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Abstract
Liver cancer is one of the dominant causes of cancer death worldwide. Computed Tomography (CT) is the commonly 
used imaging modality for diagnosing it. Computer-based liver cancer diagnosis systems can assist radiologists in image 
interpretation and improve diagnosis speed and accuracy. Since liver segmentation is crucial to such systems, researchers 
are relentlessly pursuing various segmentation approaches. A clinically viable computer-aided system requires examining 
multiphase CT images. However, most of the research focuses only on the portal venous phase. In this work, we developed 
an automatic and efficient Deep Learning (DL) method using SegNet, atrous spatial pyramid pooling module and leaky 
ReLU layers for liver segmentation from quadriphasic abdominal CT volumes. The proposed method was validated on 
two datasets, an internal institutional dataset consisting of multiphase CT and a public dataset of portal venous phase CT 
volumes. The Dice Coefficients (DC) obtained were greater than 96% for the latter dataset and the portal venous phase of the 
former. For arterial, delayed and plain CT phases of the former dataset, the DC achieved were 94.61%, 95.01% and 93.23%, 
respectively. Experiments showed that our model performed better than the other state-of-the-art DL models. Ablation studies 
have revealed that the proposed model leverages the strengths of all the three components that make it up. The promising 
performance of the proposed method suggests that it is appropriate for incorporation in hepatic cancer diagnosis systems.

Keywords Liver segmentation · SegNet · Computed tomography · Liver cancer · Computer-aided diagnosis · Atrous spatial 
pyramid pooling

Introduction

Liver cancer is one of the most lethal cancers in the world. It 
was the third major cause of cancer mortality (approximately 
830,000 deaths) in 2020 [1]. Computed Tomography (CT) 
is the most frequently used imaging technique for identi-
fying hepatic cancer. Various Computer Aided Diagnosis 
 (CADx) solutions have been investigated to aid radiologists 

in decision-making and increase diagnosis efficiency. Liver 
segmentation is the first and most critical stage of a  CADx 
system and is therefore decisive in determining the success 
of a diagnosis. However, liver delineation is difficult due to: 
(i) ambiguous boundaries with adjacent structures, (ii) large 
shape variability, (iii) the presence of organs with similar 
intensity in the vicinity, (iv) intensity variations and noise in 
the liver due to image acquisition and injection protocols [2] 
and (iv) division of liver into right and left lobes.

Liver segmentation has been the subject of extensive 
research for over two decades. The earlier studies explored 
traditional segmentation methods, primarily level set, Fuzzy 
C-Means (FCM) and region growing. Xu et al. [3] presented 
a semiautomatic approach in which region growing was uti-
lized for initial liver delineation and level set method for 
final refinement. Wang et al. [4] suggested a shape–intensity 
prior level set method using probabilistic atlas and prob-
ability map constraints. Eapen et al. [5] delineated the liver 
using a Bayesian probabilistic level set framework. The 
different swarm optimization techniques were explored in 
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[6–8]. Most of these methods required user intervention and 
were not very robust.

In recent years, the application of Deep Learning (DL) 
approaches for segmentation has risen rapidly. Liu et al. [9]. 
delineated the liver using UNet and dense feature selection. 
Jeong et  al. [10] incorporated long short-term memory 
network and attention mechanism into UNet. Sun et al. 
[11]. proposed a UNet based architecture for overcoming the 
pitfalls in the skip connections and self attention mechanism 
for liver segmentation. In [12] a 3D version of UNet was 
developed by incorporating residual connections. Chung 
et al. [13] presented a Convolutional Neural Network (CNN) 
by combining auto-context and self-supervised sparse 
contour attention mechanisms. Ahmad et al. [14]. employed 
a deep belief network for initial liver delineation and Chan-
Vese active contour method for final refinement. Senthilvelan 
et al. [15] developed a cascaded CNN model consisting 
of V-Net for initial liver segmentation and H-DenseUNet 
for final refinement. Araújo et al. [16] cascaded multiple 
UNets for segmenting simple and complex cases. However, 
the computational cost was high. Fan et al. [17] presented 
a variant of UNet, in which the skip connections were 
modified to extract better features. They also introduced 
special modules to fuse high- and low-level features and 
to capture multiscale details. Xie et  al. [18] combined 
dynamic adaptive pooling, residual modules and UNet to 
segment liver from CT data. Ahmad et al. [19]. developed 
an efficient CNN initialized randomly with Gaussian weights 
for liver segmentation. Wei et al. [20] integrated generative 
adversarial network into mask region-based CNN to enhance 
liver segmentation results. Wang et  al. [21] combined 
EfficientNetB4, attention gate and residual learning for liver 
delineation. Wu et al. [22] presented a DL model based on 
UNet by including pyramidal convolution and attention 
mechanisms. These works were automatic but only focused 
on extracting liver from the Portal Venous (PV) phase.

In clinical practice, generally, plain and contrast-enhanced 
CT images consisting of arterial, PV and delayed phase 
images are analyzed for tumor identification. Radiologists 
observe the enhancement patterns (generated by the contrast 
agent) in and around the tumor to diagnose them. Majority of 
the research on liver segmentation is centered on segmenting 
the liver solely from the PV phase. Very few authors have 
worked on multiple CT phases. For instance, Xu et al. [23] 
employed a network derived from UNet to segment liver 
from the triphasic CT data. The approach used by Rusko 
et al. [24] was based on region growing algorithm. They 
incorporated various pre and post processing operations 
using anatomical and multiphase information, to reduce 
over and under segmentation of liver. These studies required 
image registration, which is very time consuming.

A liver segmentation method feasible for a  CADx system 
must be automatic, accurate, robust and computationally 

efficient; being effective for multiple CT phases would 
further add value to the method. This paper aims to 
accomplish such a method. We have developed a DL model 
from SegNet using two key components: Atrous Spatial 
Pyramid Pooling (ASPP) module and leaky Rectified Linear 
Unit (ReLU) layers. The ASPP module captured multiscale 
features without reducing the feature map resolution and the 
leaky ReLU layers improved the model’s generalizability. 
Performance evaluation on a public dataset with challenging 
cases and our institutional dataset (consisting of multiphase 
CT volumes) yielded satisfactory results. Ablation studies 
justified the significance of the model components. 
Comparison with the state-of-the-art techniques indicated 
that our model was comparatively superior.

