
Vol.:(0123456789)

SN Computer Science (2024) 5:320
https://doi.org/10.1007/s42979-024-02624-8

SN Computer Science

ORIGINAL RESEARCH

Task‑Level Checkpointing and Localized Recovery to Tolerate
Permanent Node Failures for Nested Fork–Join Programs in Clusters

Lukas Reitz1 · Claudia Fohry1

Received: 2 November 2023 / Accepted: 10 January 2024
© The Author(s) 2024

Abstract
Exascale supercomputers consist of millions of processing units, and this number is still growing. Therefore, hardware fail-
ures, such as permanent node failures, become increasingly frequent. They can be tolerated with system-level Checkpoint/
Restart, which saves the whole application state transparently and, if needed, restarts the application from the saved state; or
with application-level checkpointing, which saves only relevant data via explicit calls in the program. The former approach
requires no additional programming expense, whereas the latter is more efficient and allows to continue program execution
after failures on the intact resources (localized shrinking recovery). An increasingly popular programming paradigm is
asynchronous many-task (AMT) programming. Here, programmers identify parallel tasks, and a runtime system assigns the
tasks to worker threads. Since tasks have clearly defined interfaces, the runtime system can automatically extract and save
their interface data. This approach, called task-level checkpointing (TC), combines the respective strengths of system-level
and application-level checkpointing. AMTs come in many variants, and so far, TC has only been applied to a few, rather
simple variants. This paper considers TC for a different AMT variant: nested fork–join (NFJ) programs that run on clusters
of multicore nodes under work stealing. We present the first TC scheme for this setting. It performs a localized shrinking
recovery and can handle multiple node failures. In experiments with four benchmarks, we observed execution time overheads
of around 44 % at 1536 workers, and negligible recovery costs. Additionally, we developed and experimentally validated a
prediction model for the running times of the scheme.

Keywords Asynchronous many-task programming · Fault tolerance · Task-level checkpointing · Work stealing

Introduction

Modern supercomputers have reached Exascale and consist
of millions of processing units. For instance, the Frontier
machine has over 8 million cores [23]. With an increasing
component count, hardware failures become more frequent
[17]. Recent studies estimate permanent node failures in
supercomputers with a million cores to occur between every
5 and 53 min [4, 27].

A popular approach to tolerate hardware failures is sys-
tem-level Checkpoint/Restart (C/R). It transparently saves
the whole application state periodically at global synchro-
nization points and, when a hardware failure is detected,
restarts the application from the last saved checkpoint [45].
System-level C/R incurs a significant running time overhead
due to the synchronization and I/O to the cluster file system
[32]. Another well-known approach is application-level
checkpointing. Here, the programmer inserts function calls
into the code to save only relevant data. Application-level

This is an extended version of reference [40], which built upon a
preliminary paper [10].

This article is part of the topical collection “Applications and
Frameworks using the Asynchronous Many Task Paradigm” guest
edited by Patrick Diehl, Hartmut Kaiser, Peter Thoman, Steven R.
Brandt and “Ram” Ramanujam.

 * Lukas Reitz
 lukas.reitz@uni-kassel.de

 Claudia Fohry
 fohry@uni-kassel.de

1 Research Group Programming Languages/Methodologies,
University of Kassel, Wilhelmshöher Allee 71-73,
34121 Kassel, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02624-8&domain=pdf
http://orcid.org/0009-0000-6188-3693

 SN Computer Science (2024) 5:320 320 Page 2 of 14

SN Computer Science

checkpointing is more efficient than system-level C/R, but
requires additional programming effort. Several application-
level recovery schemes permit to continue running the appli-
cation after failure on the intact resources, which is called
shrinking recovery, and/or to confine the failure handling to
directly affected resources, which is called localized recov-
ery (e.g., [26, 35]).

While system-level and application-level checkpoint-
ing have different pros and cons, an intermediate approach,
called task-level checkpointing (TC), promises to achieve
transparency, efficiency, and a localized shrinking recovery
together. Unlike the above general-purpose approaches, TC
is specialized to Asynchronous Many-Task (AMT) pro-
grams. AMT is an increasingly popular programming para-
digm with examples, including HPX [19], OpenMP tasks
[30], Chapel [6], and Cilk [5]. AMT programs partition the
computation into units, called tasks, and a runtime system
maps the tasks to lower level resources. TC operates in the
runtime system. By exploiting the clearly defined interfaces
of tasks, it automatically saves task descriptors and interface
data.

