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Abstract

In this paper a convergence analysis of a Galerkin boundary element method for resonance
problems arising from the time harmonic Maxwell’s equations is presented. The cavity res-
onance problem with perfect conducting boundary conditions and the scattering resonance
problem for impenetrable and penetrable scatterers are treated. The considered boundary
integral formulations of the resonance problems are eigenvalue problems for holomorphic
Fredholm operator-valued functions, where the occurring operators satisfy a so-called gen-
eralized Garding’s inequality. The convergence of a conforming Galerkin approximation
of this kind of eigenvalue problems is in general only guaranteed if the approximation
spaces fulfill special requirements. We use recent abstract results for the convergence of
the Galerkin approximation of this kind of eigenvalue problems in order to show that two
classical boundary element spaces for Maxwell’s equations, the Raviart—-Thomas and the
Brezzi—Douglas—Marini boundary element spaces, satisfy these requirements. Numerical
examples are presented, which confirm the theoretical results.

Keywords Electromagnetic resonance problem - Boundary element method - Scattering
resonances

Mathematics Subject Classification 65N25 - 65N38 - 65N12 - 78M15

1 Introduction

The numerical solution of electromagnetic resonance problems is an important task in dif-
ferent fields of engineering and technology. In this paper we consider for a given bounded,
simply connected Lipschitz domain £2' ¢ R3 the cavity resonance problem and the scatter-
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ing resonance problem for an impenetrable and a penetrable scatterer arising from the time
harmonic Maxwell’s equations with a time variation of the form e =/, It is assumed that the
exterior domain £2¢ :=R3 \ £21 is connected.

The cavity resonance problem, usually referred to as interior resonance problem, is given
as follows: Find ¥ € C and E' € H(curl; £2'), E' # 0, such that

curl curl E' — «’E' = 0 in 2,
div(eE') =0 in £, 1)
E xn=0 onF:zaﬂi,

where k = w,/gtis the wavenumber, w is the angular frequency, ¢ is the electric permittivity,
[ is the magnetic permeability, and n is the unit normal vector field on the boundary I”
pointing into the exterior domain §2°¢. For the cavity resonance problem and the resonance
problem for the impenetrable scatterer we assume throughout this paper that ¢ > 0 and
@ > 0 are constant. This assumption implies that the resonances of the interior resonance
problem (1) are real [27, Thm. 4.18] and non-zero.

The scattering resonance problem for the impenetrable scatterer, which is usually referred
to as exterior resonance problem, is formulated in £2° and is given as follows: Find k € C
and E® € Hjo(curl; £2°), E® £ 0, such that:

curl curl E° — «?E® =0 in Q°, (2a)
div(¢E®) =0 in £2°, (2b)
E¢xn=0 onl, (2¢)

E° is “outgoing”. (2d)

As radiation condition in (2d) we impose that each Cartesian component of E® has outside
of any ball B, :={x : ||x|| < ro} which contains £2' an expansion in terms of the spherical

Hankel functions of the first kind hﬁ,l) of the form

(Ee(X))[j] = Z Z af,{,)nh,(,,l)(l(l‘)y};n <||X7”> (3)

n=0m=—n

forr = ||x|| > roand j € {1, 2, 3}, where ¥, are the spherical harmonics. If k is such that 0 <
arg k < 7, then the radiation condition (3) for a solution E € Hjy (curl; £2°) of Maxwell’s
equations in §2° is equivalent to that the Cartesian components of E satisfy the Sommerfeld
radiation condition [11, Thm. 2.15]. The latter condition is again for0 < argk < 7 equivalent
to that E satisfies the Silver—Miiller radiation condition [11, Thm. 6.8]. The Silver—Miiller
radiation condition is usually imposed for scattering problems for wavenumbers « with
0 < argk < m. But it is well known that for wavenumbers with negative imaginary part
the Silver—Miiller radiation condition does not correctly characterize outgoing waves, see
e. g., [28, Sect. 1]. Since the resonances of the exterior resonance problem (2) have negative
imaginary part, instead of the Silver—Miiller radiation condition the radiation condition (3)
is used.

The definition of the scattering resonance problem for the penetrable scatterer will be
given in Sect. 5. For this kind of resonance problem we will allow complex and frequency-
dependent permittivities and permeabilities. Such configurations occur for example in the
field of plasmonics or in the context of metamaterials.

Boundary integral formulations and boundary element methods have been considered for
different kinds of electromagnetic resonance problems. Examples are the interior resonance
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problem [13,37], the interior transmission eigenvalue problem [12,22] or the resonance prob-
lem for the penetrable scatterer [24,26,35], to mention just a few. A rigorous convergence
analysis of the boundary element approximations of such kind of resonance problems has
not been provided so far.

The presented numerical analysis in this paper is based on the classical theory of the
regular approximation of eigenvalue problems for holomorphic Fredholm operator-valued
functions [17,18]. This theory has already been applied to boundary integral formulations of
acoustic resonance problems [33] and to coupled FEM-BEM formulations of vibro-acoustic
resonance problems [20]. For these cases sufficient conditions for the convergence of con-
forming Galerkin approximations follow from the fact that the occurring operators satisfy a
standard Garding’s inequality. For electromagnetic resonance problems the occurring bound-
ary integral operators satisfy only a generalized Garding’s inequality. In such a case additional
properties of the approximation spaces are required in order to guarantee convergence. In
[15,16] sufficient conditions for the convergence of a conforming Galerkin approximation
for such kind of eigenvalue problems are derived in an abstract setting. In this paper we show
that these conditions are satisfied for the Galerkin approximation of the proposed boundary
integral formulations of the considered electromagnetic resonance problems when classical
boundary elements of Raviart—-Thomas or Brezzi—Douglas—Marini type are used.

The rest of the paper is organized as follows: in the next section we introduce the bound-
ary integral formulation for the interior and exterior resonance problem and collect the basic
properties of the occurring boundary integral operators. In Sect. 3 we provide abstract con-
vergence results for the Galerkin approximation of eigenvalue problems for holomorphic
Fredholm operator-valued functions, where we assume that the occurring operators satisfy
a generalized Garding’s inequality. We specify for this case sufficient conditions such that
the classical convergence results are valid. The abstract results of Sect. 3 are then applied in
Sect. 4 to a Galerkin approximation of the boundary integral formulation of the interior and
exterior resonance problem. In Sect. 5 a boundary integral formulation for the scattering reso-
nance problem for a penetrable scatterer is analyzed and sufficient conditions on the material
parameter are given such that convergence of boundary element methods are guaranteed.
Numerical examples are presented in Sect. 6, which confirm the theoretical results.

2 Boundary integral formulation of the interior and exterior resonance
problem

In this section we introduce and analyze the boundary integral formulation for the interior and
exterior resonance problem (1) and (2). The main references for the definitions and properties
of the occurring boundary integral operators are [8,9]. Note that the notations in the present
paper only partially coincides with the notations in [8,9].

2.1 Trace spaces

In this subsection we summarize the properties of the trace spaces which we need for the
analysis of the boundary integral formulations of the resonance problems. For a detailed
presentation of the trace spaces related to Maxwell’s equations for Lipschitz domains we
refer to [7].

Let £2 be a Lipschitz domain. We denote by H*(£2),s € R,and by H'(082),t € [-1, 1],
the standard Sobolev spaces of scalar functions on the domain 2 and its boundary 952, cf.
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[25]. The vector-valued counterparts H* (£2) := (H* (A’Z))3 and H' (092) := (H’(B.Q))3 are
written in bold letters. Throughout the paper we use bold letters for vector-valued functions.
Further, we define
H, (2):={F: 2 - C | ¥ e CF’®R") : oF e H'(2)}, 5 = 0,
H(curl, 2):={F € (L*(£2))? | curl F € (L*(2))*}
Hioc(curl, 2) :={F € L} (2) | curl F € LY ()},

where leoc(‘Q) =H) (£2).
In the following let us consider the domains £2' and £2¢ = R3\ 21 as introduced in Sect. 1.
For smooth functions E/®¢ € {E— : E € (Cg° (IR3))3} we define the interior/exterior

ife

1oc

‘Ql/e

tangential trace operators y;’  and 71;/ by

yl/egl/e ::E%We xn and 7/°E/¢:=n x (E‘ff X n)
The operators y,i/ ¢ and rri/ ¢ can be extended for s € (0, 1) to continuous operators

y; . HS+]/2(9i) — V;‘/ = )/.g(Hs+1/2(Qi)), yre . Y+1/2(QC) VS

loc
xl QY - V=l @ TV2(@2Y), 2B e) -
where V}, and V7 are endowed with the norms
lullvy :=inf  {[Elgsti0i : 77 () = u),

E€H5+1/2(Qi)
{IEllgs+1/2(qi) : 77 (E) = s}.

