
Vol.:(0123456789)

SN Computer Science           (2024) 5:542  
https://doi.org/10.1007/s42979-024-02844-y

SN Computer Science

ORIGINAL RESEARCH

Self‑Adaptive Incremental PCA‑Based DBSCAN of Acoustic Features 
for Anomalous Sound Detection

Xiao Tan1  · Siu Ming Yiu1 

Received: 16 December 2023 / Accepted: 27 March 2024 
© The Author(s) 2024

Abstract
In modern industry, maintaining continuous machine operations is important for improving production efficiency and reduc-
ing costs. Therefore, the smart technology of acoustic monitoring to detect anomalous machine conditions earlier before 
breakdowns works as part of predictive maintenance and is applied not only in industry fault detection but also in safety 
monitoring and surveillance systems. This paper proposes a self-adaptive unsupervised machine learning algorithm with 
dimension-reduction technology to detect anomalous sounds after extracting acoustic machine features. Technically, the 
automatic EPS calculation algorithm-based genetic algorithm optimizes the automatic clustering algorithm’s configuration 
for incremental principal component analysis and density-based spatial clustering algorithms with noise. IPCA is enhanced 
by the sequential Karhunen–Loeve (SKL) algorithm, and the condensation algorithm works as the second layer of the algo-
rithm to reduce the number of effective components. This architecture could select an optimized set of parameters based on 
different test environments and keeps performance quality with fewer computational requirements. In the experiments, 228 
sets of normal sounds and 100 sets of anomaly sounds are used. The sound files are collected from the same machine type 
(stepper motors) at a real plant site. We compare the proposed algorithm with K-means++, one-class SVM, agglomerative 
clustering, DCGAN and DCNN-Autoencoder, and this new algorithm performs best, with an AUC of 0.84 and the shortest 
execution time. The algorithm is generic and can be applied to detect anomalies in machines to provide early warning to 
people to avoid serious accidents or disasters.

Keywords Internet of things (IoT) · Anomalous sound detection · Unsupervised algorithm · Acoustic features · Guided 
genetic algorithm · Dimension reduction

Introduction

The industrial Internet of things (IoT), as an industry 4.0 
implementation technology [1], is used in manufacturing to 
control and monitor operations and processes by smart sensors 
that detect the anomalous behaviors of machines, remotely 
control the input and output of each step in the process, and 
integrate physical production into interconnected networks.

Anomalous sound detection (ASD) is a smart data-driven 
technology at the edge of the IoT. Scientific methodology is 
used to identify the anomalous sound emitted from opera-
tional machines, and the detected warnings are sent to opera-
tors to mitigate the risk of breakdowns. For example, the 
modern textile industry uses a wide range of machines, espe-
cially massive heavy-duty industrial machines, e.g., woolen 
mill machines, thread winding machines, bleaching/dyeing 
machines, and scutching machines. The costs of detecting 
and fixing defects in those running machines in time are 
high, not only due to the expensive repair charges but also 
downtime. ASD, as an option for predictive maintenance 
technology, can detect fault conditions and automatically 
report them to operators in real time.

In addition to reducing the maintenance cost of audio 
analysis, anomaly detection technology can also be applied 
to image, video and text analysis in traffic control, cyberse-
curity and forensics. For example, in the automotive industry, 
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machine learning and artificial intelligence technology are 
adopted to recognize traffic lights using onboard sensors in 
vehicles to improve the safety of driving [2]. In utilities, AI-
based smart sensors and anomaly detection methods are also 
widely used in traffic flow studies to improve the mobility 
of cities or crossing regions [3]. In cybersecurity, to detect 
anomalies, machine learning methods are applied to reduce 
the vulnerability of sensors, e.g., IoT-based smart grids (SGs) 
[4]. In forensics, anomaly detection with autonomous artifi-
cial intelligence is used to detect frauds or cybercrimes. AI-
based anomaly detection technology is used to detect mali-
cious and illicit events in the text analysis of posts in online 
social networks in dark web environments [5]. In addition, 
by analyzing the security logs of attacked servers, anomaly 
detection technology can help engineers trace threat-intention 
cyber behaviors and predict evidential locations [5]. Smart 
anomaly detection technology is a prominent approach in sys-
tem automation and risk control in both industry and society.