Current AMT environments differ widely in their task
models, i.e., in the mechanisms for task generation and coop-
eration [9, 14, 49]. Examples include side effect-based task
cooperation (such as in Chapel [6]), Sequential Task Flow
(such as in StarPU [2]), Dynamic Independent Tasks (such
as in GLB [53]), and Nested Fork–Join (such as in OpenCilk
[42] and Nowa [43]). Moreover, the AMTs differ in their
target architectures and in the runtime algorithms for task
assignment. Thus far, TC has only been studied for a few,
rather simple settings (e.g., [26, 36]).

This paper proposes a TC scheme for a new setting,
namely Nested Fork–Join programs running on clusters
with multi-worker processes under work stealing. To explain
these terms, Nested Fork–Join (NFJ) programs begin the
computation with a single task, which eventually returns
the final result. Then, each task may spawn child tasks
that return their respective results to the parent. The next
term, work stealing, refers to workers denoting the compute
resources that process the tasks. In our setting, workers are
threads of multiple processes on different cluster nodes.
Each worker maintains a task queue, from which it takes
tasks for processing and into which it inserts newly gener-
ated tasks. If the queue is empty, the worker becomes a thief
and tries to steal tasks from another worker, called victim.
We consider a recent, efficient variant of work stealing in
multicore clusters, called the lifeline-pure scheme [39].

A core challenge for our development of a TC scheme
for NFJ was keeping the checkpoints consistent despite
stealing-related task migration. For that, we built on
a previous TC scheme for Dynamic Independent Tasks

(DIT), called AllFT [35]. Major changes of AllFT were
required, because: 1) NFJ differs from DIT insofar as NFJ
tasks return their results to the parent, whereas DIT envi-
ronments directly compute the final result by reduction
from the task results. 2) AllFT refers to a help-first work-
stealing policy, in which parent tasks are processed before
child tasks, whereas our setting uses a work-first policy, in
which the child tasks are processed first. 3) We consider
multi-worker processes, whereas AllFT is restricted to
single-worker processes.

Like AllFT, our scheme can handle any number of per-
manent worker failures, including simultaneous failures
and failures during recovery. Failures never compromise a
returned result, but in a few rare cases, the program aborts.
To the best of our knowledge, our scheme is the first TC
scheme for NFJ, and at the same time, it is the first TC
scheme for multi-worker processes under work stealing.

We implemented and experimentally evaluated the
scheme. In experiments on two clusters with up to 1280
and 1536 workers, respectively, we observed fault-toler-
ance overheads of up to 28.3% and up to 43.98% , respec-
tively. Thereby the recovery costs were negligible. These
observed fault-tolerance overheads are higher than those
of the AllFT scheme for DIT, but well below those of C/R
[32].

The remainder of this paper is organized as follows.
"Background" describes NFJ, the lifeline-pure scheme,
and AllFT. Then, "Task-Level Checkpointing for NFJ" pre-
sents our new TC scheme, and "Implementation" sketches
its implementation. Experimental results are provided and
discussed in "Experiments". Thereafter, "Prediction of
Running Times" derives a formula to predict running times
of our TC scheme and compares them to measured running
times. The paper ends with related work and conclusions
in "Related Work" and Conclusions, respectively.

Background

Nested Fork–Join Programs (NFJ)

Listing 1 depicts pseudocode of a naive recursive Fibo-
nacci program in NFJ. The computation begins with
a root task computing f(n) for a given n. Then, each
task spawns two child tasks whose results are assigned to
variables a and b. At the sync statement, the parent task
waits until all previous assignments have been performed.
Beyond the example, NFJ programs contain an implicit
sync at the end of each task function. Furthermore, we
assume the tasks to be free of side effects.

SN Computer Science (2024) 5:320 Page 3 of 14 320

SN Computer Science

Listing 1: NFJ example: naive recursive Fibonacci implementation
f (n) { // 0

i f (n < 2) re turn 1 ;
a = spawn f (n 1); // 1
b = spawn f (n 2); // 2
sync ; // 3
re turn a + b ;

The execution of an NFJ program gives rise to a tree, such
as the one for the Fibonacci example in Fig. 1. In the fig-
ure, rounded rectangles denote functions spawned as tasks.
Numbers 0 to 3 correspond to the sequential code sections
marked in Listing 1. For instance, section 0 runs from the
beginning of the function until the spawn of the first child.
Downward edges (solid) mark spawns, and upward edges
(dotted) mark result returns at explicit or implicit sync’s.

Lifeline‑Pure Scheme

As noted in "Introduction", the tasks are executed by a set of
worker threads from multiple processes. Each worker owns
a task queue, in which it saves task descriptors, which are
continuations. Thereby, continuation denotes the remain-
ing computation of a function together with variable values.
Continuations are represented by stack frames.

