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Abstract
Wireless Sensor Networks (WSNs) are vital in applications like environmental monitoring, smart homes, and battlefield 
surveillance. Comprising small devices with limited resources, WSNs require efficient node deployment for power optimiza-
tion and prolonged network lifetime, ensuring sufficient coverage and connectivity. This study introduces an Intelligent Satin 
Bower Bird Optimizer augmented with reinforcement learning (ISBO-RL), enhancing coverage and connectivity. ISBO-RL 
focuses on optimal sensor placement for improved coverage and connectivity, using an Optimum Position Finding (OPF) 
method to identify key sensor node locations. Reinforcement learning is integrated into the ISBO algorithm, allowing nodes 
to adapt based on performance and changing conditions. Experimental results on diverse platforms highlight ISBO-RL’s 
efficacy and its superior coverage and connectivity performance as compared to other algorithms. ISBO-RL represents a 
significant advancement in the field of Wireless Sensor Networks, offering a promising solution to address the challenges 
of efficient node deployment and network optimization in various critical applications.

Keywords  Wireless sensor networks · Intelligent satin bower bird · Reinforcement learning · Sensor node deployment · 
Meta heuristic

Introduction

Wireless Sensor Networks (WSNs) have emerged as a vital 
technological advancement for real-time monitoring and 
data collection in diverse domains, including environmental 
and physical scenarios. These networks consist of numer-
ous small resource-constrained sensor nodes responsible for 
sensing, processing, and transmitting data to gateway nodes, 

through multi-hop wireless communication. The micropro-
cessor unit is employed within the sensor node for process-
ing numerous pieces of sensed information. Such, WSNs 
find applications in earthquake detection, smart cities, envi-
ronment monitoring, battlefield surveillance and many more.

The design and deployment of sensor nodes in WSNs are 
critical factors that significantly impact the network’s energy 
efficiency and overall performance. The limited resources of 
the sensor nodes, such as computing power, memory, and 
battery life, present critical challenges in achieving optimal 
deployment strategies. Efficient deployment algorithms are 
necessary to maximize the network's lifetime and ensure 
essential connectivity and coverage.

Deterministic and random sensor placement are two 
commonly used deployment approaches in WSNs. While 
deterministic placement techniques aim to achieve maximal 
coverage and connectivity with minimal sensor deploy-
ment, they may not be suitable for large-scale areas or hos-
tile environments. Random sensor placement, on the other 
hand, is widely used but may not provide optimal coverage 
and connectivity. Also, an efficient deployment model will 
support maximizing the coverage of heterogeneous wireless 
sensor networks [1] and can also enable enhanced coverage 
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in homogeneous wireless sensor networks of large regions 
and hostile environments [2]. The deployment problems in 
WSN are a major challenge since it influences the energy 
expended by the sensor in the whole system and the overall 
performance.

In this study, we propose an Intelligent Satin Bower Bird 
Optimizer (ISBO) based node deployment approach with 
reinforcement learning, ISBO-RL, for WSNs. The primary 
objective of ISBO-RL is to determine the optimal sensor 
placement to achieve improved coverage and connectivity. 
We have introduced the concept of reinforcement learning 
along with the ISBO algorithm, enabling the sensor nodes to 
adapt their deployment based on the network’s performance 
and changing environmental conditions.

The main contributions of this research include the 
application of the Satin Bower Bird algorithm for sen-
sor deployment and the novel integration of reinforce-
ment learning to enhance the deployment strategy. 
Performance evaluation of ISBO-RL on various simu-
lation platforms along with comparisons with existing 
techniques, such as Genetic Algorithm (GA), Practical 
Swarm Optimization (PSO), and Simulated Annealing 
(SA), to showcase its superiority in terms of coverage 
and connectivity is carried out. The experimental results 
validate the effectiveness of the proposed approach and 
demonstrate its potential for improving WSN perfor-
mance in various real-world scenarios.

