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Abstract

This paper deals with the exterior Calder6n operator for not necessarily spherical domains.
We present a new approach of finding the norm of the exterior Calderén operator for a
wide class of surfaces. The basic tool in the treatment is the set of eigenfunctions and
eigenvalues to the Laplace—Beltrami operator for the surface. The norm is obtained in view
of an eigenvalue problem of a quadratic form containing the exterior Calderén operator.
The connection of the exterior Calderdn operator to the transition matrix for a perfectly
conducting surface is analyzed.

Mathematics Subject Classification 35B65 - 35Q61 - 35R01 - 45A05 - 45P05

1 Introduction

The exterior Calderén operator maps the tangential scattered electric surface field to the
corresponding magnetic surface field. This operator is also called the Poincaré-Steklov
operator, and its discretization is often called the Schur complement. It has been studied
intensively during many years, see e.g., [9, 18, 20].

It is related to the Dirichlet-to-Neumann map for the scalar Helmholtz equation. The
exterior Calderén map is instrumental in the analysis of the solution to the exterior solution
of the scattering problem. In fact, it is strongly related to the solution of the scattering
problem by a perfectly conducting (PEC) obstacle, which is a subject we analyze in
Sect. 5.

The norm of the exterior Calderén operator determines the largest amplification factor
of the surface fields. This norm specifies the largest impedance (the quotient between
scattered tangential magnetic and electric fields) that can exist for a given scattering
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geometry. In several numerical implementations of the scattering problem, such as the
Methods of Moments (MoM), the impedance matrix represents the exterior Calderén
operator and this matrix is instrumental for the numerical solution of the problem. This
observation gives a physical interpretation of the value of the norm of the exterior Calderén
operator.

A new way of finding this norm is presented in this paper. The key ingredient in this
analysis is the set of eigenfunctions to the Laplace—Beltrami operator of the surface. These
eigenfunctions and the corresponding eigenvalues are intrinsic to the surface and constitute
an excellent tool for further analysis; the literature on this subject of finding these
eigenfunctions and eigenvalues is extensive, see, e.g., [4, 11, 19, 27]. Explicit values of the
norm of the exterior Calderdn operator have only been obtained for the sphere case [18, 20]
and the planar case [3, 9], and we refer to these bibliographical items for the explicit
techniques of computing the norm. In this paper, we present a new way to explicitly find
the norm for non-spherical obstacles. The final expression of the norm for a non-spherical
obstacle is related to an eigenvalue problem of a quadratic form containing the exterior
Calder6n matrix.

An outline of the organization of the contents in this paper is now presented. In Sect. 2,
the statement of the problem is introduced, the exterior Calderdn operator is defined, and
the useful integral representation of the scattered field is presented. The intrinsic gener-
alized harmonics (both scalar and vector valued) are introduced in Sect. 3, and these
functions are used in Sect. 4. The generalized harmonics developed in Sect. 3 constitute a
great asset, and they serve as a natural orthonormal basis for the expansion of the surface
fields in many scattering problems. A matrix representation of the exterior Calderon
problem in terms of the generalized harmonics is presented in Sect. 4, and this matrix has
many valuable properties that are useful in the solution of the exterior scattering problem.
Section 4 also contains a constructive method to compute the norm of the exterior Cal-
derdn operator for non-spherical obstacles. The connection between the exterior Calderén
operator and the transition matrix of the corresponding perfectly conducting obstacle is
clarified in Sect. 5. The spherical geometry is explicitly treated in Sect. 6. The paper is
concluded with some final remarks in Sect. 7.

2 Formulation of the scattering problem

In this section, we present the geometry of the problem and the solution of the scattered
field in the exterior region.

2.1 Statement of problem (E)

Let Q be an open, bounded, piecewise smooth' domain in R with simply connected”
boundary I'. The outward pointing unit normal is denoted by v.> We denote the exterior of
the domain Q by Q. = R*\ @, which is assumed to be simply connected. See Figure 1 for a
typical geometry.

! i.e., the image of a polyhedron under a C"! mapping.

2 For non-simply connected boundary, see Remark 6.

* Throughout this paper vector-valued quantities are typed in italic boldface (e.g., E and x), and dyadics
(matrices) in roman boldface (e.g., I and G.). Scalar-valued quantities are typed in italics (e.g., k). Vectors
with unit length have a “hat” or caret () over the symbol.
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Fig. 1 Typical geometry of the scattering problem in this paper. The domain Q, its boundary I" and the
exterior €.

The Maxwell equations in the exterior region are given by* (we adopt the time con-
vention et
V x E(x) = ikH (x)

x € Q..
V x H(x) = —ikE(x)

—~
—_
~—

The wave number k = w/c is assumed to be a positive constant, where @ is the angular
frequency of the fields, and c is the speed of light in the exterior medium.

In the region €., the (scattered) fields satisfy the time-harmonic Maxwell equations (1)
and the Silver-Miiller radiation condition at infinity, and we are looking for solutions E;
and H; in the space Ho(curl, Q).

The trace operators m and y on C(Q.) are given by m(u) =¥ x (u,nx¥) and
y(u) =V x u|sq, respectively,” and in the case that u belongs to Hi.(curl, 2), the fields
have traces on 0Q belonging to H~ '/?(div,I'); more precisely we have
(y(E),y(H)) € H'/?(div,I') x H-'/2(div, I'), see [21] for the definition and the prop-
erties of the trace operators in Hloc(curl,ﬁe). For non-smooth domains, see [7, 8].

The exterior Calderdn operator or admittance operator, C°, is defined as the mapping of
the tangential component of the scattered electric field to the tangential component of the
scattered magnetic field on the boundary of Q2 [9]. We use the solution of a specific exterior
problem to make the definition precise.

4 We use scaled electric and magnetic fields, i.e., the SI-unit fields Es; and Hg; are related to the fields E and
H used in this paper by

ESI(x):fE/(;O%, Hsﬂﬂijﬁ%,

where the permittivity and permeability of vacuum are denoted ¢) and p,, respectively, and the relative
permittivity and permeability of the exterior material are denoted € and p, respectively.

