
ORIGINAL PAPER

The exterior Calderón operator for non-spherical objects

Gerhard Kristensson1 • Ioannis G. Stratis2 • Niklas Wellander3 •

Athanasios N. Yannacopoulos4

Received: 16 August 2019 / Accepted: 18 December 2019 / Published online: 30 January 2020
� The Author(s) 2020

Abstract
This paper deals with the exterior Calderón operator for not necessarily spherical domains.

We present a new approach of finding the norm of the exterior Calderón operator for a

wide class of surfaces. The basic tool in the treatment is the set of eigenfunctions and

eigenvalues to the Laplace–Beltrami operator for the surface. The norm is obtained in view

of an eigenvalue problem of a quadratic form containing the exterior Calderón operator.

The connection of the exterior Calderón operator to the transition matrix for a perfectly

conducting surface is analyzed.

Mathematics Subject Classification 35B65 � 35Q61 � 35R01 � 45A05 � 45P05

1 Introduction

The exterior Calderón operator maps the tangential scattered electric surface field to the

corresponding magnetic surface field. This operator is also called the Poincaré-Steklov

operator, and its discretization is often called the Schur complement. It has been studied

intensively during many years, see e.g., [9, 18, 20].

It is related to the Dirichlet-to-Neumann map for the scalar Helmholtz equation. The

exterior Calderón map is instrumental in the analysis of the solution to the exterior solution

of the scattering problem. In fact, it is strongly related to the solution of the scattering

problem by a perfectly conducting (PEC) obstacle, which is a subject we analyze in

Sect. 5.

The norm of the exterior Calderón operator determines the largest amplification factor

of the surface fields. This norm specifies the largest impedance (the quotient between

scattered tangential magnetic and electric fields) that can exist for a given scattering
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geometry. In several numerical implementations of the scattering problem, such as the

Methods of Moments (MoM), the impedance matrix represents the exterior Calderón

operator and this matrix is instrumental for the numerical solution of the problem. This

observation gives a physical interpretation of the value of the norm of the exterior Calderón

operator.

A new way of finding this norm is presented in this paper. The key ingredient in this

analysis is the set of eigenfunctions to the Laplace–Beltrami operator of the surface. These

eigenfunctions and the corresponding eigenvalues are intrinsic to the surface and constitute

an excellent tool for further analysis; the literature on this subject of finding these

eigenfunctions and eigenvalues is extensive, see, e.g., [4, 11, 19, 27]. Explicit values of the

norm of the exterior Calderón operator have only been obtained for the sphere case [18, 20]

and the planar case [3, 9], and we refer to these bibliographical items for the explicit

techniques of computing the norm. In this paper, we present a new way to explicitly find

the norm for non-spherical obstacles. The final expression of the norm for a non-spherical

obstacle is related to an eigenvalue problem of a quadratic form containing the exterior

Calderón matrix.

An outline of the organization of the contents in this paper is now presented. In Sect. 2,

the statement of the problem is introduced, the exterior Calderón operator is defined, and

the useful integral representation of the scattered field is presented. The intrinsic gener-

alized harmonics (both scalar and vector valued) are introduced in Sect. 3, and these

functions are used in Sect. 4. The generalized harmonics developed in Sect. 3 constitute a

great asset, and they serve as a natural orthonormal basis for the expansion of the surface

fields in many scattering problems. A matrix representation of the exterior Calderón

problem in terms of the generalized harmonics is presented in Sect. 4, and this matrix has

many valuable properties that are useful in the solution of the exterior scattering problem.

Section 4 also contains a constructive method to compute the norm of the exterior Cal-

derón operator for non-spherical obstacles. The connection between the exterior Calderón

operator and the transition matrix of the corresponding perfectly conducting obstacle is

clarified in Sect. 5. The spherical geometry is explicitly treated in Sect. 6. The paper is

concluded with some final remarks in Sect. 7.

2 Formulation of the scattering problem

In this section, we present the geometry of the problem and the solution of the scattered

field in the exterior region.

2.1 Statement of problem (E)

Let X be an open, bounded, piecewise smooth1 domain in R3 with simply connected2

boundary C. The outward pointing unit normal is denoted by m̂.3 We denote the exterior of

the domain X by Xe ¼ R3nX, which is assumed to be simply connected. See Figure 1 for a

typical geometry.

1 i.e., the image of a polyhedron under a C1;1 mapping.
2 For non-simply connected boundary, see Remark 6.
3 Throughout this paper vector-valued quantities are typed in italic boldface (e.g., E and x), and dyadics
(matrices) in roman boldface (e.g., I and Ge). Scalar-valued quantities are typed in italics (e.g., k). Vectors
with unit length have a ‘‘hat’’ or caret (̂) over the symbol.
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The Maxwell equations in the exterior region are given by4 (we adopt the time con-

vention e�ixt)

r� EðxÞ ¼ ikHðxÞ

r �HðxÞ ¼ �ikEðxÞ

(
x 2 Xe: ð1Þ

The wave number k ¼ x=c is assumed to be a positive constant, where x is the angular

frequency of the fields, and c is the speed of light in the exterior medium.

In the region Xe, the (scattered) fields satisfy the time-harmonic Maxwell equations (1)

and the Silver-Müller radiation condition at infinity, and we are looking for solutions Es

and Hs in the space Hlocðcurl;XeÞ.
The trace operators p and c on CðXeÞ are given by pðuÞ ¼ m̂ � ðujoX�m̂Þ and

cðuÞ ¼ m̂ � ujoX, respectively,5 and in the case that u belongs to Hlocðcurl;XeÞ, the fields

have traces on oX belonging to H�1=2ðdiv;CÞ; more precisely we have

cðEsÞ; cðHsÞð Þ 2 H�1=2ðdiv;CÞ � H�1=2ðdiv;CÞ, see [21] for the definition and the prop-

erties of the trace operators in Hlocðcurl;XeÞ. For non-smooth domains, see [7, 8].

The exterior Calderón operator or admittance operator, Ce, is defined as the mapping of

the tangential component of the scattered electric field to the tangential component of the

scattered magnetic field on the boundary of X [9]. We use the solution of a specific exterior

problem to make the definition precise.

ν̂

Γ

Ωe

Ω

Fig. 1 Typical geometry of the scattering problem in this paper. The domain X, its boundary C and the
exterior Xe

4 We use scaled electric and magnetic fields, i.e., the SI-unit fields ESI and HSI are related to the fields E and
H used in this paper by

ESIðxÞ ¼
EðxÞffiffiffiffiffiffi
�0�

p ; HSIðxÞ ¼
HðxÞffiffiffiffiffiffiffiffi
l0l

p ;

where the permittivity and permeability of vacuum are denoted �0 and l0, respectively, and the relative
permittivity and permeability of the exterior material are denoted � and l, respectively.
5 Some authors [14] use ct for c and also use cT ¼ �m̂ � c.
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Consider the following exterior problem where the trace of the scattered electric field on

the boundary is given by a fixed vector m 2 H�1=2ðdiv;CÞ,6

1Þ Es;Hsð Þ 2 Hlocðcurl;XeÞ � Hlocðcurl;XeÞ

2Þ
r � EsðxÞ ¼ ikHsðxÞ

r �HsðxÞ ¼ �ikEsðxÞ

8<
: x 2 Xe

3Þ

x̂� EsðxÞ �HsðxÞ ¼ oð1=xÞ

or

x̂�HsðxÞ þ EsðxÞ ¼ oð1=xÞ

8>>><
>>>:

as x ! 1

uniformly w.r.t. x̂

4Þ cðEsÞ ¼ m 2 H�1=2ðdiv;CÞ

( Problem (E)); ð2Þ

where x ¼ jxj. This problem has a unique solution [3, 9, 14].

The following theorem represents the solution to Problem (E):

Theorem 1 Let Es and Hs be the solution of Problem (E). Then the fields satisfy the

integral representations

� 1

ik
r�

n
r�

Z
C

gðk; x� x0j jÞcðHsÞðx0Þ dS0
o

þr�
Z
C

gðk; x� x0j jÞcðEsÞðx0Þ dS0 ¼
EsðxÞ; x 2 Xe

0; x 2 X;

�

and

1

ik
r�

n
r�

Z
C

gðk; x� x0j jÞcðEsÞðx0Þ dS0
o

þr�
Z
C

gðk; x� x0j jÞcðHsÞðx0Þ dS0 ¼
HsðxÞ; x 2 Xe

0; x 2 X;

�

where the scalar Green function is

gðk; x� x0j jÞ ¼ eik x�x0j j

4p x� x0j j :

The proof of this theorem is found in e.g., [14]. The second (lower) term of the integral

representation, i.e., when x 2 X, is usually called the extinction part of the integral

representation.

