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Abstract
Many papers in the intersection of theoretical and applied algorithms show that the simple, asymptotically less efficient algo-
rithm, performs better than the bestcomplex theoretical algorithms on random data or in specialized “real world” applications. 
This paper considers the Knuth–Morris–Pratt automaton, and shows a counter-intuitive practical result. The classical pattern 
matching paradigm is that of seeking occurrences of one string—the pattern, in another—the text, where both strings are 
drawn from an alphabet set Σ . Assuming the text length is n and the pattern length is m, this problem can naively be solved 
in time O(nm). In Knuth, Morris and Pratt’s seminal paper of 1977, an automaton, was developed that allows solving this 
problem in time O(n) for any alphabet. This automaton, which we will refer to as the KMP-automaton, has proven useful in 
solving many other problems. A notable example is the parameterized pattern matching model. In this model, a consistent 
renaming of symbols from Σ is allowed in a match. The parameterized matching paradigm has proven useful in problems in 
software engineering, computer vision, and other applications. It has long been believed that for texts where the symbols are 
uniformly random, the naive algorithm will perform as well as the KMP algorithm. In this paper, we examine the practical 
efficiency of the KMP algorithm versus the naive algorithm on a randomly generated text. We analyze the time under vari-
ous parameters, such as alphabet size, pattern length, and the distribution of pattern occurrences in the text. We do this for 
both the original exact matching problem and parameterized matching. While the folklore wisdom is vindicated by these 
findings for the exact matching case, surprisingly, the KMP algorithm always works significantly faster than the naive in the 
parameterized matching case. We check this hypothesis for DNA texts and image data and observe a similar behavior as in 
the random text. We also show a very structured exact matching case where the automaton is much more efficient.

Keywords Simple algorithms · Uniformly random text · Knuth–Morris–Pratt automaton · Parameterized matching.

Introduction

Algorithms design has two, almost distinct, tracks. The 
theoretical track devotes itself to ingenious algorithms and 
data structures on idealized problem versions, that offer effi-
cient asymptotic complexity. The applications track solves 
real problems with their specialized inputs and the need for 
concrete fast solutions. These cross purposes may lead to 
different approaches for the solution to the same problem.

There is some research at the intersection of these two 
tracks. The nature of this research has, traditionally, two 
purposes: 

1. Experimental tests that show superiority of a simple, 
asymptotically less efficient algorithm, when applied to 
random or concrete data (see e.g., [14, 15, 20–23, 25, 
30, 33, 36]).
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2. Experimental tests that try to pinpoint the size or type 
of data where the theoretically sophisticated algorithm 
does perform better. [6]

The main goal of this paper is to present a case where the 
naive algorithm performs worse than the sophisticated 
algorithm even for small-sized uniformly random data. We 
also show a few concrete “real world” applications where 
this is the case. The results were counter-intuitive to us and 
to many pattern matching researchers. Yet, when we ana-
lyzed these results, the simple theoretical explanation was, 
indeed, extremely convincing. So much so that we all were 
a bit stupefied as to why our intuition was “wrong” to begin 
with. The data structure we study is the Knuth–Morris–Pratt 
automaton, or the KMP automaton [32].

The KMP automaton is one of the most well-known data 
structures in Computer science. It allows solving the exact 
string matching problem in linear time. The exact string 
matching problem has input text T of length n and pattern 
P of length m, where the strings are composed of symbols 
from a given alphabet Σ . The output is all text locations 
where the pattern occurrs in the text. The naive way of solv-
ing the exact string matching problem takes time O(nm). 
This can be achieved by sliding the pattern to start at every 
text location, and comparing each of its elements to the cor-
responding text symbol. Using the KMP automaton, this 
problem can be solved in time O(n). In fact, analysis of the 
algorithm shows that at most 2n comparisons need to be 
done.

It has long been known in the folklore 1 that if the text is 
composed of uniformly random alphabet symbols, the naive 
algorithm’s time is also linear. This belief is bolstered by the 
fact that the naive algorithm’s mean number of comparisons 
for text and pattern over a binary alphabet is bounded by

The number of comparisons in the KMP algorithm is also 
bounded by 2n. However, because control in the naive algo-
rithm is much simpler, then it may be practically faster than 
the KMP algorithm.

The last few decades have prompted the evolution of pat-
tern matching from a combinatorial solution of the exact 
string matching problem [24, 32] to an area concerned with 
approximate matching of various relationships motivated 
by computational molecular biology, computer vision, and 
complex searches in digitized and distributed multimedia 

n

(
1 +

m∑

i=1

i

2i

)
which is bounded by 2n comparisons.

libraries [8, 19]. An important type of non-exact match-
ing is the parameterized matching problem which was 
introduced by Baker [11, 12]. Her main motivation lay in 
software maintenance, where program fragments are to be 
considered “identical” even if variable names are different. 
Therefore, strings under this model are comprised of sym-
bols from two disjoint sets Σ and Π containing fixed symbols 
and parameter symbols, respectively. In this paradigm, one 
seeks parameterized occurrences, i.e., exact occurrences up 
to renaming of the parameter symbols of the pattern string 
in the respective text location. This renaming is a bijection 
b ∶ Π → Π . An optimal algorithm for exact parameterized 
matching appeared in [5]. It makes use of the KMP automa-
ton for a linear-time solution over fixed finite alphabet Σ . 
Approximate parameterized matching was investigated in [9, 
11, 27]. Idury and Schäffer [29] considered multiple match-
ing of parameterized patterns.