Sllvs : inf
” “V” EcHs+1/2(21)

The dual space of Vj, and V7, s € (0, 1), are denoted by V. and V_*, respectively. For
s = 0 we set Vg = V?T ::L%(I“) :={u € L2(I") : u-n = 0}, where L%(F) acts as pivot
space for V¥ and VJ, as well as for V2* and V7 . Finally, we define the space

_1
H2(divp, M) :={ueV,? :divpue H 2 (I')}

endowed with the graph norm ”u”%'l_l/z(di\/r,F) = ||u||2j + ||d1v1~u||2 %(F)' The space

T

H~'/?(divy, I') is a Hilbert space and the tangential trace operators )/r and y¢ can be
extended such that

vl H(eurl; 2 — H™V2(divy, ),y : Hige(curl; 2°) — H-/2(divy, IN),

are continuous, surjective and possess a continuous right inverse [7, Thm. 4.1]. In the sequel
we will use the shorthand notation

V:=H"'"2divp, I").
The antisymmetric pairing

(u, s); ::/(uxn)-sds, u,seLf(F)
r

can be extended to V such that V becomes its own dual [9, Thm. 3.3], i.e., there exists a
linear and isometric isomorphism Jy : V — V’ such that

(u,s); = (Jxu)(s) forallu,se V.

@ Springer



SN Partial Differential Equations and Applications (2021) 2:39 Page50f29 39

The operator J, : V — V' is the extension of the mapping J, : L2(I") — L2(I") defined
by Jx (u) :=u x n, see [9, Thm. 3.3]. Since V is a Hilbert space we can identify the pairing
(-, )z with the inner product (-, -)v by

(w,8); = (JvJxu,8)y, u,sevV, “)
where Jy : (H™Y2(divy, I')) — H™'/2(divp, I) is a linear, isometric isomorphism.
As additional traces we introduce the traces ylil/ €= yrl/ ¢ o curl. The mappings )’111 :

H(curlz; .Qi) > Vand py : Hic (curl2; £2°) > V are linear and continuous [8], where

H(curl?; 2'):={F € H(curl, 2) | curl curl F € (L*(2))’},
Hioc (curl’; £2°) :={F € Hioc(curl, 2°) | curl curl F € L2 (2°)}.

loc

2.2 Derivation and analysis of the boundary integral formulation

The boundary integral formulation of the resonance problems (1) and (2) is based on the
Stratton—Chu representation formula for the solution of Maxwell’s equations. For exterior
problems this formula is in the literature only considered for wavenumbers with non-negative
imaginary part and together with the Silver—Miiller radiation condition; see, e.g., [8, Sect. 4],
[21, Thm. 5.49], [29, Sect. 5.5]. For wavenumbers with negative imaginary part the Stratton—
Chu representation formula is also valid if instead of the Silver—Miiller radiation condition
the radiation condition (3) is imposed. This can be shown in the same way as it is done for
positive wavenumbers in [8, Sect. 4, p. 95-97] by considering the Cartesian components of
the solution of Maxwell’s equations, which have to satisfy the scalar Helmholtz equation. The
representation formula for outgoing solutions of the scalar Helmholtz equation is also valid
for wavenumbers with negative imaginary part [34, Appendix, Cor. 6.5] and therefore the
Stratton—Chu representation formula is also valid for wavenumbers with negative imaginary
part for exterior problems. We consider the Stratton—Chu representation formula in following
compact form as in [8, Sect. 4]: any solution E of Maxwell’s equations in £2! U £2¢ with
wavenumber « € C \ {0} which satisfies the radiation condition (3) is given by

E(x) = (WpL(K) (7 E — y$E))(x) + (UsL () (VVE — E)(x), xe 21unc, (5)
where
(WsL () (x) := (VA (0)uw) (x) + %V (Wy (0)divru) (x), x € 2'UR°,
is the Maxwell single layer potential and where
(WpL ()u) (x) := curl (¥4 (K)u) (x) x € 2'UN°,
is the Maxwell double layer potential. Here, Wa (k) and Wy (k) are the vectorial and scalar

single layer potentials related to the Helmholtz equation, which have the integral represen-
tations

(WA () () := /FU(Y)EK (x —ydsy, (Yy(K)¢) (x):= /F¢(Y)EK(X — Y)dsy
with E (x) = exp(ix [|x]]) /47 [Ix]|.
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Let (¢!, E') be an eigenpair of (1) and let us extend Elin £2¢ by zero, then the Stratton—Chu
representation formula (5) gives

i Ei(x), x e 2,
v ! VvE! = 6
((WsL e GAVED )00 {0’ o ©)
If («©, E°) is an eigenpair of (2) and if we extend E® by zero in 21 then we have
0 x e 02
(s D ORE )00 = { ’ 7
(st 6N GE) ) ) {Eem o %

We consider a boundary integral formulation of the eigenvalue problems (1) and (2) in terms
of the single layer boundary integral operator S(x) which is defined by

Stou:= 3 (yiWsL(k) + yfWsL(k))u, weV.

The operator 5(x) : V — V is linear and continuous [8, Cor. 2] and it holds S(k) =
yiWsr (k) = ySWsy(k) [8, Thm. 7]. Further, we have the following representation [8,
Eq. 31)]
| . . i

(Stu, r)r = —(r, A()u); + p(lerr, Viodivra) o1, Ak) = veWale).  (8)
Here V (k) is the single layer operator of the Helmholtz equation and the pairing (-, ~)$ 1
denotes the duality pairing of H -3 (I') and H 3 (I'"). By applying the tangential trace to (6)
and (7) we see that («', E') and («°, E°) satisfy the following boundary integral equation

S(/9) (l EVe) = 0. )

As boundary integral formulation of the eigenvalue problems (1) and (2) we consider the
following eigenvalue problem: Find « € C \ {0} and u € V \ {0} such that:

S(k)u = 0. (10)

Note that this eigenvalue problem is nonlinear with respect to the eigenvalue parameter «.
The eigenvalue problem (10) is referred to as eigenvalue problem for the operator-valued
function S : C\ {0} — B(V, V). Here B(V, V) denotes the space of linear and bounded
operators mapping from V into V. The equivalence of the eigenvalue problem (10) with the
interior and exterior resonance problem (1) and (2) is specified next.

Proposition 1 The following assertions hold true:

() Suppose that (x, E) is an resonance pair either of the interior resonance problem (1) or
of the exterior resonance problem (2). Then («, yIlI/ °E) is an eigenpair of the eigenvalue
problem (10).

(ii) Let (x,u) be an eigenpair of the eigenvalue problem (10). If « is real, then it is a
resonance of the interior resonance problem (1) and (VsL(k)W)|oi is a corresponding
resonance function. Otherwise, k is a resonance of the exterior resonance problem (2)
and (Vs (k)w) e is a corresponding resonance function.

Proof The assertion (i) has been already shown, see (9). Suppose now that (k, u) is an

eigenpair of (10). We define E = Wgp (k)u in 21U £2¢. Then yTiE =yE=Sk)u=0.1It
remains to show that Ejoi O ifx € R,and E|ge #0ifx € C\ R.
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First we consider the case that k € R. Then E|oc = 0 because of the unique solvability
of the related exterior boundary value problem [21, Cor. 5.63]. From this we get ygE = 0
and the jump relation ygWst (k)u — yy WsL (k)u = —u [8, Thm. 7] implies E o #0.

Suppose now that « is non-real. Then E i = 0 because otherwise («, E|i) would be
an interior resonance pair which is not possible since all interior resonances are real [27,
Thm. 4.18]. From the jump relation of the single layer potential we get yqJE = u. Hence we
have E|_Qe # 0. ]

For the analysis of the eigenvalue problem (10) and its Galerkin approximation it is
essential that the single layer boundary integral operator S(x ) satisfies a generalized Garding’s
inequality in V for all wavenumbers « € C \ {0}. This property is based on the direct sum
decomposition

V=X0N, (11)

_1
where X’and A are closed subspaces of V with X C V; > N'= (kerdivy)N V[9, Thm. 3.4].
We denote by R and Z the associated continuous projectors onto X and N, respectively. An
equivalent norm in V is given by

WZ- 11>, +IdiveR- 1>, Y2, (12)
v, 2 H™2(I)

see [9, Thm. 3.4]. Further, we define the operator
©:=R-Z:V—->YV, (13)

which is by construction an isomorphism.

Lemma1 Let k € C\ {0}. There exist a compact operator C(k) : V — V, an isomorphism
T(k) : V= Vand an a(k) > 0 such that the following generalized Garding’s inequality is
satisfied

Re((S(k) + Clk)u, B(x)T(k)u); > Ol(K)||ll||%; forallu eV, (14)
where

© for Re(k) #0,

N £ T o
Tk): =k "T(k), T(k):= {I for Re(k) =0,
B(k):= sgn(Re(x)) for Re(k) # 0, and B(x) := — sgn(Im(k))i for Re(k) = 0.

Proof The assertion has been proven for positive wavenumbers e.g. in [6, Thm. 5], [8,
Lem. 10], [9, Thm. 5.4]. Using the same arguments as in [6,8,9] an extension to x € C\ {0}
is straightforward. We want to mention that the assertion follows also from Prop. 3 below
when setting u = (0, u) in (49). O

Next, we show that the mapping S : C \ {0} — B(V, V), « — S(x), is holomorphic,
i.e., the derivative 4t S(co) := limy—, e (S(c) — S(ko)) exists as operator in BV, V) for
each kg € C\ {0}.