However, ASD has become increasingly challenging in 
recent decades, despite the wide recognition of its impor-
tance in industry 4.0. The major challenges in practice 
include the following:

Imbalanced training dataset In practical applications, 
anomaly events are much rarer than long time series of nor-
mal data [6]. Such an imbalance between exhaustive contin-
uous normal data and anomalous data in the training process 
significantly compromises the performance of popular ASD 
machine learning algorithms.

Stability of high performance Maintaining a stable and 
highly accurate detection and prediction performance is 
another issue in real practice. Most deep learning algo-
rithms, e.g., convolutional generative adversarial networks 
(GANs), can achieve high accuracy after sufficient training. 
However, the stability of the overall predictive performance 
is still a concern [7].

Hardcoded architecture Differences in background 
environments when collecting sounds and types of sounds 
require different parameter settings in the algorithm. Manu-
ally selecting the parameters to reset the algorithm to adapt 
to the environment and specific types of sound impacts the 
efficiency and accuracy of ASD.

Noise On most occasions, the real environments in which 
sound data are collected are composed of multiple types of 
sound. Environmental noise is a traditional issue in audio 
studies [8].

High computation capability and computing cost require-
ments Because of the high volume of the training dataset 
and the imbalance between normal and anomalous data, the 
algorithms applied in ASD, e.g., deep convolutional neural 
networks and generative adversary networks, require one or 
more graphics processing units to process and generate good 
predictive results.

To resolve these issues in practice, the proposed algo-
rithm integrates the dimension-reduction technology of 
incremental PCA with unsupervised DBSCAN. This algo-
rithm is optimized with the automatic EPS calculation 
(AEC)-guided genetic algorithm to set the localized param-
eters for different test datasets [9]. The details of the algo-
rithm are introduced in “Enhanced Incremental Principal 
Component Analysis-Based Density-Based Spatial Cluster-
ing of Applications with Noise”.

We extend our gratitude to Mr. Huang CS, who provided 
the audio files for the study, and the Department of Com-
puter Science at the University of Hong Kong, who spon-
sored the study.

Enhanced Incremental Principal Component 
Analysis‑Based Density‑Based Spatial 
Clustering of Applications with Noise

Extraction of Acoustic Features

Acoustic features are used to represent and recognize a typi-
cal computationally sound event or scenario to differenti-
ate it from others. The input, as of the discrete time-series 
audio data of machine sounds collected from the plant site, 
is analog–digital converted, framed and partly labeled in 
the preprocessing stage and then is calculated and output 
as acoustic features by the preset rules. These digitalized 
representations, or acoustic characteristics, are capable of 
identifying the physical properties of the input audio data, 
for example, the signal energy, the toneless, the temporal 
shape and the spectral shape.

In recent decades, many different types of audio signal fea-
tures have been proposed for sound recognition or description. 
Generally, the audio features can be categorized as either time 
domain or frequency domain. In the time domain, based on the 
different computational scopes, we can distinguish between 
the time extension validity of the global descriptors that are 
computed for the whole signal and the instantaneous descrip-
tors that are computed for each time frame. The time frame 
is a short segmentation of the signal with a regular duration. 
In this paper, the duration for the time frame is 20 ms. As the 
proposed study focuses on the signal analysis of time frames, 
we adopt the instantaneous features as the acoustic characteris-
tics for machine learning [10]. In 2004, G Peeters summarized 
a set of audio descriptors [11], including the temporal shape, 
temporal feature, energy features, spectral shape features, and 
perceptual features. This paper adopts Peeters’ classification 
as the main method for extracting acoustic features to identify 
anomalous sounds. The descriptors for further machine learn-
ing processing include the following:
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Temporal shape

Features (global or instantaneous) computed from the wave-
form or the signal energy (envelop). The attack time, tem-
poral increase/decrease and effective duration are features 
of this category.