Parameterized matching has proven useful in other contexts 
as well. An interesting problem is searching for images (e.g., 
[3, 10, 38]). Assume, for example, that we are seeking a given 
icon in any possible color map. If the colors were fixed, then 
this is exact two-dimensional pattern matching [2]. However, 
if the color map is different the exact matching algorithm 
would not find the pattern. Parameterized two dimensional 
search is precisely what is needed. If, in addition, one is also 
willing to lose resolution, then a two dimensional function 
matching search should be used, where the renaming func-
tion is not necessarily a bijection [1, 7]. Another degenerate 
parameterized condition appears in DNA matching. Because 
of the base pair bonding, exchanging A with T and C with G, 
in both text and pattern, produces a match [28].

Parameterized matching can also be naively done in 
time O(nm). Based on our intuition for exact matching, it 
is expected that here, too, the naive algorithm is competi-
tive with the KMP automaton-based algorithm of [5] in a 
randomly generated text.

In this paper, we investigate the practical efficiency of 
the automaton-based algorithm versus the naive algorithm 
both in exact and parameterized matching. We consider the 
following parameters: pattern length, alphabet size, and dis-
tribution of pattern occurrences in the text. Our findings are 
that, indeed, the naive algorithm is faster than the automaton 
algorithm in practically all settings of the exact matching 
problem. However, it was conter-intuitive to see that the 
automaton algorithm is always more effective than the naive 
algorithm for parameterized matching over randomly gener-
ated texts. We analyze the reason for this difference.

Having established that the randomness of the text is what 
made the naive algorithm so efficient for exact matching. 
We, therefore, ran the comparison in a very structured arti-
ficial text, and the automaton algorithm was a clear winner.

Having understood the practical behavior of the naive 
versus automaton algorithm over randomly generated texts, 

1 The second author heard this for the first time from Uzi Vishkin in 
1985. Since then this belief has been mentioned, in many occasions, 
by various researchers in the community.
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we were curious if there were “real” texts with a similar 
phenomenon. We did two case studies. We ran the same 
experiments over DNA texts and observed a similar behav-
ior as that of a randomly generated text. We also ran these 
experiments over image data and observed the same results.

Problem Definition

We begin with basic definitions and notation generally fol-
lowing [17].

Let S = s1s2 … sn be a string of length |S| = n over an 
ordered alphabet Σ . By � we denote an empty string. For two 
positions i and j on S, we denote by S[i..j] = si..sj the factor 
(sometimes called substring) of S that begins at position i 
and ends at position j (it equals � if j < i ). A prefix of S is a 
factor that begins at position 1 (S[1..j]) and a suffix is a factor 
that ends at position n (S[i..n]).

The exact string matching problem is defined as follows:

Definition 1 ( Exact String Matching) Let Σ be an alpha-
bet set, T = t1 ⋯ tn the text and P = p1 ⋯ pm the pattern, 
ti, pj ∈ Σ, i = 1,… , n;j = 1,… ,m . The exact string match-
ing problem is:

input: text T and pattern P.
output: All indices j, j ∈ {1,… , n − m + 1} such that

We simplify Baker’s definition of parameterized pattern 
matching.

Definition 2 (Parameterized-Matching) Let Σ , T and P be 
as in Definition 1. We say that P parameterize-matches or 
simply p-matches T in location j if pi ≅ tj+i−1, i = 1,… ,m , 
where pi ≅ tj if and only if the following condition holds:

      for every k = 1,… , i − 1, pi = pi−k if and only if 
tj = tj−k.

The p-matching problem is to determine all p-matches 
of P in T.

It two strings S1 and S2 have the same length m then they 
are said to parameterize-match or simply p-match if s1i ≅ s2i 
for all i ∈ {1,… ,m}.

Intuitively, the matching relation ≅ captures the notion of 
one-to-one mapping between the alphabet symbols. Specifi-
cally, the condition in the definition of ≅ ensures that there 
exists a bijection between the symbols from Σ in the pattern 
and those in the overlapping text, when they p-match. The 
relation ≅ has been defined by [5] in a manner suitable for 
computing the bijection.

tj+i−1 = pi, for i = 1,… ,m

Example: The str ing ABABCCBA parameter-
ize matches the string XYXYZZYX. The reason is that 
if we consider the bijection � ∶ {A,B,C} → {X, Y , Z} 

defined by A
�

������→ X, B
�

������→ Y , C
�

������→ Z  ,  then we get 

�(ABABCCBA) = XYXYZZYX . This explains the requirement 
in Def. 2, where two sumbols match if they also match in all 
their previous occurrences.

Of course, the alphabet bijection need not be 
as extreme as bijection �  above. String ABABC-
CBA also parameterize matches BABACCAB, because 
of bijection � ∶ {A,B,C} → {A,B,C} def ined as: 
A

�

�����→ B, B
�

�����→ A, C
�

�����→ C.
For completeness, we define the KMP automaton.