Lemma 2 The mapping S : C\ {0} — B(V,V), « — S(k), is holomorphic.
Proof 1t is sufficient to show that the mapping

Kk — (S(k)u, r);
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is holomorphic as mapping from C \ {0} into C for all u, r of a dense subspace of V, see
Theorem II1.3.12 in [19] and the remark following it. Let us choose yri (o (R3))3) as dense
subspace of V. Then we can use the following integral representation of the pairing (-, -);
and of the boundary integral operator S(x) [8, Eq. 32]:

et lix=yll
(S(k)u, r) // ! u(x)~r(y)a’sya,’sX

4 ||x —

mnx yn
f f ————divpu(x)divrr(y)dsydsy. (15)
T 4rx —yll

Hence, it is sufficient to show that both terms on the right hand side in (15) are holomorphic
in k on C \ {0}. We give a proof for the first term only, since the second term can be treated
analogously. We divide the proof in two steps.

Step I: Consider for a fixed « € C the series expansion of the kernel

et lx=yll
//471”)( u(x)-r(y)dsya,’sX

(IK)n n—1
/ / Z dn y —ylI" ux) - r(y)dsydsx. (16)

We show that the order of integration and summation can be interchanged by using Lebesgue’s
dominated convergence theorem. Let

Fulie, X, y) == (rn) 710" 1x — yII"Tu(x) - r(y).

Obviously Zfl\,:o fn(k, X, y) converges pointwise almost everywhere on I” x I” to the kernel
on the left hand side in (16) as N — oo. Further, for R := maxy yer ||Xx — y|| we have

1 N (ixc)"
< Rn—l
- (47T||X -yl +HZ=; dn! ) lulloolirlloo

1 CliER|
< :: b 9 .
- <4ﬂllx—yll - 47TR> oo I floo = =8 Ge. X, ¥)

(e, X, y)

Since g(k, X, y) is integrable on I" x I" the order of integration and summation in (16) may
be interchanged.
Step 2: Define for k € Bk (0), K > 0,

hn(K)Z=//fn(K,X,y)dSdeX.
rJr

We have

' |[KR|"
p o= L KR oIl oo forn > 0.

1 ()] < [M01=IFI||V(O)IIB(H—I/z(p),HI/z(r))||ll||oo||1‘||oo forn =0,
n —

where V (0) is the single layer boundary integral operator of the Laplace equation, see [32,
Sect. 6.2]. Obviously, Zflo o M, is convergent. Hence, by the Weierstrass M-test it follows
that the series Z —o hn () converges absolutely and uniformly on B (0) to a limit function
h(x). Since ano h;, (k) is a polynomial in « and therefore holomorphic in « the uniform
convergence of Zfl\’:o h, () implies that the limit function A (k) is holomorphic on Bk (0).
From the first part of the proof we get
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eixlx=yll
hx) = //47t||x y”u(x)~r(y)dsydsx,

which shows that the first term on the right hand side in (15) defines a holomorphic function
on C. Analogously, the holomorphy of the second term can be shown. O

3 Galerkin approximation of eigenvalue problems for holomorphic
Fredholm operator-valued functions

In this section we provide abstract convergence results for the Galerkin approximation of
eigenvalue problems for holomorphic Fredholm operator-valued functions where we assume
that the occurring operators satisfy a generalized Garding’s inequality. We specify for this
case sufficient conditions such that the classical convergence results for the approximation
of eigenvalue problems for holomorphic Fredholm operator-valued functions as given in
[17,18] can be applied. Our analysis is based on results on the approximation of non-coercive
operators [4] and on recent results on the regular approximation of operators which satisfy
a generalized Garding’s inequality [15,16].

The results of this section build the abstract framework which we will utilize in order
to show the convergence of the boundary element method for the approximation of the
interior and exterior resonance problem as well as of the resonance problem for the penetrable
scatterer.

3.1 Assumptions on the eigenvalue problem

Let V be a Hilbert space and suppose that V is equipped with a conjugation, i. e., with a
continuous, unary operation v — v satisfying

ut+v=u+v, au=au, and v =,

for all u,v € V and @ € C. We denote by (-, -)y the inner product in V and consider in
addition a bilinear form (-, -)y : V x V — C with the property

(u,v)y = Ju,v)y forallu,veV, 17

where J € B(V, V) is a given isomorphism. Further, we assume that there exists a direct
sum decomposition V = X @& N which is stable, i. e., there exists a constant ¢ > 0 such that
for all v¥ € X and vV € N the inequality

Xy + 10V lv) < ello® +0NIv) (18)
is satisfied. We define the operator ® : V — V by
O :v=v"+ 0" > X =V, v ex, vWeN. (19)

Note that @ is an isomorphism and that ® € B(V, V) since the decomposition V = X & N
is stable.

Let A C Cbeanopen and connected subsetof Cand S : A — B(V, V) be aholomorphic
operator-valued function. We assume that S(}) satisfies a generalized Géarding’s inequality
for all A € A of the following kind: there exist a compact operator C(1) € B(V, V) and an
a(A) > 0 such that

Re((S(L) + C)v, T(M)v)yy > oc(k)||v||%, forallv € V, (20)
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where T'(A) = ()1 or T (1) = B(A)® with B(X) # 0. Since T (1) is an isomorphism and
® € B(V, V) this implies that T'(A)*JS(1) as well as that S(A) is a Fredholm operator of
index zero [25, Thm. 2.33]. We want to mention that we do not require that the operator-valued
functions C(-) and T (-) are holomorphic in A.

We consider the eigenvalue problem for the operator-valued function S(-) of the form:
find eigenvalues A € A and corresponding eigenelements # € V' \ {0} such that

Su = 0. (21)

If (X, u) satisty (21), then we say that (A, u) is an eigenpair of the operator-valued function

SC).

3.2 Notations and properties of eigenvalue problems for holomorphic Fredholm
operator-valued functions

We briefly summarize basic results of the theory of eigenvalue problems for holomorphic
Fredholm operator-valued functions [14,23]. The set

P(S():={re A:3(SM) " € BV, V)

is called the resolvent set of S(-). In the following we will assume that the resolvent set of
S(-) is not empty. The complement of the resolvent set p(S(-)) in A is called the spectrum
0 (S(-)). The spectrum o (S(-)) has no accumulation points inside of A [14, Cor. XI 8.4]. The
dimension of the null space ker S(1) of an eigenvalue A is called the geometric multiplicity
of A. An ordered collection of elements uq, uq, ..., u,—1 in X is called a Jordan chain of
(X, up), if (1, up) is an eigenpair and if

—~ L)
Y SV Wup—j =0 foralln=0,1,....m—1
j=07"

is satisfied, where SU) denotes the jth derivative. The length of any Jordan chain of an
eigenvalue is finite [23, Lem. A.8.3]. Elements of any Jordan chain of an eigenvalue A are
called generalized eigenelements of A. The closed linear hull of all generalized eigenelements
of an eigenvalue A is called generalized eigenspace of A and is denoted by G(S(-), A). The
dimension of the generalized eigenspace G (S(-), A) is finite [23, Prop. A.8.4] and it is referred
to as algebraic multiplicity of A.

3.3 Galerkin approximation

For the approximation of the eigenvalue problem (21) we consider a conforming Galerkin
approximation. Let (Vj); be a sequence of finite-dimensional subspaces of V and let P}, :
V — Vj}, be the orthogonal projection of V onto V},. As usual we assume that

|Ppv—v|ly >0 ash— 0 forallveV. (22)

The Galerkin approximation of the eigenvalue problem (21) reads as: find eigenpairs
(Ap,up) € A x Vi \ {0} such that

(SOpup, vp)y =0 forall v, € V. (23)
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For the convergence analysis it is convenient to consider instead of the variational formula-
tion (23) the equivalent operator formulation

Py JS(\p) Prup = 0. (24)

Further, we will also consider the eigenvalue problem for the operator-valued function J S(-),
which is equivalent to the eigenvalue problem for S(-), i. e., (A, u) is an eigenpair of the
eigenvalue problem for JS(-) if and only if it is an eigenpair of the eigenvalue problem for

SC).
3.3.1 Regular convergence

In order to apply the convergence theory of [17,18] to the Galerkin eigenvalue problem (24)
it is necessary to show that the sequence (P JS(A)Py); converges regularly to JS(X) as
h — 0 for all A € A. For the definition of the regular convergence we need the definition of
a compact sequence first.

Definition 3.1 A sequence (vj)n, v € V, is compact in V, if every subsequence (vy/)j of
(vn)n has a convergent subsequence (vy7)y7 in V.

Definition3.2 Let B € B(V, V) and suppose that (Vj);, satisfies (22). The sequence
(Py B Py);, converges regularly to B, if for any bounded sequence (vy), vy, € Vi, the com-
pactness of (P, B P,vp);, implies already the compactness of (vj,)y,.