5 Some authors [14] use y, for y and also use y; = —V X 7.
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Consider the following exterior problem where the trace of the scattered electric field on
the boundary is given by a fixed vector m € H'/?(div, I'),°

1) (Es, H) € Hoe(curl, Q.) x Hyo(curl, Q)
V x Es(x) = ikH,(x)

2) xe Q.
V x H(x) = —ikE;(x)
X x Eq(x) — Hy(x) = o(1/x)

( Problem (E)), (2)
3) 4 or as x — 0o

X x Hy(x) + Es(x) = o(1 /x)
uniformly w.r.t.x
4) y(E)) =m € HV*(div, I)

where x = |x|. This problem has a unique solution [3, 9, 14].
The following theorem represents the solution to Problem (E):

Theorem 1 Let Eg and Hg be the solution of Problem (E). Then the fields satisfy the
integral representations

_%V X {V X /g(k, e —x|)y(Hy)(x") dS’}

r
Ex), xe€Q,
v K Jx — x' (B () ds’ = {
9 [ atbe -2 o)y as = {50 T2
r
and
LAV [v /g(k e~ )y(E) () a5’}
ik ’ )
r
Hi(x), x€ Q.
\Y k,|x —x'|)y(H)(x")dS =
+9x [athe-diptawas = {22

T
where the scalar Green function is

eik\xfx’\
!
gk, Jx —x'|) e —

The proof of this theorem is found in e.g., [14]. The second (lower) term of the integral
representation, i.e., when x € Q, is usually called the extinction part of the integral
representation.

© The source m can be interpreted as a magnetic current density.
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2.2 Definition of the exterior Calderon operator

We now define the exterior Calderén operator C*. As usual, TL*(I') and TH*(I), (s € R),
denote the trace spaces of elements w in (L2(I'))* and (H*(I'))’, respectively, such that
v-w=0 on I'. Further, let divrw denote the surface divergence, defined e.g., in
[4,9, 21, 25). Then H~'/2(div,T") := {w € TH™'/*(I') : divpw € H~'/>(I")}. This is the
natural trace space, which occurs in electromagnetic theory.

Definition 1 The exterior Calderén operator C° is defined as
C :m—y(H,),  H '*(div,I") — H'/?(div,T),
where m = y(E;) and the fields E; and H| satisfy Problem (E) in (2).
We notice that the exterior Calderén operator C° is uniquely defined for all
m € H '/?(div,T'), since Problem (E) has a unique solution in He(curl, Q) x

Hio.(curl, Q) for any m € H~'/?(div, I'). Details on the space H~'/?(div, I') and its dual
space H™Y 2(curl7 I') are given in [9] and [20].

Theorem 2 The exterior Calderén operator defined in Definition 1 has the following
properties [9]:

1. Positivity:
Re/Ce(m) (v xm*)dS >0 forallm e H'/?(div,I'), m # 0, (3)
T

where dS denotes the surface measure of I', and the star denotes the complex
conjugation.

(C®)*= —I on H'?(div, I"), (4)

3. The exterior Calderon operator is a boundedly invertible linear map in the space
HY z(div, I), and consequently there exist constants 0<0C <O, such that

HCHm”H*I/Z(diV,F) < ||Ce(m)“1rl/2(div,r) < @CHmHH*'/Z(div,I‘)'

4. The exterior Calderon operator is independent of the material properties inside the
domain Q.

From Item 2 we conclude that the norm of the exterior Calderén operator satisfies
1C®[|-1/2div,r) = 1, and also that the constants in Item 3 can be chosen as Oc =

V/IC Nl 112 (aiv,ry @and O = [|C¥[| -112(giy, ) Notice, that if we define the exterior Calderén

operator with an extra imaginary unit (i), the exterior Calderén operator becomes its own
inverse, i.e., C° : m—y(iH). This is a correction for the 7/2 phase shift between the fields.
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2.3 Integral equation approach

The results in Theorem 1 can be used to put the exterior Calderén operator in a surface
integral equation setting.

The following theorem is important for the analysis in this paper and proved in [14,

Th. 5.52] (important results are also found in [10, 12, 26]):

Theorem 3 Let Q be a bounded domain such that I’ C Q.

1.

6.

Define the operators L, M : H~'2(div,I') — H(curl, Q), by

(EF) ) =V x { V / ok, [x — ¥ )f(x') dS'
r xcQ.
(Mr) ) = ¥ x [ gl e =2 a5
r

These operators are well defined and bounded from the space H™Y/ 2(div, I') into the
space H(curl, Q).

For f € H '?(div,T'), the fields F = Mf and V x F = Lf satisfy
YF)—yF)_=f,  »(VxF).—y(VxF)_=0.

The notation | refers to the trace of the field taken from the outside (+) or the inside
(=) of T, respectively. In particular, F € C*(R*\I'), and F satisfies V x (V x F) —
KF=0in R3\F. Furthermore, the functions F and NV x F satisfy one of the two
Silver-Miiller radiation conditions

iki x F—V xF=o0(1/x)
or as x — 0o,
3 % (V x F) +1ikF = o(1/x)

uniformly w.r.t. X.
The traces L and M defined by
Lf = y(Lf)
1/ — — feH 2(div,T),
Mf =3 (v(Mf)\jv(Mf)L)

are bounded from H='/?(div, I') into itself.
For f € H '?(div,I'), the fields F = Mf and V x F = Lf have traces
1
YE)= %5 + M

YV x F)|.=Lf.

The operator L is the sum L = I+K of an isomorphism /I\frOm H‘l/z(div7 I') onto
itself and a compact operator K.

The operator L. can be written as

SN Partial Differential Equations and Applications
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Lf = V(Sdivef) + K2Sf,  f e H'/?(div, I,

where the scalar single layer potential operator S is defined as

(8F)(x) = / gk [t —x'f(x)dS’, xeT,

r

where the surface integral is interpreted as a generalized integral (punctured surface
by a circle). The corresponding vector-valued operator S is denoted by

(SF)(x) = / gk, Jx — ¥ )f()dS', xeT,

r

which is interpreted as the operator S applied to each Cartesian component of the
tangential vector field f.

Theorem 4 The exterior Calderdn operator satisfies
1 1
ECe(m) —MC®(m) = ELm,
for each m = y(E;) € H™'/?(div, I'), where

Lm = y(V(Sdivrm)) + k*y(Sm).

Proof From the second representation in Theorem 1, we get by letting m = y(E) and
C*(m) = y(H),
Hi(x), x€ Q.

v x /g(k, e — 2|)CE (m) (x') dS' — { AR

r
1 ! ! !
=2V x {vx /g(k, e~ m(x) as' .
r

We intend to take the trace y of this equation. In this limit process, the left-hand side
becomes —1C®(m) + MC*®(m), by the result of Theorem 3. This result holds, irrespec-
tively from which side the limit is taken. The right-hand side has the limit

——Lm = —il{y(V(Sdiva)) +Ky(Sm)}, m e H'*(div,I),

and the result of the theorem follows. O

3 Generalized harmonics

The vector spherical harmonics constitute a well-established and important tool for
the expansion of tangential vector fields on a spherical surface [17]. The main
motivation behind this section is to generalize this tool to include also non-spherical
surfaces.
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We start this section by a review of two introduced differential operators that act on
scalars and vectors, respectively. For simplicity, we assume that the surface I" is simply
connected. The eigenfunctions of these operators provide bases for L?(I') and TL*(I),
respectively. They are well suited for expansion of the traces of solutions to the Maxwell
equations. The spherical surface case yields the well known vector spherical harmonics,
see Appendix 1.