Definition 3 Let P = p1 … pm be a string over alphabet Σ . 
The KMP automaton of P is a 5-tuple (Q,Σ, �s, �f , q0, qa) , 
where Q = {0,… ,m} is the set of states, Σ is the alphabet, 
�s ∶ Q → Q is the success function, �f ∶ Q → Q is the failure 
function, q0 = 0 is the start state and qa = m is the accept-
ing state.

The success function is defined as follows:
�s(i) = i + 1 , i = 0,… ,m − 1 and
�s(0) = 0

The failure function is defined as follows:
Denote by �(S) the length of the longest proper prefix of 

string S (i.e., excluding the entire string S) which is also a 
suffix of S.

�f (i) = �(P[1..i]), for i = 1, ..m.

For an example of the KMP automaton see Fig. 1.

Theorem 1 [32] The KMP automaton can be constructed 
in time O(m).

P=ABAB
|P|=4
∑={A,B}
δs = all arrows with a symbol above them. δf = all other arrows.

0 1 2 3 4

≠A

A AB B

Fig. 1  Automaton example
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The Exact String Matching Problem

The Knuth–Morris–Pratt (KMP) search algorithm uses the 
KMP automaton in the following manner:

Variables:
pointert points to indices in the text. pointerp points to indices in the pattern.

Initialization:
set pointer pointert to 1. set pointer pointerp to 0.

Main Loop:
While pointert ≤ n−m+ 1 do:

If tpointert = δs(pointerp) then do:
pointert ← pointert + 1
pointerp ← δf (pointerp)
If pointerp = m− 1 then do:

output “pattern occurrence ends in text location pointert”.
pointerp ← δf (m)

enddo
enddo

else (tpointert �= δs(pointerp)) do:
if pointerp = 0 then pointert ← pointert + 1
else pointerp ← δf (pointerp)

enddo
go to beginning of while loop

endwhile

Theorem 2 [32] The time for the KMP search algorithm is 
O(n). In fact, it does not exceed 2n comparisons.

The Parameterized Matching Problem

Amir, Farach, and Muthukrishnan [5] achieved an opti-
mal time algorithm for parameterized string matching by a 
modification of the KMP algorithm. In fact, the algorithm 
is exactly the KMP algorithm, however, every equality com-
parison “ x = y ” is replaced by “ x ≅ y ” as defined as follows.

Implementation of “ x ≅ y”
Construct table A[1],… ,A[m] where A[i] = the largest 

k, 1 ≤ k < i , such that pk = pi . If no such k exists then 
A[i] = i.

The following subroutines compute “ pi ≅ tj ” for j ≥ i , 
and “ pi ≅ pj ” for j ≤ i.

Compare(pi,tj)
      ifA[i] = i and tj ≠ tj−1,… , tj−i+1 then return equal
      if A[i] ≠ i and tj = tj−i+A[i] then return equal

      return not equal
end
Compare(pi,pj)

      if ( A[i] = i or i − A[i] ≥ j ) and pj ≠ p1,… , pj−1 then 
return equal

      if i − A[i] < j and pj = pj−i+A[i] then return equal
      return not equal
end

Theorem 3 [5] The p-matching problem can be solved in 
O(n log �) time, where � = min(m, |Σ|).

Proof The table A can be constructed in O(m log �) time as 
follows: scan the pattern left to right keeping track of the 
distinct symbols from Σ in the pattern in a balanced tree, 
along with the last occurrence of each such symbol in the 
portion of the pattern scanned thus far. When the symbol at 
location i is scanned, look up this symbol in the tree for the 
immediately preceding occurrence; that gives A[i].

Compare can clearly be implemented in time O(log �) . 
For the case A[i] ≠ i , the comparison can be done in time 
O(1). When scanning the text from left to right, keep the last 
m symbols in a balanced tree. The check tj ≠ tj−1,… , tj−i+1 in 
Compare(pi,tj ) can be performed in O(log �) time using this 
information. Similarly, Compare(pi,pj ) can be performed 



SN Computer Science           (2024) 5:400  Page 5 of 15   400 

SN Computer Science

using A[i]. Therefore, the automaton construction in KMP 
algorithm with every equality comparison “ x = y ” replaced 
by “ x ≅ y ” takes time O(m log �) and the text scanning takes 
time O(n log �) , giving a total of O(n log �) time.

As for the algorithm’s correctness, Amir, Farach and 
Muthukrishnan showed that the failure link in automaton 
node i produces the largest prefix of p1 … pi that p-matches 
the suffix of p1 … pi .   ◻

Our Experiments

Our implementation was written in C + + . The platform was 
Dell latitude 7490 with intel core i7 - 8650U, 32 GB RAM, 
with 8 MB cache. The running time was computed using 
the chrono high-resolution clock. The time for a tick of that 
clock is one nanosecond. The random strings were generated 
using the random Python package.

We implemented the naive algorithm for exact string 
matching and for parameterized matching. The same 
code was used for both, except for the implementation of 
the equivalence relation for parameterized matching, as 
described above. This required implementing the A array. 
We also implemented the KMP algorithm for exact string 
matching, and used the same algorithm for parameterized 
matching. The only difference was the implementation of 
the equivalence parameterized matching relation.