Frequency [12] Frequency is one of the basic features 
when describing or recognizing audio signals. In contrast 
to the time domain, which calculates the distance between 
two domain samples, the frequency is used to calculate the 
period vibration of two frequency band index bins. In this 
paper, short-time Fourier transform (STFT)-based analysis 
is applied for linear frequency calculations of continuous 
audio signals.

Amplitude The amplitude is a descriptor that represents the 
waveform shape with limited information. Similar to the 
processing steps of frequency, in this paper, the amplitude 
is calculated based on the continuous signals after the STFT 
and is converted to db-scaled from the logarithm scale.

Temporal features

Autocorrelation coefficients [11] The cross-correlation of 
a signal, as the inverse Fourier transform of the spectrum 
energy distribution of the signal, represents the signal spec-
tral distribution in the time domain. This descriptor was 
proven by Brown in 1998 to be a valid description for clas-
sification. The formula is:

Each coefficient is in the range of [−1,1]. The faster the 
coefficients decrease with increasing lag, the whiter the sig-
nal can be.

Zero‑crossing rate [12] The zero-crossing rate is a low-level 
feature used to describe the number of changes in signal val-
ues when crossing the zero axis. The concept assumes that the 
arithmetic mean of the audio signals is zero. The higher the 
zero-crossing rate is, the more high-frequency content there 
is, and the less periodic the audio signals are assumed to be.

Spectral shape features

Onset envelope Onset is the percept related to the time 
a sound takes to start. The onset envelope is computed as 
a spectral flux onset strength envelope. The spectral flux 
measures the amount of change in the spectral shape as the 
average difference between consecutive STFT frames. The 
onset strength at time t is determined by:

(1)xcorr(k) =
1

x(0)2

N−k−1∑

n=0

x(n) ⋅ x(n + k)

where ref is the logarithmically scaled filtered spectrogram 
Xlog,filt(n,m) after local max filtering Xmax

log,filt
(n − �,m) along 

the frequency axis [13].
Onset is correlated with the logarithm of the attack time 

[14].

Spectral centroid [12] The spectral centroid represents the 
center of gravity (COG) of spectral energy. It is calculated 
as the frequency-weighted sum of the spectrum normalized 
by its unweighted sum:

Spectral roll‑off [12]

The spectral roll-off measures the bandwidth of the analyzed 
block n of the audio samples. The spectral roll-off point is 
the frequency at which the accumulated magnitudes of the 
STFT X (k, n) reach K of the overall sum of magnitudes:

The common value for K was 0.85 (85%). The spectral 
roll-off range is [0, K/2].

Mel‑frequency cepstral coefficients (MFCC) [15]

The MFCC is defined as the compact description of the 
shape of the spectral envelope of an audio signal. It is cal-
culated by the logarithm of the spectrum after the discrete 
cosine transform (DCT) or Fourier transform (e.g., FFT). 
Since MFCC was introduced in 1980, it has proven to be a 
valid measurement of audio signal classification to contain 
principal information. In our approach, the number of coef-
ficients is 20.

Other features’ categories

Intensity Intensity is a physical and measurable entity that 
is related to human perception of the magnitude of an audio 
signal. In this category, most features are instantaneous fea-
tures, such as the root mean square and root mean square 
energy.

• Root mean squared energy. The RMS energy is calculated 
from the audio samples or from a spectrogram without 

(2)
m=M∑

m=1

H(Xlog,filt(n,m) − Xmax
log,filt

(n − �,m))

(3)vSC(n) =

∑ K

2

k=0
k ⋅ �X(k, n)�2

∑ K

2

k=0
�X(k, n)�2

(4)vSR(n) = kr

�����

.

∑i

k=0
�X(k, n)� = K ⋅
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STFT processing. The advantage of the RMSE is the 
faster calculation speed because it does not require STFT 
processing. It outputs the RMS of each frame. In this 
paper, we only calculate the RMSE directly based on the 
audio signals.

Derived features 

• Tempogram [16]. As a descriptor of the speed or pace of 
a given piece, a tempogram is usually measured in beats 
per minute (bpm). It is derived from the local autocor-
relation of the onset strength envelope. For time t ϵ Z and 
time lag l ϵ [0, N]. W denotes window function: Z -> ℝ 
centered at t = 0 with support [-N: N], N ϵ ℕ.