The rest of the paper is structured into the following 
sections: Section  "Materials and methods":  elaborates 
on the datasets employed and the proposed method. 
Section "Experimental results": presents the quantitative 
and qualitative results, and Section "Discussion": discusses 
the results obtained. Finally, Section "Conclusion",  outlines 
the contributions and presents the future work.

Materials and Methods

Dataset Details

The training\validation and test datasets were prepared 
primarily from different databases. Hence, we have presented 
the details of the datasets in two separate subsections.

Training and Validation We collected 4994 diverse CT 
images from three databases (two public and one internal), 
namely, 3D-IRCADb [25], LiTS [26] and Kasturba Medical 
College (KMC), Manipal. They comprised liver of different 
shapes and intensity distributions, with/without tumor and 
abdominal images of lung, heart, intestine etc. that did 
not have liver. This data was then split into training and 
validation sets, such that over 78% of the total CT images 
was used for training and the remaining for validation. 
Thus, the training and validation datasets comprised 3930 
and 1064 CT images, respectively. The data splitting was 
done manually so that the training and validation datasets 
contained difficult cases equally. We ensured that both the 
datasets have similar diversity and that there is no overflow 
of only certain type of images in either of the two datasets. 
This was important because only the training images are 
used by the model for learning features. If the training set 
would not have images of all the types mentioned above, 
it would be unable to learn relevant features required for 
identification of liver from the challenging images. The 
validation accuracies for two split ratios 78:22 and 90:10 
was compared, and it was found that the former ratio gave 
slightly better results, hence it was considered in the work.
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The number of cases and CT images considered from 
each of the databases, along with other relevant attributes, 
are detailed in Table 1. The images in the public datasets 
had a fixed resolution of 512 × 512, whereas the images in 
the KMC, Manipal dataset had differing resolutions. The 
3D-IRCADb and KMC, Manipal datasets are in Digital 
Imaging and Communications in Medicine (DICOM) 
format, whereas the LiTS dataset is in Neuroimaging 
Informatics Technology Initiative (NIFTI) format. Only 
PV images were considered from the former two databases, 
whereas multiphase images were taken from the latter 
database. Since the training images were selected from 
different databases, reasonable diversity was introduced in 
the training data.

Test set Two datasets were used to test the proposed 
model: an internal institutional dataset (KMC, Manipal) and 
CHAOS, a public dataset [27]. The KMC, Manipal dataset 
consists of ten CT volumes, out of which six CT volumes 
have all four phases (plain, arterial, PV and delayed) and the 
remaining have three CT phases (plain, arterial, PV). This 
can be seen in Table 4. The dataset has cases with different 

abnormalities, viz. metastasis, cysts and hepatocellular 
carcinoma.

The CHAOS dataset comprised twenty CT training 
datasets (labeled 1, 2, 5, 6, 8, 10, 14, 16, 18, 19, 21, 22, 
23, 24, 25, 26, 27, 28, 29, 30 in the database) acquired 
at PV phase. We chose this dataset for evaluation, firstly 
because it had CT images in DICOM format which is the 
standard format for medical images. Secondly, the images 
were acquired using three different scanners namely, Philips 
SecuraCT with 16 detectors, Philips Mx8000 CT with 64 
detectors and Toshiba AquilionOne with 320 detectors. 
Hence, the robustness of the model could be assessed. 
Thirdly, because the dataset had challenging cases, as will be 
discussed in the next sections. It is to be noted that none of 
the test set images were part of the training set. An overview 
of the test datasets is provided in Table 2.

The ground truths for the training, validation and test 
data required for the KMC dataset were generated using the 
ITK-SNAP tool [28] under the guidance of an experienced 
radiologist (co-author) with over twenty years of expertise 
in medical imaging. The ground truths for the three external 

Table 1  Details of training and validation sets

Dataset specifications Training set Validation set

3D-IRCADb-01 LiTS KMC, Manipal 3D-IRCADb-02 LiTS KMC, Manipal

No. of 3D CT volumes (cases) 20 45 39 2 30 11
No. of images 2242 1502 186 195 651 218
Image resolution 512 × 512 512 × 512 From 464 × 358 to 

955 × 873
512 × 512 512 × 512 From 

412 × 412 to 
664 × 510

x–y spacing (in mm)
[minimum–maximum]

[0.56–0.87] [0.60–1] [0.48–1.13] 0.961 [0.56–1] [0.68–0.92]

Slice thickness (in mm)
[minimum–maximum]

[1.00–4.00] [0.7–5] 5 [1.8–2.4] [0.7–5] [5–5.02]

Image file format DICOM NIFTI DICOM DICOM NIFTI DICOM
Imaging systems –– –– Philips –– –– Philips

Table 2  Details of test datasets

Dataset specifications CHAOS KMC, Manipal

Plain Arterial Portal venous Delayed

No. of 3D CT volumes 20 10
Image resolution 512 × 512 367 × 369 to 666 × 512 340 × 370 to 666 × 512 348 × 348 to 666 × 512 332 × 332 to 664 × 510
Slices in the volumes
[minimum–maximum]

[77–105] [78–106] [83–101] [85–105] [41–51]

x/y voxel spacing (in 
mm)

[minimum–maximum]

[0.7–0.8] [0.69–1.18] [0.68–1.15] [0.68–1.15] [0.69–0.98]

Slice thickness (in mm)
[minimum–maximum]

[3–3.2] [5–5.03] [5–5.02] [5–5.02] 5

Imaging systems Philips and Toshiba Philips
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datasets are available publicly in the database. The KMC 
dataset will be hereafter referred to as institutional dataset.