Some of the existing research works relating to the 
proposed methodologies are briefly discussed in Sect.   
“Existing Approaches”. Proposed model along with 
ISBO-RL algorithms and mathematical concepts are 
described in Sect.  “Proposed Model”. Simulation experi-
mentation and Comparing of ISBO-RL with other tech-
niques are explained in Sect.  “Summary”, with conclud-
ing summary in Sect.  “Summary”.

Existing Approaches

This section delves into various existing techniques for 
node deployment, offering a comprehensive analysis of 
their strengths and limitations. However, one noticeable 
gap in these approaches is the absence of reinforcement 
learning, which limits their adaptability and robustness 
in addressing the challenges of optimal sensor placement.

Farsi et al. [3] address node deployment in wireless 
sensors by categorizing various coverage techniques into 
classical deployment, meta-heuristic methods, and self-
scheduling strategies. The paper compares these tech-
niques in terms of coverage, connectivity, power con-
sumption, and other performance metrics.

Priyadarshi et al. [4] categorize coverage techniques 
for Wireless Sensor Networks (WSNs) into four main 

categories: computational geometry-based, force-
based, grid-based, and meta-heuristic based methods. 
Their aims is to compare these techniques considering 
their advantages and disadvantages, focusing on cover-
age, practical deployment challenges, sensing models, 
research issues, performance metrics, and WSN simula-
tor comparisons, while also addressing ongoing research 
challenges.

ZainEldin et  al. [5] introduce an Improved Dynamic 
Deployment Technique based Genetic Algorithm (IDDTGA) 
to increase the coverage area with the minimum number of 
nodes and minimize overlapping areas among neighboring 
nodes. 2-point crossovers are presented for demonstrating 
the parameter length encoder.

Yan et al. [6] proposed a growth ring style uneven 
node depth adjustment self-deployment optimization 
algorithm for improving the reliability and coverage of 
underwater wireless sensor networks (UWSNs), in the 
meantime, to resolve the problems of energy hole. A self-
deployment method using a ring-style approach in node 
depth is proposed to enhance the reliability and cover-
age of UWSN, addressing the energy hole problem. This 
approach comprehensively presents the construction of 
a tree model and an optimal method for wide-ranging 
optimization, focusing on increasing coverage and energy 
balance. Song et al. [7] introduce a new sensor placement 
system, i.e., depends on evidence theory and caters for 
three dimensional USWN.

Xiang et al. [8] studied cuckoo search (CS) as a hybrid 
sensor system for optimizing node placement techniques. 
This method involves identifying the dominant location 
of mobile nodes that reduces the average motion distance 
and the number of mobile nodes.

Li and Liu [9] proposed a network coverage model 
based on evidence theory. The movement direction of 
the wireless sensors is evaluated. The wireless sensors 
are moving towards the region with lower perceptive 
probability.

Liu et al. [10] established an arithmetical method for 
covering the target region using WSN node. Next, the 
optimization problems of node placement are converted 
to the problems of detecting the maximal values. Lastly, 
ALO model is utilized for obtaining an optimum solution 
for node placement.

Mohar et al. [11] propose node placement based on 
bat algorithm (BA) for improved coverage. Every bat 
computes the placement of sensors separately. This algo-
rithm places sensors at grid points to eliminate residual 
sensors, minimizing the load on residual nodes by replac-
ing the single sensor at the grid point. Simulations were 
carried out and they found an improved coverage rate of 
sensors along with efficacy of bat algorithm variables 
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like frequency, sensing range, loudness, and number of 
grid points.

Ou, Y.; Qin [12] this paper proposes a WSN coverage 
optimization method based on the improved grey wolf 
optimizer with multi-strategies (IGWO-MS) to tackle the 
problem of high node deployment costs and insufficient 
effective coverage in WSNs,

To verify the performance of IGWO-MS in WSN 
coverage optimization, this paper rasterizes the cover-
age area of the WSN into multiple grids of the same size 
and symmetry with each other, thereby transforming the 
node coverage problem into a single-objective optimiza-
tion problem.

