Skip to main content
Log in

A discontinuous Galerkin Trefftz type method for solving the two dimensional Maxwell equations

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

Trefftz methods are known to be very efficient to reduce the numerical pollution when associated to plane wave basis. However, these local basis functions are not adapted to the computation of evanescent modes or corner singularities. In this article, we consider a two dimensional time-harmonic Maxwell system and we propose a formulation which allows to design an electromagnetic Trefftz formulation associated to local Galerkin basis computed thanks to an auxiliary Nédélec finite element method. The results are illustrated with numerous numerical examples. The considered test cases reveal that the short range and long range propagation phenomena are both well taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. All along this paper, bold terms refer to either vectors or vectorial functions.

References

  1. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M.: Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic maxwell equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1816), 471–491 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27(1–3), 5–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Meth. Eng. 40(4), 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barucq, H., Bendali, A., Fares, M., Mattesi, V., Tordeux, S.: A symmetric DG formulation based on a local boundary element method for the solution of the Helmholtz equation. J. Comput. Phys. 330, 1069–1092 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruno, O.P., Kunyansky, L.A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169(1), 80–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buffa, A., Monk, P.: Error estimates for the ultra weak variational formulation of the Helmholtz equation. Math. Model. Numer. Anal. 42(6), 925–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cakoni, F., Colton, D., Monk, P.: The electromagnetic inverse-scattering problem for partly coated Lipschitz domains. Proc. R. Soc. Edinb. Sect. A Math. 134(4), 661–682 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cessenat, O.: Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques. Problèmes d’ Helmholtz 2 D et de Maxwell 3D. PhD thesis, University of Paris XI Dauphine (1996)

  10. Cessenat, O., Després, B.: Application of an ultra weak variational formulation of elliptic PDE to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Congreve, S., Gedicke, J., Perugia, I.: Numerical investigation of the conditioning for plane wave discontinuous Galerkin methods. In: European Conference on Numerical Mathematics and Advanced Applications, pp. 493–500. Springer (2017)

  12. Darve, E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160(1), 195–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Després, B.: Sur une formulation variationnelle ultra-faible. Comptes Rendus de l’Académie des Sciences Série I(318), 939–944 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Ervin, V.J.: RTK and BDMK on triangles. Comput. Math. Appl. 64(8), 2765–2774 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gabard, G.: Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225, 1961–1984 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gamallo, P., Astley, R.J.: A comparison of two Trefftz-type methods: The ultraweak variational formulation and the least-squares method, for solving shortwave 2-D Helmholtz problems. Int. J. Numer. Meth. Eng. 71, 406–432 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gittelson, C., Hiptmair, R.: Dispersion analysis of plane wave discontinuous methods. Int. J. Numer. Meth. Eng. 98(5), 313–323 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the \(h\)-version. Math. Model. Numer. Anal. 43, 297–331 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Hiptmair, R., Moiola, A., Perugia, I.: A survey of trefftz methods for the Helmholtz equation. In: Barrenechea G., Brezzi F., Cangiani A., Georgoulis E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41640-3_8

  20. Hiptmair, R., Moiola, A., Perugia, I., Schwab, C.: Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz \(hp\)-dgfem. Math. Model. Numer. Anal. 48, 727–752 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Hofreither, C.: A Non-standard Finite Element Method using Boundary Integral Operators. PhD thesis, J. Kepler University, Linz (2012)

  22. Hofreither, C., Langer, U., Weißer, S.: Convection-adapted BEM-based FEM. ZAMM-J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 96(12), 1467–1481 (2016)

    Article  MathSciNet  Google Scholar 

  23. Monk, P., Perugia, I., Schötzau, D.: Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191, 4675–4697 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ihlenburg, F., Babuska, I.: Finite element solution of the Helmholtz equation with high wave number - part i: the h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ihlenburg, F., Babuska, I.: Finite element solution of the Helmholtz equation with high wave number - part ii: the h-p version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin, J.M.: The Finite Element Method in Electromagnetics, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  27. Luostari, T., Huttunen, T., Monk, P.: Improvements for the ultra weak variational formulation. Int. J. Numer. Methods Eng. 94(6), 598–624 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Magoules, F., Roux, F.-X., Salmon, S.: Optimal discrete transmission conditions for a non-overlapping domain decomposition method for the Helmholtz equation. SIAM J. Sci. Comput. 25(5), 1497–1515 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Melenk, J.M., Parsania, A., Sauter, S.: General DG- Methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57, 536–581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moiola, A., Hiptmair, R., Perugia, I.: Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62, 809–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Monk, P.: Finite element methods for Maxwell’s equations. In: Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

  33. Monk, P., Wang, D.-Q.: A least-squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175(1–2), 121–136 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nédélec, J.-C.: Mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 35, 315–341 (1980)

    MathSciNet  MATH  Google Scholar 

  35. Nédélec, J.-C.: A new family of mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 50, 57–81 (1986)

    MathSciNet  MATH  Google Scholar 

  36. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Pblishing Company, Boston (1996)

    MATH  Google Scholar 

  38. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer-Verlag, Berlin (2011)

    Book  MATH  Google Scholar 

  39. Senior, T.B.A., Volakis, J.L.: Approximate Boundary Conditions in Electromagnetics. IEEE Press, New York and London (1995)

  40. Sze, K.Y., Liu, G.H.: Hybrid-Trefftz six-node triangular finite element models for Helmholtz problems. Comput. Mech. 46(6), 455–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Taflove, A., Hagness, S.C: Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House: Boston, MA (2005) https://cds.cern.ch/record/1698084

  42. Vion, A., Geuzaine, C.: Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem. J. Comput. Phys. 266, 171–190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, D., Tezaur, R., Toivanen, J., Ferhat, C.: Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for the acoustic scattering in the medium frequency regime and performance comparisons. Int. J. Numer. Methods Eng. 89, 403–417 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zerbib, N.: Méthodes de Sous-Structuration et de Décomposition de Domaine pour la Résolution des Équations de Maxwell : Application au Rayonnement d’antenne dans un Environnement Complexe. PhD thesis, National Institute for Applied Sciences (INSA), INSA Toulouse (2006)

  45. Zhao, K., Vouvakis, M.N., Lee, J.-F.: The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans. Electromagn. Compat. 47(4), 763–773 (2005)

    Article  Google Scholar 

  46. Zhu, L., Burman, E., Wu, H.: Continuous interior penalty finite element method for Helmholtz equation with high wave number: One dimensional analysis. Preprint available at arXiv:1211.1424

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Tordeux.

Additional information

This article is part of the topical collection "Waves 2019–invited papers" edited by Manfred Kaltenbacher and Markus Melenk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fure, H.S., Pernet, S., Sirdey, M. et al. A discontinuous Galerkin Trefftz type method for solving the two dimensional Maxwell equations. SN Partial Differ. Equ. Appl. 1, 23 (2020). https://doi.org/10.1007/s42985-020-00024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00024-0

Keywords

Mathematics Subject Classification

Navigation