The scalar Laplace—Beltrami operator Ay on I' acting on a scalar field f is defined as
(21]

A Ffdifdivr grad;f = —curl; curlf, )

The four intrinsic surface differential operators, divr,curly, grady, curly are defined in
[4,9, 21, 25]. The vector Laplace—Beltrami operator Ay on I acting on a tangential vector
field f is defined as

A ,—fdgfgradr divyf — curlpcurlyf.

The scalar Laplace-Beltrami operator has a countable set of eigenfunctions in L*(I'),
which we denote {Y,} -, and they satisfy, see [21]

—Ar Yy = k20, (6)
The eigenvalues are all real, positive, and the only possible accumulation point of the
eigenvalues is at infinity [16, 21]. We order the eigenvalues as 4y < 4, <..., and nor-
malizing the eigenfunctions {¥,} <, in L*(I'), i.e.,

/Y,,Y;, dS = 6, (7)
r

we obtain an orthonormal basis in LZ(F ), where, as above, a star * denotes complex
conjugation. Notice that the eigenvalues are scaled with the wave number k2 in order to
have a dimensionless quantity, and moreover that the functions Y, have dimension inverse
length, i.e., [m~!].

The following lemma is easily verified in view of the definitions of the scalar and vector
Laplace—Beltrami operators.

Lemma 1 [f f satisfies
_Aff = Afa
for some A € R, then

—Ar curlyf = A curlpf, —Ar grad;f = A grad,f.

Proof Start with

—Ar curlyf = —grad; divr curlpf + curlycurly curlqf

= curlpcurly curlyf = —curlpArf = A curlyf.
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since divpeurlpf = 0. We also have

—Ap gradf = —grad, divy gradf + curlpcurl; grad,f
= —grad, divy grad f = —grad;A-f = A gradf.

since curlrgrad;f = 0, and the lemma is proved. O
By the use of this lemma, we can construct a set of eigenfunctions to the vector Laplace—
Beltrami operator. In the sequel, unless otherwise stated, we will consider that T = 1,2 and
n,n e N={1,2,3,...}.

Definition 2 The vector generalized harmonics are defined as

1 1
= curl;Y,, Y., =-——grad;Y,.

Yi,.=
" ke/ 7

These functions have dimension inverse length, i.e., [m*'].

Remark 1 Note that Yy, and Y,, are eigenfunctions to the curlrcurl; and —grad divr
operators, respectively. We also observe that Y, belongs to the kernel of the —grad divr
operator, and that Y, belongs to the kernel of the curlycurl; operator. Note also that for a
simply-connected surface I', there is no eigenvalue 4 = 0, see the end of proof of Lemma 2.

The following lemma proves that the set {Y,, t=1,2, n =1,2,...} is an orthonormal
system on TL*(I'):

Lemma 2 The vector functions Y, and Y,, defined in Definition 2 constitute an
orthonormal basis on TL*(T), i.e.,

/ You - Yoy dS = SecOp.

r
The vector functions satisfy
VX Yo = (—1)" Y5, (8)
where the dual index T is 1 =2 and 2 = 1.
Moreover,
curlrYo, = kdo i/ 7nYn,  divi¥e, = —kde2\/ 7Y,
and

_AF an = kz/lnY‘m-

Proof We start by noticing that Y, and Y,,, both are tangential to I, by the definition of
the operators curly; and grady. Equations (5), (6), (7), the relations
(curlru, w) 2y = (us curlrw) oy, (divr, ¢) o) = —(u, gradp @)z ), together with
curlpgrad; ¢ = 0, and curlpu = grad; u x v imply

SN Partial Differential Equations and Applications
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* 1 *
/Yl,, Y|, dS= m/curern -curlyY), dS
T

T
1 1
=——— | Yycurlpeurl Y, dS = — ———— [ Y, ArY5 dS
kzx/;m/l,;/ " " kzx/)mi,,«'/ "
T T
y
\//L_ Y, Y, dS = 6w,
and
/ Y,, - Y5, dS _ / grad; Y, - grad; Y, dS
2n " Loy = 7 rin’ rty
kz\/ nj-’
r At r
! /Yd' grad,; Y’ dS ! /YA Y: dS
=—— ivp Y, dS = ——n= W ArY,
TNV " K2\ D2y d
& T T
Dot
Y,Y;, dS = 0w,
\/—/1 Ton "
and
/Y Y, dS ! /curl Y, - grad; Y dS
In* Loy =75 5 I'tn-” rtn
K2/ Ay
T T
1
=——— [ Ycurlygrad; Y, dS =0.
K2/ 22, / " "
n’en’ T
Moreover,
v X Y 1 v X curlrY, 1 v x (grad;Y, x v)
v n=7—"7=V u n=7——"7=V n A
" T =, el
1
= WgradrYn = an,
and
Vx Yy =vx (¥ xYy,) =Y,

The final statements are easily proven by

1
curlp Yy, = ———=906..14rY, = ké:1\/ 4 Y,
r /T a4r 1
and
. 1
leFan = k—\//l—n(;r,ZAFYn = _kér,Z V /InYn,
and
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—Ar Y, = —grad, divrY,, + curlp(curl;Y,,)
= ko p\/ Angradp Y, + ké, 14/ Aycurlry, = kzﬂhnYm,

The completeness of the set of vector generalized harmonics {Y1,, Y2,},-, can be proved
by investigating which f satisfies

(f,Y,)=0, t=12 VneN.

If this statement implies f = 0, the set of vector generalized harmonics will be dense in
TL*(I'). We start with © = 1, and get

1 1
=——=(f,curl;Y,) = —={curlf,Y,), VneN.
From the completeness of the generalized harmonics Y, (see, e.g., [21]), i.e., from the fact
that (g, Y,) = 0, Vn € N renders g = 0, we obtain that curlpf = 0. In the above, as well in
the following relation, the brackets ({-,-)) denote the suitable inner product or the
appropriate duality pairing between the involved function spaces. We continue with 7 = 2.