Mao et al. [13] proposed a a collaborative percep-
tion model for node deployment based on the 0–1 and 
exponential perception models. The issue of sensor 
node deployment is converted into a three-dimensional 
issue of node deployment. Lastly, the method is used in 
a tobacco storage setting. The scheme acquired by the 
suggested algorithm is compared with that obtained by 
the similar deployment algorithm.

Hashim et al. [14] proposed an improved deployment 
strategy that uses an artificial bee colony as a model. By 
optimizing the network settings and limiting the total 
number of deployed relays, this algorithm deployment 
ensures a longer lifetime. Simulations confirm that the 
suggested approach works well in several scenarios with 
varying levels of problem complexity.

Yang et al. [15] introduce an approach for efficient 
sensor network deployment, specifically in networks 
with mobile sensors, to achieve balanced coverage. 
They present a centralized solution using the Hungar-
ian algorithm and propose a localized method i.e., a 
localized scan-based movement-assisted sensor deploy-
ment method (SMART), which employs scanning and 
dimension exchange techniques for sensor movement to 
achieve balance. They also extend SMART to address 
communication holes in sensor networks and validate 
their approach through extensive simulations.

Works done by Chelbi et  al. [16] presents a novel 
method that combines iterated local search (PSO-ILS) 
with particle swarm optimization to achieve the best cov-
erage and connectivity rate while requiring the fewest 
number of nodes. On one side, the PSO-ILS is used to 
install the fewest number of sensor nodes necessary to 
maintain target coverage. On the other hand, to attain 
complete connection, the optimal position determination 
(OPD) method was developed to determine the best can-
didate positions that the PSO-ILS might utilize to locate 
the fewest number of relay nodes.

While these existing approaches contribute valuable 
insights to the field of node deployment, their omission 

of reinforcement learning hinders their ability to offer 
adaptable, context-aware, and optimized solutions for 
optimal sensor placement in Wireless Sensor Networks.

Proposed Model

The ISBO-RL technique aims to optimally place the sen-
sor nodes to accomplish maximum coverage and con-
nectivity in WSN. In this proposed model, a combined 
ISBO algorithm with the concept of reinforcement learn-
ing is introduced to enable the sensor nodes to adjust 
their deployment in response to network performance 
and changing environmental circumstances. Here the 
methodology is discussed in an algorithmic form with 
steps involved in formulating the best positioning of 
bower bird that leads to sensor node and replay nodes 
placement. The ISBO-RL is explained with Pseudocode 
for each step-in Sect.  “ISBO Algorithm with Reinforce-
ment Learning (ISBO-RL)” and is formulated along with 
Nomenclature that gives expansion and explanation on 
each of the variables in the next Sect.  “Initialization”.

ISBO Algorithm with Reinforcement Learning 
(ISBO‑RL)

Initialization

•	 Initialize the population size of bowers i.e., total bow-
ers (NB).

•	 Initialize the iteration step size (α).
•	 Initialize the probability of mutation (P).
•	 Initialize the variance among threshold limits (Z).
•	 Calculate space width using Eq. 1, with some percent-

age Z of space width.

where σ = Portion space width at which bower positioning 
is made.

(varmax − varmin) maximum value allocated to position 
the next bower bird.

(varmax − varmin) minimum value allocated to position 
the next bower bird.

Z is the percentage value of variance among (var-
max − varmin) width.

•	 Generate the bowerbird population.
•	 Compute bower fitness and determine the dominant 

bower as an initialization.

(1)I.e., � = Z ∗ (varmax − varmin)
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Reinforcement Learning Setup

Before the usage of Reinforcement learning and the spe-
cific details of our implementation in the proposed meth-
odology, a brief understanding of the concepts of rein-
forcement learning (RL) is discussed below.

In RL, an agent interacts with an environment, taking 
actions and receiving feedback in the form of rewards 
or penalties. Based on this feedback, the agent learns to 
adjust its behavior to maximize its long-term rewards. This 
learning process involves several key components and is 
discussed below.