The text length n was 1,000,000 symbols. Theoreti-
cally, since both the automaton and naive algorithm are 
sequential and only consider a window of the pattern 
length, it would have been sufficient to run the experi-
ment on a text of size twice the pattern [4]. However, for 
the sake of measurement resolution we opted for a large 
text. Yet the size of 1,000,000 comfortably fits in the 
cache, and thus we avoid the caching issue. In general, 
any searching algorithm for patterns of length less than 
4MB would fit in the cache if appropriately constructed in 
the manner of [4]. Therefore our decision gives as accu-
rate a solution as possible.

We ran patterns of lengths m = 32, 64, 128, 256, 512, 
and  1024 .  The  a lphabe t  s i ze s  t e s t ed  were 
|Σ| = 2, 4, 6, 8, 10, 20, 40, 80, 160, 320 . For each size, 10 
tests were run, for a total of 600 tests.

Methodology: We generated a uniformly random text 
of length 1, 000, 000. If the pattern would also be ran-
domly generated, then it would be unlikely to appear in 
the text. However, when seeking a pattern in the text, one 
assumes that the pattern occurs in the text. An example 
would be searching for a sequence in the DNA. When 
seeking a sequence, one expects to find it but just does 
not know where. Additionally, we considered the com-
mon case where one does not expect many occurrences 

of the pattern in the text. Consequently, we planted 100 
occurrences of the pattern in the text at uniformly random 
locations. The final text length was always 1,000,000. 
The reason for inserting 100 pattern occurrences is the 
following. We do not expect many occurrences, and a 
100 occurrences in a million-length text means that less 
than 0.1% of the text has pattern occurrences. On the other 
hand, it is sufficient to introduce the option of actually 
following all elements of the pattern 100 times. This 
would make a difference in both algorithms. They would 
both work faster if there were no occurrences at all. There 
are many possible ways of planting 100 copies of the 
pattern at random locations. Our method was randomly 
generating the indices of the planted copies. In order to 
avoid overlap, we generated 100 indices in a range from 
1 to 1,000,000-L, where L is the total length of planted 
patterns. We inserted a pattern copy at each of these indi-
ces, starting from the smallest. for each such insertion, we 
added the pattern length to each of the remaining indices.

We also implemented a variation where half of the pat-
tern occurrences were in the last quarter of the text. For 
each alphabet size and pattern length we generated 10 
tests and considered the average result of all 10 tests. It 
should be noted that from a theoretical point of view, the 
location of the pattern should not make a difference. We 
tested the different options in order to verify that this is, 
indeed, the case.

The software code can be found at https:// github. com/ 
Ora70/ Autom aton.

Exact Matching

Results

Tables 3 and  4 in the Appendix show the alphabet size, the 
pattern length, the average of the running times of the naive 
algorithm for the 10 tests, the average of the running time of 
the KMP algorithm for the 10 tests, and the ratio of the naive 
algorithm running time over the KMP algorithm running 
time. Any ratio value below 1 means that the naive algorithm 
is faster. A small value indicates a better performance of the 
naive algorithm. Any value above 1 indicates that the KMP 
algorithm is faster than the naive algorithm. The larger the 
number, the better the performance.

To enable a clearer understanding of the results, we pre-
sent them below in graph form. The following graphs show 
the results of our tests for the different pattern lengths. In 
Figs. 2 and  3, the x-axis is the pattern size. The y-axis is 
the ratio of the naive algorithm running time to the KMP 
algorithm running time. The different colors depict alpha-
bet sizes. In Fig. 2, the patterns were inserted at random, 
whereas in Fig. 4 the patterns appear at the last half of 
the text.

https://github.com/Ora70/Automaton
https://github.com/Ora70/Automaton
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To better see the effect of the pattern distribution in the 
text, Fig. 4 maps, on the same graph, both cases. In this 
graph, the x-axis is the average running time of all pattern 
lengths per alphabet size, and the y-axis is the ratio of the 
naive algorithm running time to the KMP algorithm run-
ning time. The results of the uniformly random distribu-
tion are mapped in one color, and the results of all pattern 
occurrences in the last half of the text are mapped in ano
ther.

We note the following phenomena: 

1. The naive algorithm performs better than the automaton 
algorithm. Of the 600 tests we ran, there were only 3 
instances where the KMP algorithm performed better 

than the naive, and all were subsumed by the average. 
In the vast majority of cases the naive algorithm was 
superior by far.

2. The naive algorithm performs relatively better for larger 
alphabets.

3. For a fixed alphabet size, there is a slight increase in the 
naive/KMP ratio, as the pattern length increases.

4. The distribution of the pattern occurrences in the text 
does not seem to make a change in performance.

An analysis of these implementation behaviors appears in 
the next subsection.

Analysis

We analyze all four results noted above.

Better Performance of  the  Naive Algorithm We have seen 
that the mean number of comparisons of the naive algorithm 
for binary alphabets is bounded by

The running time of the KMP algorithm is also bounded by 
O(2n). However, the control of the KMP algorithm is more 
complex than that of the naive algorithm, which would indi-
cate a constant ratio in favor of the naive algorithm. How-
ever, when the KMP algorithm encounters a mismatch it 
follows the failure link, which avoids the need to re-check 
a larger substring. Thus, for longer length patterns, where 
there are more possibilities of following the failure links for 
longer distances, there is a lessening advantage of the naive 
algorithm.

n

(
1 +

m∑

i=1

i

2i

)
which is bounded by 2n comparisons.