If the operator B is a compact perturbation of a coercive operator, then the sequence
(Pn B Pp);, converges regularly to B [36, Sect. 2: Prop. 5]. For the case that B satisfies only
a generalized Garding’s inequality the regular convergence of (P, B Pp);, to B is in general
not guaranteed. Sufficient conditions for that case are specified in the next lemma.

Lemma3 ([15, Lem. 3.15], [16, Thm. 1.8]) Let B € B(V, V) and assume that there exit a
compact operator C € B(V, V), an isomorphism T € B(V, V), and an a > 0 such that

Re ((B+C)v, Tv)y) > allvll%/ forallveV. (25)
Further, suppose that (Vy),, satisfies (22). If there exists a sequence (Tp)n, Ty, € B(Vy,, Vi)
such that

T — T,
I =Twwelly o 4 — 0, (26)

ureV\{0) lvallv

then (Py B Pp)y converges regularly to B.

Sufficient conditions for the existence of a sequence of discrete operators (7}); such
that (26) is satisfied will be provided next for the case of a stable splitting V = X & N
and T = ®, where O is defined by (19). First we need to define the gap §y (U, W) of two
subspaces U and W of V:

Sy(U,W):= sup inf |lu— wly.
weW
lully=1
We say that the sequence (V},)), satisfies a gap property withrespect to the splitting V. = X@N
if the following condition is satisfied:

(GAP) There exist sequences (Xp,), and (Np);, satisfying the following properties:
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(i) Xj and Nj, are subspaces of Vj, such that V;, = X @& N, for all k,
>ii) 8 := max{Sy (Xp, X), Sy (Np, N)} > 0 ash — 0.

This condition is a usual condition for Galerkin boundary element methods for Maxwell’s
equation, see e g. [4,5,8—10]. We will discuss this in detail in Sect. 4 below.

Lemma4 Let V = X @ N be a stable splitting and suppose that (Vy,);, satisfy (22) and the
property (GAP). Then we have:

(a) For any continuous projector Q : V. — X which is onto in X, there exists a constant
¢ > 0 such that for sufficiently small h we have

lvn — Quallv =< cdnllvnllv for all vy € V.
(b) The splitting V,, = X, @ Ny, is uniformly stable for all h < hy for some h; > 0, i.e.,
there exists a constant ¢ > 0 such that for all h < hy it holds
(1™l + 1o 1v ) < clloy + i lly for all " € Xy, v € N
Proof For assertion (a) we refer to [4, Lem. 3.1] and for assertion (b) to [4, Thm. 3.2]. 0O

Proposition2 Let V = X @ N be a stable splitting and ® be defined by (19). Suppose
that (V) satisfy (22) and the property (GAP). Then there exists a sequence (Op)p, O €
BV, Vi), such that

1(©@ — On)unlly

— 0 ash — 0. (27)
uneVi\ (0} lvrllv

Proof Since V = X @ N is a stable splitting there exists a continuous projection R : V — V
with range X and kernel N. By definition of ® we have ®v = vX — v for v € V, where
vX e X, vV e N such that v = v* + vV This implies that we can write ® = R — Z, where
Z:=1—R.

From the decomposition V;, = Xj @ Nj, and the fact that V}, is finite-dimensional it follows
that there exists a continuous projection R, : V, — V, with range X; and kernel N;. We
will show that

O =Ry — Zy, Zp=1—Ry (28)

satisfies (27). The proof for that will be done in two steps.
(i) First we show that there exists a constant ¢ > 0 such that for sufficiently small &

(R — Rp)vnlly < cénllvnlly (29)

holds for all v, € V},, where §;, is defined as in (GAP)(ii). Let v, € V;, and consider the
decomposition v, = vj, " + villvh, where vf" € X, and v;lv " € Nj. Using Lemma 4(a) we get

X N
(R — Rp)vnlly < (R — Rp)v,"llv + [IRv," Ilv
X N, X N,
=[(R—=Dv," v+ Il = Z)v," llv < cSu(llvy " lv + llv, " Iv).

By Lemma 4(b) the decomposition V), = X, @ N, is uniformly stable for sufficiently small
h and therefore inequality (29) follows.
(ii) Since Z = (I — R) and Z; = (I — Ry) we get from (29) also

1(Z = Zp)vnlly = cdpllvnllv. (30)
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Hence, we have
1(© — Op)vnllv < IR = Rvplly + I(Z = Zp)vallv < 2¢8nllvnllx,
from which (27) follows. O

Corollary 1 Let V. = X & N be a stable splitting and ). € A. Assume that S(\) € B(V, V)
Sulfills a generalized Garding’s inequality of the form as in (20). Further, suppose that (V)
satisfy (22) and the property (GAP). Then (PnJ S()) Py); converges regularly to J S()).

Proof Since S(A) € B(V, V) fulfills a generalized Garding’s inequality of the form as in (20),
there exist a compact operator C(A) € B(V, V) and an «(A) > O such that

Re(((S(V) + CONv. TOw)y > a(W)|v])} forallv e V.

where T(A) = B(AM)I or T(X) = B(A)O with B(A) # 0. From (-, )y = (J-, -)y it follows
that JS()) satisfies a generalized inequality of the form as in (25), 1. e.

Re(JSO) + JCONU. TOIv)y >aMW)|v]} forallv e V.

By Lemma 3 it is sufficient to show that there exists a sequence (T;, (1)), Th(A) € B(Vy, Vi),
such that

(T = Tn(M))vally

— 0 ash — 0. 31)

ureVi\(0) lvrllv
For T'(A) = B(A)I, obviously (31) holds for 7T, (X)) = (M) I. If T(A) = B(X)O, then (31)
follows form Proposition 2 for 7, (A) = (1) O,. ]

3.3.2 Asymptotic convergence results

In the next theorem we summarize main convergence results for the Galerkin approximation
of the eigenvalue problem S(1)u = 0 as given in (21). For additional convergence results we
refer to [15-18].

Theorem 1 Let V = X @ N be a stable splitting and let S : A — B(V, V) be a holomorphic
operator-valued function. Assume that S(L) fulfills a generalized Garding’s inequality of the
SJorm as in (20) for all A € A. Further, suppose that (Vi) satisfy (22) and the property
(GAP). Then the following holds true:

(1) (Completeness of the spectrum of the Galerkin eigenvalue problem) For each eigenvalue
A € A of the operator-valued function S(-) there exists a sequence (A)j, of eigenvalues
of the Galerkin eigenvalue problem (23) such that

Ap—> A ash — 0.

(i1) (Non-pollution of the spectrum of the Galerkin eigenvalue problem) Let K C A be a
compact and connected set such that 0K is a simple rectifiable curve. Suppose that there
is no eigenvalue of S(-) in K. Then there exists an ho > 0 such that for all h < hg the
Galerkin eigenvalue problem (23) has no eigenvalues in K.

(iii) Let D C A be a compact and connected set such that 0D is a simple rectifiable curve.
Suppose that ) € D is the only eigenvalue of S(-) in D. Then there exist an hg > 0 and
a constant ¢ > 0 such that for all h < hog we have:
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(a) For all eigenvalues Ay, of the Galerkin eigenvalue problem (23) in D

L= 2l < e8v(G(S(), 1), Vi)V E8v (G(S* (), 2), Vi) '/* (32)
holds, where S*(-) := (S())* and £ is the maximal length of a Jordan chain corre-
sponding to \.

(b) Let

_ 1
A= —F/————— Apdim G(PpJS() Py, A
= MG 0. > ndim G(PpJS(-) Py, An)
An€a (PyJ S(-)P)ND
be the weighted mean of all eigenvalues of the Galerkin eigenvalue problem (23) in
D. Then it holds

% — Al < 8y (G(SC), A), Vi) 8y (G(S* (). 4), Vi) - (33)
(¢) If (\p, up) is an eigenpair of (23) with A, € D and ||lup|lv = 1, then

inf Alu —uplly < c(IAp — Al + 8y (ker(S(R), Vi)
ueker(S(1))

Proof By Corollary 1 the sequence (P, JS(A)Py);, provides a regular approximation of the
operator JS(A) for all A € A. Further, the Galerkin scheme is a discrete approximation
scheme in the sense of [17], see, e.g. [15, Lem. 3.6], [16, Lem. 2.6]. The assertions (i) to
(iii)(b) follow then from the abstract results in [17,18]. For assertion (i) and (ii) we refer to
[17, Thm. 2], and for (iii)(a) and (iii)(b) to [18, Thm. 2,Thm. 3].

The error estimate in (iii)(c) follows from [15, Lem. 3.17], [16, Lem. 2.6]. o

4 Galerkin approximation of the interior and exterior resonance
problem

In this section we apply the abstract convergence results of Theorem 1 to the Galerkin
approximation of the eigenvalue problem

S(k)u = 0.