•	 Agent: Agent in the proposed model represents the indi-
vidual bowerbirds attempting to optimize its position intern 
the sensor placement.

•	 Environment: The environment represents the sensor 
deployment area with its specific characteristics and con-
straints.

•	 States: Each state captures the current positions of all 
deployed sensors and relevant environmental factors.

•	 Actions: Actions correspond to possible modifications to 
the sensor placement, such as moving individual sensors 
or adjusting their locations.

•	 Rewards: The reward function defines the desired outcome, 
typically maximizing network coverage and connectivity 
while minimizing energy consumption.

•	 Q-table: A data structure storing estimated Q-values (future 
expected reward) for each combination of state and action.

In specific to the proposed approach, the Q-table initializa-
tion and Learning Parameters are as follows.

•	 Initialize a Q-table: Here the Q-table is used to store and 
update the estimated Q-values (expected future rewards) 
for each bowerbird and its corresponding sensor placement 
configuration (state, action) pair.

•	 Learning rate (α_RL) and discount factor (γ): These param-
eters control the balance between exploration of new solu-
tions and exploitation of learned knowledge.

By effectively utilizing these RL components, our ISBO-
RL approach aims to learn and adapt the sensor deployment 
strategy, ultimately achieving improved network performance 
in various real-world scenarios as shown in Fig. 1. The pro-
posed ISBO-RL Q-table initialization and computation algo-
rithm is as follows.

•	 Initialize a Q-table to store Q-values for each bower and its 
corresponding elements.

•	 Initialize learning rate (α_RL) and discount factor (γ) for 
Q-learning.

Loop Computation Algorithm

The algorithm discusses the complete steps, processes involved 
and the overall methodology used in ISBO-RL along with 
Nomenclature, variables and their descriptions are explained 
in Sect.  “Nomenclature”.

Fig. 1   Overview of a typical Wireless Sensor Network
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Seagull Optimization Algorithm

Nomenclature

Some of the terminologies and variables used to discuss the 
algorithms and techniques are discussed below.

•	 In Eq. 2,

Probi is the estimated probability of bower,
fiti is the fitness for   bower element
NB
∑

n=1

fitn is the summation of fitness for all NB bowers.

•	 In Eq. 3,

fiti is the fitness for  bower element
Q − value(xi) Is the Q-value of the ith bower element

•	 In Eq. 4,

S is the current state (current bower element)
a is the action modification to the bower element
R is the immediate reward (fitness value obtained by mod-

ifying the element)
S′ is the next state (modified bower element).

•	 In Eq. 5,

xnew
ik

 is the updated location of the ith bower’s element
xold
ik

 is the old location of the ith bower’s element
�
2 is the variance within the mutation procedure

N  is the standard distribution within the mutation 
procedure.

•	 In Eq. 6,

N  is the standard distribution within the mutation 
procedure

xold
ik

 is the old location of the [Inline Image Removed] 
bower’s element

�
2 is the variance within the mutation procedure

� is a proportion of space width.

Multi‑Objective Optimization Problems

Multi-objective optimization (MOO) involves optimizing 
multiple conflicting objectives simultaneously. In the con-
text of Wireless Sensor Networks (WSNs), where resource 
allocation, coverage, connectivity, and energy efficiency are 
often conflicting objectives, addressing these challenges 
becomes inherently multi-objective. MOO aims to find a 
set of solutions, known as the Pareto front, that represents 
a trade-off between different objectives. Some of the MOO 
problems include Pareto Dominance, Pareto Optimal Solu-
tions, Weighted Sum Method [17].
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ISBO‑RL Technique

The Intelligent Satin Bower Bird Optimizer with Reinforce-
ment Learning (ISBO-RL) technique combines the unique 
capabilities of the Satin Bower Bird algorithm with reinforce-
ment learning to address the complexities of multi-objective 
optimization in WSNs. It utilizes a hybrid approach for solving 
the node deployment issue, integrating particle swarm opti-
mization (PSO) with an adapted Iterated Local Search (ILS) 
technique.