0={fY,)

1 1 .
0=(f,Y2,) :m<f7gradm> = *k—)<dlvrf, Y,), VneN.

n

Again, the completeness of the generalized harmonics Y, implies divf = 0. However, a
function f, which satisfies curlpf = divpf = 0 on a simply connected surface I', is zero
[21, p. 206], and the lemma is proved. O

4 Trace spaces and the exterior Calderon matrix
4.1 Spectral characterization of trace spaces

We redefine (in the spirit of [21]) the pertinent function spaces used frequently in this paper in
terms of the orthogonal bases Y, and Y,. The generalized Fourier series of a function f is

f = ZanYru a, = (fa Yn)[}(]‘)v
n

where convergence is in the L?(I') norm (defined below). The space L?(I') is characterized
as

LX) = {f eD(I): Z|an|2<oo},
equipped with the norm

2 2
Wllzzry = > el

and the space H*(I') is characterized as

H(T') = {f eD(r):) (1 +in)s|an|2<00}7

n

SN Partial Differential Equations and Applications
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equipped with the norm [21, p. 206]
2 1 \S
Hf”H»‘(F) = Z(l + Zn) |a,1|2.

n

Similarly, the generalized Fourier series of a tangential vector function f is
f = Zamyrm Ay = (f? YT">TL2(F)’
™m

where convergence is in the TL?(I') norm. The space TL?*(T') is characterized as

TLX(T) = {f eDI): Z|am|2<oo},

™m

equipped with the norm
2 2
Hf”TLZ(I") = Z|am| )
m

and the space TH*(I') is characterized as

TH'(I') = {f eD(I): > (1 + i) lau <oo},

™m

equipped with the norm

1By = S0+ 2 laen ©)

™

Remark 2 1In [21] is this norm defined as

“f”ZTH»v(r) = Z(ﬂvn)x|azn‘2~

™m

which is equivalent with (9) as long as the smallest eigenvalue is strictly positive.
The operations of curly and divy imply, using Lemma 2,
curlf = Zamcurlem = kZ \ 2@ Yy,
™m n
and

diVFf - ZarndiVFYm - _kz ﬂ;aZIlYﬂ'

Note that only one of Yy, and Y5, survives the respective differentiation. This motivates
the following redefinition of the involved spaces in terms of the corresponding
suitable norms.

Definition 3 We define H~'/?(div, I') and H~'/?(curl, I') as

H™'(div, I') = {f e TH™'(I"), div,f € H’I/Z(F)}

SN Partial Differential Equations and Applications
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equipped with the norm

“f”%l*‘/z(div,l") = Z(l + )”n)173/2‘am|27

m

and
H'(curl, I') = {f € TH™V2(I'), curlyf € H‘l/z(l“)},
equipped with the norm

I 2 ey = DL+ 20) e

™

We also employ the weighted space ¢~'/?(div) defined by
V2 (div) = {am €ec:d (1+ )»,1)13/2|am|2<oo}.
™m

We notice that the spaces ¢~'/>(div) and H~'/2(div, I') are equivalent in the sense that
f € HY/2(div,T') if and only if its Fourier coefficients a, € ¢~/?(div). We have the
following Parseval type of identity

Lemma 3 Let u,w € TL*(I') with expansions

u= § e‘mYm
w™m

w= § hmYﬂu
™m

then

u W TLA (T E em me

Proof The proof follows the proof of the orthogonality of the vector generalized har-
monics in Lemma 2. ]

Remark 3 Let u € H™'/>(div,I') and w € H~'/?(curl, I'). The two norms are explicitly
given as

1 2 ) 2
||u||?-l*‘/2 div,l’) — 7|elﬂ| + 1+/“n|62n|’
= g ST

and

2
HwHH*‘/Z(curl I) Z V 1+ )”n|h]n‘ + Z \/m~|h2n 5

SN Partial Differential Equations and Applications
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respectively. A duality pairing between the spaces H~'/?(div, I') and H~'/?(curl, I') yields

(u, w>H*1/2(divI),H*‘/z(curl,I“) = (u, W)TU(F)

Lemma 4 Letu € H'/?(div,T") and w € H™'/?(curl, I') with expansions

u= E Y,
™

w= § hernv
™

then

2 . 2 =3/2), 2
”u”H*‘/z(div,I") = [|v x u”H’l/z(curl,I") = Z(l + )" / e,

™m

and

2 . 2 T-3/2; |2
HWHH*‘/Z(curl,F) = v x w”H*'/z(divI) = Z(l + ) / hen|”.

m

Proof The proof follows from the construction of the vector generalized harmonics in
Definition 2 and Lemma 2. ]

4.2 The exterior Calderon matrix

For simplicity, we assume that the surface I is simply connected.’
Any m € H™'/?(div, I') N TL*(T") has a convergent Fourier expansion in terms of Y, i.e.,

m = ZernY‘ma € = <m7 YTV!>TL2(I") = /m . Y:n dS7 (1())

™m T

Using Riesz representation, any m € H~'/?(div, I') has a generalized Fourier expansion in
terms of the same basis as (10), where ¢, € E’l/z(div).
With the solution of Problem (E), the image of the exterior Calderén map C°(m) €
H~'/2(div, T') has an expansion
Ce(m) = 'Y(Hs) = ithYﬂ,, h'm = —1(’})(HS), Yf”)TLZ(I")’ (] ])
and hy, € (7Y %(div). Note the bar over the index 7, which denotes the dual index in t
(1 =2 and 2 = 1), and the presence of an extra factor of i. The reason for this choice is that

the expansion coefficients of the magnetic surface field then has a simple relation to the
corresponding coefficients of the electric surface field.

7 For the generalization of the analysis to not simply connected surfaces, see Remark 6.
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Remark 4 We note that the expansion in (10) is a Helmholtz-Hodge decomposition of the
elements m in H~'/2(div, I') (and similarly of H~'/?(curl, I')) and that the L-projection can
be interpreted as a duality pairing between H~'/2(div, I') and H~'/?(curl, I'), see Remark 3.

The mapping ¢~ '/2(div) 3 eq—hy, € £7V/%(div) is a realization of the exterior Calderén
operator. To every set of coefficients e, there exists a unique set of coefficients A.,, and
this association defines a linear relation between e,,—h,, manifested by a matrix C (the
exterior Calderon matrix) and

hrn = Z Cm,r’n’er’n’« (12)

Tn

The explicit form of the matrix is
Cm,r’n’ = _i<Ce(Yr’n’)a Y?lz)TLZ(T)' (13)
It is not hard to show that the exterior Calderén matrix C is invertible in £~ '/? (div).

Lemma 5 The exterior Calderén matrix Cqy vy = —1(C*(Yo), an)TLZ(r) defined by (12)
and (13) satisfies

§ an‘ﬁnvc‘c”n”,r’n/ = 5rr’bnn’:
'n”

and its inverse is

cl, o =c

tn,t'n’ Tn,to'n'"

Proof The lemma is a consequence of (C)* = —I on H~'/2(div, I'), the expansions in
(10), (11), and the map (12). We have

m = —C(C(m)), Vim e H *(div,I),

or due to the continuity of the exterior Calderén operator
Z € Ym =—i Z h?nCe(an) =-i Z Z C?n,r’n’er’n’ce(yrn)
™ ™ m '

= E E E C?n,r’n’er’n’Cr”n”,‘mYﬁnn

m n 'n"

= § § § Cﬁnuyfrn/er’n'Cv_:n,r”n”ana

m n 'n'

since by (11) and (12)

C W) =15 Corvat »
,[//nl/

Orthogonality then implies

e = E E Cﬁnwyrr”/C?n,‘r”n”e‘c’n’7

on' t'n"
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or, since the ey, are arbitrary

z :Crnr 'n! T '’ = E Cr’/n n' Tn t'n" — 51 ‘r’énn .
I/

'n"

which ends the proof. O
Moreover, we have

Lemma 6 The matrix

5 { (0 Canew = (217 Co ),

is positive definite.