Enhanced Incremental Principal Component 
Analysis

Principal component analysis (PCA) is a classical multivari-
ate statistical method for linear dimension reduction. It was 
introduced by Pearson as early as 1901 and Hotelling in 
the 1930s. As an unsupervised algorithm, the principal of 
PCA is to seek the subspace of the largest variance in the 
dataset. In 1982, the neural network implementation of one-
dimensional PCA implemented by Hebb learning was intro-
duced by Oja, and in 1989, it was expanded to hierarchical, 
multidimensional PCA by Sanger [17].

The enhanced incremental algorithm is based on the 
sequential Karhunen–Loeve (SKL) algorithm of Levy and 
Lindenbaum (2000) [18]. The computational advantages of 
the SKL algorithm are that it updates the original eigenspace 
and mean continuously with the learning rate, and the space 
complexity and the computational requirements are reduced 
to O(d(k + m)) and O

(
dm2

)
 , respectively, because it maintains 

constant space and time complexity in n. The disadvantage is 
that it does not calculate the varying sample mean of the train-
ing data with the new data. To resolve this issue, the enhanced 
incremental PCA is improved by adding an additional vector 
to the new training data to correct the time-varying mean [19].

In this paper, the input parameter of the enhanced IPCA, 
the number of components, is selected by a genetic algorithm 
based on the most optimized historical results of different 
machine types, which will be introduced in detail in “Auto-
matic EPS Calculation (AEC)—Guided Genetic Algorithm”.

Automatic EPS Calculation (AEC)—Guided Genetic 
Algorithm

The genetic algorithm (GA), a type of global stochastic 
search algorithm that includes evolutionary algorithms, par-
ticle swarm optimization and other biobased search meth-
ods, is applied for the selection of wrapper features [20]. 

Despite the capability of global searching, the exponentially 
increased computational cost of each candidate parameter 
restricts the efficiency of the GA. Therefore, the constraint 
of local optimization is added to resolve this issue.

Automatic EPS calculations (AECs) of randomly selected 
training datasets are used to set up the baseline of the initial 
range of estimated values of the candidate parameters. The 
wrapper parameters to be calculated in the guided genetic 
algorithm include the number of components for IPCA, 
the optimal epsilon value and the MinPts for DBSCAN. 
The automatic EPS calculation (AEC) algorithm estimates 
the EPS and MinPts based on the density of the randomly 
selected training datasets and the distances between the 
points in the density region. In the proposed AEC algo-
rithm, the densities are calculated by the Gaussian kernel 
after the training dataset is scaled by MinMax. Similarly, 
the distances are calculated by the KD-Tree query after the 
MinMax scaled training dataset. The set of the estimated 
EPS and the estimated MinPts are the minimum values in all 
clusters. The range of the estimated number of components 
is set between 2 and 10 [21].

The three locally optimized parameters are input as 
the baseline to set up the range of values of the candidate 
parameters. The predicted value, the actual value, the differ-
ence between the predicted and the actual values, the mean 
squared error (MSE), the candidate number of components, 
the candidate EPS and the candidate MinPts, which are 
seven genes, are used to construct the chromosome. The fit-
ness process is to set the reward value to 1 if the MSE is less 
than the target value of 0.4. Only the rewarded chromosomes 
construct the population for crossover and mutation to gener-
ate a new generation of populations with the preset crossover 
probability and specific mutation power [20].

Density‑Based Spatial Clustering of Applications 
with Noise

DBSCAN was proposed by Martin Ester, Hans-Peter 
Kriegel, Jorg Sander and Xiaowei Xu in 1996. As a density-
based clustering algorithm, DBSCAN separates clusters 
into low-density regions [22]. DBSCAN can identify global 
anomalies by defining dense and arbitrary shapes globally 
and, therefore, fails to identify local anomalies. There are 
two main advantages of DBSCAN over other unsupervised 
ML algorithms. The first is that DBSCAN does not require 
defining how many clusters to be calculated as an input 
parameter. It can define clusters of arbitrary shape by itself. 
Second, DBSCAN can handle noise points. With these two 
advantages, DBSCAN performs well when training and pre-
dicting large-volume and unbalanced datasets.

