (Uk) ,

Discrete L2: ‖U‖2L2 = ‖Ω‖−1
K∑

k=1

U�
k PkJkUk,

Discrete L∞: ‖U‖L∞ = max
k=1...K

abs (Uk) ,

(54)

where ‖Ω‖ represents the volume of the computational domain, Jk is the metric Jacobian
of the curvilinear transformation from physical space to computational space of the k-th
hexahedral element, and K is the total number of non-overlapping hexahedral elements in
the mesh.

The results of the convergence study are shown in Tables 1, 2 and 3, where the first column
represents the number of elements in the radial and angular coordinates. We observe that the
computed order of accuracy is approximately (p + 1).
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Fig. 6 Wake region of the flow past a cylinder at Re = 40 and Ma = 0.07. The background is colored by
the magnitude of the point-wise velocity vector solution of the Eulerian model. The wake streamlines for the
CNS model are imported from a CNS solution for the same testcase

6.2 Spinning sphere: verification of the semidiscrete entropy balance

To verify that the scheme enforces no entropy flow through the boundary, we simulate a
spinning sphere enclosed in a cubic domain. The sphere rotates at a constant angular velocity
around a unit vector given by âr = ar‖ar‖ , where ar = (1, 1, 1)�. The domain size is 2×2×2
with a sphere of diameter D = 0.6 located at the center of it. Solid wall boundary conditions
are imposed on the sphere surface and all six faces of the cubic box. The mesh is composed
of 4, 374 hexahedral elements. The sphere surface is discretized with quadratic boundary
elements. A solution polynomial degree p = 5 is used. We run the Eulerian model with
Re = 1, and Ma = 0.05. In Fig. 3, the velocity vector field near the surface of the sphere is
shown. The sphere is also colored based on the module of its point-wise velocity vector.

Figure 4a shows the time derivative of the entropy function of the semidiscretization of
the Eulerian model (30), d

dt 1
�P̂S, and the dissipation term, DT, as a function of time, t (see

Eq. (35)). As shown in Fig. 4b, the two terms cancel out, up to machine precision. Therefore,
the procedure proposed to impose the boundary conditions is entropy conservative if the IP
term in (39) is set to zero. This simulation is a strong numerical verification of what is proven
in Sect. 4.4.
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Table 4 Bubble length, Lbubble,
and drag coefficient, CD

Lbubble CD

Park et al. [23] 2.25 1.51

Ye et al. [37] 2.27 1.52

Fornberg [18] 2.24 2.5

Dennis and Chang [14] 2.35 1.52

Calhoun [7] 2.18 1.62

Russell and Wang [28] 2.29 1.6

SSDC CNS 2.254 1.608

SSDC Eulerian 2.256 1.609
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Fig. 7 The density profile for the flow past a cylinder at Re = 40 and Ma = 0.07. The figures are scaled so
that differences between the Eulerian and CNS solution densities are visible
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Fig. 8 Wall pressure coefficient for the flow past a cylinder at Re = 40 and Ma = 0.07. The reference data
are obtained from [23]
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Fig. 9 Vorticity at the wall for the flow past a cylinder at Re = 40 and Ma = 0.07. The reference data was
obtained from [23]

6.3 Laminar flow around a cylinder Re = 40

In this section, we present the two-dimensional flow around a cylinder of diameter D = 1
at Re = 40, and Ma = 0.07. Figure 5 shows the computational domain and summarizes the
boundary conditions. The initial condition is a uniform flow in the x1 direction. The case is
run until convergence to a steady-state. Specifically, we stop the simulation when the residual
reaches 10−14 and plateau around that value. Entropy stable adiabatic no-slip wall boundary
conditions are enforced on the cylinder surface. Far-field boundary conditions are used for
the remaining boundaries. The mesh is composed of 1140 elements with quadratic edges
for representing the surface of the cylinder. We use a solution polynomial degree p = 7.
Therefore, the total number of degrees of freedom is 72,960. The solution computed with
this setup is denoted here as a “numerically converged solution” in the sense that if we
increase the order of accuracy of the method, p, or refine the mesh, the difference between
two consecutive numerical solutions for all the primitive variables is machine precision.