6 The source m can be interpreted as a magnetic current density.
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2.2 Definition of the exterior Calderón operator

We now define the exterior Calderón operator Ce. As usual, TL2ðCÞ and THsðCÞ, (s 2 R),

denote the trace spaces of elements w in ðL2ðCÞÞ3
and ðHsðCÞÞ3

, respectively, such that

m̂ � w ¼ 0 on C. Further, let divCw denote the surface divergence, defined e.g., in

[4, 9, 21, 25]. Then H�1=2ðdiv;CÞ :¼ fw 2 TH�1=2ðCÞ : divCw 2 H�1=2ðCÞg. This is the

natural trace space, which occurs in electromagnetic theory.

Definition 1 The exterior Calderón operator Ce is defined as

Ce : m 7!cðHsÞ; H�1=2ðdiv;CÞ ! H�1=2ðdiv;CÞ;

where m ¼ cðEsÞ and the fields Es and Hs satisfy Problem (E) in (2).

We notice that the exterior Calderón operator Ce is uniquely defined for all

m 2 H�1=2ðdiv;CÞ, since Problem (E) has a unique solution in Hlocðcurl;XeÞ �
Hlocðcurl;XeÞ for any m 2 H�1=2ðdiv;CÞ. Details on the space H�1=2ðdiv;CÞ and its dual

space H�1=2ðcurl;CÞ are given in [9] and [20].

Theorem 2 The exterior Calderón operator defined in Definition 1 has the following

properties [9]:

1. Positivity:

Re

Z
C

CeðmÞ � m̂ �m�ð Þ dS[ 0 for all m 2 H�1=2ðdiv;CÞ; m 6¼ 0; ð3Þ

where dS denotes the surface measure of C, and the star denotes the complex

conjugation.

2.

Ceð Þ2¼ �I on H�1=2ðdiv;CÞ; ð4Þ

3. The exterior Calderón operator is a boundedly invertible linear map in the space

H�1=2ðdiv;CÞ, and consequently there exist constants 0\hC �HC, such that

hCkmkH�1=2ðdiv;CÞ � kCeðmÞkH�1=2ðdiv;CÞ �HCkmkH�1=2ðdiv;CÞ:

4. The exterior Calderón operator is independent of the material properties inside the

domain X.

From Item 2 we conclude that the norm of the exterior Calderón operator satisfies

kCekH�1=2ðdiv;CÞ � 1, and also that the constants in Item 3 can be chosen as hC ¼
1=kCekH�1=2ðdiv;CÞ and HC ¼ kCekH�1=2ðdiv;CÞ. Notice, that if we define the exterior Calderón

operator with an extra imaginary unit (i), the exterior Calderón operator becomes its own

inverse, i.e., Ce : m7!cðiHsÞ. This is a correction for the p=2 phase shift between the fields.
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2.3 Integral equation approach

The results in Theorem 1 can be used to put the exterior Calderón operator in a surface

integral equation setting.

The following theorem is important for the analysis in this paper and proved in [14,

Th. 5.52] (important results are also found in [10, 12, 26]):

Theorem 3 Let Q be a bounded domain such that C � Q.

1. Define the operators eL;fM : H�1=2ðdiv;CÞ ! Hðcurl;QÞ, by

eLf� �
ðxÞ ¼ r � r�

Z
C

gðk; x� x0j jÞf ðx0Þ dS0

8<
:

9=
;

fMf
� �

ðxÞ ¼ r �
Z
C

gðk; x� x0j jÞf ðx0Þ dS0

8>>>>>><
>>>>>>:

x 2 Q:

These operators are well defined and bounded from the space H�1=2ðdiv;CÞ into the

space Hðcurl;QÞ.
2. For f 2 H�1=2ðdiv;CÞ, the fields F ¼ fMf and r� F ¼ eLf satisfy

cðFÞjþ�cðFÞj�¼ f ; cðr � FÞjþ�cðr � FÞj�¼ 0:

The notation j	 refers to the trace of the field taken from the outside ðþÞ or the inside
ð�Þ of C, respectively. In particular, F 2 C1ðR3nCÞ, and F satisfies r� r� Fð Þ �
k2F ¼ 0 in R3nC. Furthermore, the functions F and r� F satisfy one of the two

Silver-Müller radiation conditions

ikx̂� F�r� F ¼ oð1=xÞ

or

x̂� r� Fð Þ þ ikF ¼ oð1=xÞ

8>><
>>: as x ! 1;

uniformly w.r.t. x̂.

3. The traces L and M defined by

Lf ¼ cðeLfÞ
Mf ¼ 1

2
cðfMf Þ

���
þ
þcðfMfÞ

���
�

� �
8><
>: f 2 H�1=2ðdiv;CÞ;

are bounded from H�1=2ðdiv;CÞ into itself.

4. For f 2 H�1=2ðdiv;CÞ, the fields F ¼ fMf and r� F ¼ eLf have traces

cðFÞj	¼ 	 1

2
f þMf

cðr � FÞj	¼ Lf :

8><
>:

5. The operator L is the sum L ¼ bI þK of an isomorphism bI from H�1=2ðdiv;CÞ onto
itself and a compact operator K.

6. The operator eL can be written as

SN Partial Differential Equations and Applications

6 Page 6 of 32 SN Partial Differ. Equ. Appl. (2020) 1:6



eLf ¼ r SdivCfð Þ þ k2Sf ; f 2 H�1=2ðdiv;CÞ;

where the scalar single layer potential operator S is defined as

Sfð ÞðxÞ ¼
Z
C

gðk; x� x0j jÞf ðx0Þ dS0; x 2 C;

where the surface integral is interpreted as a generalized integral (punctured surface

by a circle). The corresponding vector-valued operator S is denoted by

Sfð ÞðxÞ ¼
Z
C

gðk; x� x0j jÞf ðx0Þ dS0; x 2 C;

which is interpreted as the operator S applied to each Cartesian component of the

tangential vector field f .

Theorem 4 The exterior Calderón operator satisfies

1

2
CeðmÞ �MCeðmÞ ¼ 1

ik
Lm;

for each m ¼ cðEsÞ 2 H�1=2ðdiv;CÞ, where

Lm ¼ c r SdivCmð Þð Þ þ k2c Smð Þ:

Proof From the second representation in Theorem 1, we get by letting m ¼ cðEsÞ and

CeðmÞ ¼ cðHsÞ,

r�
Z
C

gðk; x� x0j jÞCeðmÞðx0Þ dS0 �
HsðxÞ; x 2 Xe

0; x 2 X

�

¼ � 1

ik
r�

n
r�

Z
C

gðk; x� x0j jÞmðx0Þ dS0
o
:

We intend to take the trace c of this equation. In this limit process, the left-hand side

becomes � 1
2
CeðmÞ þMCeðmÞ, by the result of Theorem 3. This result holds, irrespec-

tively from which side the limit is taken. The right-hand side has the limit

� 1

ik
Lm ¼ � 1

ik
c r SdivCmð Þð Þ þ k2c Smð Þ

	 

; m 2 H�1=2ðdiv;CÞ;

and the result of the theorem follows. h

3 Generalized harmonics

The vector spherical harmonics constitute a well-established and important tool for

the expansion of tangential vector fields on a spherical surface [17]. The main

motivation behind this section is to generalize this tool to include also non-spherical

surfaces.
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We start this section by a review of two introduced differential operators that act on

scalars and vectors, respectively. For simplicity, we assume that the surface C is simply

connected. The eigenfunctions of these operators provide bases for L2ðCÞ and TL2ðCÞ,
respectively. They are well suited for expansion of the traces of solutions to the Maxwell

equations. The spherical surface case yields the well known vector spherical harmonics,

see Appendix 1.

The scalar Laplace–Beltrami operator DC on C acting on a scalar field f is defined as

[21]

DCf ¼def
divC gradCf ¼ �curlC curlCf ; ð5Þ

The four intrinsic surface differential operators, divC; curlC; gradC; curlC are defined in

[4, 9, 21, 25]. The vector Laplace–Beltrami operator DC on C acting on a tangential vector

field f is defined as

DCf ¼
def

gradC divCf � curlCcurlCf :

The scalar Laplace–Beltrami operator has a countable set of eigenfunctions in L2ðCÞ,
which we denote fYng1n¼1, and they satisfy, see [21]

�DC Yn ¼ k2knYn: ð6Þ

The eigenvalues are all real, positive, and the only possible accumulation point of the

eigenvalues is at infinity [16, 21]. We order the eigenvalues as k1 � k2 � . . ., and nor-

malizing the eigenfunctions fYng1n¼1 in L2ðCÞ, i.e.,Z
C

YnY
�
n0 dS ¼ dnn0 ; ð7Þ

we obtain an orthonormal basis in L2ðCÞ, where, as above, a star � denotes complex

conjugation. Notice that the eigenvalues are scaled with the wave number k2 in order to

have a dimensionless quantity, and moreover that the functions Yn have dimension inverse

length, i.e., ½m�1
.
The following lemma is easily verified in view of the definitions of the scalar and vector

Laplace–Beltrami operators.