Fig. 2  Performance in the Exact Matching case, pattern occurrences 
distributed uniformly random

Fig. 4  Comparison of average performance of uniform pattern distri-
bution versus pattern occurrences congregated at end of text

Fig. 3  Performance in the Exact Matching case, pattern occurrences 
congregated at end of text
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Better Performance of the Naive Algorithm for Larger Alpha‑
bets This is fairly clear when we realize that the mean per-
formance of the naive algorithm for alphabet of size k is:

This is clearly decreasing the larger the alphabet size. How-
ever, the repetitive traversal of the failure link, even in cases 
where there is no equality in the comparison check, will 
still raise the relative running time of the KMP algorithm. 
Here too, the longer the pattern length, the more failure 
link traversals of the KMP, and thus less overall compari-
sons, which slightly decreases the advantage of the naive 
algorithm.

The Distribution of  Pattern Occurrences in  the Text If the 
pattern is not periodic, and if the patterns are not too fre-
quent in the text, then there will be at most one pattern in 
a text substring of length 2m. In these circumstances, there 
is really no effect to the distribution of the pattern in the 
text. We would expect a difference if the pattern is long with 
a small period. Indeed, an extreme such case is tested in 
Sect. 5.1.3.

A Very Structured Example

All previous analyses point to the conviction that the more 
times a prefix of the pattern appears in the text, and the more 
periodic the pattern, the better will be the performance of 
the KMP algorithm. The most extreme case would be of text 
An (A concatenated n times), and pattern Am−1B . Indeed the 
results of this case appear in Fig. 5.

Theoretical analysis of the naive algorithm predicts that 
we will have nm comparisons, where n is the text length and 
m is the pattern length. The KMP algorithm will have 2n 
comparisons, for any pattern length. Thus the ratio q of naive 
to KMP will be O(m

2
) . In fact, when we plot m

q
 we get twice 

n

(
1 +

m∑

i=1

i

ki

)
= n + n

k

(k − 1)2
comparisons.

the cost of the control of the KMP algorithm. This is shown 
in Fig. 5 to be 5.

Parameterized Matching

Results

The exact matching results behaved roughly in the man-
ner we expected. The surprise came in the parameterized 
matching case. Below are the results of our tests. It should 
be remarked that, as in the classical exact matching case, 
we compared the naive algorithm with a straight-forward 

Fig. 5  Performance in the exact matching case, periodic text

Fig. 6  Performance in the parameterized matching case, pattern 
occurrences distributed uniformly random

Fig. 7  Performance in the parameterized matching case, pattern 
occurrences congregated at end of text
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automaton implementation. There exist sophisticated param-
eterized matching implementations that are sublinear on 
random texts [13, 26]. Yet for our tests we used the straight-
forward automaton-based algorithm, and it was sufficient for 
achieving a clear-cut superiority over the naive algorithm. 
As in the exact matching case, the tables show the alphabet 
size, the pattern length, the average of the running times 
of the naive algorithm for the 10 tests, the average of the 
running time of the automaton-based algorithm for the 10 
tests, and the ratio q of the naive algorithm running time 
over the automaton-based algorithm running time. Any ratio 
value above 1 means that the automaton-based algorithm is 
faster. A large value indicates a better performance of the 
automaton-based algorithm.

The following graphs show the results of our tests for the 
different pattern lengths. The x-axis is the pattern size. The 
y-axis is the ratio of the naive algorithm running time to 
the automaton-based algorithm running time. The different 
colors depict alphabet sizes. To better see the effect of the 
pattern distribution in the text, we also map, on the same 
graph, both cases. In this graph, the x-axis is the average 
running time of all pattern lengths per alphabet size, and 
the y-axis is the ratio of the naive algorithm running time to 
the automaton-based algorithm running time. The results of 
the uniformly random distribution are mapped in one color, 
and the results of all pattern occurrences in the last half of 
the text are mapped in another.

The parameterized matching results appear in Tables 5 
and  6 in the appendix. Figures 6 and 7 map the results of 
the parameterized matching comparisons for the case where 
the patterns were inserted at random versus the case where 
the patterns appear at the last half of the text. In Fig. 8, we 
map at the same graph the average results of both the cases 

where the patterns appear at the text uniformly at random, 
and where the patterns appear at the last half of the text.

The results are very different from the exact matching 
case. We note the following phenomena: 

1. The automaton-based algorithm always performs sig-
nificantly better than the naive algorithm.

2. The automaton-based algorithm performs relatively bet-
ter for larger alphabets.

3. For a fixed alphabet size, the pattern length does not 
seem to make much difference.

4. The distribution of the pattern occurrences in the text 
does not seem to make a change in performance.

An analysis of these implementation behaviors and an 
explanation of the seemingly opposite results from the exact 
matching case appear in the next subsection.

Analysis

We analyze all four results noted above.