Here the methodology proposed involves the optimiza-
tion of numerous competing objectives at the same time and 
is known as multi-objective optimization. In the context of 
Wireless Sensor Networks (WSNs), tackling these difficulties 
becomes intrinsically multi-objective, as resource allocation, 
coverage, connection, and energy efficiency are frequently 
competing objectives. In the present methodology involves 
in balancing various goals and seeks to identify a group of 
solutions known as the Pareto front that represents a trade-off 
between different objectives.

Reinforcement learning enables individual bower within 
the population to learn and adapt their behavior based on the 
feedback received from their environment. This adaptive learn-
ing capability allows the bower to dynamically adjust its search 
strategy, improving the convergence speed towards optimal 
or near-optimal solutions, with decentralized decision mak-
ing based on their individual local perception and feedback 
received from their actions. Thereby strengthening the interac-
tive learning process that brings a balance between new areas 
and focusing on promising areas. That in turn leads to a more 
robust and scalable solution process that can adapt to complex 
and dynamic environments.

Following steps outline the process:

Initialization Generation of Early Population

An early population is a group of particles created arbitrarily. 
The dimension of the particles is equivalent to the amount of 
possible locations L in the network, where Pi = {Xi1, Xi2,..., 
XiL} represent the ith particles of the population in which all 
the components Xid map the status of the appropriate loca-
tion Sd by Eq. 7.

Tuning of Fitness Function: Multi‑Objective

Here all the particles are evaluated based on the objective 
function. The primary goal is to maximize the coverage 
rate of the network using Eq. 8.

(7)Xi,d =

{

1, Select state

0, else

where cov (Ti) signifies the coverage of the target and its 
value is 1, otherwise it is 0.

The secondary goal is to minimise the number of 
elected locations using Eq. 9.

Here, ‘s’ means the amount of elected locations, and ‘L’ 
signifies the amount of possible locations.

Combine the objectives into a multi-objective fitness 
function:

Subject to �1 + �2 = 1 and 0 ≤ �i ≤ 1 for i 1,2

Adapted ILS

They expect that the deployed nodes’ redundancy will be 
eliminated from the network without affecting coverage 
in any other way. The ILS approach is utilized for improv-
ing the efficiency of PSO method. Redundant nodes are 
eliminated from the current solution without compromis-
ing the coverage.

Upgrade

After terminating the PSO-ILS method, the Gbest particles 
represent the group of selected locations for deploying 
sensors [16].

Performance Validation

Experimental Simulation

A platform for experimentation has been created and the 
ISBO-RL technique is simulated. It is assumed that the 
fitness of each bowerbird element depends on the state of 
the element.

Simulation platform uses some of the simulation param-
eters that represent WSN parameters and ISBO-RL param-
eters that includes network related parameters, Bower bird 
distribution parameters are given in the Tables 1 and 2.

(8)f1 =

∑N

i=1
cov(Ti)

L

(9)f �
2
= sL

(10)f2 = 1 − f �2

(11)f �2 =
s

L
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Figure 2 shows the progression of the maximum fitness 
value over iterations. It helps visualise how the fitness of 
the best bowerbird element evolves during the simulation.

Figure 3 is a scatter plot illustrating the relationship 
between two dimensions of the bowerbird elements, where 
color indicates the fitness value.

Figure 4 depicts the relationship among three dimensions 
of the bowerbird elements, with color indicating fitness.

Figure 5, Here is the Pareto front plot, where maximizing 
coverage and maximizing connectivity have been considered 
as the objectives.

Comparing ISBO‑RL with Other Techniques

The proposed ISBO-RL technique is simulated, and the 
results are investigated under varying number of target 
points and potential positions.