In DBSCAN, for any arbitrary object p belonging to data-
set D, as shown in Fig. 1, the algorithm retrieves all object 
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densities reachable from p by the ε and MinPts values [22]. 
There are three scenarios for any object p: it is the core 
object of a cluster, if there are enough other objects q within 
the distance from p ≤ ε and with the count of q ≥ MinPts in 
dataset D; it is the border object if there is not enough q to 
be density-connected to p; it is the noise object if it does not 
belong to any cluster. The algorithm will continue process-
ing to locate all the objects into clusters or noise groups.

In the hybrid algorithm proposed in this study, auto-
matic EPS calculation (AEC) is adopted to estimate the 
EPS based on the average distance between the points of 
the training dataset, and MinPts is based on the kernel den-
sity of the training dataset, which includes the extracted 
acoustic features of the audio files. The assumption of the 
experiment is that the frames of the normal and anormal 
files have significantly different density characteristics so 
that they can be easily differentiated by the hybrid algo-
rithm with reduced dimensions.

Experiments

Dataset and Preprocessing

The data were collected from machines in a plant in 
Suzhou City, China. The data consist of the normal/
anomalous sounds of real machines. Each recording is a 
single-channel 2-s long audio of both a target machine's 
operating sound and environmental noise. The sample 
rate was 44,100. The audio files for the experiments can 

be downloaded via weblink (sharontan6217/asd (github.
com)).

In the experiment, the training dataset includes unlabeled 
normal and anomalous datasets, in which 190 files are ran-
domly selected from 228 normal audio files and 20 files 
from 120 abnormal data files, 50 consecutive times. The 
test dataset includes 20 unlabeled abnormal audio files. Ten 
acoustic features, e.g., frequency and amplitude, from the 
audio files are extracted as the components for clustering.

Benchmark System and Results

The benchmark performance of a deep convolutional neu-
ral network (DCGAN) is adopted for the experiment. The 
DCGAN is a deep convolutional neural network architecture 
composed of a pair of adversarial models called the gen-
erator and the discriminator [23, 24]. The generator creates 
a noise vector as the fake input of the discriminator. The 
discriminator segments the real and fake data distributions 
with certain policies. The details of the parameters are listed 
in Table 1.

Table 2 Experimental Results of the DCGAN shows 
the results of the benchmark experiments. The benchmark 

Fig. 1  Three scenarios of DBSCAN: core, border and noise points

Table 1  Parameters of the DCGAN

Hyperparameter Setting

Optimizer Admax of discrimi-
nator (lr = 1e−5, 
beta1 = 0.5),

Admax of gen-
erator (lr = 1e−5, 
beta1 = 0.5),

Admax of com-
piled (lr = 2e−5, 
beta1 = 0.5)

Dropout rate 0.1
Batch normalization Momentum = 0.8
Leaky ReLU Alpha = 0.2
Batch size 16
Noise initializer Random uniform (−1,1)
Loss Mean squared error
Monitor Mean absolute error
Epoch 1200
GPU units 2
GPU cores 8

Table 2  Experimental results of the DCGAN

AUC PAUC F1 Score MSE Spearman rank 
correlation coef-
ficient

Average 
execution time

0.77 0.69 0.59 0.48 0.47 90 min
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algorithm of the DCGAN achieves an accuracy of 0.7. How-
ever, the average execution time of the DCGAN is 90 min 
with 2 GPU units. The computational cost of DCGANs 
is relatively high compared with that of machine learning 
algorithms.

Training Process

The architecture of the algorithm is to extract acoustic fea-
tures from audio files collected in a real manufacturing envi-
ronment. After the MinMax scaling, the normalized acoustic 
feature data are loaded into the layer of optimizations to cal-
culate the parameters to construct the incremental principal 

analysis for dimension reduction and the DBSCAN cluster-
ing algorithm to detect the anomalous sound file (see Fig. 2).