Lemma 1 If f satisfies

�DC f ¼ Kf ;

for some K 2 R, then

�DC curlCf ¼ K curlCf ; �DC gradCf ¼ K gradCf :

Proof Start with

�DC curlCf ¼ �gradC divC curlCf þ curlCcurlC curlCf

¼ curlCcurlC curlCf ¼ �curlCDCf ¼ K curlCf :
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since divCcurlCf � 0. We also have

�DC gradCf ¼ �gradC divC gradCf þ curlCcurlC gradCf

¼ �gradC divC gradCf ¼ �gradCDCf ¼ K gradCf :

since curlCgradCf � 0, and the lemma is proved. h

By the use of this lemma, we can construct a set of eigenfunctions to the vector Laplace–

Beltrami operator. In the sequel, unless otherwise stated, we will consider that s ¼ 1; 2 and

n; n0 2 N ¼ f1; 2; 3; . . .g.

Definition 2 The vector generalized harmonics are defined as

Y1n ¼
1

k
ffiffiffiffiffi
kn

p curlCYn; Y2n ¼
1

k
ffiffiffiffiffi
kn

p gradCYn:

These functions have dimension inverse length, i.e., ½m�1
.

Remark 1 Note that Y1n and Y2n are eigenfunctions to the curlCcurlC and �gradC divC
operators, respectively. We also observe that Y1n belongs to the kernel of the �gradC divC
operator, and that Y2n belongs to the kernel of the curlCcurlC operator. Note also that for a

simply-connected surface C, there is no eigenvalue k ¼ 0, see the end of proof of Lemma 2.

The following lemma proves that the set fYsn; s ¼ 1; 2; n ¼ 1; 2; . . .g is an orthonormal

system on TL2ðCÞ:

Lemma 2 The vector functions Y1n and Y2n defined in Definition 2 constitute an

orthonormal basis on TL2ðCÞ, i.e.,Z
C

Ysn � Y�
s0n0 dS ¼ dss0dnn0 :

The vector functions satisfy

m̂ � Ysn ¼ ð�1Þsþ1Ysn; ð8Þ

where the dual index s is 1 ¼ 2 and 2 ¼ 1.

Moreover,

curlCYsn ¼ kds;1
ffiffiffiffiffi
kn

p
Yn; divCYsn ¼ �kds;2

ffiffiffiffiffi
kn

p
Yn;

and

�DC Ysn ¼ k2knYsn:

Proof We start by noticing that Y1n and Y2n0 both are tangential to C, by the definition of

the operators curlC and gradC. Equations (5), (6), (7), the relations

hcurlCu;wiTL2ðCÞ ¼ hu; curlCwiL2ðCÞ, hdivCu;/iL2ðCÞ ¼ �hu; gradC/iTL2ðCÞ, together with

curlCgradC/ ¼ 0, and curlCu ¼ gradCu� m̂ imply
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Z
C

Y1n � Y�
1n0 dS ¼ 1

k2
ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

curlCYn � curlCY�
n0 dS

¼ 1

k2
ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

YncurlCcurlCY
�
n0 dS ¼ � 1

k2
ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

YnDCY
�
n0 dS

¼ kn0ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

YnY
�
n0 dS ¼ dnn0 ;

and Z
C

Y2n � Y�
2n0 dS ¼ 1

k2
ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

gradCYn � gradCY�
n0 dS

¼ � 1

k2
ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

YndivCgradCY
�
n0 dS ¼ � 1

k2
ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

YnDCY
�
n0 dS

¼ kn0ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

YnY
�
n0 dS ¼ dnn0 ;

and Z
C

Y1n � Y�
2n0 dS ¼ 1

k2
ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

curlCYn � gradCY�
n0 dS

¼ 1

k2
ffiffiffiffiffiffiffiffiffiffi
knkn0

p
Z
C

YncurlCgradCY
�
n0 dS ¼ 0:

Moreover,

m̂ � Y1n ¼
1

k
ffiffiffiffiffi
kn

p m̂ � curlCYn ¼
1

k
ffiffiffiffiffi
kn

p m̂ � gradCYn � m̂ð Þ

¼ 1

k
ffiffiffiffiffi
kn

p gradCYn ¼ Y2n;

and

m̂ � Y2n ¼ m̂ � m̂ � Y1nð Þ ¼ �Y1n:

The final statements are easily proven by

curlCYsn ¼ � 1

k
ffiffiffiffiffi
kn

p ds;1DCYn ¼ kds;1
ffiffiffiffiffi
kn

p
Yn;

and

divCYsn ¼
1

k
ffiffiffiffiffi
kn

p ds;2DCYn ¼ �kds;2
ffiffiffiffiffi
kn

p
Yn;

and
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�DC Ysn ¼ �gradC divCYsn þ curlC curlCYsnð Þ
¼ kds;2

ffiffiffiffiffi
kn

p
gradC Yn þ kds;1

ffiffiffiffiffi
kn

p
curlCYn ¼ k2knYsn;

The completeness of the set of vector generalized harmonics fY1n;Y2ng1n¼1 can be proved

by investigating which f satisfies

hf ;Ysni ¼ 0; s ¼ 1; 2; 8n 2 N:

If this statement implies f ¼ 0, the set of vector generalized harmonics will be dense in

TL2ðCÞ. We start with s ¼ 1, and get

0 ¼ hf ;Y1ni ¼
1

k
ffiffiffiffiffi
kn

p hf ; curlCYni ¼
1

k
ffiffiffiffiffi
kn

p hcurlCf ; Yni; 8n 2 N:

From the completeness of the generalized harmonics Yn (see, e.g., [21]), i.e., from the fact

that hg; Yni ¼ 0, 8n 2 N renders g ¼ 0, we obtain that curlCf ¼ 0. In the above, as well in

the following relation, the brackets ðh�; �iÞ denote the suitable inner product or the

appropriate duality pairing between the involved function spaces. We continue with s ¼ 2.

0 ¼ hf ;Y2ni ¼
1

k
ffiffiffiffiffi
kn

p hf ; gradCYni ¼ � 1

k
ffiffiffiffiffi
kn

p hdivCf ; Yni; 8n 2 N:

Again, the completeness of the generalized harmonics Yn implies divCf ¼ 0. However, a

function f , which satisfies curlCf ¼ divCf ¼ 0 on a simply connected surface C, is zero

[21, p. 206], and the lemma is proved. h

4 Trace spaces and the exterior Calderón matrix

4.1 Spectral characterization of trace spaces

We redefine (in the spirit of [21]) the pertinent function spaces used frequently in this paper in

terms of the orthogonal bases Yn and Ysn. The generalized Fourier series of a function f is

f ¼
X
n

anYn; an ¼ hf ; YniL2ðCÞ;

where convergence is in the L2ðCÞ norm (defined below). The space L2ðCÞ is characterized

as

L2ðCÞ ¼ f 2 D0ðCÞ :
X
n

anj j2\1
( )

;

equipped with the norm

kfk2
L2ðCÞ ¼

X
n

anj j2;

and the space HsðCÞ is characterized as

HsðCÞ ¼ f 2 D0ðCÞ :
X
n

1 þ knð Þs anj j2\1
( )

;
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equipped with the norm [21, p. 206]

kfk2
HsðCÞ ¼

X
n

1 þ knð Þs anj j2:

Similarly, the generalized Fourier series of a tangential vector function f is

f ¼
X
sn

asnYsn; asn ¼ hf ;YsniTL2ðCÞ;

where convergence is in the TL2ðCÞ norm. The space TL2ðCÞ is characterized as

TL2ðCÞ ¼ f 2 D0ðCÞ :
X
sn

asnj j2\1
( )

;

equipped with the norm

kfk2
TL2ðCÞ ¼

X
sn

asnj j2;

and the space THsðCÞ is characterized as

THsðCÞ ¼ f 2 D0ðCÞ :
X
sn

1 þ knð Þs asnj j2\1
( )

;

equipped with the norm

kfk2
THsðCÞ ¼

X
sn

1 þ knð Þs asnj j2: ð9Þ

Remark 2 In [21] is this norm defined as

kfk2
THsðCÞ ¼

X
sn

knð Þs asnj j2:

which is equivalent with (9) as long as the smallest eigenvalue is strictly positive.