Preprocessing

The following operations were performed on the training/
validation datasets before training: (i) the pixel intensities 
are first converted to Hounsfield units using a linear trans-
formation described in the DICOM documentation, (ii) 
the images are converted to unsigned 8-bit integer format 
(Fig. 1b), (iii) the background pixels in the upper region 
of the image are removed through cropping to reduce the 
unwanted areas and magnify the abdominal region, (iv) the 
images are resampled to the dimension 384 × 384 × 3 pix-
els to satisfy the RGB input requirement of the DL model 
(Fig. 1c). The image dimension was chosen as a tradeoff 
between image quality and training time. Training images 
of higher dimensions gave better results at the cost of higher 
training time; and lower dimension images reduced the train-
ing time, however, produced inferior results. The preproc-
essed training and validation images were saved in. mat for-
mat. For the test sets all the preprocessing operations except 
step (iii) were performed. It is to be noted that all the above 
mentioned preprocessing steps were automated.

During training, augmentation techniques like scaling 
and translation were applied on the training and validation 
datasets on-the-fly. Hence only the diversity in the data 
was increased and the dataset size remained the same. 
The scaling factor was randomly selected from the range 
60–100% (horizontally) and 40–100% (vertically). For 
translation, the value was randomly chosen between 
[– 25,25] pixels (horizontally) and [– 5,5] pixels (vertically). 
The ranges chosen ensured that the abdominal region 
remained sufficiently intact in the image, post augmentation.

Proposed Framework

The proposed SegNet based framework for liver segmenta-
tion consists of three parts: an encoder, an ASPP module 
and a decoder (Fig. 2). The model has four encoder-decoder 
pairs, consisting of convolution (conv.), Batch Normalization 
(BN) and leaky ReLU layers. The max unpooling layer at the 
decoder performs non-linear upsampling of the input feature 
maps using pooling indices derived at the corresponding 
encoder's max-pooling layer. The encoder layers are initial-
ized with weights from the VGG-16 network [29] trained on 
the ImageNet database. The kernel size for the convolutional 
and max pooling layers are 3 × 3 and 2 × 2, respectively; the 
stride considered are 1 and 2, respectively, for the two layers. 

Fig. 1  Overview of the preprocessing steps. a Raw CT axial slice b CT slice in unsigned 8-bit integer format after rescaling c CT slice after 
cropping and resizing
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Cross entropy was the loss function employed during train-
ing. Table 3 gives the details of the model architecture.

To overcome the dying ReLU problem sometimes 
encountered in the ReLU layers, we employed the leaky 
ReLU layers [30] in the encoder and decoder blocks. A leaky 
ReLU is an activation function that multiplies any input less 
than zero by a fixed scalar. It is mathematically defined as 
follows,

where x is the input value and scale is the scalar, chosen as 
0.01 in this work.

The ASPP module performs four convolutions in paral-
lel, one with 1 × 1 filter and the remaining are atrous con-
volutions (with dilation rates of 6, 12, 18) with 3 × 3 filters 
(Fig. 2b). Each of these layers is followed by BN and ReLU 

(1)f (x) =

{

scale ∗ x, x < 0

x, x ≥ 0

Fig. 2  Proposed framework. a Liver segmentation module consisting of four encoder-decoder blocks and ASPP module. b Detailed structure of 
the ASPP module
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layers; finally, a concatenation layer fuses the four outputs. 
The multiple receptive fields incorporated in the ASPP mod-
ule aid in visualizing the abdominal CT image from different 
scales [31]. Unlike SegNet, which further downsamples the 
feature map (to dimension 12 × 12), resulting in information 
loss, the proposed model retrieves useful multiscale con-
text information from the input feature map (of resolution 
24 × 24 pixels) after the fourth encoder (shown in Table 3).

By increasing the receptive field of the convolution 
filters more context information can be extracted that can 
aid in identifying the liver region more precisely. Different 
receptive fields enable the model to learn different features 
pertaining to the region of interest, like neighboring 
structures, location and size with respect to other organs and 
many inherent patterns that are beyond human perception. 
However, increasing the receptive field makes the model 
more complex in terms of learnable parameters (weights 
and biases); thus, increasing the network complexity and 
training time. These are two very crucial factors for training 
DL models and hence should be used judiciously. A solution 
to this issue is to use multiple atrous convolutions instead 
of standard convolutions. Atrous convolutions with dilation 
rates of 6,12 and 18 for a 3 × 3 kernel expands the receptive 
field to 13 × 13, 25 × 25 and 37 × 37, respectively. Hence, 
the same pixel can be viewed with respect to 168, 624 and 
1368 surrounding pixels, thus extracting more information 
without increasing the learnable parameters. The ASPP 
module was incorporated to improve the liver segmentation 
accuracy without increasing the learnable parameters.

Evaluation Metrics

Five standard metrics namely, Dice Coefficient (DC), 
Jaccard Index (JI), Matthews’s Correlation Coefficient 
(MCC), Absolute Volume Difference (AVD) and Average 
symmetric Surface Distance (ASD) evaluated the 
segmentation accuracy. DC and JI compute the percentage 
of overlap between the segmented and ground truth volumes 
[32]; MCC measures the quality of a binary classification. 
It is appropriate even when the pixels in the two classes 
are unbalanced [33]. AVD computes the absolute difference 