Proof The exterior Calderén operator satisfies (3)

Re/Ce(m) S(vxm*)dS>0  forallm e H'/?(div,I')m # 0.
r
Insert the expansions of m and C°(m), see (10) and (11). We obtain

ReiZthej,n,/Y;n~( x Y75,)dS = Relz 1) hget, >0,

m tn T

=0, 8 (—1)7

2t/ Onn’

where we used ¥ x Yy, = (—1)" Y5

vn'?

Im> > et (—1) Copzweow >0, Ve, € £7'(div) not all e, = 0.

m tn

see (8) in Lemma 2. This implies

Rewrite the imaginary part explicitly and change summation indices. We get

ZZ ‘m{ 71 -mr’n’ 7( ) C:n m}er’n’ >0

m  n’

Ver, € £7/2(div) not all e,, = 0,
which proves the lemma. (I

Theorem 5 The norm of the exterior Calderén operator in H=/ 2(div, I') is determined by

the square root of the largest eigenvalue of the Hermitian matrix P = D~'2¢ctp-'cp12,

i.e., the matrix

Popow = Z(l g, T2 (1 ) T2 i (14 ) T4,

'

where the diagonal matrix D is

Dm,f’n’ - 5nn’5rr’(l + /ln)riyz-
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Proof The norms of the trace of the scattered electric and magnetic field are
[P E G veqaery = D+ 2) ™ eaf,
and
I H) vy = 1+ ) Plhal=>"(14 22) 72 b,
m ™

or in short-hand matrix notation

2 2 -
1y E) 1@y = €Dy yH) -2,y = H'D™'hy

where e and & are the column vectors of the coefficients e, and h,, respectively, and the

matrix D is defined above. The Hermitian conjugate of these column vectors are denoted e

and h'. The norm of the exterior Calderén operator in H~'/2(div, I') can then be formed, viz.
(Ce)TD‘l(Ce) etD1/? (D’I/ZCTD*ICD*I/Z)Dl/ze

||Ce|\§rl/2(div ry = Sup n = sup T
; B etDe ¢ etD'/2D1/2¢

This is a quadratic form and the largest eigenvalue of D~'/2CTD~1CD~1/2 determines the
norm. .

4.3 Calculation of the exterior Calderon matrix

The goal now is to find an explicit representation of the exterior Calderén matrix Cs, vy in
terms of the geometry of the surface I'. A number of lemmata and propositions are involved.
Denote by S, the sphere of radius r centered at the origin, see Fig. 2. The restriction of

y(ﬁf) to S, defines an operator A, :H '/?(div,I') — H~'/?(div,S,). The explicit
expression of the operator is, for f € H~'/2(div, I')

fmAf)x) =% x | Vx /g(k, |x —x'|)f (=) ds’ |, x €S, (15)

r

where the radius 0 <r <R, R = miny¢r |x'].

Define the radius a € (0,R) such that the functions ,(ka) # 0 and j(ka) # O for all
1=1,2,..., where ,(z) are the Riccati-Bessel functions [17, 22]. This is always possible
for small enough ka > 0.

Lemma 7 The operator A, : H="/?(div,I') — H~'/?(div, S,), defined by (15), is compact
and injective with dense range.

Proof The kernel of the operator A, is continuous (analytic in the variable x) and hence
A, is compact. The operator is injective if we can prove that
(Af)x)=0, vVxeS, = f=0.

To accomplish this, define
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Fig. 2 The spherical surface S,
and the domain Q

F(x) =V x /g(k, e —x'|)f(x')dS’, x e R\I.
r

By assumption, y(F) = 0 on S, (the same limit from both sides). We proceed by proving
that the only f that satisfies this condition is f = 0.

Let B(a) denote the ball, centered at the origin, of radius a, see Fig. 2. The function F(x)
satisfies, see Theorem 3

V x (VxF(x))—KFx)=0, xecR\I,

therefore also in the ball B(a). Inside the ball B(a), the field F(x) has an expansion in
regular spherical vector waves w,kx), defined by

win(kx) = xj; (kx) Y 1, ()
. (16
w2n(kx) = %v X (le(kx)yln(x))a

where jj;(kx) is the spherical Bessel function of the first kind [23], and Y,,(x) are vector
harmonics for the sphere (vector spherical harmonics), see Appendix 1. Due to orthogo-
nality of the vector spherical harmonics, and since a is chosen such that ,;(ka) # 0 and
W) (ka) # 0 for all I =1,2,..., the expansion coefficients of this expansion are all zero.
Therefore, the interior boundary value problem has a unique solution F(x) = 0, x € B(a).
By analyticity, F(x) = 0 for all x € Q [24]. As a consequence, the traces y(F)|_= 0 and
y(V x F)|_= 0. By Theorem 3, we also conclude that y(V x F)|, = 0.

As a function of x € Q., V X F(x) satisfies the correct radiation conditions at infinity
and y(V x F)|, = 0 on I'. Due to unique solvability of the exterior problem (Problem (E)),
V x F(x) =0 in Q.. Since F = K2V x (V x F), F(x) =0 in Q., and, consequently,
y(F)|,= 0. Finally, the jump condition on the trace of F shows, see Theorem 3

0 =y(F)|,—y(F)|_=f.

This proves the injectivity of the operator A,,.
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In order to prove that the range is dense, we define the adjoint operator AL:
H'2(curl,S,) — H'?(curl,I') of A, wrt to the dual spaces
(H'/2(div, I'), H~'/?(div, S,,)). The explicit form of the adjoint operator is

(Alg)(x) = —¥(x) x | ¥(x) x /V’g(k, x —x'|) x & x g(x)]ds’
Sq
=v(x) x (B(* x g))(x), xel,

where (use Vg(k, |x —x'|) = —V'g(k, |x —x'|))

(Be)(x) = —i(x) x / Vg(k, |x — ) x g() dS’

Sa

— i) x | v x /g(k, x—¥)ex)ds' |, xer.

Sa
We now prove that AL is injective, i.e., B is injective, namely
(Bg)(x) =0, xeI' = g=0.
To this end assume that (Bg)(x) = 0, x € I', and similarly as above, define the function
Fx) =V x [ glhile—¥)etx)ds, x e RS,
Sa

so that by assumption, y(F)|, = (Bg)(x) = 0 on I' (same limit from both sides).

The function F(x) satisfies

V x (VxF(x))—kKFx) =0, xecR\S,.

Moreover, the function satisfies the appropriate radiation condition at infinity and
y(F)| + =0 on I'. By the uniqueness of the exterior scattering problem (Problem (E)),
F (x) =0, x € Q, and by analyticity, F = 0 also outside Sa.