Better Performance of the Automaton‑based Algorithm We 
have established that the mean number of comparisons for 
the naive algorithm in size k alphabet is

However, when it comes to parameterized matching, any 
order of the alphabet symbols is a match, thus if one con-
sider a pattern prefix of length i where all k alphabet symbols 
occur, then the mean number of comparisons is to be multi-
plied by k!. We explain this at greater length:

When doing exact matching, the probabilty that the first 
pattern symbol equals the text symbol is 1

k
 . However, in 

parameterized matching, the first element always matches 
the text element, so that probabilty needs to be multiplied 
by k. This indeed gives us probaility 1 for matching the 
first pattern symbol. As long as the first symbol appears 
in a run, the probabilty of matching it in the text is 1

k
 per 

location. But once a new alphabet symbol appears in the 
pattern, the probability of a match is (k−1)

k
 . In general, when 

the jth alphabet symbol appears for the first time in the pat-
tern, its probability of matching the text is (k+1−j)

k
 . All other 

pattern symbols (i.e., those that have appeared previously) 
have matching probability 1

k
.

This explains why the probability of matching a prefix 
of length j where all symbols of the alphabet occur is

n

(
1 +

m∑

i=1

i

ki

)
= n + n

k

(k − 1)2
comparisons.

Fig. 8  Comparison of average performance of uniform pattern distri-
bution versus pattern occurrences congregated at end of text
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.
By the discussion above, the probability of maching 

a prefix of length j where �j different alphabet symbols 
occur is

, where

.
This bounds the mean number of comparisons for a size 

k alphabet by:

.
Therefore, for size 2 alphabet we get 3n comparisons, 

and the number rises exponentially with the alphabet size. 
Also, the automaton-based algorithms is constant at 2n 
comparisons. Even for a size 2 alphabet, the number of 
comparisons in the naive algorithm is greater by 50% 
than in the automaton-based algorithm. Note, also, that 
because of the need to find the last parameterized match, 
the control mechanism even of the naive algorithm, is 
more complex. This results in a superior performance of 
the automaton-based algorithm even for small alphabets. 

k!

j∑

i=1

i

ki

P
�j

j∑

i=1

i

ki

P
�j
=

�j−1∏

r=0

k − r

n(1 +

m∑

i=1

iP
�i

ki
)

Of course, the larger the alphabet, the better the perfor-
mance of the automaton-based algorithm.

Pattern Length The pattern length does not play a role in 
the automaton-based algorithm, where the number of com-
parisons is always bounded by 2n. In the naive case, the 
multiplication of the factorial of the alphabet size is so over-
whelming that it dominates the pattern length. For example, 
note that for an extremely large alphabet, there would be a 
leading prefix of different alphabet symbols. That prefix will 
always be traversed by the naive algorithm. The larger the 
alphabet, the longer will be the mean length of that prefix.

Pattern Distribution As in the exact matching case, for a 
non-periodic pattern that does not appear too many times, 
the distribution of occurrences will have no effect on the 
complexity.

DNA Data

Having understood the behavior of the naive algorithm and 
the automaton-based algorithm in randomly generated texts, 
the natural question is are there any “real” texts for which the 
naive algorithm performs better than the automaton-based 
algorithm.

We performed the same experiments on DNA data. The 
experimental setting was identical to that of the randomly 
generated texts with the following differences: 

1. The DNA of the fruit fly, Drosophila melanogaster is 
143.7 MB long. We extracted 10 subsequences of length 
1,000,000 each, as FASTA data from the NIH National 
Library of Medicine, National Center for Biotechnol-

Fig. 9  Performance in the exact matching case on DNA sequences Fig. 10  Performance in the parameterized matching case on DNA 
Sequences
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ogy Information. We ran a test for each of the six pat-
tern lengths � = 32, 64, 128, 256, 512, 1024, on each 
of the 10 DNA subsequences, and noted the average. In 
order to be as close to “real life” as possible, we assume 
that only one copy of the pattern occurs in the text, thus 
the pattern was chosen to be the first � symbols in the 
sequence. This also has the advantage of having a pat-
tern with a “similar” structure to the text.

2. The alphabet size is 4, due to the four bases in DNA 
sequence.

Figures 9 and  10 show the ratio between the average run-
ning time of the naive algorithm and the automaton based 
algorithm. As in the uniformly random text we see that for 
the exact matching case the ratio is less than 1, i.e., the naive 
algorithm is faster, whereas in the parameterized matching 
case, the ratio is more than 1, indicating that the automaton 
based algorithm is faster.

Image Data

For our case study we used the famous “lena” image (see 
Fig. 11), that is a historic benchmark for many computer 
vision algorithms. We converted the lena image to a gray 
level image, and did the search on the pixel level. The con-
version was done via the python code at https:// colab. resea 
rch. google. com/ drive/ 1JLCe zhduN tCqYO 4nMTK LIwi0 
AaFej sZW? usp= shari ng/.

The text size was 65536. The pattern sizes are the same 
six: 32, 64, 128, 256, 512,  and 1024. For each size, 10 dif-
ferent patterns were run, chosen from the text, and the aver-
age running time was used.

The results can be seen in Tables 1 and 2 below. They 
are similar to the randomized data and DNA data cases - 
the automaton is significantly more efficient in parameter-
ized matching, while the naive algorithm is faster in exact 
matching.

Conclusions

The folk wisdom has been that simple algorithms generally 
outperform sophisticated algorithms over uniformly random 
data. In particular, the naive string matching algorithm will 
outperform the automaton-based algorithm for uniformly 
random texts. Indeed this turns out to be the case for exact 
matching. This study shows that this is not the case for 
parameterized matching, where the automaton-based algo-
rithm always outperforms the naive algorithm. This advan-
tage is clear and is impressively better the larger the alpha-
bets. The study also shows that the automaton algorith is 
clearly superior for searches over DNA data, and image data.