During training, when optimizing the parameters via 
the AEC-guided genetic algorithm, the ranges for defin-
ing each parameter are based on the number of generations 
and the EPS and MinPS calculated via the AEC algorithm. 
The genetic algorithm selects the optimized parameters 
for which the compiled loss measure is less than the pre-
set target value. Only the parameters selected by the guided 
genetic algorithm in the training are loaded to construct the 
dimension-reduction layer and the clustering algorithm to 
predict anomalous sound using the test dataset. 

Algorithm  AEC-guided genetic algorithm with IPCA-based DBSCAN

Input: Audio dataset; Training and testing, testing.
Output: ASD results with forecast and AUC, PAUC, F1 Score, MSE, Hamming 
Distance, Jaccard Score, Spearman Rank Correlation Coefficient
1. Dataset = Audio dataset 
2. Train = Train AEC-Guided Genetic Algorithm ("GA"), Incremental Principal Com-

ponent Analysis ("IPCA"), Density-based Spatial Clustering of Applications with 
Noise ("DBSCAN"). 

3. analyzeAlgorithm (Genetic Algorithm). 
4. TrainingOption: 

 crossover_prob = 0.6 
 mutation_power = 0.4 
 targetMSE=0.2 
 num_generations = 100

5. Load Audio Training Dataset and Test Dataset. 
6. Extract Acoustic Features: Amplitude, Frequency, Autocorrelation, Zero crossing, 

RMSE, Pitch, Spectral Centroid, Spectral roll-off, Onset Envelop, Tempogram. 
7. Calculate EPS and MinPts with the AES algorithm. 
8. Set up ranges of the parameters for the optimization by Genetic Algorithm based 

on the calculated values in step 8. 
9. Train Load Dataset: 

 With the training dataset, calculate forecasted labels with IPCA-based 
DBSCAN, and Mean Squared Error ("MSE") between actual and predicted labels. 
 The parameters to be optimized (original inputs), the actual labels, the predicted 
labels, and the MSE construct the chromosome for the GA to process. 
 GA selects the chromosome only when the gene of MSE is less than the target 
rate for the scaled datasets. 
 The selected chromosomes continue for crossover and mutation to generate the 
new one. 
 The newly generated outputs are the optimized parameters for the test dataset. 

10. Test Trained models/* using TestingData */. 
11. Return TestResults = Labels of test datasets, validation matrix including AUC, 

PAUC, F1 Score, MSE, Hamming Distance, Jaccard Score, Spearman Rank Cor-
relation Coefficient. 
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Results and Analysis

Table 3 shows a summary of the test results. According 
to Table 3, the performances of the AEC-guided GA and 
IPCA + DBSCAN are acceptable, with an average fitness of 
0.843 and an average MSE of 0.16. The average execution time 
is less than 0.5 min for a total data size of 202,860,000 (train-
ing dataset: 185,220,000, test dataset: 17,640,000).

Figure 3 shows a sample of the prediction performance of 
the normal audio data changing to anomalous audio data. The 
normal class is set as “0”, and the anomalous class is set as 
“1”. The red line is the predicted clustering class, and the blue 
line is the actual class. The results show that the AEC-guided 
GA and IPCA-based DBSCAN models predict the turning 
point with high accuracy, and the AUC is 0.95.

Figure 4 shows the IPCA-based DBSCAN clustering results 
for a sample. With the optimized parameters, the normal and 
anomalous sound data are clearly clustered into two groups.

Table 4 shows the AUC, NMI, and F1 measure comparisons 
among 6 unsupervised and semisupervised machine learning 
or deep learning algorithms: K-means++, one-class SVM, 
agglomerative clustering, DCGAN, DCNN-Autoencoder, and 
AEC-Guided GA and IPCA + DBSCAN.

The experimental results show that both the AEC-guided 
genetic algorithm and IPCA-based DBSCAN for the extracted 
acoustic features and the DCNN-autoencoder for the audio 
data show the highest accuracy, with average AUCs of 0.843 
and 0.8188, respectively. However, for the stability measures, 
the AEC-guided GA and IPCA-based DBSCAN of extracted 
acoustic features show the highest stability among all six semi-
supervised or unsupervised algorithms [25], with the lowest 
Hamming loss of 0.16 and the highest Spearman rank correla-
tion coefficient of 0.72.