The operations of curlC and divC imply, using Lemma 2,

curlCf ¼
X
sn

asncurlCYsn ¼ k
X
n

ffiffiffiffiffi
kn

p
a1nYn;

and

divCf ¼
X
sn

asndivCYsn ¼ �k
X
n

ffiffiffiffiffi
kn

p
a2nYn:

Note that only one of Y1n and Y2n survives the respective differentiation. This motivates

the following redefinition of the involved spaces in terms of the corresponding

suitable norms.

Definition 3 We define H�1=2ðdiv;CÞ and H�1=2ðcurl;CÞ as

H�1=2ðdiv;CÞ ¼ f 2 TH�1=2ðCÞ; divCf 2 H�1=2ðCÞ
n o

;
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equipped with the norm

kfk2
H�1=2ðdiv;CÞ ¼

X
sn

1 þ knð Þs�3=2
asnj j2;

and

H�1=2ðcurl;CÞ ¼ f 2 TH�1=2ðCÞ; curlCf 2 H�1=2ðCÞ
n o

;

equipped with the norm

kfk2
H�1=2ðcurl;CÞ ¼

X
sn

1 þ knð Þs�3=2
asnj j2:

We also employ the weighted space ‘�1=2ðdivÞ defined by

‘�1=2ðdivÞ ¼ asn 2 C :
X
sn

1 þ knð Þs�3=2
asnj j2\1

( )
:

We notice that the spaces ‘�1=2ðdivÞ and H�1=2ðdiv;CÞ are equivalent in the sense that

f 2 H�1=2ðdiv;CÞ if and only if its Fourier coefficients asn 2 ‘�1=2ðdivÞ. We have the

following Parseval type of identity

Lemma 3 Let u;w 2 TL2ðCÞ with expansions

u ¼
X
sn

esnYsn

w ¼
X
sn

hsnYsn;

8>><
>>:

then

hu;wiTL2ðCÞ ¼
X
sn

esnh
�
sn:

Proof The proof follows the proof of the orthogonality of the vector generalized har-

monics in Lemma 2. h

Remark 3 Let u 2 H�1=2ðdiv;CÞ and w 2 H�1=2ðcurl;CÞ. The two norms are explicitly

given as

kuk2
H�1=2ðdiv;CÞ ¼

X
n

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ kn

p e1nj j2 þ
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ kn

p
e2nj j2;

and

kwk2
H�1=2ðcurl;CÞ ¼

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ kn

p
h1nj j2 þ

X
n

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ kn

p h2nj j2;
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respectively. A duality pairing between the spaces H�1=2ðdiv;CÞ and H�1=2ðcurl;CÞ yields

hu;wiH�1=2ðdiv;CÞ;H�1=2ðcurl;CÞ ¼ hu;wiTL2ðCÞ

Lemma 4 Let u 2 H�1=2ðdiv;CÞ and w 2 H�1=2ðcurl;CÞ with expansions

u ¼
X
sn

esnYsn

w ¼
X
sn

hsnYsn;

8>><
>>:

then

kuk2
H�1=2ðdiv;CÞ ¼ km̂ � uk2

H�1=2ðcurl;CÞ ¼
X
sn

1 þ knð Þs�3=2
esnj j2;

and

kwk2
H�1=2ðcurl;CÞ ¼ km̂ � wk2

H�1=2ðdiv;CÞ ¼
X
sn

1 þ knð Þs�3=2
hsnj j2:

Proof The proof follows from the construction of the vector generalized harmonics in

Definition 2 and Lemma 2. h

4.2 The exterior Calderón matrix

For simplicity, we assume that the surface C is simply connected.7

Any m 2 H�1=2ðdiv;CÞ \ TL2ðCÞ has a convergent Fourier expansion in terms of Ysn, i.e.,

m ¼
X
sn

esnYsn; esn ¼ hm;YsniTL2ðCÞ ¼
Z
C

m � Y�
sn dS; ð10Þ

Using Riesz representation, any m 2 H�1=2ðdiv;CÞ has a generalized Fourier expansion in

terms of the same basis as (10), where esn 2 ‘�1=2ðdivÞ.
With the solution of Problem (E), the image of the exterior Calderón map CeðmÞ 2

H�1=2ðdiv;CÞ has an expansion

CeðmÞ ¼ cðHsÞ ¼ i
X
sn

hsnYsn; hsn ¼ �ihcðHsÞ;YsniTL2ðCÞ; ð11Þ

and hsn 2 ‘�1=2ðdivÞ. Note the bar over the index s, which denotes the dual index in s
(1 ¼ 2 and 2 ¼ 1), and the presence of an extra factor of i. The reason for this choice is that

the expansion coefficients of the magnetic surface field then has a simple relation to the

corresponding coefficients of the electric surface field.

7 For the generalization of the analysis to not simply connected surfaces, see Remark 6.
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Remark 4 We note that the expansion in (10) is a Helmholtz-Hodge decomposition of the

elements m in H�1=2ðdiv;CÞ (and similarly of H�1=2ðcurl;CÞ) and that the L2-projection can

be interpreted as a duality pairing between H�1=2ðdiv;CÞ and H�1=2ðcurl;CÞ, see Remark 3.

The mapping ‘�1=2ðdivÞ 3 esn 7!hsn 2 ‘�1=2ðdivÞ is a realization of the exterior Calderón

operator. To every set of coefficients esn there exists a unique set of coefficients hsn, and

this association defines a linear relation between esn 7!hsn manifested by a matrix C (the

exterior Calderón matrix) and

hsn ¼
X
s0n0

Csn;s0n0es0n0 : ð12Þ

The explicit form of the matrix is

Csn;s0n0 ¼ �ihCeðYs0n0 Þ;YsniTL2ðCÞ: ð13Þ

It is not hard to show that the exterior Calderón matrix C is invertible in ‘�1=2ðdivÞ.

Lemma 5 The exterior Calderón matrix Csn;s0n0 ¼ �ihCeðYs0n0 Þ;YsniTL2ðCÞ defined by (12)

and (13) satisfies X
s00n00

Csn;s00n00Cs00n00;s0n0 ¼ dss0dnn0 ;

and its inverse is

C�1
sn;s0n0 ¼ Csn;s0n0 :

Proof The lemma is a consequence of ðCeÞ2 ¼ �I on H�1=2ðdiv;CÞ, the expansions in

(10), (11), and the map (12). We have

m ¼ �Ce CeðmÞð Þ; 8m 2 H�1=2ðdiv;CÞ;

or due to the continuity of the exterior Calderón operatorX
sn

esnYsn ¼ �i
X
sn

hsnC
e Ysnð Þ ¼ �i

X
sn

X
s0n0

Csn;s0n0es0n0C
e Ysnð Þ

¼
X
sn

X
s0n0

X
s00n00

Csn;s0n0es0n0Cs00n00;snYs00n00

¼
X
sn

X
s0n0

X
s00n00

Cs00n00;s0n0es0n0Csn;s00n00Ysn;

since by (11) and (12)

Ce Ysnð Þ ¼ i
X
s00n00

Cs00n00;snYs00n00 : ð14Þ

Orthogonality then implies

esn ¼
X
s0n0

X
s00n00

Cs00n00;s0n0Csn;s00n00es0n0 ;
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or, since the esn are arbitraryX
s00n00

Csn;s00n00Cs00n00;s0n0 ¼
X
s00n00

Cs00n00;s0n0Csn;s00n00 ¼ ds;s0dn;n0 :

which ends the proof. h

Moreover, we have

Lemma 6 The matrix

1

2i
ð�1ÞsCsn;s0n0 � ð�1Þs

0
C�
s0n0;sn

n o
;

is positive definite.