The conclusion to take away from this study is that one 
should not automatically assume that the naive algorithm is 
better. In string matching, the matching relation should be 
analyzed. There are various matchings for which an autom-
aton-based algorithm exists. We considered here param-
eterized matching, but other matchings, such as ordered 

Fig. 11  lena 

Table 1  Implementation results—exact matching—Lena

Patt. length Naive KMP Naive

KMP

32 77.4 226.3 0.3391
64 71.1 225.9 0.3391
128 71.3 223.3 0.3193
256 71.8 223.8 0.3207
512 71.1 226.3 0.3145
1024 70.9 226 0.3139

Table 2  Implementation results—parameterized matching—lena

Patt. length Naive KMP Naive

KMP

32 3857.0 666.8 5.8601
64 3728.6 674.3 5.6162
128 3777.6 696.1 5.5168
256 3909.2 697.1 5.6889
512 3848.8 699.9 5.5504
1024 3936.9 700.3 5.6946

https://colab.research.google.com/drive/1JLCezhduNtCqYO4nMTKLIwi0AaFejsZW?usp=sharing/
https://colab.research.google.com/drive/1JLCezhduNtCqYO4nMTKLIwi0AaFejsZW?usp=sharing/
https://colab.research.google.com/drive/1JLCezhduNtCqYO4nMTKLIwi0AaFejsZW?usp=sharing/
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matching [16, 18, 31], or Cartesian tree matching [34, 35, 
37], can also be solved by automaton-based methods. In a 
practical application it is worthwhile spending some time 
considering the type of matching one is using. It may turn 
out to be that the automaton-based algorithm will perform 
significantly better than the naive, even for uniformly ran-
dom texts. Alternately, even nonuniformly random data may 
be such that the naive algorithm performs better than the 
automaton based algorithm for exact matching.

An open problem is to compare the search time in DNA 
data to the search time in uniformly random data. While it 

is clear that DNA data are not uniformly random, it would 
be interesting to devise an experimental setting to compare 
search efficiency in both types of strings. A similar study for 
image data would be interesting.

Appendix

see Tables 3, 4, 5 and 6.

Table 3  Implementation 
results—exact matching, 
patterns uniformly distributed

|Σ| Patt. length Naive KMP Naive

KMP

|Σ| Patt. length Naive KMP Naive

KMP

2 32 4514.1 6712.5 0.6729 4 32 3174.2 5409.9 0.5879
64 4449.3 6727.8 0.6623 64 3167.8 5428.3 0.5818

128 4697.3 6764.3 0.693 128 3136.8 5293.0 0.5917
256 4522.9 6814.2 0.6666 256 3109.7 5228.2 0.5942
512 4764.7 6734.7 0.7051 512 3108.8 5110.5 0.608

1024 4521.4 6188.7 0.7304 1024 3141.1 4928.7 0.6368
32 2225.1 4331.2 0.5139 8 32 1771.8 3903.4 0.4553
64 2199.2 4263.2 0.5157 64 1794.5 3852.4 0.4659

128 2180.9 4270.6 0.5108 128 1764.0 3789.7 0.4654
256 2169.2 4201.4 0.5163 256 1766.5 3798.4 0.4652
512 2193.2 4128.4 0.5314 512 1771.9 3670.6 0.4827

1024 2238.7 4110.1 0.5455 1024 1827.3 3596.6 0.5085
10 32 1593.1 3598.9 0.4427 20 32 1312.0 3309.2 0.396

64 1578.3 3586.4 0.44 64 1428.6 3297.7 0.4269
128 1564.8 3563.9 0.4391 128 1252.7 3264.9 0.3817
256 1594.5 3531.6 0.4516 256 1187.4 3161.3 0.375
512 1554.3 3626.0 0.4317 512 1281.7 3166.8 0.4

1024 1892.5 3380.0 0.5619 1024 1274.6 2923.1 0.4347
40 32 943.9 2846.7 0.3316 80 32 898.1 2758.7 0.3242

64 964.3 2869.3 0.3358 64 938.4 2777.9 0.335
128 972.5 2852.5 0.3401 128 946.7 2824.5 0.3336
256 952.6 2835.3 0.3363 256 875.9 2709.0 0.323
512 975.4 2769.0 0.3523 512 875.8 2653.9 0.3302

1024 970.5 2655.4 0.3655 1024 899.6 2605.0 0.346
160 32 810.9 2686.1 0.302 320 32 790.3 2712.0 0.2916

64 794.0 2733.1 0.2918 64 833.4 2711.1 0.3074
128 922.2 2771.1 0.3281 128 803.3 2676.3 0.3005
256 899.2 2700.6 0.3285 256 785.2 2743.0 0.2877
512 897.8 2635.6 0.3374 512 878.5 2690.4 0.3269

1024 861.6 2534.9 0.3399 1024 883.8 2563.6 0.3427
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Table 4  Implementation 
results—exact matching, 
patterns at end

|Σ| Patt. length Naive KMP Naive

KMP

|Σ| Patt. length Naive KMP Naive

KMP

2 32 4613.3 6931.1 0.6649 4 32 3091.7 5362.9 0.5759
64 4570.1 6695.7 0.6824 64 3203.2 5499.5 0.5819