First, we compute the length of the recirculation bubble in the wake region. Figure 6
shows the streamlines of the circulation bubble downstream of the sphere. The background
is the magnitude of the point-wise velocity vector. The top part of the plot corresponds to
the solution computed with the Eulerian model, whereas the bottom part is the solution
obtained using the CNS model. Qualitatively, the two solutions look identical. Furthermore,
both models show a wake length of 2.25D. The first column in Table 4 compares the length
of the bubble with several results published in the literature. The agreement is good. The
second column of Table 4 compares the drag coefficient, CD . The values obtained with both
models are very close to each other and agree well with that reported by Calhoun [7] and
Russell and Wang [28].

Next, we present some measurements in the boundary layer of the cylinder wall. Figure 7
shows the density profile for both models, where for the Eulerian model, we enforce a zero
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Fig. 10 Density distribution for the blastwave at time t = 0.01 computed with the Eulerian and the CNS
models. The base figure uses a grid of 32,768 elements

normal density gradient at the wall. Furthermore, for bothmodels, we use adiabatic solid wall
boundary conditions. In Fig. 7a, the difference between the two solution densities is shown,
and is smaller than 1e−3. The difference observed is accumulated at the leading edge and
remains consistent along with the tailwind, as shown in Fig. 7. Note that we have different
density ranges for each figure. This was done since a unified range does not make differences
visible. We highlight that it is remarkable how close the results of the two models are, given
their very different structures of the diffusive terms and boundary conditions.

Figure 8 shows the wall pressure coefficient, Cp . The curves obtained with the Eulerian
model and the CNS model are very close to each other and follow relatively well the DNS
results published by Park et al. [23]. Note that in Park et al. [23], the scheme uses “the
second-order central-difference scheme in space.” A similar comparison is made in Fig. 9
for the vorticity at the wall. Again, the curves obtained with the Eulerian model and the CNS
model are very close to each other and follow well the DNS results except around 50◦ where
they both undershoot the reference results.

6.4 Blast-wave

Svärd [32] presents the one-dimensional blastwave as an example where the implementation
of the CNS model converges to an unphysical solution. Here, we investigate the same test
case. We use Re = 10 and Ma = 0.07, and the same initial conditions as in [32]. All the
simulations are performed with p = 1. We present the results for a sequence of five uniform
nested grids, with respectively 2048, 4096, 8192, 16,384, and 32,768 elements. The solutions
obtained with the finest grid are denoted here as “numerically converged solutions”. Solid
wall adiabatic no-slip boundary conditions with zero density gradient for the Eulerian model
are imposed at the left and right boundaries of the domain.
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Fig. 11 Computational domain,
hp-nonconforming grid, and
solution polynomial degree
distribution, p, for the simulation
of the supersonic flow past a
circular cylinder . The underlying
figure was adapted from [26]
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Svärd [32] observes that since the density flux is not bounded, the solution can converge
to a state where the wall dissipates density. This is a non-physical solution and is computed
with a non-entropy stable implementation of the CNS model [32]. Our discretization of
the Eulerian and CNS models are entropy stable. As we will see shortly, we are unable to
reproduce the “lagging” effect observed in [32].

The main plot in Fig. 10 compares the density profiles computed with the Eulerian and
the CNS models on the finest grid with 8192 elements. We can easily observe that the two
curves do not lie on top of each other. Specifically, we notice a clear difference in the region
near the maximum peak, whose position along the x axis also appears to be influenced
by the model. Furthermore, differently from [32], we do not notice any difference at the
left and right boundaries of the domain between the solution computed with the Eulerian
and the CNS models. In Fig. 10, we also report two zoom views of the maximum peaks.
There, we plot the density profiles obtained with the five nested grids. We can observe how
the solutions approach the “numerically converged solution”. In particular, it appears that
the solution obtained with the Eulerian model reaches the “converged state” faster than the
solution obtainedwith the CNSmodel. Furthermore, we notice that the value of themaximum
peak obtained with the Eulerian model is slightly smaller than the same value computed by
the CNS model.