Table 3 and Fig. 6 depict the performance validation of 
the ISBO-RL technique in terms of selected positions (SP) 
out of 300. The figure shows that the ISBO-RL technique 
has attained effective outcomes with the lower SP under the 
distinct number of target points. For instance, with 40 target 
points, the ISBO-RL technique has obtained an SP of 16 
whereas the PSO, Differential Evolution (DE), improved 
GA, and PSO-ILS techniques have obtained SP of 24, 23, 
21, and 17 respectively. In addition, with 60 target points, 
the ISBO-RL approach has gained an SP of 17 whereas the 
PSO, DE, improved GA, and PSO-ILS systems have reached 
SP of 26, 25, 22, and 19 correspondingly. Also, with 80 
target points, the ISBO-RL technique has obtained an SP of 
17, (round off to 17), whereas the PSO, DE, improved GA, 
and PSO-ILS manners have achieved SP of 28, 26, 24, and 
21 correspondingly.

Table 4 and Fig. 7 showcase the performance validation 
of the ISBO-RL technique in terms of number of placed 
nodes (NPN) for 75 targets. The figure illustrates that the 
ISBO-RL technique has achieved effective outcomes with 
lower NPN for various numbers of potential positions. For 
instance, with 150 potential positions, the ISBO-RL algo-
rithm has obtained an NPN of 19 whereas the PSO, DE, 
improved GA, and PSO-ILS approaches have obtained NPN 
of 25, 25, 22, and 20 correspondingly. Following that, with 
250 potential positions, the ISBO-RL technique has achieved 
an NPN of 19, whereas the PSO, DE, improved GA, and 
PSO-ILS methods have reached NPN of 26, 26, 23, and 20 
respectively.

Furthermore, with 350 potential positions, the ISBO-
RL algorithm has obtained an NPN of 19 whereas the 
PSO, DE, improved GA, and PSO-ILS techniques have 
obtained NPN of 30, 28, 24, and 20 respectively.

Table 5 and Fig. 8 showcase the performance valida-
tion of the ISBO-RL manner with respect to number of 
deployed sensor nodes (NDN). The figure has shown 
that the ISBO-RL technique has obtained effective out-
comes with the lower NDN under distinct number of tar-
get points. For instance, with (1,1) values, the ISBO- ND 
technique has obtained an NDN of 17 whereas the PSO, 
DE, improved GA, and PSO-ILS techniques have attained 
NDN of 23, 23, 21, and 19 correspondingly. Along with 
(2, 1) values, the ISBO-RL scheme has obtained an NDN 
of 25 whereas the PSO, DE, improved GA, and PSO-ILS 
techniques have obtained NDN of 38, 39, 35, and 31 cor-
respondingly. Eventually, with (2, 2) values, the ISBO-RL 
technique has obtained an NDN of 29 whereas the PSO, 
DE, improved GA, and PSO-ILS systems have gained 
NDN of 44, 44, 38, and 36 respectively.

Table 6 and Fig. 9 portray the performance validation 
of the ISBO-RL method in terms of number of relay nodes 

Table 1   Wireless sensor 
network simulation parameters

Parameters Description Range of value

Parameters Number of sensor nodes in the network 100 sensors
Communication range Maximum distance for wireless communication 50 m
Sensing range Range within which a sensor can detect events 30 m
Battery life Initial battery life of each sensor node 5000 h

Table 2   ISBO-RL simulation 
parameters

Parameter Description Value

Population Size (NB) Number of bowerbirds in the population 100
Iteration step size ( �) Size of the iteration step 0.1
Probability of mutation (P) Probability of mutation during optimization 0.2
Variance (Z) Variance among threshold limits 0.5
Learning rate �_RL) Learning rate for reinforcement learning 0.01
Discount factor(�) Discount factor for Q-learning 0.9
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required (NRNR). The figure has shown that the ISBO-
RL algorithm has attained effective outcome with the 
least NRNR under different numbers of target points. For 
instance, with 150 positions, the ISBO-RL technique has 
achieved an NRNR of 7 whereas the PSO, GA, and PAO-
ILS techniques have obtained NRNR of 12, 11, and 9 cor-
respondingly. Moreover, with 250 positions, the ISBO-RL 
approach has obtained an NRNR of 8 whereas the PSO, GA, 
and PAO-ILS systems have reached NRNR of 13, 12, and 9 
correspondingly. Finally, with 300 positions, the ISBO-RL 

technique has obtained an NRNR of 8 whereas the PSO, 
GA, and PAO-ILS methodologies have obtained NRNR of 
15, 13, and 9 correspondingly.