As above, by Theorem 3, the curl of F has a continuous tangential component at S,.
The interior problem is uniquely solvable, since ,(ka) # 0 and j(ka) # 0 for all

[=1,2,..., which implies that F(x) = 0, x € B(a). The tangential components of F (x)
have a jump discontinuity on S,, Theorem 3.

0=%x i‘(x)L—)E X f'(x)‘izg(x)y x €S,

This proves the injectivity of the operator B, and, consequently, that the operator A, has a
dense range, since N(Az) = R(Aa)L [6, p. 241]. O

Lemma 8 The expansion coefficients e, and h.,, see (10), (11), and (12), are related by

ZA?n,Fn’hT/”/ = ZA“"TI", €’ (17)

Tn vn’
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where the dimensionless matrix A, vy is defined as

Am,r’n’ = k/um . Yfln/ ds. (18)
r

The bar over the index T denotes the dual index in T (1 =2 and 2 = 1).

Here u,,(kx) are the radiating spherical vector waves, defined by

uy,(kx) = xhl" (kx)Y 1, (x)
1 | (19)
(k) = 2V (xh§ )(kx)Yl,,(x)),

where h;l)(kx) is the spherical Hankel function of the first kind [23], see also Appendix 1.
The matrix A, vy plays a central role in the procedure of calculating the norm of the
exterior Calder6n operator and it deserves a thorough study. This is done in Proposition 1
and Theorem 6 below.

Proof The extinction part of Theorem 1 reads

v x / gk |x — ')y (H,)(x') dS
r

1 .
— V3 v [elklr X ey s, xea
r
Introduce the Green dyadic for the electric field in free space [17]
1

Ge(k,x —x') = (13 ta

1
VV)g(k, x —x'|) = <13 + k—ZV'V')g(k, |x —x']),

where I is the unit dyadic in R*. Consequently, the extinction part is

v x / Gell,x — %) - y(H,)(x') dS'
' (20)
= —%v x {v x /Ge(k,x —x). y(ES)(x/)dS'}, xeQ.
r

In fact, the curl on G (k,x —x’) gives V X G¢(k,x —x') = V x (Isjg(k, |x — x'|)), which
verifies (20).
The Green dyadic for the electric field is [17, (7.24) on p. 370]

Ge(k,x *x,) = ikZWin(kX<)um(kx > )
™m (2])
= ik > waalloc = wi, (ke <), ¥ £

where x . (x - ) is the position vector with the smallest (largest) distance to the origin, i.e., if
x<x' then x . =x and x = = x’. The definition of the spherical vector waves is given in
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Appendix 1, and, as before, the star * denotes complex conjugate. This expansion is uniformly
convergent in compact (bounded and closed) domains, provided x # x’ in the domain [15, 20].

Apply (21) to (20) for an x inside the inscribed sphere of I" and use the dual property of
the spherical vector waves, i.e.,

V X Weu(kx) = kws, (kx), V Xty (kx) = kuz, (kx).
We get

e S i k) [ (k') - (HL) a5

r

=S W, (k) / U (k') - y(E)(¥) dS', x € .

r

Orthogonality of the vector spherical harmonics on the inscribed sphere implies

/u;,, -y(H)dS = i/um -y(Es)dS, Vn, t=1,2. (22)
T T

Insert the expansion of the field in their Fourier series, (10) and (11), and we obtain
Zhr’n’ /u?n . Y?n’ dS = Zer/n' / Uy Yfln/ dS, Vﬂ, T= 172,
'n’ T n T

which is identical to the statement in the lemma. O

Remark 5 Equation (22) in Lemma 8 allows a simple proof of Item 2 of Theorem 2.

Integration by parts gives an alternative form of the matrix A, ,, see (18) and use
Definition 2.

1 .
Ay =—— | (curlpn(uy,))Y,ydS, Vn, 1=1,2,
W/( (i)

and

1
j-n’

Apow = — /(dinn(um))Y,,/ ds, Vm, t=1,2.
T

Proposition 1 The mapping

arn'_’E Avpon Qo s

vn’

is injective, where the matrix A, v,y is defined in (18).
Proof We prove the proposition by showing

§ Aoy =0, an =12,
'n
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implies that a,, = 0 for T = 1,2 and all n.
Multiply this relation with w7, (kx), where x lies inside the inscribed sphere of the
scatterer, and sum over 7 and n. We obtain, see (21)

1

ik
r

Ge(k,x —x') -a(x')dS’ = 0, Vx inside the inscribed sphere,

where
a= § ay Y.
™m

Now consider the vector-valued function

Alx) = /Ge(k,x —x)-a(x')ds’, xe R\,
r
which is defined everywhere in [RE3\F . This function is, by definition, zero inside the
inscribed sphere of the scatterer. By analyticity, the function A(x) = 0 for all x € Q [24].

As a consequence, the traces y(A)|_= 0 and y(V x A)|_= 0.
The vector field A(x) satisfies

Vx (VxAx)—KFAXx)=0, xcR\I.

Moreover, A(x) satisfies the correct radiation conditions at infinity. Due to unique solv-
ability of the exterior problem, A(x) = 0 in the entire exterior region Q.. As a conse-
quence, the traces y(A)|,= 0 and y(V x A)| = 0.

The curl of A(x) is

F(x) =V xA(x) = */V’g(k, e —x'|) x a(x')dS’, xe R\I.

The trace of F(x) has a jump discontinuity on I, see Theorem 3
0=y(VxA),—y(VxA)| =yF),—yF)|_=a, xel,

and consequently, by orthogonality of the vector generalized harmonics, a., = 0, which
implies the injectivity of the mapping above. O

To simplify the analysis in the theorem below, we introduce a special notation for the
matrix with dual 7 indices. To this end, define the matrix

Arn,{’n’ =A

Tn,t'n'’

Theorem 6 The exterior Calderén matrix C can be approximated by

o § § : -1 7
n,o'n’ = (Od +A A)myfunnATmnm‘T//n/;Arwnu/ﬂ/n/’

' T

for adequately small o > 0, where t denotes the Hermitian conjugated matrix. In short-
hand matrix notation C* = (ol +A'A) A A.
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Proof The expansion coefficients e, and h,, are related by, see (17)
Zz‘mﬂ’n’hr’n’ = ZAm‘r’n’er’n’a (23)
n' 'n’

This equation consists of a countable set of linear equations, the solution of which may be
used to express h, in terms of e, thus providing a matrix form representation of the
exterior Calderén operator in terms of the chosen basis of generalized harmonics.