Table 3  Detailed architecture of the proposed model

Components Layers Feature map size

Input 384 × 384 × 3
Encoder1 E_Conv11 +  E_BN11 + E_Leaky 

 ReLU11

384 × 384 × 64

E_Conv12 +  E_BN12 + E_Leaky 
 ReLU12

384 × 384 × 64

Max  Pooling1 192 × 192 × 64
Encoder 2 E_Conv21 +  E_BN21 + E_Leaky 

 ReLU21

192 × 192 × 128

E_Conv22 +  E_BN22 + E_Leaky 
 ReLU12

192 × 192 × 128

Max  Pooling2 96 × 96 × 128
Encoder 3 E_Conv31 +  E_BN31 + E_Leaky 

 ReLU31

96 × 96 × 256

E_Conv32 +  E_BN32 + E_Leaky 
 ReLU32

96 × 96 × 256

E_Conv33 +  E_BN33 + E_Leaky 
 ReLU33

96 × 96 × 256

Max  Pooling3 48 × 48 × 256
Encoder 4 E_Conv41 +  E_BN41 + E_Leaky 

 ReLU41

48 × 48 × 512

E_Conv42 +  E_BN42 + E_Leaky 
 ReLU42

48 × 48 × 512

E_Conv43 +  E_BN43 + E_Leaky 
 ReLU43

48 × 48 × 512

Max  Pooling4 24 × 24 × 512
ASPP block Conva

 + 
BNa
 + 
ReLUa

Convb
 + 
BNb
 + 
ReLUb

Convc
 + 
BNc
 + 
ReLUc

Convd
 + 
BNd
 + 
ReLUd

24 × 24 × 128

Concatenation 24 × 24 × 512
Decoder 4 Max  Unpooling4 48 × 48 × 512

D_Conv43 +  D_BN43 + D_Leaky 
 ReLU43

48 × 48 × 512

D_Conv42 +  D_BN42 + D_Leaky 
 ReLU42

48 × 48 × 512

D_Conv41 +  D_BN41 + D_Leaky 
 ReLU41

48 × 48 × 256

Decoder 3 Max  Unpooling3 96 × 96 × 256
D_Conv33 +  D_BN33 + D_Leaky 

 ReLU33

96 × 96 × 256

D_Conv32 +  D_BN32 + D_Leaky 
 ReLU32

96 × 96 × 256

D_Conv31 +  D_BN31 + D_Leaky 
 ReLU31

96 × 96 × 128

Decoder 2 Max  Unpooling2 192 × 192 × 128
D_Conv22 +  D_BN22 + D_Leaky 

 ReLU22

192 × 192 × 128

D_Conv21 +  D_BN21 + D_Leaky 
 ReLU21

192 × 192 × 64

Table 3  (continued)

Components Layers Feature map size

Decoder 1 Max  Unpooling1 384 × 384 × 64

D_Conv12 +  D_BN12 + D_Leaky 
 ReLU12

384 × 384 × 64

D_Conv11 +  D_BN11 + D_Leaky 
 ReLU11

384 × 384 × 2

SOFTMAX 384 × 384 × 2
Pixel Classification layer 384 × 384 × 2
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between the segmented and ground truth volumes and ASD 
gives the average distance between the surfaces of the two 
volumes in mm. Higher values indicate better performance 
for DC, JI and MCC; the opposite is true for AVD and ASD.

Experimental Results

The programs were implemented in MATLAB R2021a 
and the DL models were trained on a server with NVIDIA 
T4 GPU with 16 GB memory. The trained models were 
evaluated with the test sets on a laptop with Intel Core 
i7-10750H processor, 16 GB RAM (DDR4) and Windows 
10 operating system.

Parameter Setting

The model was trained with Stochastic Gradient Descent 
with Momentum (SGDM) optimizer with momentum and 
minibatch size of 0.7 and 2, respectively. The initial learn-
ing rate was 0.1. It was lowered by a factor of 0.1 every 50 
epochs. The proposed model was trained for eight different 
epochs viz. 50, 54, 58, 60, 90, 110, 130 and 150 to find the 
optimal epoch. The DC for the PV phase of the Institutional 
dataset was computed (Fig. 3). These results were analyzed 
and since the 150th epoch gave the highest DC, we finalized 
our epoch as 150.

Liver Segmentation Results

Tables 4 and 5 show the liver segmentation results for the 
two test sets. From Table 4, we can see that the best DC 
achieved was 97.01% (PV phase) and the poorest DC was 
87.3% (plain phase). The average DC values obtained for the 
four CT phases are 96.12% (PV), 94.61% (arterial), 95.01% 

(delayed) and 93.23% (plain). For the CHAOS dataset, DC 
greater than 97% was achieved for majority of the cases. The 
average DC accomplished was 96.69%.

The liver segmentation results for some of the cases are 
illustrated in Figs. 4 and 5 for the two datasets. The first row 
of Fig. 4 shows a case that is grainy, the liver has an unusual 
shape and a large peripheral tumor. Although the contrast 
between the liver and adjacent structures like rib muscles is 
lower in the arterial and plain CT phases, the liver is seg-
mented well. The second row shows a case where most part 
of the liver contains a heterogenous tumor and the contrast 
between the liver and heart is very low in all the phases 
except arterial. In both cases, the liver is segmented quite 
accurately in all phases. Slight discrepancies in the contour-
ing of liver boundary and Inferior Vena Cava (IVC) mainly 
created differences in the ground truths and predicted masks 
in Figs. 4 and 5.

The training and validation accuracy and loss curves 
for the proposed model are shown in Fig. 6. The valida-
tion curves exhibited large fluctuations until the fifty-second 
epoch, after which the variations were reduced.

Ablation Study

An ablation study was conducted to validate the necessity 
of the different components of the proposed model. Three 
DL models were studied: Model 1 (Original SegNet with 
five encoder-decoder pairs), Model 2 (SegNet with four 
encoder-decoder pairs), Model 3 (Model 2 with ASPP 
block inserted between encoder 4 and decoder 4). Tables 6 
and 7 summarize the results obtained for the institutional 
and CHAOS datasets, respectively. Table 8 illustrates the 
network complexity for the different models.

Fig. 3  Dice coefficient for por-
tal venous phase of institutional 
dataset
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Comparison with Model 1 It can be observed from 
Table 6 that the proposed model has outperformed the 
original SegNet (model 1) for all the CT phases and all 
the metrics, barring AVD for arterial phase and ASD for 
plain phase (institutional test set). Table 7 shows that for 
the CHAOS dataset, the proposed model has performed 
better for all metrics. Table 8 infers that the proposed 
model is also superior with respect to number of learn-
able parameters and training time by approximately 42% 
and 5 h, respectively. These results show that replacing 
the fifth encoder-decoder pair in the original SegNet 
with ASPP block and employing leaky ReLU layers, 
have improved the liver segmentation accuracy; and also 
reduced the network parameters and training time. Hence, 
we can say that the proposed model is superior to SegNet 
(model 1).

Comparison with Model 2 In order to examine the 
usefulness of the fifth encoder-decoder block in model 1, 
we removed the same and developed model 2. The number 
of learnable parameters and the training time were reduced 
considerably (Table 8). However, the segmentation results 
in the tables clearly show that model 1 is better than model 2 
for most of the phases. Thus, the fifth encoder-decoder block 
is critical for the SegNet.