Summary

In this proposed research, we present a novel approach called 
ISBO-RL, which leverages the power of Reinforcement 
Learning to enhance node deployment in Wireless Sensor 

Fig. 2   Line Plot of Fitness 
History

Fig. 3   Scatter Plot of Bowerbird 
Elements
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Networks (WSNs). The primary goal of ISBO-RL is to stra-
tegically position sensor nodes for achieving optimal cover-
age and connectivity within the network. To achieve this, an 
innovative Optimal placement framework (OPF) is devel-
oped, enabling the accurate placement of candidate sensors.

Through a comprehensive series of simulation analyses, 
the system is rigorously validated for the effectiveness of 
the ISBO-RL technique. Here, the method demonstrates 
significant improvements over existing strategies across 
a range of evaluation metrics. Notably, the ISBO-RL 

approach showcases superior performance in terms of var-
ious key parameters. It particularly excels in minimizing 
the number of relay nodes required to guarantee complete 
connectivity among all nodes within the network.

Looking ahead, there is a potential to expand the pro-
posed approach by incorporating node localization meth-
ods. These methods can further refine the placement of 
sensors in WSNs, contributing to an even more optimized 
and efficient network deployment. Hence, this research 
contributes to advancing the field of WSNs by introduc-
ing a robust and intelligent approach that addresses critical 
challenges in node placement and network connectivity.

In summary, the research introduces ISBO-RL, a novel 
approach that utilizes Reinforcement Learning to optimize 
node deployment in Wireless Sensor Networks (WSNs), 
achieving improved coverage, connectivity, and efficiency 
compared to existing strategies, and with the potential for 
further enhancements through the integration of node 
localization methods.

Fig. 4   3D Scatter Plot of bowerbird element

Fig. 5   Pareto front plot for con-
nectivity and coverage

Table 3   Result analysis of ISBO-RL model in-terms of SP out of 300

Selected Points (SP) Out of 300

#Target Points PSO DE Improved GA PSO-ILS ISBO-RL

40 24 23 21 17 16
50 26 24 22 18 17
60 26 25 22 19 17
70 26 26 24 20 17
80 28 26 24 21 17
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Fig. 6   SP Analysis of ISBO-RL 
model out of 300

Table 4   NPN Analysis of ISBO-RL model for 75 targets

Number of Placed Nodes (NPN) for 75 targets

#Potential 
Positions

PSO DE Improved GA PSO-ILS ISBO-RL

150 25 25 22 20 19
200 25 25 22 20 19
250 26 26 23 20 19
300 26 27 24 20 19
350 30 28 24 20 19

Fig. 7   SP Analysis of ISBO-RL model out of 300

Table 5   NDN Analysis of ISBO-RL model with existing techniques

Number of Deployed Sensor Nodes (NDN)

(k,m) Values PSO DE Improved GA PSO-ILS ISBO-RL

(1,1) 23 23 21 19 17
(2,1) 38 39 35 31 25
(2,2) 44 44 38 36 29

Fig. 8   NDN Analysis of ISBO-RL model with existing approaches

Table 6   Result analysis of ISBO-RL model with respect to NRNR

Number of Relay Nodes Required (NRNR)

Number of Posi-
tions

PSO DE PSO-ILS ISBO-RL

150 12 11 9 7
200 12 12 9 8
250 13 12 9 8
300 15 13 9 8
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Fig. 9   NRNR Analysis of ISBO-RL Model with Count of Positions
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