Proof The exterior Calderón operator satisfies (3)

Re

Z
C

CeðmÞ � m̂ �m�ð Þ dS[ 0 for all m 2 H�1=2ðdiv;CÞm 6¼ 0:

Insert the expansions of m and CeðmÞ, see (10) and (11). We obtain

Re i
X
sn

X
s0n0

hsne
�
s0n0

Z
C

Ysn � m̂ � Y�
s0n0

� �
dS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼dss0dnn0 ð�1Þs0þ1

¼ Re i
X
sn

ð�1Þsþ1
hsne

�
sn [ 0;

where we used m̂ � Ys0n0 ¼ ð�1Þs
0þ1Ys0n0 , see (8) in Lemma 2. This implies

Im
X
sn

X
s0n0

e�snð�1ÞsCsn;s0n0es0n0 [ 0; 8esn 2 ‘�1=2ðdivÞ not all esn ¼ 0:

Rewrite the imaginary part explicitly and change summation indices. We get

1

2i

X
sn

X
s0n0

e�sn ð�1ÞsCsn;s0n0 � ð�1Þs
0
C�
s0n0;sn

n o
es0n0 [ 0

8esn 2 ‘�1=2ðdivÞ not all esn ¼ 0;

which proves the lemma. h

Theorem 5 The norm of the exterior Calderón operator in H�1=2ðdiv;CÞ is determined by

the square root of the largest eigenvalue of the Hermitian matrix P ¼ D�1=2CyD�1CD�1=2,

i.e., the matrix

Psn;s0n0 ¼
X
s00n00

1 þ knð Þ�s=2þ3=4
C�
s00n00;sn 1 þ kn00ð Þ�s00þ3=2

Cs00n00;s0n0 1 þ kn0ð Þ�s0=2þ3=4;

where the diagonal matrix D is

Dsn;s0n0 ¼ dnn0dss0 1 þ knð Þs�3=2:
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Proof The norms of the trace of the scattered electric and magnetic field are

kcðEsÞk2
H�1=2ðdiv;CÞ ¼

X
sn

1 þ knð Þs�3=2
esnj j2;

and

kcðHsÞk2
H�1=2ðdiv;CÞ ¼

X
sn

1 þ knð Þs�3=2
hsnj j2¼

X
sn

1 þ knð Þ�sþ3=2
hsnj j2;

or in short-hand matrix notation

kcðEsÞk2
H�1=2ðdiv;CÞ ¼ eyDe; kcðHsÞk2

H�1=2ðdiv;CÞ ¼ hyD�1h;

where e and h are the column vectors of the coefficients esn and hsn, respectively, and the

matrix D is defined above. The Hermitian conjugate of these column vectors are denoted ey

and hy. The norm of the exterior Calderón operator in H�1=2ðdiv;CÞ can then be formed, viz.

kCek2
H�1=2ðdiv;CÞ ¼ sup

e

ðCeÞyD�1ðCeÞ
eyDe

¼ sup
e

eyD1=2 D�1=2CyD�1CD�1=2
� �

D1=2e

eyD1=2D1=2e
:

This is a quadratic form and the largest eigenvalue of D�1=2CyD�1CD�1=2 determines the

norm. h

4.3 Calculation of the exterior Calderón matrix

The goal now is to find an explicit representation of the exterior Calderón matrix Csn;s0n0 in

terms of the geometry of the surface C. A number of lemmata and propositions are involved.

Denote by Sr the sphere of radius r centered at the origin, see Fig. 2. The restriction of

cðfMf Þ to Sr defines an operator Ar : H
�1=2ðdiv;CÞ ! H�1=2ðdiv; SrÞ. The explicit

expression of the operator is, for f 2 H�1=2ðdiv;CÞ

f 7! Arfð ÞðxÞ ¼ x̂� r�
Z
C

gðk; x� x0j jÞf ðx0Þ dS0

0
@

1
A; x 2 Sr; ð15Þ

where the radius 0\r\R, R ¼ minx02C jx0j.
Define the radius a 2 ð0;RÞ such that the functions wlðkaÞ 6¼ 0 and w0

lðkaÞ 6¼ 0 for all

l ¼ 1; 2; . . ., where wlðzÞ are the Riccati-Bessel functions [17, 22]. This is always possible

for small enough ka[ 0.

Lemma 7 The operator Aa : H
�1=2ðdiv;CÞ ! H�1=2ðdiv; SaÞ, defined by (15), is compact

and injective with dense range.

Proof The kernel of the operator Aa is continuous (analytic in the variable x) and hence

Aa is compact. The operator is injective if we can prove that

Aafð ÞðxÞ ¼ 0; 8x 2 Sa ) f ¼ 0:

To accomplish this, define
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FðxÞ ¼ r �
Z
C

gðk; x� x0j jÞfðx0Þ dS0; x 2 R3nC:

By assumption, cðFÞ ¼ 0 on Sa (the same limit from both sides). We proceed by proving

that the only f that satisfies this condition is f ¼ 0.

Let B(a) denote the ball, centered at the origin, of radius a, see Fig. 2. The function FðxÞ
satisfies, see Theorem 3

r� ðr� FðxÞÞ � k2FðxÞ ¼ 0; x 2 R3nC;

therefore also in the ball B(a). Inside the ball B(a), the field FðxÞ has an expansion in

regular spherical vector waves wsnkxÞ, defined by

w1nðkxÞ ¼ xjlðkxÞY1nðxjÞ

w2nðkxÞ ¼
1

k
r� xjlðkxÞY1nðxÞð Þ;

8><
>: ð16Þ

where jlðkxÞ is the spherical Bessel function of the first kind [23], and YsnðxÞ are vector

harmonics for the sphere (vector spherical harmonics), see Appendix 1. Due to orthogo-

nality of the vector spherical harmonics, and since a is chosen such that wlðkaÞ 6¼ 0 and

w0
lðkaÞ 6¼ 0 for all l ¼ 1; 2; . . ., the expansion coefficients of this expansion are all zero.

Therefore, the interior boundary value problem has a unique solution FðxÞ ¼ 0, x 2 BðaÞ.
By analyticity, FðxÞ ¼ 0 for all x 2 X [24]. As a consequence, the traces cðFÞj�¼ 0 and

cðr � FÞj�¼ 0. By Theorem 3, we also conclude that cðr � FÞjþ¼ 0.

As a function of x 2 Xe, r� FðxÞ satisfies the correct radiation conditions at infinity

and cðr � FÞjþ¼ 0 on C. Due to unique solvability of the exterior problem (Problem (E)),

r� FðxÞ ¼ 0 in Xe. Since F ¼ k�2r� ðr � FÞ, FðxÞ ¼ 0 in Xe, and, consequently,

cðFÞjþ¼ 0. Finally, the jump condition on the trace of F shows, see Theorem 3

0 ¼ cðFÞjþ�cðFÞj�¼ f :

This proves the injectivity of the operator Aa.

ν̂

Γ

Sa

B(a)

a

ν̂

Fig. 2 The spherical surface Sa
and the domain X
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In order to prove that the range is dense, we define the adjoint operator Ay
a :

H�1=2ðcurl; SaÞ ! H�1=2ðcurl;CÞ of Aa w.r.t. to the dual spaces

ðH�1=2ðdiv;CÞ;H�1=2ðdiv; SaÞÞ. The explicit form of the adjoint operator is

Ay
ag

� �
ðxÞ ¼ �m̂ðxÞ � m̂ðxÞ �

Z
Sa

r0gðk; x� x0j jÞ � x̂0 � gðx0Þ½ 
 dS0

0
B@

1
CA

¼ m̂ðxÞ � Bðx̂� gÞð ÞðxÞ; x 2 C;

where (use rgðk; x� x0j jÞ ¼ �r0gðk; x� x0j jÞ)

Bgð ÞðxÞ ¼ �m̂ðxÞ �
Z
Sa

r0gðk; x� x0j jÞ � gðx0Þ dS0

¼ m̂ðxÞ � r �
Z
Sa

gðk; x� x0j jÞgðx0Þ dS0

0
B@

1
CA; x 2 C:

We now prove that Ay
a is injective, i.e., B is injective, namely

Bgð ÞðxÞ ¼ 0; x 2 C ) g ¼ 0:

To this end assume that Bgð ÞðxÞ ¼ 0, x 2 C, and similarly as above, define the function

eFðxÞ ¼ r �
Z
Sa

gðk; x� x0j jÞgðx0Þ dS0; x 2 R3nSa;

so that by assumption, cðeFÞj	 ¼ Bgð ÞðxÞ ¼ 0 on C (same limit from both sides).

The function eFðxÞ satisfies

r� ðr � eFðxÞÞ � k2eFðxÞ ¼ 0; x 2 R3nSa:

Moreover, the function satisfies the appropriate radiation condition at infinity and

cðeFÞjþ ¼ 0 on C. By the uniqueness of the exterior scattering problem (Problem (E)),eFðxÞ ¼ 0, x 2 Xe, and by analyticity, eF ¼ 0 also outside Sa.

As above, by Theorem 3, the curl of eF has a continuous tangential component at Sa.