Compared to the proposed model, model 2 required 
1.9 million lesser learnable parameters. However, the 
proposed model gave better segmentation results. For the 
PV, arterial, delayed and plain CT phases of the institutional 
test set the increase in DC was by 1.45%, 3.05%, 0.5% and 

Table 4  Quantitative results for 
internal institutional dataset

CT phase Metrics 1 2 3 4 5 6 7 8 9 10 AVG

Portal venous DC 95.39 96.76 94.57 97.01 95.51 96.83 95.48 96.28 96.41 96.95 96.12
JI 91.18 93.73 89.70 94.19 91.41 93.86 91.36 92.82 93.06 94.09 92.54
MCC 95.32 96.73 94.58 96.96 95.41 96.75 95.40 96.20 96.35 96.90 96.06
AVD 1.64 2.41 8.89 0.49 0.16 1.23 2.38 1.80 0.18 0.60 1.98
ASD 1.11 1.86 2.37 0.21 0.32 1.20 2.19 1.21 2.25 0.34 1.31

Arterial DC 94.58 95.78 92.78 95.19 94.91 96.66 89.75 95.82 94.83 95.78 94.61
JI 89.72 91.90 86.54 90.82 90.32 93.53 81.41 91.97 90.17 91.90 89.83
MCC 94.52 95.72 92.86 95.12 94.82 96.58 89.62 95.75 94.76 95.73 94.55
AVD 2.85 0.93 12.24 1.67 0.66 1.13 4.18 4.52 2.14 2.23 3.25
ASD 3.38 5.16 2.33 0.44 0.35 0.92 6.88 1.23 1.76 0.33 2.28

Delayed DC – – 93.55 – 95.31 – 94.54 96.23 95.07 95.36 95.01
JI – – 87.88 – 91.04 – 89.64 92.74 90.61 91.14 90.51
MCC – – 93.42 – 95.07 – 94.24 96.07 94.92 95.30 94.84
AVD – – 10.80 – 0.06 – 0.71 2.89 0.69 0.04 2.53
ASD – – 0.78 – 0.54 – 1.35 0.42 0.58 0.6 0.71

Plain DC 93.49 95.60 87.30 93.08 93.47 94.49 89.58 95.23 94.03 96.01 93.23
JI 87.78 91.57 77.46 87.06 87.73 89.56 81.13 90.90 88.73 92.34 87.43
MCC 93.41 95.53 87.73 92.98 93.35 94.35 89.57 95.15 93.94 95.96 93.20
AVD 3.29 0.84 19.78 2.66 0.16 2.85 10.95 3.24 1.71 2.36 4.78
ASD 10.07 1.2 7.33 0.74 0.60 5.72 4.70 2.52 3.69 0.42 3.70

Table 5  Quantitative results for CHAOS dataset

The average values are highlighted in bold

Dataset No DC JI MCC AVD ASD

1 97.15 94.45 96.90 2.49 0.89
2 97.22 94.58 97.06 1.82 0.81
5 97 94.17 96.74 3.78 1.06
6 96.02 92.35 95.55 1.91 1.1
8 95.51 91.4 95.24 2.41 1.34
10 97.18 94.52 96.97 2.92 0.86
14 93.4 87.62 92.84 2.87 1.81
16 97.16 94.49 96.94 1.38 0.97
18 96.52 93.28 96.28 6.38 1.1
19 95.41 91.22 95.04 5.88 1.65
21 97.77 95.63 97.66 1.93 0.96
22 97.34 94.81 97.16 0.19 0.76
23 97.74 95.58 97.61 2.56 0.74
24 97.83 95.76 97.70 1.81 0.61
25 95.6 91.58 95.31 0.98 1.83
26 97.51 95.14 97.35 3.24 0.86
27 97.59 95.29 97.44 0.30 0.73
28 96.90 93.99 96.67 0.01 4.43
29 96.29 92.85 96.14 4.41 0.86
30 96.63 93.48 96.48 0.07 0.95
AVG 96.69 93.61 96.45 2.37 1.22



SN Computer Science           (2024) 5:377  Page 9 of 18   377 

SN Computer Science

5.02%, respectively; the improvement in JI was by 2.46%, 
4.95%, 0.9% and 7.98% for the four phases. The ASD values 
were better for the proposed model by 7.27 mm, 8.49 mm, 
0.41 mm and 4.37 mm for the four phases in the same order. 
The improvement in MCC was by 1.4%, 2.9%, 0.52% and 
4.89%; and AVD was by 2.73%, 6.42%, 0.91% and 6.64%, 
respectively. For the CHAOS dataset, the improvement was 
by 0.46%, 0.78%, 0.47%, 0.86% and 1.26 mm for DC, JI, 
MCC, AVD and ASD, respectively. These results indicate 
that by removing the fifth encoder-decoder pair, although 

there is some reduction in the learnable parameters, there is 
deterioration in the outcomes of segmentation. Thus, a four 
encoder-decoder SegNet is not as effective as our proposed 
model for liver segmentation.

Comparison with Model 3 In an attempt to get high 
accuracy along with a reduced number of learnable 
parameters, we investigated model 3, in which an ASPP 
module was inserted after the fourth encoder block. Model 
3 outperformed model 2 in accuracy; however, it required 
3.5 h more for training. Compared to model 1, model 3 gave 

Fig. 4  Liver segmentation results for multiphase CT images. a Portal venous. b Arterial. c Delayed. d Plain (Ground truth: red, predicted: green) 
(Note: The images have been cropped for better visualization of the liver and the contours)
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better results barring ASD for arterial phase (Table 6). For 
the CHAOS dataset, model 1 gave better results than model 
3 for all metrics except ASD (Table 7). However, the latter 
model took 1.5 h less than the former for training.

The proposed model has performed better than model 
3 for all metrics except AVD for the PV phase. For the 
arterial phase, ASD was better by 1.15 mm (Table 6). For 

the CHAOS dataset, the proposed model has given better 
results for all metrics. In addition, although both the mod-
els had the same number of learnable parameters (17.1 M), 
the proposed model needed lesser training time. It is noted 
from Table 6 that model 3 performed slightly better than the 
proposed model for some of the phases in the institutional 
dataset. Nevertheless, the better results for the PV phase of 

Fig. 5  Liver segmentation results for CHAOS dataset. (a) Axial CT slice (b) Ground truth mask (c) Predicted liver mask (d) Contours marked on 
CT image (Ground truth: red, predicted: green)

Fig. 6  Learning curves of the proposed model a accuracy b loss
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the institutional dataset and the challenging CHAOS data-
set; and the lesser training time required make the proposed 
model superior to model 3.