The lifeline-pure scheme [39] is an efficient work-stealing
variant for, e.g., NFJ, that adapts lifeline-based global load
balancing [41] to multi-worker processes. It uses cooperative

work stealing, i.e., a thief sends a steal request to the vic-
tim, and the victim actively responds with either loot or a
reject message. All communication is realized with active
messages. Workers answer steal requests periodically after
every k processed tasks. In our case, the loot is always a
single task, namely the oldest task from the victim pool. In
the lifeline-pure scheme, a thief first attempts to steal from
up to w random victims, and then, if not successful, from
up to z lifeline buddies [39]. These are preselected victims,
which remember any unsuccessful lifeline steal requests. If
they obtain tasks later, they share these tasks with the thief.
After z unsuccessful lifeline steal requests, a thief becomes
inactive. It is reactivated when a lifeline buddy later sends
tasks. The program ends when the root task has finished.

The lifeline-pure scheme deploys the work-first policy,
in which a worker encountering a spawn branches into the
child task and puts a continuation of the parent task into
its queue. Figure 2 illustrates work-first work stealing. The
notation is the same as in Fig. 1, but the task structure differs
to facilitate further discussion. Each color marks the work
performed by a particular worker.

The computation starts with the green worker (called
Green) processing the A function. At the first spawn, Green
branches into child task B, and Brown later steals the con-
tinuation of A, which at that time encompasses A2 to A6
and is represented by A2. In general, thieves process parent
frames, and victims process children, as illustrated on the
right side of the figure.

The lifeline-pure scheme matches child results with their
parent frames in the same way as in reference [20]: When a
thief encounters a sync, it sends the frame back to the vic-
tim (or transitively to all victims), where the actual matching
is accomplished with the help of a frame identifier. Note
that the parent frame is sent back to the child (and not vice
versa), even though the dotted arrows in Fig. 2 indicate that,
logically, the result is incorporated into the parent. When a
victim finishes a task whose parent is away, it locally saves
the result and steals a new task.

For an example, consider Red in Fig. 2. It stole frame B
from Green at B2, and was stolen from by Yellow at B3. Fig. 1 Execution of a nested fork–join program

Fig. 2 Work stealing under the
work-first policy

 SN Computer Science (2024) 5:320 320 Page 4 of 14

SN Computer Science

Red finished F before Yellow returned the frame. There-
fore, Red kept the result (called rF) and stole the A frame
from Brown at A3. Later, Blue stole the A frame at A4 and
already returned it (called fA) at the sync opening A5.
Thereby Blue returned the frame to Red, because Red was
the most recent victim. The dotted red line indicates that fA
resides at Red again. After having inserted the result from D,
Red will return the frame to Brown, and later Brown will
return it to Green. Green will insert the result from the B
function, and afterwards, Green will continue at A6.

Now, consider the time when A has finished all sections
printed in bold and is going to branch into H. At this time,
Red holds rF, fA, a local pool with the continuations start-
ing at D2 and G2, and a descriptor of H. Furthermore, Red
knows the identities of all victims and thieves with still
unmatched results: Green and Yellow for the B2 frame, and
Brown for the A3 frame. In its entirety, this information
forms Red’s state.

Original Task‑Level Checkpointing and Recovery
Scheme for DIT

We adapted the AllFT scheme from Posner et al. [35] to
our NFJ setting. The original AllFT scheme encompasses a
checkpointing procedure, a steal protocol, a restore protocol,
and a selection scheme for buddy workers:

Checkpointing is performed independently by each
worker. It always writes them after having finished one task
and before starting the next one, more specifically in the
following situations:

• every about R seconds, called regular backups,
• during stealing at the victim and thief sides, called steal

backups, and
• during restore, called restore backups.

Each backup contains the worker state and some status
information. The latter is a compact representation of all
pieces of loot that have been sent and received so far by
this worker (see [33]). In the DIT context, the worker state
consists of the contents of the worker’s task queue and
the worker’s current contribution to the final result, called
worker result. Task descriptors in the DIT setting are just
task parameters. The worker result is the combined result
of all tasks that have been processed by this worker so far,
e.g., the sum of these results. The checkpoints are saved in a
resilient store, for which AllFT requires that it must support
the grouping of multiple access operations into transactions.

The AllFT steal protocol ensures consistency between
a victim, a thief, and their respective backups, despite
possible failures. In addition to the steal backups, the
protocol involves a temporary loot saving in the resilient
store. While being saved during the protocol, the loot is

denoted as open. Each worker numbers the loot that it sent
in ascending order and attaches the number to the loot,
called loot identifier.