Lemma 1 shows that S(k) satisfies for all « € C \ {0} a generalized Garding’s inequality of
the form

Re((S(k) + Clx))u, B(k)T(k)u); > oz(x)llull%, forallu eV,

where T(k) = Bk)O or T(k) = B(k)l with B(k) # 0. The operator © is defined by
© = R—Z, see (13), where R and Z are projections associated to the splitting V = X @ N as
given in (11). Further, (4) shows that (-, *); = (J-, -)y holds, where J := Jy J« is an isometric
isomorphism. Since S(-) is in C \ {0} in addition holomorphic, S(-) satisfies the assumption
of Theorem 1. It remains to provide adequate ansatz spaces for the Galerkin approximation
of the eigenvalue problem for S(-).

In what follows, we make the additional assumption that £ is a polyhedron, possibly
curvilinear. Let (7)), be a sequence of regular triangulations of the boundary I with mesh
size h. We denote by RTy (7)) the space generated by Raviart-Thomas elements of order k
on 7, and by BMDy (7)) the space generated by Brezzi—-Douglas—Marini elements of order
k on 7, where we refer to [5,8] for their definition. We adopt the convention of [5,8] that
k = 0 means lowest order Raviart-Thomas or Brezzi—Douglas—Marini finite elements.
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In the sequel Vﬁ denotes either RTy(7;) or BMDy (7). We consider the following
Galerkin eigenvalue problem: Find (kp,, up) € C\ {0} x Vﬁ \ {0} such that:

(S(kp)up, 85)r =0 foralls, € V. (34)

In the next theorem we summarize the approximation properties of Vﬁ which we need for
the convergence analysis of the Galerkin eigenvalue problem (34).

Theorem 2 The following assertions hold true:
(i) Foranywu €V it holds

inf |
uy, EVﬁ

luy, —ully > 0 ash — 0.

(ii) (Vlf,)h satisfies the property (GAP) with respect to the splitting V= X @® N.
(iii) For —% <s <k+ 1 it holds

. 1 )
m{;k lu—wllv < Ch**2|lullgs@ivy,ry VYue B (divp, IN), (35)
u,€V)

where we refer to [8, Sect. 2.2] for the definition of H* (divy, I') for s > —%.

Proof For assertion (i) and (iii) we refer to [8, Sect. 8]. Assertion (ii) is shown in [9, Thm. 4.2].
O

From the last theorem and the properties of S(-) it follows that we can apply the convergence
results of Theorem 1 to the Galerkin eigenvalue problem (34).

For the specification of the error estimates we consider the adjoint eigenvalue problem
for S(-) with respect to the pairing (-, *);. Let us first define the so-called adjoint function
S*(k) := (S(x))*. The adjoint eigenvalue problem for S(-) is then given by

S* ()t = 0. (36)

Note that the Fredholm alternative implies that « is an eigenvalue of S(-) if and only if k is
an eigenvalue of S*(-).

Lemma 5 The following holds true:

(i) (S(k))* = =S(—K), i.e., S*(k) = =S(—«).
(i) « is an eigenvalue of S(-) if and only if —k is an eigenvalue of S(-).
(iii) (x, w) is an eigenpair of S(-) if and only if (ic, W) is an eigenpair of S*(-).
(iv) The ordered collectionug, uy . .., uy, is a Jordan chain corresponding to k for S(-) if and
only ifuy, —uy, Uy ..., (—1)™u,, is a Jordan chain corresponding to  for S*(-), i.e., the
following relation between the generalized eigenspaces holds G(S(+), k) = G(5*(-), ).

Proof In the proof of the assertions we employ the identity:

ei% — ol Re() ,—Im() _ ,—iRe(k) p—Im(x) — p—i(Re()—iIm(x)) — p—ik (37)
(1) It is sufficient to show that

(S)u, )y = (u, =5(=K)r); (38)
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holds for all u,r € yri (CSO(R3)). Letu,r € yri (Cg"(R3)), then we can use the integral
representation for the pairings in (38) and get with (37):

eixlx=yll .
(S(k)u, )¢ /[ 47_[” (x)~r(y)dsydsX

lKHX yH -
Kz//4ﬂ“ leFll(X)dinl'(y)dsydsX

= (S(—®)r, u)s.

From the anti-symmetry of the pairing, the assertion follows.

(ii) The Fredholm alternative implies that « is an eigenvalue of S(-) if and only if (S(x))*t =
0 for some t € V \ {0}. The latter is by the result in (i) equivalent to S(—x)t = 0

(iii) Because of (37) we have S(k)r = S(—k)T. If (k, u) is an eigenpair of S(-), then we
get by 1)

0 =S(k)u = S(—x)u = —(S(k))*u = —S*()u.

(iv) Again, integral representations of the pairing (-, -); and of the functions S(-) and
S* show that S*) (k) = (—=1)/+1(SY)(—«)) and (SY) (—k))r = SY)(—K)F. From this, the
assertion follows directly from the definition of the generalized eigenelements. O

In the next theorem we specify the convergence order of the eigenvalues and eigenfunctions
of the Galerkin eigenvalue problem (34).

Theorem3 Let D C C \ {0} be a compact and connected set with a simple rectifiable
boundary d D. Suppose that k € D is the only eigenvalue of S(+) in D and that the generalized
eigenspace G(S(-), k) C H*(divp, I') for some s € [—%, k 4 1]. Then there exist an hy > 0
and a constant ¢ > 0 such that for all h < hy we have:

(1) For all eigenvalues ky, of the Galerkin eigenvalue problem (34) in D
lic — kp| < chF$TD/m (39)

holds, where m is the maximal length of a Jordan chain corresponding to «.
(1) If (kp,ay) is an eigenpair of (34) with k, € D and ||uy|lv = 1, then

inf u— sy < e (k= Kyl + RO,
ueker(S(x))

Proof As pointed out above the Galerkin eigenvalue problem satisfies the assumptions of
Theorem 1. The error estimates follow then from the approximation property (35) of V’; and

the fact that G(S(-), k) = G(S*(-), ¥), see Lemma 5(iv). ]
5 Scattering resonance problem for a penetrable scatterer

In this section we consider the scattering resonance problem for a penetrable scatterer. We
now allow that the permittivity and the permeability are complex and frequency dependent.

We assume that the frequency dependence is holomorphic in an open set A C C. Such
configurations occur for example in the field of plasmonics or in the context of metamaterials.
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The scattering resonance problem for the penetrable scatterer reads as follows: Findw € A
and (0, 0) £ (E;, E2) € H(curl; £2') x Hjo(curl; £2°) such that

curl curl E; — w1 (@)p1(@)E; =0 and div(e;(@)E) =0 in £2',

curl curl E; — a)zsz(a))uz(a))Ez =0 and div(e2(w)Ep) =0 in 2°,
E; xn=E,xn onT, (40)

;Ll(a))_lcurl Ei xn= ,uz(a))_lcurl E) xn onlrl,
E, is outgoing.

In the following we will often suppress the dependence of w on &;(w) and on ¢ (w), £ = 1, 2.
The interior and exterior Calderén identities are used for deriving a boundary integral
formulation of the scattering resonance problem (40). A function U; € H(curl; £2") is

a solution of the Maxwell’s equations in £2! with wavenumber w./g1/t; if and only if it
satisfies the interior Calderén identity [8, Thm. 8]

(Q+M@Jmm>uﬁWJam>>( y:Ui ):( ﬁU1> @D
w?e1S(w /et 1+ M(w /1) TRV O uylyiu )

where
1 .
M(k) := E(yfl + ¥5)WpL (k). (42)
We define for ¢ = 1, 2 the block operator

Bt e ( MOVEAD S /e
R N N NI A

A function U, € Hjoc(curl; £2°) is an outgoing solution of Maxwell’s equations in £2° with
wavenumber w,/e; 17 if and only if it satisfies the exterior Calderén identity [8, Thm. 8]

1 e e
(rm) (250) %)
2 Hy vy U2 Uy vy U2

We obtain the following boundary integral formulation of the scattering resonance prob-
lem (40) by using the interior and exterior Calderén identity and by setting

(w,w):= (Y E1, 1] Vi ED = (B2, 15 ySEo):

@+ Baon (3) = (0) “3)

Note that the eigenvalue problems (40) and (43) are not equivalent. If in the eigenvalue
problem (40) ¢; is interchanged with &, and p; with po, then one also obtains (43) as
corresponding boundary integral formulation. However, the equivalence of (40) and (43) is
guaranteed if for (43) a constraint is imposed, as shown next.

Theorem 4 The following assertions hold true:

() Suppose that (w,E1,Ez) is a solution of the scattering resonance problem (40).
Then (k, ylll/eE) is a solution of the eigenvalue problem (43) and satisfies (%I -
Bi(@)(iE1, uy vy EDT =0.
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(ii) Conversely, suppose that (w, W, W) is a solution of the eigenvalue problem (43) satisfying
(3T — Bi(@))(w,u)" = 0. Define
E| :=Vsp (k1) p1u + WpL (k)W and Ep := — Wsp (k2) ou — WpL (k) W,
where kp:=w. /eepg, £ = 1,2. Then (0, E1, Ey) is a solution of the resonance prob-
lem (40) and (w, ) = (vIE1, uy 'y E1).