Assuming the invertibility of the matrix Zmﬂ/,ﬂ, we write the equation as
—1
h‘m = § § Am‘ff/n/fAr”n”,r’n'e‘r’n’7
T,n .C//n/l
so that C°® admits the matrix representation
—1

Crn,r’n’ = Z ZA

on t'n"

m ,‘L‘”n”A ! T

In shorthand matrix notation C = Z_IA, where C is the exterior Calderén matrix.

However, by the definition of the matrix operator A and the connection of the spherical
vector waves u. , with the Green dyadic for the electric field, see left-hand side of (20) and
(15), we see that A, and therefore also 4, is related to a compact operator; hence A is not
expected, in general, to be invertible and, even if it were, it would lead to an ill-posed
problem which could not provide a well defined numerical scheme.

We may, however, resort to a Tikhonov regularization approach of the solution of (23),
which leads to a, well-suited for numerical approaches, approximation of the exterior
Calder6n operator. According to the theory of the Tikhonov regularization, see [16,
Ch. 16], the regularized approximate solution of (23) is
i =SS (0l + AR, A oA cwens @ >0,

™m " n" 1l
11 g1

,[/In// "n
or in shorthand matrix notation h* = (ol + ZfZ)_IZTAe, which leads to an approximation
of C by C*, where
o= 3 S AR Ko e i, 20,

™m,t"n"* 7

1111

' "y

or in shorthand matrix notation C* = (af +ZTX)7IZTA. The invertibility of the matrix

al +A'A is easily obtained by the Lax-Milgram Lemma, since the regularization term o/
introduces coercivity into the problem and the numerical inversion can be performed in
terms of a variational approach related to the minimization problem

p 2 U
zEZ{III/IZI(ldiV) O{HZ”[UZ(div) + <A A 2, Z>571/2(div)'

The behavior as « — 0 follows the general case setting of [16, Chap. 16].
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4.4 The finite dimensional problem

This section contains a generalization of the result presented in [13] for a spherical surface
to a general surface I'. Denote

N
Sy = {fN :fN = Zaernvarn = <f7 YT">TL2(F)}'
w™m

We define the orthogonal projection Py : H~'/?(div, I') — H~'/?(div, I') where fi—fy =
Pyf in the H~'/?(div, I') inner product.
The following proposition holds:

Proposition 2
Pyf — f in H/2(div,T') as N — oo,

and

2 —(s+1/2)/2
1 =P gy < 22

holds for any s> — 1/2, where

Hf”?l’"(div,l") = Z(l + j'rl)SJr‘[71 |am‘2-

m™m

Proof The convergence
Pyf — f in H™'2(div, T') as N — oo,

is a consequence of the generalized Fourier transform properties.
We estimate for every s> — 1/2

2 =3/2
1 =Pl iery = > (142 lawl

n>N
=12
= > U+ 2) P+ AT el
n>N
=12
S (1 +AN)7S71/2 Z (1 +/~L”)S+T71|arn‘2
n>N
=12
—s—1/2 2
<y’ /Hfl H(div,I)"

O

Remark 6 The analysis can be extended for the case of non-simply-connected surfaces I,
by extending the proposed orthonormal basis with the finite-dimensional basis of the kernel
of the Laplace—Beltrami operator on I', see [21, p. 206].
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5 Connection to the transition matrix for a PEC obstacle

Scattering by a perfectly conducting obstacle (PEC) with bounding surface I is related to
the exterior Calder6n operator C°. This section develops and clarifies this connection.

The transition matrix (T-matrix), T%,»», connects the expansion coefficients of the
incident field E;, with sources in €. and the scattering E in terms of the regular spherical
vector waves, wo, (kx), and the radiating spherical vector waves, u., (kx), respectively. The
definition of the spherical vector waves is given in Appendix 1. Specifically,

x) = Zamwrn(kx): Es(x) = Zfrnurn(kx

™m

where the regular and radiating spherical vector waves, w,, and u.,, are defined in (16)
and (19), respectively, see also Appendix 1, and where the expansion coefficients f;, and
a., are related as

frn = § Trn,r’n’ar’n’-
n'

The expansion of the incident field is absolutely convergent, at least, inside the inscribed
sphere of the PEC obstacle,® and the expansion of the scattered field converges, at least,
outside the circumscribed sphere of the PEC obstacle. The transition matrix completely
characterizes the scattering process.

The following theorem shows that when the exterior Calderén operator is known, the
transition matrix for a PEC obstacle is obtained by some simple operations:

Theorem 7  The transition matrix for a PEC obstacle, Ty, vy, with bounding surface I' and
the corresponding exterior Calderon matrix, Cqp 1y, 1S:

T‘cnﬁf’n' =1 § W, ' V.C ' 7! + Vo o ' § CTan " m "

' "t

where the dimensionless matrices W, v and Ve, vy are

Wm,r’n’ - k/ Wi an dS Vm,{’n’ = k/y(wm) : Y%n’ ds.
r r

T+l
wm,o'n’"

Notice that Wy, o,y and Vi, . are related, i.e., Voo = (—1)

Proof For a given incident field E;, the boundary condition on the surface I' is
y(E; + E) = 0, which implies

V(Es) = —y(E).

The trace of the scattered magnetic field on I is

8 More precisely, the convergence is guaranteed inside the largest inscribable ball not including the sources
of the incident field.
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y(H) = y(H; + Hy) = y(H;) — C°(y(E;)).

The expansion coefficients of the scattered electric field for a PEC surface, f;,, are [17,
(9.3) on p. 481]

fon = —H2 / W, y(H)dS = —& / W, {y(H}) — C(y(E:))} ds.

r r

Inserting the expansions of the incident fields, we obtain an explicit form of the transition
matrix, viz.

Tm,r’n’ = k2 / w"rﬁn ! {iY(w?n’) + (O (y(w‘f’”,))} dS’
r

where we also used the explicit form of the trace of the incident magnetic and electric
fields

x) = _izarnw?n(kx)7 E; (x) = Za‘mwm(kx

™ ™m

The regular spherical vector wave y(w.,) has a Fourier series expansion in Yz,.

W‘m Z V‘m ‘rn’Y ! V‘nm:’n’ = k / )’(Wm) . Y%n’ dS7
r

and (14) yields

‘m - l E C'L' "n’" ‘L'll

'n"

Combine these expansions

kce(’})(wrn)) =i Z ern’C P G | Z ern/C o Yr”n”~

™n ‘E}’l n n 'L' n
on' 7' on' 7'

These expressions lead to

Tm,f’n’ = lk /wrn . {V_L_,n, ?n”Y n' —|— V,[ 'n! ‘E”Vl” 1’”n’” r”n” ‘E/”n”’} dS‘
1t :
n T

M

If we denote

%
Wm,r’n’ = k/wfn : Yr’n’ dS:
r

we get in matrix notation

Tm.r’n’ =1 E W‘L'n,f”n” ?n’ Wn” —|— V‘L”n’,‘[”n” E CT/ 2 T”n W/Tn,‘[’”n’” ,
s
T// u

T

which proves the theorem. (I

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



SN Partial Differ. Equ. Appl. (2020) 1:6 Page 27 of 32 6

6 The spherical geometry—an explicit example

The spherical geometry is well-known and, so far, the only known geometry, where we can
test the theory analytically. In this section, we apply the results above to a sphere of radius
r. The eigenvalues for the sphere are’ 4, = I(I+ 1)/(kr)*, and the vector spherical har-
monics Y, (x), see [17] and Appendix 1.