6.5 Supersonic flow around a cylinder

In this last test case, we present some results for the flow past a two-dimensional cylinder
enclosed between two solid walls [6]. The similarity parameters are Re = 10,000 and Ma =
3.5. The initial condition is a uniform flowwith unit density, ρ, unit temperature, T , and only
a non-zero unit velocity component in the x1 direction, U1. The flow is computed with a non-
uniform distribution of the solution polynomial degree. Therefore, the solution is computed
using the entropy stable p-nonconforming interface technology [16]. The solution polynomial
degree distribution is shown in Fig. 11, and it is the same setup used in [26]. Entropy stable
adiabatic no-slipwall boundary conditions are enforced on the cylinder surface. Inviscid (slip)
wall boundary conditions are imposed on the top and bottom horizontal boundaries, whereas
far-field boundary conditions are used for the (left) inlet and the (right) outlet boundaries. The
mesh consists of 5067 quadrangles. The solution computed with this setup is denoted here
as a “numerically converged solution” in the sense that if we increase the order of accuracy
of the method, p, or we refine the mesh, the difference in the solution for all the primitive
variables is machine precision. Figure 12 shows the contour plot of the density, ρ, and the
velocity component in the x1 direction, U1, of the developed solution.
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Fig. 12 Supersonic flow past a cylinder enclosed between two plates at Re = 10,000 and Ma = 3.5
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Fig. 13 θ–β-Ma plot for the flow past a cylinder at Re = 10,000, and Ma = 3.5

A quantitative analysis of the numerical results can be performed using the oblique shock
wave theory for the Euler equations [30]. At an oblique shock, the flow changes direction,
and there are three directions of interest: the upstream and downstream flow directions and
the shock wave direction itself. The most useful relation of oblique shock wave theory is the
one providing the deflection angle, θ , as a function of the shock wave angle, β, and local
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Fig. 14 Normalized distance between the shock and the cylinder leading edge for the flow past a cylinder at
Re = 10,000, and Ma = 3.5. The background is colored by the point-wise velocity magnitude

Mach number, Ma [21]:

tan(θ) = 2 cot(β)

[
Ma2 sin2(β) − 1

Ma2(γ + cos(2β)) + 2

]
. (55)

The pair θ−β obtained by postprocessing the solutions computed with the Eulerian and CNS
models are shown in Fig. 13.We can see that the results for bothmodels are in good agreement
with the theoretical curve. Finally, we report the normalized distance between the shock and
the leading edge of the cylinder, as shown in Fig. 14. The value of the latter quantity isΔ/D =
0.299 and Δ/D = 0.308 for the Eulerian and CNS models, respectively. These values are in

good agreement with the approximate value, which readsΔ/D � 0.193 exp
(
4.67
Ma2

)
= 0.293

[4].

7 Conclusion

Guided by the entropy stability analysis, we have derived solid wall boundary conditions that
preserve the entropy stability of the Eulerian model for viscous compressible fluids proposed
by Svärd [32]. In that context, using summation-by-parts operators and the simultaneous-
approximation term technique, we have constructed entropy conservative and entropy stable
solid wall boundary conditions for the semidiscretized system, which mimics the continuous
entropy analysis results. The proposed boundary conditions have been validated in terms
of accuracy, entropy conservation, and entropy stability for a set of test cases of increasing
complexity. The numerical results obtained with the Eulerian model have been compared
with the solutions computed using the classic compressible Navier–Stokes equations also
discretized with an entropy stable methodology constructed using summation-by-parts oper-
ators. Differences and similarities have then been highlighted and the models are practically
indistinguishable. This study is a first attempt to understand better the effects of the viscous
flux term introduced in the conservation of mass equation.

Acknowledgements The research reported in this paper was funded by King Abdullah University of Science
and Technology. We are thankful for the computing resources of the Supercomputing Laboratory and the
Extreme Computing Research Center at King Abdullah University of Science and Technology.

Data availability The datasets generated during and/or analysed during the current study are available in the
Zenodo repository, http://doi.org/10.5281/zenodo.5041436

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123

http://doi.org/10.5281/zenodo.5041436


Partial Differential Equations and Applications (2021) 2 :77 Page 23 of 27 77

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Derivation of the time derivative of the entropy

In this section, we provide the derivation of Eq. (35). To obtain the expression of the
time derivative of the entropy function, S, we multiply (33a) and (33b) by w�P and([

ν
dq
dw

]
Θx j

)�
P , respectively. This step yields

d

dt
1�P̂S + 1�P̂x j ,xk B̂xiFxi − w�PDxi

[
ν
dq

dw

]
�x j

= w�Px j ,xk

(
g(b),q
xi + g(I n),q

xi

)
,

(56a)

([
ν
dq

dw

]
�x j

)�
P�xi −

([
ν
dq

dw

]
�x j

)�
PDxiw

=
([

ν
dq

dw

]
�x j

)�
Px j ,xk

(
g(b),Θ
xi + g(I n),Θ

xi

)
.