Proof (i) We have a}ready shown that if (w, E1, Ep) is a solution of the resonance problem
(40) that then (w, yIEj, ul_l vy E1) is a solution of (43). The interior Calderén identity (41)
implies that (17 — B (0)) (VIE1, u 'y EDT = 0.

(i1) Assume now that (w, w, u), w, u € V \ {0}, satisfies the eigenvalue problem (43) and
that the equation (%I - B (w))(w, u) " = 0 holds. We first show that

E; ;=Yg (k))puiu+ ¥YprLkp)w and Ej:= — W (k2)uou — WpL (k2)W

satisfy the resonance problem (40), whereA ke :=we /eoite, £ = 1,2. By construction E; is a
solution of the Maxwell’s equations in £2' and E; is an outgoing solution of the Maxwell’s
equations in £2°. Applying the trace operators to E; and E; yields

ViEL O\ _ w viEr \ 1, w
(MHV&E)_(Z“B‘@)) <U> and (Mz_IVKIEZ)_(zI B (@) (u)
(44)

Subtracting the second equation from the first equation in (44) and using that (w, u) satisfies
the eigenvalue problem (43) gives

ViEl — yE, ) (w) (0)
1] - = Bi(w) + B (7).
(Ml AE| - u YK, Bi(@) + B | 0

Hence, E| and E; satisfy the transmission conditions of the eigenvalue problem (43). From
the assumption (17 — By (w))(w, u) " = 0 and the first equation in (44), we finally get

w\ 1 w\ yriEl
(v)= () () = (5, )

For the analysis of the eigenvalue problem (43) we consider the following antisymmetric
pairing on the product space V2 x V2 — C:

() (), -wsvm

In the next lemma we collect results on boundary integral operators which we need in order
to prove that By (w) + B> (w) satisfies a generalized Garding’s inequality.

[m}

Lemma 6 Let k € C, and A(k) be as defined in (8) and M(x) defined by (42). Further, let
V(0) be the single layer boundary integral operator of the Laplace equation. Then we have:

(a) The bilinear forms
(M(k)-, Y : Xx X — C and (M(x)-,)r : N x N — C, (45)
(A()-,)r - Xx V2 5 C and (A(k)-,)r : V52 x X — C, (46)

are compact.
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(b) There exists a constant ¢ > 0 such that

@ AOu): = clulll_ip  foralluel. (47)
@ VOw)_1 1= vl iy forallve H-'2(). (48)
Proof For assertion (a) we refer to [8, Lem. 9] and for assertion (b) to [8, Lem. 8]. ]

Proposition 3 Let w € C\ {0} and k¢ = w~/1e(w)eg(w) # 0 for £ = 1, 2. Then there exist a
compact operator Cy(w) : V2 > V2 an isomorphism Ty () : V2 = V2, and an oy (w) > 0
such that for all w € V? it holds

Re ({(Be(@) + Co(@)) 1, Bel@ T @ exe ) = (@) [l (49)
where

© for Re(ky) # 0,

L I -1 —
To(w) := diag | pex, Ug(w), peke Uz(w)), Ug(w) := {I for Re(ky) = 0,
Be(w) := sgn(Re(ke)) if Re(ke) # 0, and Be(w) := — sgn(Im(k¢))i if Re(ke) = 0.

Proof A proof for positive wavenumbers « is given in [9, Thm. 3.12] and [8, Thm. 9]. We
adapt this proof for complex wavenumbers. In what follows, we will suppress the index ¢,
and for the occurring block operators the dependence on the frequency w.

Consider the scaling

B=DlAD, (50)

(1 0 [ M) «S(x)
b:= (O MK71|> and A= (/(S(/c) M(/())'

Since for any K : V2 — V2 and for any u € V2 it holds

where

((A+ K)Du, BRDU) ¢ r = (D~ (A + K)Du, BDRDU) ;1

_ (51)
= ((B+C)u, ﬁﬁl)fxf7

where R :=diag(U, U), D= diag(uk=11,1),C:=D ' KDand T:= DRD, we will first deter-
mine an adequate compact perturbation K of A.
Let us define the operator S(k) : V — V by

(Sto)m, 1)y :=k (AO)u, 1) + £~ (divpr, V(O)divru)_y,

where we refer to (8) for the definition of A(k) and V (k). Since M(x) —M(0) and «S(k) — §(K)
are compact operators in V [9, p. 472] the operator

MO S w2 w2

is a compact perturbation of A in V2. Let u € V? and Du=:v=:(v;, v2) . Decompose

0| = nf‘ + g}lN and vy = nf + né\/ according to the splitting V.= X' & N as given in (11),
where Uf, vy € Xand Uf/, sz\/ eN.
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First we consider the case that Re(«x) # 0. Then, R = diag(©, ©) and

(Aov, RO) 7+
= (MO)T, 03): — (MO0, 8 + (MO0, 0); — (MO, v2)-
+ (50005, 02)e — 1 (AO)F, 08) + (A0, ) — i (A0)0Y, 03,
+ 80, o5 — AT, v)): + k(A0 0 — k(A0 o))
+ (M5, 01)r — (MO0, o)) ¢ + (MO8, o) — (MO)v}, o).,

where we have used that (S(k)u,r); = k(AO)u,r); if u € Norif r € N. From the
compactness propertles of A(0) and M(0), see (46) and (45), it follows that there exists a
compact operator K : V2 = V2 such that

(Ao + K0, Ro) e e = —(MO)v7’, 03)7 + (MO)vy, 03)-
+/c_1(div1~n2, V(0)divrvy)_ ! — K (AO)v}, 03y,
(dlvmal,V(O)dwrnl) 1 k(A0 v}y,
— (M(0)v’, v >f+<M(0>u2,tT> . (52)
The symmetry of M(0) implies

(M(O)u, ) — (M(O)r, u); = (M(0)u, T); — (M(O)U, 1),
= (M(O)u, F); — (M(0)u, T), = 2i In((M(O)u, F)). (53)

Combining (52) and (53) gives using the ellipticity properties of V(0) and A(0) from
Lemma 6(b)

Re({(Ag + K)o, Rb) 7 r)
—Re(x 1 ((divrg(, V(O)divrod) s + (divrof, V(O)divrnf()%)
+Re() (08 AO)WY): + (07, AR )

Hence, we get with v = Du = (u1 +u) ,/uc_l(u +u) ))T ufe X, ujjve/\/,j =1,2,

Re (Ao + K)Du, RDu)rc )
= Re(c ™) (e~ P(divrud, V(O)lepuz) r+ (dlvrul,V(O)dwrul) D)
+Re(e) (1" P, A0 + iy, AT ) (54)

Since Ay is a compact perturbation of A, the identities (51) and (54) imply that there exists a
compact operator C : V2 — V2 and a constant & > O such that for B = sgn(Re(k)) it holds

Re(((B + O, BT)) = &((divrug, V(O)divrud) -
+divrud, VO)divrud) r + @, A0, + @, A0ul),).

The ellipticity properties of V (0) and A(0) from Lemma 6(b) together with the norm equiv-
alence (12) yields the inequality (49) for Re(x) # 0.
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It remains to consider the case Re(x) = 0. Again, the compactness properties of A(0) and
M(0), see (46) and (45), imply that there exists a compact operator K : V2 = V2 such that

(Ao + K)o, B)exe = (MO)F, 0} ¢ + (MO)Y, 05
+ 1 Ndivrod, V(O)divrey)_ + (A0}, v,

21+ A0, o)

+x~(divpod, V(O)divrod)
+ (M3, 1) + MO, o)
From
(M(©O)u, 1) + (MO)r,u); = (M(O)u,T); + (MO)u, r),
= (M(O)u, T); + (M(O)u, T); = 2Re((M(0)u, r);)
we get
(Ao + K0, B)gnr = &~ H{divyof, V(O)divro) s
“divel, VO diveod) Ly — (03, A0 + (o, A1)
+2Re (MO)F, 03, + (MO)0), v2),).

For B = —sgn(Im(x))i, we have k"' 8 = |« ~!| and kB = —|«| because Re(k) = 0. Using
the ellipticity properties of V (0) and A(0) from Lemma 6(b) this implies

Re({(Ao + K)Du, BDu)exo) = el (e~ Pdivruy, V(O)divruz) s
+(divrug, V(O)divruf) L+ el (Y, A + [~ P, A1),
Inequality (49) follows now with the same arguments as for Re(«x) # 0. O

Theorem5 Let w € C\ {0} and k¢ = w/e(w)eg (@) # 0 for € = 1, 2. Suppose that

Ri 282 # Epo/ier (55)
if Re(k1) # 0 and Re(k>) # 0 and if Re(k1) = Re(kz) = 0, and that

kI # £/ IkEki (56)

ifRe(k;) # 0 and Re(xy) = O for j # k. Then there exist a compact operator C(w) : V>
V2, an isomorphism T(w) : V* — V2, and an a(w) > 0 such that for all w € V? it holds

Re ({(B1(@) + By() +C(@) . T@)exr ) = a(@) uli: (57)

Proof Proposition 3 shows that for £ = 1, 2 there exist compact operators Cy (@) : V> — V2,
isomorphisms B¢ (w) 7y (w) : V2 = V2 and ay(w) > 0 such that

Re (((Be(@) + Ce(@) t, Be@ T (@Wexe ) = ae(@) uli:

Choosing C(w) = Cij(w) + C2(w) and T(w) = B1(w)T1(w) + B2(w) 7T (w) yields inequal-
ity (57). It remains to show that

2 2
T(w) = diag (Z Be(@) ey Up(e), Y ﬂz(w)ww_le(w)) (58)

=1 (=1
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is an isomorphism from V? to V2, which holds if the diagonal blocks are isomorphisms from
V to V. This will be shown for the upper block of 7(w) and the case that both Re(k1) # 0
and Re(kz) # 0. The other cases can be treated similarly.