128 4462.8 6702.2 0.667 128 3190.4 5373.6 0.5933
256 4441.5 6644.9 0.6692 256 3200.3 5413.1 0.5924
512 4786.4 6441.1 0.744 512 3305.2 5340.0 0.6176

1024 4493.8 6360.6 0.7105 1024 3322.4 5125.8 0.6469
6 32 2374.7 4638.6 0.509 8 32 1836.3 3978.1 0.4616

64 2336.6 4586.8 0.5093 64 1804.2 3930.2 0.4589
128 2467.1 4597.0 0.534 128 1816.9 3908.6 0.465
256 2350.4 4453.1 0.5274 256 1802.8 3875.2 0.4655
512 2306.2 4447.2 0.5243 512 1792.0 3832.8 0.4684

1024 2411.2 4302.9 0.5597 1024 1889.1 3640.7 0.5183
10 32 1741.8 3762.0 0.4608 20 32 1242.4 3173.7 0.3916

64 1719.8 3772.8 0.4528 64 1173.5 3251.9 0.3615
128 1616.5 3800.2 0.4264 128 1286.4 3302.4 0.3847
256 1685.1 3814.7 0.4424 256 1334.3 3234.5 0.411
512 1774.0 3724.7 0.4737 512 1231.7 3090.4 0.399

1024 1727.8 3484.3 0.4922 1024 1263.8 3031.5 0.4168
40 32 1108.6 3048.3 0.3606 80 32 867.4 2912.6 0.2988

64 1014.5 3084.3 0.3283 64 941.2 2912.8 0.3248
128 1142.9 3210.4 0.3533 128 1023.5 2872.7 0.3546
256 1026.3 3005.2 0.3413 256 1005.4 2949.3 0.3397
512 1503.7 2930.9 0.5205 512 956.0 2852.1 0.3355

1024 1170.1 2926.9 0.3951 1024 954.3 2701.8 0.3532
160 32 981.8 2855.0 0.3393 320 32 769.6 2662.8 0.2894

64 863.6 2818.4 0.3061 64 771.8 2681.5 0.2882
128 908.6 2842.8 0.3178 128 799.5 2627.0 0.304
256 851.2 2796.4 0.3047 256 917.9 2722.0 0.3345
512 909.6 2917.1 0.313 512 967.3 2757.1 0.3455

1024 1174.9 2815.9 0.4093 1024 951.2 2601.3 0.3604
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Table 5  Implementation 
results—parameterized 
Matching, patterns uniformly 
distributed

|Σ| Patt. length Naive KMP Naive

KMP

|Σ| Patt. length Naive KMP Naive

KMP

2 32 25738.0 6871.8 3.7655 4 32 26104.6 7489.6 3.5351
64 25996.5 6761.4 3.8593 64 26734.4 7538.6 3.5998

128 26080.5 6780.8 3.8571 128 26281.4 7370.8 3.6136
256 26269.7 6688.6 3.934 256 26204.3 7361.0 3.6062
512 26004.0 6440.3 4.0456 512 26169.6 7123.6 3.71

1024 26456.0 6277.9 4.2167 1024 26570.9 6863.1 3.924
6 32 26213.2 6818.3 3.96 8 32 26863.5 7229.3 3.9411

64 26244.3 7022.8 3.8621 64 27010.3 7258.5 3.9394
128 26130.3 6879.7 3.9429 128 26965.3 7067.4 4.0336
256 26141.2 6778.1 3.987 256 26918.8 7099.7 4.0304
512 26212.3 6460.7 4.1752 512 27211.8 6888.9 4.1592

1024 26171.5 6312.7 4.2986 1024 27406.5 6698.6 4.3042
10 32 28663.6 7629.8 3.8967 20 32 28539.6 5832.4 5.1463

64 28787.8 7787.6 3.8351 64 28543.3 6329.9 4.6772
128 28629.8 7664.8 3.8775 128 28254.3 6041.4 4.8694
256 28647.0 7478.5 3.99 256 28526.7 5733.2 5.2725
512 28843.4 7406.5 4.0576 512 28326.8 5546.4 5.3728

1024 28516.9 7074.3 4.1282 1024 28457.7 5433.1 5.5292
40 32 33994.8 5708.6 6.0731 80 32 42524.1 5292.8 8.0792

64 33826.0 6076.9 5.6046 64 41425.9 5340.1 7.8236
128 33971.3 5994.7 5.7342 128 41547.1 5387.7 7.8057
256 33740.9 5544.9 6.2016 256 41489.1 5269.7 8.0644
512 34501.6 5411.8 6.5045 512 41615.2 5189.5 8.165

1024 34172.0 5353.9 6.496 1024 42184.8 5067.8 8.478
160 32 54881.0 4789.375 11.5167 320 32 70360.0 3919.7 17.9046

64 56750.0 5222.7 10.8806 64 75533.8 4456.5 17.1093
128 57775.6 5212.2 11.2048 128 75098.4 4284.8 17.4987
256 56719.3 4953.4 11.5 256 77763.7 4238.4 18.328
512 58276.6 4793.2 12.1498 512 75922.3 4181.3 18.1751

1024 57331.2 4913.2 11.7029 1024 76831.3 4366.4 17.989
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