Figure 5 shows the ROC curves of the six semisupervised 
and unsupervised machine learning algorithms. From the 
graph, it can be observed that the extracted acoustic features 
of the AEC-guided GA and IPCA-based DBSCAN algorithms 
reach the highest AUC value of 0.95, while the DCNN-AE 
and DCGAN algorithms achieve lower AUCs of 0.84 and 
0.719864, respectively. The performances of agglomera-
tive cluster and k-means++are the worst, at 0.65 and 0.60, 
respectively.

Noise Tolerance Test

Another series of experiments is conducted to test the maxi-
mum noise tolerance of the AEC-guided genetic algorithm and 

Fig. 2  Using self-adaptive 
IPCA-based DBSCAN to detect 
anomalous sound data

Table 3  Summary of performance evaluation

Number of test cases AUC PAUC MSE Spearman rank correlation coefficient Average execution time

50 0.84 0.58 0.16 0.72 0.5 min
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Fig. 3  ROC curves of IPCA-based DBSCAN algorithms

Fig. 4  Clustering of IPCA-based DBSCAN algorithms

Table 4  AUC Comparison 
between unsupervised and 
semisupervised Ml algorithms

Machine learning AUC F1 score MSE Hamming 
distance

Spearman rank cor-
relation coefficient

K-means++ 0.54 0.54 0.47 0.47 0.071
One-class SVM 0.73 0.73 0.27 0.27 0.55
Aggregate clustering 0.58 0.58 0.42 0.42 0.13
DCGAN 0.77 0.6 0.41 0.41 0.47
DCNN-autoencoder 0.82 0.5 0.42 0.5 0.55
AEC-guided GA and 

IPCA + DBSCAN
0.84 0.84 0.16 0.16 0.72
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IPCA-based DBSCAN. Based on the experimental results, the 
performance of the algorithm is impacted when the SNR is 
13.0103 (SNR = 10*log10(1/0.05)), in which 0.05 is the noise 
significant factor [26]. This is because DBSCAN is unable to 
detect and filter noise outliers instead of the continuous noise 
pattern added to the clean audio sample. This is the disadvan-
tage observed when it is applied to lab experiments.

Comparison of the Hardcoded Architecture 
and Parameterized Architecture

In the experiments to compare the hardcoded architec-
ture and the parameterized architecture, it is observed 
that the parameterized architecture requires less execution 
time and achieves high accuracy. In this experiment, the 
hardcoded architecture is set to an EPS of 0.07, and the 
MinPts is set to 2. The experimental results of 50 random 

test cases shown in Table 5 indicate that although the 
AUC of the hardcoded architecture is 0.82, the stability 
indicators, including the Jaccard score and Spearman rank 
correlation coefficient, are significantly lower than those 
of the parameterized architecture. Therefore, the perfor-
mance of the hardcoded architecture is not so satisfactory 
as that of the parameterized architecture.

Conclusions and Future Work

The hybrid algorithm to integrate the AEC-guided genetic algo-
rithm and IPCA with DBSCAN for anomaly sound detection 
seems to be a promising direction for ASD when handling dif-
ferent environmental issues and different types of audio files. 
Notably, when detecting rare events in multiple scenes (includ-
ing silence and background sounds), the proposed unsupervised 
algorithm did not perform as well as the machine sounds. This 
is possibly due to the quality of the collected sound because we 
used high-quality equipment to collect the machines’ sounds at 
the specific plant site. Future research will improve the noise 
tolerance of the algorithm for environments with mixed sounds.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42979- 024- 02844-y.

Fig. 5  ROC curves of the unsu-
pervised and semisupervised 
ML/DL algorithms

Table 5  Comparison between the hardcoded architecture and the 
parameterized architecture with 50 random test cases

Machine learning AUC PAUC F1 score MSE Jaccard score

Hardcoded architec-
ture

0.82 0.57 0.82 0.18 0.72

Automatic EPS 
calculation

0.84 0.58 0.84 0.16 0.76

https://doi.org/10.1007/s42979-024-02844-y
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