Assume that Re(k1) # 0 and Re(kz) # 0. Then, B¢ (w) = sgn(Re(ky)) and Uy (w) = ©,
and the upper block of 7(w) in (58) reads as

2 2
D Be(@) e Up(@) = 01y sgn(Re(io) e (Verme) ~1©.

=1 =1

From p./pnaer # +us. /1€ it follows that py (/1e1€1 )~ #* :l:/Lz(,/,uzaz)_l and

2
> sen(Re (ko)) e (Verrie) " # 0.

=1
This shows that the upper block of 7(w) is an isomorphism, since © is an isomorphism. O
The assumptions on the material parameters ¢, and ¢ in (55) and (56) of Theorem 5

are satisfied for example if the scatterer and background medium are dielectrics but also for
typical configurations of scattering problems in plasmonics.

5.1 Galerkin approximation

For the Galerkin approximation of the eigenvalue problem (43) we use V’;l X V’,‘l as ansatz
space, where again Vﬁ denotes either RTy (7)) or BMDy (7;,), see Sect. 4. We assume that
A C C\ {0} is an open set such that /¢ (w)ej(w), £ € {1, 2}, are holomorphic on A and
that the assumptions in (55) and (56) of Theorem 5 are satisfied. The Galerkin eigenvalue
problem reads as follows: Find w;, € A and uy, € VZ X V’;l, uy # 0, such that

((Bi(@n) + Ba(@m)un, Op)rxe =0 forall v, € Vi x V). (59)

We use the abstract results of Sect. 3 in order to show the convergence of the eigenvalues
and eigenfunctions of the Galerkin eigenvalue problem (59). Define

2 2
7 (w) := diag (Z Be(@)ek; U (@), Y Be (wmmgltﬂg(w))

(=1 (=1

where U’g(a)) := 0Oy, for Re(ky) # 0 and U’Z(a)) :=1 for Re(ky) = 0. Here, ©, is defined
by (28). Then 7;(w) € B(VK x VK, VK x V&) and

[(7(w) — T (w))onlly2

v VE < VE\(0) llonllv2

— 0 ash— 0.

Further, let P, : V — V’,‘l be the orthogonal projection of V onto Vj,, and define

Py := diag(Py, Py) and J:= <? é) .
Then, from Corollary 1 it follows that the sequence (P, J(B1(w) + Ba(w))Py); converges
regularly to J(B1(w) + B2(w)) for all w € A. As a consequence, we can apply the conver-
gence results of Theorem 1 to the eigenvalues and eigenfunctions of the Galerkin eigenvalue
problem (59).
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6 Numerical examples

In this section we report on results from some numerical experiments for the approxima-
tion of the eigenvalues of the boundary integral formulations of the interior and exterior
resonance problem (1) and (2), and of the scattering resonance problem for the penetrable
scatterer (40). In all experiments Raviart—-Thomas elements of lowest order k = 0 are used.
For the computations of the boundary element matrices the open-source library BEM++ [31]
is employed.

The Galerkin approximations of the eigenvalue problems for S(-) and for B (-) + B2 (-)
result in holomorphic matrix eigenvalue problems in C \ {0} and in A, respectively. The
related matrix-valued functions are denoted by Sy (-) and By , (-) + B2, (+). For the numerical
solution of the matrix eigenvalue problems we use the contour integral method as given
in [2]. For other variants of the contour integral method we refer to [1,38]. The contour
integral method is a reliable method for the approximation of all eigenvalues which lie inside
of a given contour in the complex plane, and for the approximation of the corresponding
eigenvectors. The method is based on the contour integration of the resolvent, (Sy, ()~ !and
Bin() + By, 2 ()L in our case, and utilizes that the eigenvalues of eigenvalue problems
for holomorphic matrix-valued functions are poles of the resolvent. By contour integration
of the resolvent applied to some randomly chosen set of test vectors a reduction of the
holomorphic eigenvalue problem to an equivalent linear eigenvalue problem is possible such
that the eigenvalues of the linear eigenvalue problem coincide with the eigenvalues of the
nonlinear eigenvalue problem inside the contour.

The main computational cost of the numerical implementation of the contour integral
method consists in the approximation of the contour integral of the resolvent. In our numerical
experiments we use for that the composite trapezoidal rule as suggested in [2]. In general,
with such an approximation of the contour integral an exponential convergence order for the
approximation of the eigenvalues with respect to number of quadrature nodes is achieved
[2]. The composite trapezoidal rule requires in each quadrature node &;, j = 1,..., N,
the application of (Sy (Ej))_1 and (B, (&) + Bz,h(é‘j))_l, respectively, to some randomly
chosen set of test vectors, for which in our numerical experiments an LU decomposition is
utilized.

Remark 6.1 For the analysis of the contour integral method it is usually assumed that the
underlying matrix-valued function of the eigenvalue problem is holomorphic inside the con-
tour. However, the contour integral method is also suitable for eigenvalue problems where
the underlying function has isolated singularities in the case of that the resolvent has a holo-
morphic continuation in the neighborhood of the singularities. The reason for that is that the
contour integral method operates on the resolvent of the eigenvalue problem and approximates
the poles of the resolvent. Our numerical experiments indicates that there is a holomorphic
continuation of (S,(-))~! as well as of Bip(-) + Ban ()~ in the neighborhood of 0, see
Figs. 1, 2 and 3, respectively. The conjecture is that this property holds in general if the
material parameters are holomorphic in the neighborhood of 0.

6.1 Interior and exterior resonance problem

In the first numerical examples we consider the Galerkin approximation (34) of the boundary
integral formulation (10) of the interior and ¢xterior resonance problem (1) and (2). The
unit cube and the unit ball are chosen for £2'. In all examples in this subsection we take
e=u=1.0.
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Fig. 1 Unit cube: computed 0.5 T . . T
interior resonances by the contour 0 % C + + + EB {
integral method for 4 = 0.177 05 o > 4 6 8 0

6.1.1 Interior resonance problem for the unit cube

For the unit cube only the interior resonances are known analytically. Therefore we restrict
ourselves to the approximation of the resonances of the interior problem. The interior res-

onances have the form k = mk, where k = ‘/kf —|—k% + k% with ki, k2, k3 € Np and
kiky + koks 4+ kak; > 0 [3, Sect. 6]. For the contour integral method we choose as contour
the ellipse ¢(#) = ¢ + acos(t) +ibsin(t), t € [0, 27], withc = 5.0,a =5.1 and b = 0.5.
There are seven distinct eigenvalues within this ellipse which have a total algebraic multi-
plicity of 32. The number of quadrature nodes for the approximation of the contour integral
is 25. In Table 1 the errors of the approximations of the two smallest resonances and of the
largest resonance for discretizations with mesh sizes h = V2277, j=2,...,5,are given.

We observe that the experimental orders of convergence (eoc) match the theoretical pre-
dicted cubic asymptotic convergence order, see (39). Further, for the specified mesh sizes all
exact resonances are approximated with the right multiplicities and no spurious resonances
occur within the ellipse. A plot of the computed resonances for the mesh with mesh size
h = «/227* is given in Fig. 1. The experiments also confirm the mentioned conjecture that
the resolvent Sy, (-) ! can be holomorphically extended to ¥ = 0. We want to mention that for
coarser discretizations with 18 and 72 degrees of freedom, which corresponds to the mesh
sizesh = /2 and h = /2271, only the two smallest resonances are approximated well and
that for these discretizations the cubic convergence order is no longer observable.

6.1.2 Interior and exterior resonance problem for the unit ball

The interior and exterior resonances of the unit ball can be represented as zeros using the
spherical Bessel and Hankel functions [29]. We denote by j, the spherical Bessel functions
of the first kind and as before by h,(f) the spherical Hankel functions of the first kind. The set
of the interior resonances is given by

{kk € R\ {0} : juk) = 0or ju(kc) +k j, (k) = 0,n € N},
and that of the exterior resonances by
ke C:h V) =00r hP () + kh{V (k) = 0,n € N}.