The interior problem is uniquely solvable, since wlðkaÞ 6¼ 0 and w0
lðkaÞ 6¼ 0 for all

l ¼ 1; 2; . . ., which implies that eFðxÞ ¼ 0, x 2 BðaÞ. The tangential components of eFðxÞ
have a jump discontinuity on Sa, Theorem 3.

0 ¼ x̂� eFðxÞ���
þ
�x̂� eFðxÞ���

�
¼ gðxÞ; x 2 Sa:

This proves the injectivity of the operator B, and, consequently, that the operator Aa has a

dense range, since NðAy
aÞ ¼ RðAaÞ? [6, p. 241]. h

Lemma 8 The expansion coefficients esn and hsn, see (10), (11), and (12), are related byX
s0n0

Asn;s0n0hs0n0 ¼
X
s0n0

Asn;s0n0es0n0 ; ð17Þ
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where the dimensionless matrix Asn;s0n0 is defined as

Asn;s0n0 ¼ k

Z
C

usn � Ys0n0 dS: ð18Þ

The bar over the index s denotes the dual index in s (1 ¼ 2 and 2 ¼ 1).

Here usnðkxÞ are the radiating spherical vector waves, defined by

u1nðkxÞ ¼ xh
ð1Þ
l ðkxÞY1nðxÞ

u2nðkxÞ ¼
1

k
r� xh

ð1Þ
l ðkxÞY1nðxÞ

� �
;

8><
>: ð19Þ

where h
ð1Þ
l ðkxÞ is the spherical Hankel function of the first kind [23], see also Appendix 1.

The matrix Asn;s0n0 plays a central role in the procedure of calculating the norm of the

exterior Calderón operator and it deserves a thorough study. This is done in Proposition 1

and Theorem 6 below.

Proof The extinction part of Theorem 1 reads

r�
Z
C

gðk; x� x0j jÞcðHsÞðx0Þ dS0

¼ � 1

ik
r�

n
r�

Z
C

gðk; x� x0j jÞcðEsÞðx0Þ dS0
o
; x 2 X:

Introduce the Green dyadic for the electric field in free space [17]

Geðk; x� x0Þ ¼ I3 þ
1

k2
rr

� �
gðk; x� x0j jÞ ¼ I3 þ

1

k2
r0r0

� �
gðk; x� x0j jÞ;

where I3 is the unit dyadic in R3. Consequently, the extinction part is

r�
Z
C

Geðk; x� x0Þ � cðHsÞðx0Þ dS0

¼ � 1

ik
r�

n
r�

Z
C

Geðk; x� x0Þ � cðEsÞðx0Þ dS0
o
; x 2 X:

ð20Þ

In fact, the curl on Geðk; x� x0Þ gives r�Geðk; x� x0Þ ¼ r � I3gðk; x� x0j jÞð Þ, which

verifies (20).

The Green dyadic for the electric field is [17, (7.24) on p. 370]

Geðk; x� x0Þ ¼ ik
X
sn

w�
snðkx\Þusnðkx[ Þ

¼ ik
X
sn

usnðkx[ Þw�
snðkx\Þ; x 6¼ x0;

ð21Þ

where x\ (x[ ) is the position vector with the smallest (largest) distance to the origin, i.e., if

x\x0 then x\ ¼ x and x[ ¼ x0. The definition of the spherical vector waves is given in

SN Partial Differential Equations and Applications

6 Page 20 of 32 SN Partial Differ. Equ. Appl. (2020) 1:6



Appendix 1, and, as before, the star � denotes complex conjugate. This expansion is uniformly

convergent in compact (bounded and closed) domains, provided x 6¼ x0 in the domain [15, 20].

Apply (21) to (20) for an x inside the inscribed sphere of C and use the dual property of

the spherical vector waves, i.e.,

r� wsnðkxÞ ¼ kwsnðkxÞ; r� usnðkxÞ ¼ kusnðkxÞ:

We get

ik2
X
sn

w�
snðkxÞ

Z
C

usnðkx0Þ � cðHsÞðx0Þ dS0

¼ �k2
X
sn

w�
snðkxÞ

Z
C

usnðkx0Þ � cðEsÞðx0Þ dS0; x 2 X:

Orthogonality of the vector spherical harmonics on the inscribed sphere impliesZ
C

usn � cðHsÞ dS ¼ i

Z
C

usn � cðEsÞ dS; 8n; s ¼ 1; 2: ð22Þ

Insert the expansion of the field in their Fourier series, (10) and (11), and we obtain

X
s0n0

hs0n0

Z
C

usn � Ys0n0 dS ¼
X
s0n0

es0n0

Z
C

usn � Ys0n0 dS; 8n; s ¼ 1; 2;

which is identical to the statement in the lemma. h

Remark 5 Equation (22) in Lemma 8 allows a simple proof of Item 2 of Theorem 2.

Integration by parts gives an alternative form of the matrix Asn;s0n0 , see (18) and use

Definition 2.

Asn;1n0 ¼
1ffiffiffiffiffiffi
kn0

p
Z
C

curlCpðusnÞð ÞYn0 dS; 8n; s ¼ 1; 2;

and

Asn;2n0 ¼ � 1ffiffiffiffiffiffi
kn0

p
Z
C

divCpðusnÞð ÞYn0 dS; 8n; s ¼ 1; 2:

Proposition 1 The mapping

asn 7!
X
s0n0

Asn;s0n0as0n0 ;

is injective, where the matrix Asn;s0n0 is defined in (18).

Proof We prove the proposition by showingX
s0n0

Asn;s0n0as0n0 ¼ 0; 8n; s ¼ 1; 2;
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implies that asn ¼ 0 for s ¼ 1; 2 and all n.

Multiply this relation with w�
snðkxÞ, where x lies inside the inscribed sphere of the

scatterer, and sum over s and n. We obtain, see (21)

1

ik

Z
C

Geðk; x� x0Þ � aðx0Þ dS0 ¼ 0; 8x inside the inscribed sphere;

where

a ¼
X
sn

asnYsn:

Now consider the vector-valued function

AðxÞ ¼
Z
C

Geðk; x� x0Þ � aðx0Þ dS0; x 2 R3nC;

which is defined everywhere in R3nC. This function is, by definition, zero inside the

inscribed sphere of the scatterer. By analyticity, the function AðxÞ ¼ 0 for all x 2 X [24].

As a consequence, the traces cðAÞj�¼ 0 and cðr � AÞj�¼ 0.

The vector field AðxÞ satisfies

r� ðr� AðxÞÞ � k2AðxÞ ¼ 0; x 2 R3nC:

Moreover, AðxÞ satisfies the correct radiation conditions at infinity. Due to unique solv-

ability of the exterior problem, AðxÞ ¼ 0 in the entire exterior region Xe. As a conse-

quence, the traces cðAÞjþ¼ 0 and cðr � AÞjþ¼ 0.

The curl of AðxÞ is

FðxÞ ¼ r� AðxÞ ¼ �
Z
C

r0gðk; x� x0j jÞ � aðx0Þ dS0; x 2 R3nC:

The trace of FðxÞ has a jump discontinuity on C, see Theorem 3

0 ¼ cðr � AÞjþ�cðr � AÞj�¼ cðFÞjþ�cðFÞj�¼ a; x 2 C;

and consequently, by orthogonality of the vector generalized harmonics, asn ¼ 0, which

implies the injectivity of the mapping above. h

To simplify the analysis in the theorem below, we introduce a special notation for the

matrix with dual s indices. To this end, define the matrix

Asn;s0n0 ¼ Asn;s0n0 ;

Theorem 6 The exterior Calderón matrix C can be approximated by

Ca
sn;s0n0 ¼

X
s00n00

X
s000n000

ðaI þ A
y
AÞ�1

sn;s00n00A
�
s000n000;s00n00As000n000;s0n0 ;

for adequately small a[ 0, where y denotes the Hermitian conjugated matrix. In short-

hand matrix notation Ca ¼ ðaI þ A
y
AÞ�1

A
y
A.
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Proof The expansion coefficients esn and hsn are related by, see (17)X
s0n0

Asn;s0n0hs0n0 ¼
X
s0n0

Asn;s0n0es0n0 ; ð23Þ

This equation consists of a countable set of linear equations, the solution of which may be

used to express hsn in terms of esn, thus providing a matrix form representation of the

exterior Calderón operator in terms of the chosen basis of generalized harmonics.

Assuming the invertibility of the matrix Asn;s0n0 , we write the equation as

hsn ¼
X
s0n

X
s00n00

A
�1

sn;s00n00As00n00;s0n0es0n0 ;

so that Ce admits the matrix representation

Csn;s0n0 ¼
X
s0n

X
s00n00

A
�1

sn;s00n00As00n00;s0n0 ;

In shorthand matrix notation C ¼ A
�1
A, where C is the exterior Calderón matrix.