(56b)

Using the properties of SBP operators, we can write

w�PDxi

[
ν
dq

dw

]
�x j = w�PP−1

xi Bxi

[
ν
dq

dw

]
�x j − w�PP−1

xi Q�
xi

[
ν
dq

dw

]
�x j . (57)

Since P is diagonal, we have

PP−1
xi Q�

xi = PQ�
xiP

−1
xi = PD�

xi = D�
xiP. (58)

Thus, Eq. (56a) is recast in the following form:

d

dt
1�P̂S + 1�P̂x j ,xk B̂xiFxi + (

Dxiw
)� P

[
ν
dq

dw

]
�x j

= w�Px j ,xkBxi

[
ν
dq

dw

]
�x j + w�Px j ,xk

(
g(b),q
xi + g(I n),q

xi

)
.

(59)

Additionally, because
[
ν
dq
dw

]
is SPD, we have

([
ν
dq

dw

]
�x j

)�
P�xi =

([
ν
dq

dw

] 1
2

�x j

)�
P

([
ν
dq

dw

] 1
2

�xi

)
=

∥∥∥∥∥
[
ν
dq

dw

] 1
2

�xi

∥∥∥∥∥
2

P
.

(60)
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Now, substituting (56b) into (59) gives the following expression

d

dt
1�P̂S +

∥∥∥∥∥
[
ν
dq

dw

] 1
2

�xi

∥∥∥∥∥
2

P
= −1�P̂x j ,xk B̂xiFxi

+ w�Px j ,xkBxi

[
ν
dq

dw

]
�x j

+ w�Px j ,xk

(
g(b),q
xi + g(I n),q

xi

)

+
([

ν
dq

dw

]
�x j

)�
Px j ,xk

(
g(b),Θ
xi + g(I n),Θ

xi

)
.

(61)

By defining

DT =
∥∥∥∥∥
[
ν
dq

dw

] 1
2

�xi

∥∥∥∥∥
2

P
, (62)

and

Ξ = −1�P̂x j ,xk B̂xiFxi

+ w�Px j ,xkBxi

[
ν
dq

dw

]
�x j

+ w�Px j ,xk

(
g(b),q
xi + g(I n),q

xi

)

+
([

ν
dq

dw

]
Θx j

)�
Px j ,xk

(
g(b),Θ
xi + g(I n),Θ

xi

)
.

(63)

Equation (61) can be further simplified to obtain (35), i.e.,

d

dt
1�P̂S + DT = Ξ. (64)

Appendix B: Change of variables matrix, dq
dw (v)

The Jacobian of the conservative variables, q , in terms of the entropy variables, w, as a
function of the primitive variables, v, is given by

dq

dw
(v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
R

U1ρ
R

U2ρ
R

U3ρ
R

dq
dw

(v)1,5

U1ρ
R

(
T + U2

1
R

)
ρ

U1U2ρ
R

U1U3ρ
R

dq
dw

(v)2,5

U2ρ
R

U1U2ρ
R

(
T + U2

2
R

)
ρ

U2U3ρ
R

dq
dw

(v)3,5

U3ρ
R

U1U3ρ
R

U2U3ρ
R

(
T + U2

3
R

)
ρ

dq
dw

(v)4,5

dq
dw

(v)1,5
dq
dw

(v)2,5
dq
dw

(v)3,5
dq
dw

(v)4,5
dq
dw

(v)5,5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (65)

where

dq

dw
(v)1,5 = ρ

(−2RT + ‖U‖2 + 2T cpr
)

2R
, (66)
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dq

dw
(v)2,5 = U1ρ

(‖U‖2 + 2T cpr
)

2R
, (67)

dq

dw
(v)3,5 = U2ρ

(‖U‖2 + 2T cpr
)

2R
, (68)

dq

dw
(v)4,5 = U3ρ

(‖U‖2 + 2T cpr
)

2R
, (69)

dq

dw
(v)5,5 =

ρ
((‖U‖2)2 + 4T cpr

(−RT + ‖U‖2 + T cpr
))

4R
. (70)

Appendix C: Viscous boundary penalty

This section constructs the viscous boundary penalty term for an adiabaticwall and awallwith
heat entropy flux.We then show that the resulting expressions lead to an entropy conservative
and entropy stable penalty terms, respectively.