As contour for the contour integral method the ellipse ¢(f) = ¢ + acos(t) + ibsin(z),
t € [0, 2], is chosen with ¢ = 5.0, a = 5.3 and b = 1.0. There are 23 distinct eigenvalues
within this ellipse having a total algebraic multiplicity of 157. For the approximation of the
contour integral 100 quadrature nodes are taken. In Table 2 the errors of the smallest and the
largest interior and exterior resonance in modulus inside the ellipse are given.

The experimental convergence order is in contrast to the cube of one order reduced since
the sphere is approximated by flat triangles. Again, all exact resonances are approximated with
the right multiplicities and no spurious resonances occur. In Fig. 2 the computed resonances
by the contour integral method for the mesh with mesh size 7 = 0.082 are plotted.
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Fig.2 Unit ball: computed 1 " i —

interior (plus sign) and exterior

(cross) resonances by the contour 0r + + +H- ; b

integral method for 7 = 0.177 1. - ; ]
0 2 4 6 8 10

Fig.3 Scattering resonance 0.5 : : . . : .

problem for the penetrable ol 1

scatterer (unit cube): computed 4 +4+

resonances by the contour 05 0 1 2 3 4 5

integral method for 7 = 0.177

6.2 Scattering resonance problem for a penetrable scatterer

In this subsection we consider the Galerkin approximation of the boundary integral formula-
tion (43) of the scattering resonance problem for the penetrable scatterer (40). The domains
' for the numerical examples are again the unit cube and the unit ball. As approximation
space we choose V2 X V2 = RTy(7) x RTo(7p).

6.2.1 Unit cube

For this example the material parameters are set to ¢ = 4.0 and ¢ = ;1 = pa = 1.0. The
exact resonances of the resonance problem for a penetrable cube are not known. As reference
resonances the computed resonances of a very fine mesh with mesh size 7 = 0.03125 are
taken. As contour for the contour integral method we chose the ellipse ¢ () = ¢ +a cos(t) +
ibsin(t), t € [0,2x], with ¢ = 2.5, a = 2.7 and b = 0.5. For the approximation of the
contour integral 20 quadrature nodes are used. The numerical experiments suggest a cubic
asymptotic convergence order, see Table 3, which is in accordance with the theoretical results.

The computed approximations of the resonances by the contour integral method inside
the ellipse for 4 = 0.177 are plotted in Fig. 3. The numerical experiments indicate that the
resolvent (B ,(-) + Ban ())~! can be holomorphically extended to w = O.

6.2.2 Unit ball

In the last example we consider a plasmonic resonance problem for a golden nano-sphere
with diameter d = 100nm embedded in a host medium with refractive index of 1.5 [35]. A
Drude model for the permittivity of gold is taken of the form [30]

£1(w) = & (1 = L) (60)
w(w—1iy)

with ¢ being the vacuum permittivity, w, = 1.26 x 101 s~ landy = 1.41 x 1014 s~!. The
other material parameter are chosen as &2 = 1.5g9, u1 = 2 = o, where Lo is the vacuum
permeability.

The exact resonances of the scattering resonance problem for a penetrable scatterer for a
ball with radius R can be determined by the Mie series method [35, Supplemental material,
Sect. 3]. A number w € C is a resonance if it satisfies either

[jn (k1 R) + k1 R, (k1 R)] 13 13 h D (12 R)
— 7 K2 ju (k1 R) [hf})(IQR) + szh},D’(KzR)] -0

@ Springer



39 Page260f29 SN Partial Differential Equations and Applications (2021) 2:39

Table 1 Unit cube: approximation error (for the weighted mean k ; j,) and experimental order of convergence
(eoc) of the two smallest resonances and the largest resonance inside the ellipse for different mesh sizes 4 and
degrees of freedom (dofs)

h dofs err(Kq,p) eoc err(ko, ) eoc err(K7,1,) eoc
215 288 1.1le—2 - 2.20e—2 - 6.02e—2 -

225 1152 1.03e—3 34 2.11e-3 34 5.11e—3 3.6
2735 4608 1.09e—4 3.2 23le—4 3.2 5.50e—4 33
2—45 18432 1.22e—5 3.1 2.68¢—5 3.1 6.44e—5 3.1

Table 2 Unit ball: approximation error (for the weighted mean Eij/eh) and experimental order of convergence
(eoc) of the smallest and the largest interior and exterior resonance in modulus inside the ellipse for different

mesh sizes /1 and degrees of freedom (dofs)

h dofs err(Ei ) eoc err(?i1 W eoc err(Eif rh ) eoc err(?ilg’ ) eoc
0.32 720 7.80e—3 - 2.15¢-2 - 3.26e—2 - 7.11e—-2 -
0.16 2880 1.95e-3 2.0 5.37¢-3 2.01 7.80e—3 2.1 1.87e—-2 1.9

0.08 11520 4.88e—4 2.0 1.34e-3 2.00 1.91e-3 2.0 4.78e—3 2.0
0.04 46080 1.14e—4 2.1 3.35e—4 2.00 4.73e—4 2.0 1.21e-3 2.0

Table 3 Scattering resonance problem for the penetrable scatterer (unit cube): error (for the weighted mean
@ p) and experimental order of convergence (eoc) of the four resonances with smallest real part inside the
ellipse for different mesh sizes 4 and degrees of freedom (dofs)

h dofs err(wy,p) eoc err(wy j) eoc err(w3 ) eoc err(wg4,j) eoc

0.35 576 6.14e—3 - 1.21e-2 - 2.30e—2 - 3.94e—-2 -
0.17 2304 6.05e—4 33 1.16e—3 3.4 2.21e-3 35 3.25e-3 3.6
0.08 9216 6.2le—5 32 1.17e—4 3.4 2.18e—4 33 3.15e—4 3.4

or
JnGerROG " [ 62R) + k2 RED (2 R) |
~hV G2 Ry [l R) + k1 Rj) (1 R)] = 0, 6D

for some n € N, where ky = w+/g¢(@)ue(w), £ =1, 2.

In plasmonics those scattering resonances are of interest which are close to the frequency
range of light which corresponds to [1.7, 3.1]A!, where # is the reduced Planck constant in
eV s given by i = 6.58211957e—16. For the contour integral method as contour an ellipse
is chosen with ¢(t) = Bl [c+acos() +ibsin()], ¢ € [0,2r], withe = 2.5,a = 14
and b = 0.75. The number of quadrature nodes for the approximation of the contour integral
is 20. Three distinct resonances with total algebraic multiplicity of 15 lie inside the ellipse,
which are solutions of Eq. (61) forn =1, 2, 3.

The principal square root, with the branch cut along the non-positive real axis, applied
to the permittivity &1 (w) defined in (60) is non-continuous along the contour. Instead we
take the square root with the branch cut {z = r(cos(¢o) + i sin(¢o)) : r > 0}, ¢po = 1.97,
which guarantees that v/¢1(w) ] is continuous along the contour and inside of it. In Table 4
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Table 4 Golden ball with diameter d = 100 nm: relative approximation error (for the weighted mean @; ;)
and experimental order of convergence (eoc) of the scattering resonances inside the ellipse for different mesh
sizes h and degrees of freedom (dofs)

h (nm) dofs r-err(@y p,) eoc r-err(@y, j,) eoc r-err(w3 p,) eoc
35.35 288 2.88e—2 - 1.56e—2 - 9.44e—3 -

16.25 1812 4.65¢—3 2.34 2.50e—3 2.64 1.37e—3 2.79
7.67 7710 1.06e—3 1.97 5.67e—4 2.14 3.24e—3 2.08
3.58 33240 2.40e—4 1.95 1.35e—4 2.07 7.44e—4 2.12

Fig.4 Golden ball with diameter

d = 100 nm: computed scattering 0.5
resonances by the contour

integral method for 4 = 7.67 nm. ol
(The axes are scaled by a factor

of h) 05 |

the relative error and the experimental order of convergence for the approximation of the
resonances inside the contour are given. The convergence order is compared to the cube of
one order reduced as expected since the sphere is approximated by flat triangles.

Again, all eigenvalues inside the ellipse are approximated with the right multiplicity and
no spurious eigenvalues occur. In Fig. 4 the computed resonances by the contour integral
method for the mesh with mesh size 4 = 7.67 are plotted.

7 Conclusions

In this paper we have analyzed the Galerkin approximation of boundary integral formulations
for three different types of electromagnetic resonance problems. We have considered the sin-
gle layer boundary integral formulation for the interior and exterior resonance problem with
perfect conducting boundary conditions and a first kind boundary integral formulation of
the resonance problem for the penetrable scatterer. These boundary integral formulations are
eigenvalue problems for holomorphic Fredholm operator-valued functions. For the numerical
approximation of these eigenvalue problems a Galerkin approximation with Raviart-Thomas
and Brezzi-Douglas—Marini type elements are considered. The extension of recent results
[15,16] on the regular approximations of operators satisfying a generalized Garding’s inequal-
ity enables us to apply the classical convergence theory on the approximation of eigenvalue
problems for holomorphic Fredholm operator-valued functions to the proposed boundary
element approximations. Numerical examples confirm the theoretical convergence results
and show that the asymptotic convergence behavior appears on rather coarse meshes.
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