However, by the definition of the matrix operator A and the connection of the spherical

vector waves us;n with the Green dyadic for the electric field, see left-hand side of (20) and

(15), we see that A, and therefore also A, is related to a compact operator; hence A is not

expected, in general, to be invertible and, even if it were, it would lead to an ill-posed

problem which could not provide a well defined numerical scheme.

We may, however, resort to a Tikhonov regularization approach of the solution of (23),

which leads to a, well-suited for numerical approaches, approximation of the exterior

Calderón operator. According to the theory of the Tikhonov regularization, see [16,

Ch. 16], the regularized approximate solution of (23) is

hasn ¼
X
s00n00

X
s000n000

ðaI þ A
y
AÞ�1

sn;s00n00A
�
s000n000;s00n00As000n000;s0n0es0n0 ; a[ 0;

or in shorthand matrix notation ha ¼ ðaI þ A
y
AÞ�1

A
y
Ae, which leads to an approximation

of C by Ca, where

Ca :¼
X
s00n00

X
s000n000

ðaI þ A
y
AÞ�1

sn;s00n00A
�
s000n000;s00n00As000n000;s0n0 ; a[ 0;

or in shorthand matrix notation Ca ¼ ðaI þ A
y
AÞ�1

A
y
A. The invertibility of the matrix

aI þ A
y
A is easily obtained by the Lax-Milgram Lemma, since the regularization term aI

introduces coercivity into the problem and the numerical inversion can be performed in

terms of a variational approach related to the minimization problem

min
z2‘�1=2ðdivÞ

akzk2

‘�1=2ðdivÞ þ hAy
A z; zi‘�1=2ðdivÞ:

h

The behavior as a ! 0 follows the general case setting of [16, Chap. 16].
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4.4 The finite dimensional problem

This section contains a generalization of the result presented in [13] for a spherical surface

to a general surface C. Denote

SN ¼ fN : fN ¼
XN
sn

asnYsn; asn ¼ hf ;YsniTL2ðCÞ

( )
:

We define the orthogonal projection PN : H�1=2ðdiv;CÞ ! H�1=2ðdiv;CÞ where f 7!fN ¼
PNf in the H�1=2ðdiv;CÞ inner product.

The following proposition holds:

Proposition 2

PNf ! f in H�1=2ðdiv;CÞ as N ! 1;

and

kðI � PNÞfkH�1=2ðdiv;CÞ � k�ðsþ1=2Þ=2
N kfkHsðdiv;CÞ;

holds for any s� � 1=2, where

kfk2
Hsðdiv;CÞ ¼

X
sn

1 þ knð Þsþs�1
asnj j2:

Proof The convergence

PNf ! f in H�1=2ðdiv;CÞ as N ! 1;

is a consequence of the generalized Fourier transform properties.

We estimate for every s� � 1=2

kðI � PNÞfk2
H�1=2ðdiv;CÞ ¼

X
n[N
s¼1;2

1 þ knð Þs�3=2
asnj j2

¼
X
n[N
s¼1;2

1 þ knð Þ�s�1=2
1 þ knð Þsþs�1

asnj j2

� 1 þ kNð Þ�s�1=2
X
n[N
s¼1;2

1 þ knð Þsþs�1
asnj j2

� k�s�1=2
N kfk2

Hsðdiv;CÞ:

h

Remark 6 The analysis can be extended for the case of non-simply-connected surfaces C,

by extending the proposed orthonormal basis with the finite-dimensional basis of the kernel

of the Laplace–Beltrami operator on C, see [21, p. 206].
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5 Connection to the transition matrix for a PEC obstacle

Scattering by a perfectly conducting obstacle (PEC) with bounding surface C is related to

the exterior Calderón operator Ce. This section develops and clarifies this connection.

The transition matrix (T-matrix), Tsn;s0n0 , connects the expansion coefficients of the

incident field Ei, with sources in Xe and the scattering Es in terms of the regular spherical

vector waves, wsnðkxÞ, and the radiating spherical vector waves, usnðkxÞ, respectively. The

definition of the spherical vector waves is given in Appendix 1. Specifically,

EiðxÞ ¼
X
sn

asnwsnðkxÞ; EsðxÞ ¼
X
sn

fsnusnðkxÞ;

where the regular and radiating spherical vector waves, wsn and usn, are defined in (16)

and (19), respectively, see also Appendix 1, and where the expansion coefficients fsn and

asn are related as

fsn ¼
X
s0n0

Tsn;s0n0as0n0 :

The expansion of the incident field is absolutely convergent, at least, inside the inscribed

sphere of the PEC obstacle,8 and the expansion of the scattered field converges, at least,

outside the circumscribed sphere of the PEC obstacle. The transition matrix completely

characterizes the scattering process.

The following theorem shows that when the exterior Calderón operator is known, the

transition matrix for a PEC obstacle is obtained by some simple operations:

Theorem 7 The transition matrix for a PEC obstacle, Tsn;s0n0 , with bounding surface C and

the corresponding exterior Calderón matrix, Csn;s0n0 , is:

Tsn;s0n0 ¼ i
X
s00n00

Wsn;s00n00Vs0n0;s00n00 þ Vs0n0;s00n00
X
s000n000

Cs000n000;s00n00Wsn;s000n000

( )
;

where the dimensionless matrices Wsn;s0n0 and Vsn;s0n0 are

Wsn;s0n0 ¼ k

Z
C

w�
sn � Ys0n0 dS; Vsn;s0n0 ¼ k

Z
C

cðwsnÞ � Y�
s0n0

dS:

Notice that Wsn;s0n0 and Vsn;s0n0 are related, i.e., Vsn;s0n0 ¼ ð�1Þsþ1
W�

sn;s0n0 .

Proof For a given incident field Ei, the boundary condition on the surface C is

cðEi þ EsÞ ¼ 0, which implies

cðEsÞ ¼ �cðEiÞ:

The trace of the scattered magnetic field on C is

8 More precisely, the convergence is guaranteed inside the largest inscribable ball not including the sources
of the incident field.
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cðHÞ ¼ cðHi þHsÞ ¼ cðHiÞ � CeðcðEiÞÞ:

The expansion coefficients of the scattered electric field for a PEC surface, fsn, are [17,

(9.3) on p. 481]

fsn ¼ �k2

Z
C

w�
sn � cðHÞ dS ¼ �k2

Z
C

w�
sn � cðHiÞ � CeðcðEiÞÞf g dS:

Inserting the expansions of the incident fields, we obtain an explicit form of the transition

matrix, viz.

Tsn;s0n0 ¼ k2

Z
C

w�
sn � icðws0n0 Þ þ Ceðcðws0n0 ÞÞ

	 

dS;

where we also used the explicit form of the trace of the incident magnetic and electric

fields

HiðxÞ ¼ �i
X
sn

asnwsnðkxÞ; EiðxÞ ¼
X
sn

asnwsnðkxÞ:

The regular spherical vector wave cðwsnÞ has a Fourier series expansion in Ysn.

kcðwsnÞ ¼
X
s0n0

Vsn;s0n0Ys0n0 ; Vsn;s0n0 ¼ k

Z
C

cðwsnÞ � Y�
s0n0

dS;

and (14) yields

Ce Ysnð Þ ¼ i
X
s00n00

Cs00n00;snYs00n00 :

Combine these expansions

kCe cðwsnÞð Þ ¼ i
X

s0n0;s00n00
Vsn;s0n0Cs00n00;s0n0Ys00n00 ¼ i

X
s0n0;s00n00

Vsn;s0n0Cs00n00;s0n0Ys00n00 :

These expressions lead to

Tsn;s0n0 ¼ ik
X
s00n00

Z
C

w�
sn � Vs0n0;s00n00Ys00n00 þ Vs0n0;s00n00

X
s000n000

Cs000n000;s00n00Ys000n000

( )
dS:

If we denote

Wsn;s0n0 ¼ k

Z
C

w�
sn � Ys0n0 dS;

we get in matrix notation

Tsn;s0n0 ¼ i
X
s00n00

Wsn;s00n00Vs0n0;s00n00 þ Vs0n0;s00n00
X
s000n000

Cs000n000;s00n00Wsn;s000n000

( )
;

which proves the theorem. h
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6 The spherical geometry—an explicit example

The spherical geometry is well-known and, so far, the only known geometry, where we can

test the theory analytically. In this section, we apply the results above to a sphere of radius

r. The eigenvalues for the sphere are9 kn ¼ lðlþ 1Þ=ðkrÞ2
, and the vector spherical har-

monics YsnðxÞ, see [17] and Appendix 1.