Assuming a dissipative internal penalty term, M = 0, the RHS of (35) becomes

d

dt
1�P̂S + DT = w�P̂x j ,xk

(
g(b,V ),q
xi

)
+ Θ�

xi

(
ν
dq

dw

)
P̂x j ,xk g

(b),Θ
xi . (71)

DefineW = diag(w) and write

w�P̂x j ,xkχ = 1�WP̂x j ,xkχ = 1�P̂x j ,xkWχ, (72)

where WPx j ,xk = Px j ,xkW, since W is diagonal, and χ is a vector on a node. We use (72)
for both terms in the RHS of (71). The first term reads

1

2
1�P̂x j ,xk B̂−

xiW
(

ν
dq

dw

)
Θxi − 1

2
1�P̂x j ,xk B̂−

xiW
(

ν
dq

dw

(
v(b,V )

))
Θ̃xi , (73)

where both dq
dw

(
v(b,V )

)
and Θ̃ are evaluated using the manufactured primitive state

v(b,V ) = (
ρ,−U1 + 2Uwall

1 ,−U2 + 2Uwall
2 ,−U3 + 2Uwall

3 , T
)�

. (74)

The kinematic viscosity, ν, depends only on the density ρ. Thus, its evaluation is the same
for v and v(b,V ). The procedure for computing Θ̃xi is detailed in [13] and is summarized in
the following equation. The manufactured entropy variables gradient is defined as

Θ̃xi = dw

dv

(
v(b,V )

)
Π̃ = dw

dv

(
v(b,V )

)
diag(−1, 1, 1, 1,−1)Π, (75)

whereΠ is the gradient of primitive variables. The second term on the RHS of (71) is written
as

1

2
1�P̂x j ,xk B̂−

xiW
(

ν
dq

dw

)
Θxi − 1

2
1�P̂x j ,xk B̂−

xiW
(
v(b,V )

) (
ν
dq

dw

)
Θxi . (76)

The second terms in (73) and (76) cancel out. On the other hand, the first terms add up to

1�P̂x j ,xk B̂−
xiW

(
ν
dq

dw

)
Θxi = 1�P̂x j ,xk g(t). (77)

Therefore, we arrive at (50), i.e.,

d

dt
1�P̂S + DT = 1�P̂x j ,xk g(t). (78)
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For an adiabatic wall g(t) = 0, and thus, the RHS is zero yielding an entropy conservative
term. For a wall with non-zero heat entropy flux, g(t) is data, and the RHS is bounded.

Appendix D: Interior penalty term,M(b,V)

In this section, we compute the contribution to time derivative of the entropy function, S,
from the interior penalty termM(b,V ). Assuming a uniform hexahedral element (i.e., a cube)
of length one and a wall in the xi direction, we use the manufactured state of the vector
of primitive variables at the wall (47) to construct the jump in the entropy variables in the
normal direction to the wall, n̂,

Δw(b,V ) = (w − w(b,V )) · n̂�, (79)

and the viscous boundary flux state

f (V )(v(b,V )) =
(

ν
dq

dw
(v(b,V ))

)
Δw(b,V ) · n̂. (80)

Then, we use an average of the viscous flux of the numerical solution state at the wall and
the manufactured state

M(b,V ) = −β
f (V )(v) + f (V )(v(b,V ))

2
, (81)

to compute the dissipative term with Mathematica [36]

w�M(b,V ) = −2βαμ

RT 2 ‖ΔU‖2 (‖ΔU‖2 + RT
)
, (82)

where ΔU is the jump in the velocity of the numerical solution state at the wall and the
manufactured state. The term is negative for any non-zero jump in velocity, and thus, is
entropy dissipative.
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