The above results emphasize that replacing the fifth 
encoder-decoder pair with the ASPP block and incorporat-
ing leaky ReLU instead of ReLU layers has enhanced the 
performance of the original SegNet. The improvement is in 
terms of accuracy, computational complexity, training time 
and model generalizability.

Comparison with Other DL Models

A comparative analysis with other widely used semantic 
segmentation networks like UNet, DeepLab v3 + and SegNet 
was performed and the results are reported in Table 9, 10 and 
11. The proposed model outperformed all the DL models in 
all CT phases except for AVD in arterial phase and ASD in 
plain phase.

UNet gave the poor results for most CT phases (Table 9). 
The increase in DC for our model compared to UNet was by 

Table 6  Quantitative results of ablation study on the institutional test 
dataset

The best results are highlighted in bold

CT phase Metrics Model 1 Model 2 Model 3 Proposed

Portal venous DC 95.39 94.67 95.97 96.12
JI 91.22 90.08 92.25 92.54
MCC 95.33 94.66 95.90 96.06
AVD 2.65 4.71 1.72 1.98
ASD 2.75 8.58 2.46 1.31

Arterial DC 93.66 91.56 94.63 94.61
JI 88.25 84.88 89.84 89.83
MCC 93.59 91.65 94.56 94.55
AVD 3.10 9.67 3.05 3.25
ASD 2.77 10.77 3.43 2.28

Delayed DC 93.81 94.51 95.01 95.01
JI 88.38 89.61 90.51 90.51
MCC 93.61 94.32 94.83 94.84
AVD 4.88 3.44 2.50 2.53
ASD 1.04 1.12 0.63 0.71

Plain DC 92.43 88.21 93.30 93.23
JI 86.10 79.45 87.49 87.43
MCC 92.38 88.31 93.24 93.20
AVD 5.56 11.42 4.85 4.78
ASD 2.86 8.07 2.84 3.70

Table 7  Quantitative results of ablation study on the CHAOS dataset

The best results are highlighted in bold

Model DC JI MCC AVD ASD

Model 1 96.62 93.48 96.38 2.38 1.67
Model 2 96.23 92.83 95.98 3.23 2.48
Model 3 96.33 92.99 96.07 2.81 1.31
Proposed 96.69 93.61 96.45 2.37 1.22

Table 8  Comparison of network complexity

The best results are highlighted in bold
M million

DL model # learnable 
parameters

# layers Approximate 
training time (in 
hours)

Model 1 29.4 M 91 57
Model 2 15.2 M 71 52
Model 3 17.1 M 84 55.5
Proposed 17.1 M 84 52

Table 9  Comparison of other DL models on the internal test dataset

The best results are highlighted in bold

CT phase Metrics SegNet UNet DeepLab v3 + Proposed

Portal venous DC 95.39 94.52 95.42 96.12
JI 91.22 89.73 91.26 92.54
MCC 95.33 94.54 95.36 96.06
AVD 2.65 4.80 3.14 1.98
ASD 2.75 6.01 4.29 1.31

Arterial DC 93.66 92.53 94.05 94.61
JI 88.25 86.21 88.81 89.83
MCC 93.59 92.48 93.98 94.55
AVD 3.10 6.67 3.86 3.25
ASD 2.77 5.37 3.89 2.28

Delayed DC 93.81 93.41 94.35 95.01
JI 88.38 87.71 89.32 90.51
MCC 93.61 93.20 94.16 94.84
AVD 4.88 5.72 4.16 2.53
ASD 1.04 0.94 1.05 0.71

Plain DC 92.43 89.07 92.45 93.23
JI 86.10 80.56 86.08 87.43
MCC 92.38 88.94 92.43 93.20
AVD 5.56 13.58 6.96 4.78
ASD 2.86 2.97 2.80 3.70

Table 10  Comparison of other DL models on the CHAOS dataset

The best results are highlighted in bold

DL Model DC JI MCC AVD ASD

SegNet 96.62 93.48 96.38 2.38 1.67
UNet 96.19 92.72 95.90 3.07 1.52
DeepLab v3 + 93.22 89.66 93.44 6.23 1.99
Proposed 96.69 93.61 96.45 2.37 1.22
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1.6%, 2.08%, 1.6% and 4.16% for the PV, arterial, delayed 
and plain phases, respectively. The improvement in JI was 
by 2.81%, 3.62%, 2.8% and 6.87%; and MCC was better by 
1.53%, 2.06%, 1.64% and 4.26% for the four phases. The 
ASD metrics improved by 4.7 mm, 3.09 mm and 0.23 mm 
for PV, arterial and delayed phases. For the CHAOS data-
set, the proposed model was better by 0.5%, 0.89%, 0.55%, 
0.71% and 0.3 mm for DC, JI, MCC, AVD and ASD, respec-
tively (Table 10).

When compared to DeepLab v3 + , the DC of our model 
was better by 0.7%, 0.56%, 0.66% and 0.78% for PV, arterial, 
delayed and plain CT phases, respectively. The improvement 
in JI was by 1.28%, 1.02%, 1.19% and 1.35% for the four 
phases. The ASD metrics were better by 2.98 mm, 1.61 mm, 
0.34 mm for PV, arterial and delayed phases, respectively. 
For the CHAOS dataset, proposed model gave the best 
results and DeepLab v3 + gave the poorest results (Table 10). 
The improvement in DC, JI, MCC, AVD and ASD were by 
3.47%, 3.95%, 3.01%, 3.87% and 0.77 mm, respectively for 
the proposed model. The comparison of the proposed model 
with SegNet has already been discussed in the previous 
subsection.