For the sphere, the matrix A is diagonal. Specifically,

k =1
A‘tlz,r’n’ = 6nn’5ﬁ’{ éf( r)’ ‘
Ekr), =2,
and
&1 (k
) -y
¢y(kr)
Cm::’n’ = 5nn’5n’ /
&y (kr)
P , T= 27
&i(kr)

where &(z) =zhl(l>(z) is the Riccati-Hankel function [17, 22]. Notice the result of
Lemma 5, i.e.,
Cl'ir:‘f’n’ = C?n,?n"

Moreover,

Si(kr) ?
&(kr)
&(kr)
Ci(kr)

(14 4y) =1

)

P‘m,r’n’ = 5}111’5‘51:’ 2

(14 2,)7"

) -

which is, apart from a different normalization, in agreement with [18], see Figure 3.
The static limit of the exterior Calderon operator for a spherical geometry is of interest.
We have
[+1

o t=1
klrlgl() PmJ’n’ = 5nn’511’ l s
l+ 17 — 4y
and consequently limg—o |C°[|;7-12qiy om,) = V2.
We can also check the validity of Lemma 6.
_ Si(kr) _
é/ (kr) 9
(71)1Cm,r’n’ = 5nn’5rr' , !
(k) T=2.
&ilkr)”

Therefore,

® We here adopt the standard indexing of the eigenvalues 2, of the spherical harmonics, where n = {I,m},
I=1,2, com=—l,—1+1,...,1—1,L
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||C€HH*1/2(div,6Bz)

A

Fig. 3 The norm of the exterior Calderén operator ||C®||;;-112(giy.on,) for a sphere of radius x is depicted. The
dashed blue lines depict the function Py;y; for I =1,2,3

| &i(kr)
1 T v - é;(kr)
i {(_1) C‘m;’n’ - (—1) Cr’n’,m} = 5,,,1/5”/ o 6;(kr)
&i(kr)
 &kn)W (k) — & (k) () e
= _ié’m,é”’ ’52 (kl") ‘2 = 5nn’51’1” ‘él (];r)|
&y (kr )y (kr) — & (kr )y (kr) AT =2,
&kl )

by the use of & (kr) = 2y, (kr) — & (kr) and the Wronskian for the Riccati-Bessel func-
tions ¥,(z)&)(z) — ¥}(z)&(z) = i [17]. Obviously, this matrix is positive definite.

We also illustrate the result in Theorem 7 with a sphere of radius r. From above, we
have

& (ki
k) e
& (kr)
Ctn,r’n’ = 6nn’5rr’ o1
& (kr) _
= , T=2.
&i(kr)
Moreover, we have
kr), 1=
Vrn,r’n’ = 5nn’5n’ l//l(, )
=y (kr), =2,

and
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k =1
Wrn n = 5nn’5rr’ lpi( r)’ ‘
’ Wikr), T=2.
where Y,(z) = zji(z) is the Riccati-Bessel function [17, 22]. The transition matrix becomes
& (kr
k) ko) 26T =1
Toponw = i(slm’(srr’
’ Si(kr)
ke (kr) — W (ke (kr) 20—, ©=2,
bk k) = k)

which by the use of the Wronskian for the Riccati-Bessel functions

V1(2)&() — ¥(2)é4(z) =1,

simplifies to

‘/jz(kr ) =1
&i(kr)
Tm,r’n’ = _5nn’5n’ /
y(kr) -9

&kr)”

in agreement with the result of Mie scattering [17].
7 Conclusions

This paper deals with a novel approach to compute the exterior Calderén operator, and, in
particular, the computation of its norm in the space H~'/ 2(div, T'). This operator is instru-
mental in the understanding of the scattering problem. The approach is constructive, and
employs the eigenfunctions of the Beltrami-Laplace operator of the surface. These functions
are intrinsic to the surface, and constitute the natural orthonormal set for a matrix represen-
tation of the operator. The norm of the operator is explicitly given as the largest eigenvalue of a
quadratic form that contains this representation of the exterior Calderén operator. The paper is
closed by an investigation of the connection between the exterior Calderén operator and the
transition matrix of the same perfectly conducting surface. In a future paper, the numerical
behavior of the suggested algorithm is intended to be conducted. The results of the present
work can be used for treating different challenging problems, including a new natural coupling
formulation between integral equations and finite elements, in the spirit of the results intro-
duced by Ammari and Nédélec in [1]; see also [2].
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Appendix 1: Spherical vector waves

The spherical harmonics Y,(x) are defined as

1 20+ 1(—m)
x\| 4n (I+m)

Yau(x) = P (cos O)e em?

in terms of the spherical angles 0 (polar angle) and ¢ (azimuthal angle) of the unit vector x.
The associated Legendre function is denoted P}"(cos #)). The index n is a multi-index for
the integer indices /[ =0,1,2,3,..., m=—-[,—[+1,...,—1,0,1,...,1. Note, the extra
factor 1/ x in the definition of the spherical harmonics, which makes the spherical har-
monics orthonormal on the sphere of radius x.

The vector spherical harmonics are defined by, cf. [5, 17]

Yon(x )_Vsﬂl/(( x) X)
an(x) _ VSzYn(x)

VIA+T1)’

where Vg is the nabla-operator on the unit sphere.
The radiating solutions to the Maxwell equations in vacuum are defined as (outgoing
spherical vector waves)

uln(kx) _ 6[(]5‘) Yln(x)
o () = %v « (é’(lfx) Yl,,(x)).

Here, we use the Riccati-Bessel functions & (kx) = kxhl(l)(kx), where hlm(kx) is the
spherical Hankel function of the first kind [23]. These vector waves satisfy

V X (V X they(kx)) — Ky (kx) =0,  1=1,2,

and they also satisfy the Silver-Miiller radiation condition [10, 17]. Another representation
of the definition of the vector waves is

uln(kx) _ ‘fl(]fx) Yln(x)

o kx
u2n(kx) = gl(k Y2n \/ n

A simple consequence of these definitions is

!
k
1
uz,,(kx) = %V X ul,,(kx).

ul,,(kx) =-V X uz,,(kx)

In a similar way, the regular spherical vector waves w.,(kx) are defined [5, 17].
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win(kx) = xji(kx) Y 1, (x)

wa(ke) = 1V % (ai(k)Y 1 (x),

where j;(kx) is the spherical Bessel function of the first kind [23].
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