For the sphere, the matrix A is diagonal. Specifically,

Asn;s0n0 ¼ dnn0dss0
nlðkrÞ; s ¼ 1

n0lðkrÞ; s ¼ 2;

�

and

Csn;s0n0 ¼ dnn0dss0

nlðkrÞ
n0lðkrÞ

; s ¼ 1

n0lðkrÞ
nlðkrÞ

; s ¼ 2;

8>>><
>>>:

where nlðzÞ ¼ zh
ð1Þ
l ðzÞ is the Riccati-Hankel function [17, 22]. Notice the result of

Lemma 5, i.e.,

C�1
sn;s0n0 ¼ Csn;s0n0 :

Moreover,

Psn;s0n0 ¼ dnn0dss0

1 þ knð Þ nlðkrÞ
n0lðkrÞ

����
����
2

; s ¼ 1

1 þ knð Þ�1 n0lðkrÞ
nlðkrÞ

����
����
2

; s ¼ 2;

8>>><
>>>:

which is, apart from a different normalization, in agreement with [18], see Figure 3.

The static limit of the exterior Calderón operator for a spherical geometry is of interest.

We have

lim
kr!0

Psn;s0n0 ¼ dnn0dss0

lþ 1

l
; s ¼ 1

l

lþ 1
; s ¼ 2;

8><
>:

and consequently limkr!0 kCekH�1=2ðdiv;oBrÞ ¼
ffiffiffi
2

p
.

We can also check the validity of Lemma 6.

ð�1ÞsCsn;s0n0 ¼ dnn0dss0

� nlðkrÞ
n0lðkrÞ

; s ¼ 1

n0lðkrÞ
nlðkrÞ

; s ¼ 2:

8>>><
>>>:

Therefore,

9 We here adopt the standard indexing of the eigenvalues kn of the spherical harmonics, where n ¼ fl;mg,
l ¼ 1; 2; . . ., m ¼ �l;�lþ 1; . . .; l� 1; l.
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1

2i
ð�1ÞsCsn;s0n0 � ð�1Þs

0
C�
s0n0;sn

n o
¼ dnn0dss0

�Im
nlðkrÞ
n0lðkrÞ

Im
n0lðkrÞ
nlðkrÞ

8>>><
>>>:

¼ �idnn0dss0
� nlðkrÞw0

lðkrÞ � n0lðkrÞwlðkrÞ
n0lðkrÞ
�� ��2

n0lðkrÞwlðkrÞ � nlðkrÞw0
lðkrÞ

nlðkrÞj j2

8>>>>><
>>>>>:

¼ dnn0dss0

1

n0lðkrÞ
�� ��2 ; s ¼ 1

1

nlðkrÞj j2
; s ¼ 2;

8>>><
>>>:

by the use of n�l ðkrÞ ¼ 2wlðkrÞ � nlðkrÞ and the Wronskian for the Riccati–Bessel func-

tions wlðzÞn0lðzÞ � w0
lðzÞnlðzÞ ¼ i [17]. Obviously, this matrix is positive definite.

We also illustrate the result in Theorem 7 with a sphere of radius r. From above, we

have

Csn;s0n0 ¼ dnn0dss0

nlðkrÞ
n0lðkrÞ

; s ¼ 1

n0lðkrÞ
nlðkrÞ

; s ¼ 2:

8>>><
>>>:

Moreover, we have

Vsn;s0n0 ¼ dnn0dss0
wlðkrÞ; s ¼ 1

�w0
lðkrÞ; s ¼ 2;

�

and

2 4 6 8 10

1

2

3

4

l = 1 l = 2 l = 3

κ = kx

‖Ce‖H−1/2(div,∂Bx)

Fig. 3 The norm of the exterior Calderón operator kCekH�1=2ðdiv;oBxÞ for a sphere of radius x is depicted. The

dashed blue lines depict the function P1l;1l for l ¼ 1; 2; 3
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Wsn;s0n0 ¼ dnn0dss0
wlðkrÞ; s ¼ 1

w0
lðkrÞ; s ¼ 2:

�

where wlðzÞ ¼ zjlðzÞ is the Riccati-Bessel function [17, 22]. The transition matrix becomes

Tsn;s0n0 ¼ idnn0dss0
�wlðkrÞw0

lðkrÞ þ wlðkrÞwlðkrÞ
n0lðkrÞ
nlðkrÞ

; s ¼ 1

wlðkrÞw0
lðkrÞ � w0

lðkrÞw0
lðkrÞ

nlðkrÞ
n0lðkrÞ

; s ¼ 2;

8>>><
>>>:

which by the use of the Wronskian for the Riccati-Bessel functions

wlðzÞn0lðzÞ � w0
lðzÞnlðzÞ ¼ i;

simplifies to

Tsn;s0n0 ¼ �dnn0dss0

wlðkrÞ
nlðkrÞ

; s ¼ 1

w0
lðkrÞ

n0lðkrÞ
; s ¼ 2;

8>>><
>>>:

in agreement with the result of Mie scattering [17].

7 Conclusions

This paper deals with a novel approach to compute the exterior Calderón operator, and, in

particular, the computation of its norm in the space H�1=2ðdiv;CÞ. This operator is instru-

mental in the understanding of the scattering problem. The approach is constructive, and

employs the eigenfunctions of the Beltrami-Laplace operator of the surface. These functions

are intrinsic to the surface, and constitute the natural orthonormal set for a matrix represen-

tation of the operator. The norm of the operator is explicitly given as the largest eigenvalue of a

quadratic form that contains this representation of the exterior Calderón operator. The paper is

closed by an investigation of the connection between the exterior Calderón operator and the

transition matrix of the same perfectly conducting surface. In a future paper, the numerical

behavior of the suggested algorithm is intended to be conducted. The results of the present

work can be used for treating different challenging problems, including a new natural coupling

formulation between integral equations and finite elements, in the spirit of the results intro-

duced by Ammari and Nédélec in [1]; see also [2].
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Appendix 1: Spherical vector waves

The spherical harmonics YnðxÞ are defined as

YnðxÞ ¼
1

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl� mÞ!
ðlþ mÞ!

s
Pm
l ðcos hÞeim/;

in terms of the spherical angles h (polar angle) and / (azimuthal angle) of the unit vector x̂.

The associated Legendre function is denoted Pm
l ðcos hÞ. The index n is a multi-index for

the integer indices l ¼ 0; 1; 2; 3; . . ., m ¼ �l;�lþ 1; . . .;�1; 0; 1; . . .; l. Note, the extra

factor 1 / x in the definition of the spherical harmonics, which makes the spherical har-

monics orthonormal on the sphere of radius x.

The vector spherical harmonics are defined by, cf. [5, 17]

Y1nðxÞ ¼
rS2YnðxÞ � x̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p

Y2nðxÞ ¼
rS2YnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p ;

8>>>><
>>>>:

where rS2 is the nabla-operator on the unit sphere.

The radiating solutions to the Maxwell equations in vacuum are defined as (outgoing

spherical vector waves)

u1nðkxÞ ¼
nlðkxÞ
k

Y1nðxÞ

u2nðkxÞ ¼
1

k
r� nlðkxÞ

k
Y1nðxÞ

� �
:

8>>><
>>>:

Here, we use the Riccati–Bessel functions nlðkxÞ ¼ kxh
ð1Þ
l ðkxÞ, where h

ð1Þ
l ðkxÞ is the

spherical Hankel function of the first kind [23]. These vector waves satisfy

r� r� usnðkxÞð Þ � k2usnðkxÞ ¼ 0; s ¼ 1; 2;

and they also satisfy the Silver-Müller radiation condition [10, 17]. Another representation

of the definition of the vector waves is

u1nðkxÞ ¼
nlðkxÞ
k

Y1nðxÞ

u2nðkxÞ ¼
n0lðkxÞ
k

Y2nðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p nlðkxÞ
k2x

YnðxÞ:

8>><
>>:

A simple consequence of these definitions is

u1nðkxÞ ¼
1

k
r� u2nðkxÞ

u2nðkxÞ ¼
1

k
r� u1nðkxÞ:

8>><
>>:

In a similar way, the regular spherical vector waves wsnðkxÞ are defined [5, 17].
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w1nðkxÞ ¼ xjlðkxÞY1nðxÞ

w2nðkxÞ ¼
1

k
r� xjlðkxÞY1nðxÞð Þ;

8><
>:

where jlðkxÞ is the spherical Bessel function of the first kind [23].
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