From Table 11 it can be observed that the proposed 
model required the least number of learnable parameters 
(17,115,718 ~ 17.1 million). The learnable parameters 
constitute weights and biases from the convolutional layers; 
and offset and scale from the batch normalization layer. 
The other layers do not have any learnable parameters. 
The details of the parameters in these layers are given 
in Table  12. Compared to SegNet, UNet and DeepLab 
v3 + models, our proposed model requires approximately 
42%, 86% and 61% lesser learnable parameters. The 
minimum training time required was 48.5 h for UNet, our 
model required 3.5  h more; however our segmentation 
results were better. Compared to the remaining models, our 
model was superior in terms of learnable parameters and 
segmentation accuracy. Hence, we conclude that our model 
is the best considering all the aspects.

It was observed that all the DL models segmented the 
simple cases equally well. However, in the majority of the 
challenging cases, the proposed model outperformed the 

other models. The liver segmentation results for some of 
the unusual cases from the CHAOS dataset are presented 
in Fig. 7. Here, first column, shows the results for case 14, 
where the liver has varying intensity and nonuniform texture 
due to contrast injection. SegNet and UNet exhibited over 
and under segmentation; and DeepLab v3 + gave abysmal 
results for all the slices in the volume. However, apart from 
the inclusion of IVC, our model delineated the liver quite 
precisely. For case 6, the shape of liver is atypical and the 
boundary with spleen is vague. It is apparent from Fig. 7c 
(second column) that the proposed model has quite success-
fully segmented the liver compared to the other models. For 
cases 23 and 28, the other models incorrectly segmented 
parts of the spleen as liver, producing False Positives (FP). 
The proposed model has segmented only the liver regions, 
including both lobes for case 28. In case 25, an unusual liver 
shape is delineated best by the proposed model. The above 
analysis implies that our model is a clear improvement com-
pared to the well-known DL models.

Figure 8 shows the segmentation results obtained for 
healthy (third and fourth columns) and unhealthy liver (first 
and second columns). In the first and second columns the 
tumors are present near the border of the liver. The liver 
has however been segmented well in both cases. The third 
column shows liver with two lobes, that has been segmented 
accurately. The fourth column shows a healthy liver with 
heart and other structures with similar intensity in the vicin-
ity, also segmented precisely by the proposed model.

Discussion

The observations made based on our study are outlined in 
this section. It is seen that most of the literature on semantic 
segmentation of the liver has focused on UNet. SegNet 
based architectures are very rarely used. This trend may be 
because UNet was initially developed for medical image 
understanding and segmentation, whereas SegNet was 
primarily used for road scene segmentation. Our findings 
suggest that SegNet and the proposed SegNet-based model 
delineate the liver more accurately than UNet for all the CT 
phases.

The ablation studies have highlighted that integrating the 
ASPP scheme into the four encoder-decoder SegNet model 
improves the segmentation accuracy. Although the DeepLab 
v3 + network also uses the scheme, our investigations reveal 
that the proposed model is more efficient, effective and 
robust (Tables 9, 10 and 11). The proposed model requires 
61% fewer learnable parameters and comparatively lesser 
training time.

The ablation studies indicate that leaky ReLU layers 
in the encoder and decoder sections have made the model 
more robust. The liver segmentation results for case 14 

Table 11  Comparison of network complexity

The best results are highlighted in bold

DL model # parameters # layers Training 
time (in 
hours)

SegNet 29.4 M 91 57
UNet 124.3 M 70 48.5
DeepLab v3 + 43.9 M 206 65
Proposed 17.1 M 84 52
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Table 12  Layer wise details of the learnable parameters of the proposed model

Block Name Layer name Filter Stride Learnable parameters Learnable parameters

For convolutional layers For BN layer

Weights Bias Offset Scale

Encoder 1 E_Conv11 3 × 3, 64 1 3 × 3x3 × 64 1 × 1x64 – – 1792
E_BN11 – 1 × 1x64 1 × 1x64 128
E_Conv12 3 × 3, 64 1 3 × 3x64 × 64 1 × 1x64 – – 36,928
E_BN12 1 × 1x64 1 × 1x64 128

Encoder 2 E_Conv21 3 × 3, 128 1 3 × 3x64 × 128 1 × 1x128 – – 73,856
E_BN21 1 × 1x128 1 × 1x128 256
E_Conv22 3 × 3, 128 1 3 × 3x128 × 128 1 × 1x128 – – 147,584
E_BN22 – 1 × 1x128 1 × 1x128 256

Encoder 3 E_Conv31 3 × 3, 256 1 3 × 3x128 × 256 1 × 1x256 – – 295,168
E_BN31 – 1 × 1x256 1 × 1x256 512
E_Conv32 3 × 3, 256 1 3 × 3x256 × 256 1 × 1x256 – – 590,080
E_BN32 – 1 × 1x256 1 × 1x256 512
E_Conv33 3 × 3, 256 1 3 × 3x256 × 256 1 × 1x256 – – 590,080
E_BN33 – 1 × 1x256 1 × 1x256 512

Encoder 4 E_Conv41 3 × 3, 512 1 3 × 3x256 × 512 1 × 1x512 – – 1,180,160
E_BN41 – 1 × 1x512 1 × 1x512 1024
E_Conv42 3 × 3, 512 1 3 × 3x512 × 512 1 × 1x512 – – 2,359,808
E_BN42 – 1 × 1x512 1 × 1x512 1024
E_Conv43 3 × 3, 512 1 3 × 3x512 × 512 1 × 1x512 – – 2,359,808
E_BN43 – 1 × 1x512 1 × 1x512 1024

ASPP Conva 1 × 1, 128 1 1 × 1x512 × 128 1 × 1x128 – – 65,664
BNa – 1 × 1x128 1 × 1x128 256
Convb 3 × 3, 128,

dilation rate = 6
1 3 × 3x512 × 128 1 × 1x128 – – 589,952

BNb – 1 × 1x128 1 × 1x128 256
Convc 3 × 3, 128,

dilation rate = 12
1 3 × 3x512 × 128 1 × 1x128 – – 589,952

BNc – 1 × 1x128 1 × 1x128 256
Convd 3 × 3, 128,

dilation rate = 18
1 3 × 3x512 × 128 1 × 1x128 – – 589,952

BNd – 1 × 1x128 1 × 1x128 256
Decoder 4 D_Conv43 3 × 3, 512 1 3 × 3x512 × 512 1 × 1x512 – – 2,359,808

D_BN43 – 1 × 1x512 1 × 1x512 1024
D_Conv42 3 × 3, 512 1 3 × 3x512 × 512 1 × 1x512 – – 2,359,808
D_BN42 – 1 × 1x512 1 × 1x512 1024
D_Conv41 3 × 3, 256 1 3 × 3x512 × 256 1 × 1x256 – – 1,179,904
D_BN41 – 1 × 1x256 1 × 1x256 512

Decoder 3 D_Conv33 3 × 3, 256 1 3 × 3x256 × 256 1 × 1x256 – – 590,080
D_BN33 – 1 × 1x256 1 × 1x256 512
D_Conv32 3 × 3, 256 1 3 × 3x256 × 256 1 × 1x256 – – 590,080
D_BN32 – 1 × 1x256 1 × 1x256 512
D_Conv31 3 × 3, 128 1 3 × 3x256 × 128 1 × 1x128 – – 295,040
D_BN31 – 1 × 1x128 1 × 1x128 256

Decoder 2 D_Conv22 3 × 3, 128 1 3 × 3x128 × 128 1 × 1x128 – – 147,584
D_BN22 – 1 × 1x128 1 × 1x128 256
D_Conv21 3 × 3, 64 1 3 × 3x128 × 64 1 × 1x64 – – 73,792
D_BN21 – 1 × 1x64 1 × 1x64 128
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(with hyperdense liver) of the CHAOS dataset is depicted 
in Fig. 9. The results illustrate that model 3 (with ReLU 
layers) could not segment the liver as effectively as the pro-
posed model (Fig. 8 (c) and (d)). Although both the models 
gave similar results for most cases, the results obtained for 
case 14 of the CHAOS dataset illustrate that the proposed 
network is more robust.

Our model was trained on CT images from three 
databases namely, 3D-IRCADb, LiTS and our institutional 
database. We tested our model on two test sets: (a) CHAOS 
dataset and (b) our institutional dataset and achieved 
satisfactory results with both. It is to be noted that no images 
from the CHAOS database were included in the training set 
and that the test data from the institutional database were 
separate from the training images from the same database. 
Since the images in the CHAOS dataset were acquired using 
different scanners as mentioned earlier, good results for this 
dataset proves the robustness of our model. Moreover, it was 
effective in segmenting the liver from multiple CT phases 
(plain, arterial, PV and delayed) although it was mainly 
trained on PV images. Hence, our model has the potential 
to be integrated into a  CADx system.

Table 13 shows a comparison of the proposed method 
with other recent works that employed the CHAOS data-
set. The metrics compared were DC and JI, the former 
metric was specified in all the works whereas the latter 
was specified only in few works. The proposed has given 
better results compared to these works. Mulay et al. [34] 
presented a method based on Holistically-nested Edge 
Detection and Region-Convolutional Neural Network for 
liver segmentation. Their approach required the images to 
be enhanced through adaptive histogram equalization and 
sigmoid function. The DC value obtained by their method 
was 94%. Lei et al.[35] proposed a U-shaped network that 
employed improved pooling operation and skip connections 
and achieved DC = 95.58%. Khan et al. [36] integrated UNet, 
residual networks, dilated convolutions and a new loss func-
tion to segment liver and reported DC and JI of 95.49% and 
89.13%, respectively. Wu et al. [22] developed a CNN based 

on UNet, multiscale processing and attention mechanism 
and obtained a DC of 96.12%. The DC was only slightly less 
(0.57%) compared to the proposed method (DC = 96.69%), 
however the JI was lower by 0.93%. Moreover, their work 
required 24.97 million parameters while the proposed 
method utilized only around 17 million parameters. Since 
our model has performed better compared to the other 
works, in terms of DC, JI and other parameters we can con-
clude that our model is superior.

To sum up, the advantages of the proposed model 
compared to the other architectures are that (i) it delineates 
the liver more precisely from all the CT phases, (ii) it is 
more robust as complex and uncommon cases, especially 
in the CHAOS dataset (liver with unconventional shapes, 
heterogeneous and hyperdense intensity distribution) were 
comparatively segmented in a better manner. Moreover, the 
model was trained mainly on the PV phase images and tested 
on all four CT phases, (iii) it produces fewer FPs that can 
adversely affect the diagnosis made by the  CADx systems, 
(iv) it is better than other state-of-the-art methods that 
employed the same dataset (CHAOS) and (v) it is simple to 
implement as it is built from existing components. The key 
limitation of the model is that it has not identified the IVC 
in many cases. Another shortcoming is its sensitivity to the 
CT image format. Although it was trained using CT images 
in DICOM and NIFTI formats, the algorithm works better 
on the former and gives inferior results for CT images in the 
latter format.

Conclusion

This study developed a DL model for liver segmentation 
from multiphase abdominal CT volumes. The network 
was trained on CT images from different databases and 
tested on two diverse datasets, firstly an institutional 
multiphase CT dataset and secondly on a public dataset. 
The experimental results of a comparative study indicate 
that the proposed model is superior to some of the 

The best result is highlighted in bold

Table 12  (continued)

Block Name Layer name Filter Stride Learnable parameters Learnable parameters

For convolutional layers For BN layer

Weights Bias Offset Scale

Decoder 1 D_Conv12 3 × 3, 64 1 3 × 3x64 × 64 1 × 1x64 – – 36,928

D_BN12 – 1 × 1x64 1 × 1x64 128

D_Conv11 3 × 3, 2 1 3 × 3x64 × 2 1 × 1x2 – – 1154

D_BN11 – 1 × 1x2 1 × 1x2 4
Total 17,115,718
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commonly employed DL models. It has performed well in 
terms of accuracy, learnable parameters and training time. 
Hence, we believe that our liver segmentation algorithm is 
suitable for incorporation into a  CADx system. The future 

work includes constructing a hepatic  CADx system for 
differentiating between normal and abnormal liver and 
diagnosing liver cancer.

Fig. 7  Comparison of liver segmentation results of different DL 
models. a Input axial CT image b ground truth c proposed method 
d SegNet e DeepLab v3 + f UNet. g Contours marked on CT image 

(Ground truth: Red, Proposed: Cyan, SegNet: Blue, DeepLab 
v3 + :Yellow, UNet: Magenta)
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