The restore protocol presupposes that all workers are
informed about failures, although possibly at different times.
One designated partner worker B, called buddy, adopts the
tasks from the checkpoint of a failed worker X and makes
sure that open loot sent from X is taken over by either the
thief or by B. Open loot sent to X is taken care of by the
victim. For that, each worker looks up whether it has been a
victim of X and, if so, re-inserts any open loot into its own
queue, deletes it from the resilient store, and writes a restore
backup. As an example, the deletion of the open loot and the
writing of the restore backup are grouped into a transaction
to ensure consistency in case of an intermediate failure of X.
Altogether, the restore protocol guarantees that each task is
processed exactly once.

The selection scheme for buddy workers is based on a
consecutive numbering of the workers with wraparound. The
buddy of a failed worker is defined as the next worker alive
in this ring. Buddy selection is still nontrivial, since AllFT
allows simultaneous failures and failures during recovery.
Thus, the role of buddy can move during an ongoing recov-
ery. Details and a case-by-case analysis of correctness are
given in reference [11].

Task‑Level Checkpointing for NFJ

We applied the following major changes, which are further
explained below:

1. We defined the state of an NFJ worker and modified the
contents of checkpoints, so that they save this state in
addition to the status information. Also, we clarified the
times of checkpoint writing.

2. We newly added a frame return protocol and extended
the restore protocol by the adoption of task results and
frames (such as rF and fA).

3. We adapted the buddy worker selection scheme to multi-
worker processes.

Regarding item 1, we define the state of a worker W to com-
prise the following information. Examples refer to "Lifeline-
Pure Scheme" and Fig. 2:

• the current contents of W’s local pool (e.g., a queue with
the task descriptors of D2 and G2),

• all locally saved task results of W that are yet to be incor-
porated into their parent frame (e.g., rF),

• all frames returned to W from their thieves that are await-
ing result incorporation (e.g., fA),

SN Computer Science (2024) 5:320 Page 5 of 14 320

SN Computer Science

• the identities of all victims of W to which W has yet
to return the respective stolen frame (e.g., Green and
Brown),

• the identities of all thieves of W that have yet to return
their frame to W (e.g., Yellow), and

• a task descriptor of the next task (if relevant, see below).

Like in AllFT, checkpoints are only written when the worker
is outside task processing. Thus, there are three possible
occasions for checkpoint writing:

A. At a spawn: Before branching into the child (e.g., before
branching into H).

B. At a sync: Right before returning the frame to the
child (e.g., right before returning fA).

C. At the end of a function, which gives rise to two sub-
cases:

 C1. After the function had been finished and
its result was incorporated into the parent
frame (e.g., after H had been finished and its
result was incorporated into the G frame)

 C2. After the function had been finished and its result
was stored locally (e.g., after F had been finished
and rF was stored).

The last item from the above definition of worker state is
relevant in occasion A, but not in occasions B and C. In
occasions B and C, the next task will either be taken from
the local queue, and is then part of the state anyway, or be
stolen anew, and is then contained in the checkpoint that is
written during the steal protocol.

Checkpoints contain the newly defined worker state
and the same status information as in AllFT (see "Origi-
nal Task-Level Checkpointing and Recovery Scheme for
DIT"). Checkpoints are saved in a resilient store with the
same requirements as for AllFT.

The steal protocol is almost identical to that in AllFT,
since the handshaking to reach consistency is independent
of the contents of checkpoints. We merely added book-
keeping for the identities of victims and thieves. For com-
pleteness, we depict the protocol in Fig. 3. It shows a suc-
cessful random steal. The wavy and dashed lines indicate
time the worker spends on task processing and waiting,
respectively. The resilient store is briefly abbreviated as
resiStore. The figure begins at the top with a victim, who
is busy processing tasks, and a thief, who has no tasks and
thus attempts to steal (here: from Victim) and waits for an
answer. Steal requests are active messages, whose action is
written next to the wavy line. The messages are processed
in parallel to the victim thread by another thread of the
victim process. If the victim pool is empty, this thread
immediately sends back a reject message; otherwise, it

records the request. The victim occasionally interrupts its
task processing to react to the recorded messages. In our
example, the victim has tasks in its queue. Therefore, it
takes out the oldest task, increments and attaches the loot
identifier, saves the open loot and its checkpoint in the
resilient store, and sends the loot to the thief. On arrival of
the loot, the thief compares the loot identifier with the last
received loot identifier from the same victim, and ignores
the loot if the thief already received it (can happen during
recovery, see below). Normally, the thief inserts the loot
into its queue, locally saves the loot identifier and the vic-
tim, saves a backup in the resilient store, acknowledges the
receipt, and begins to process the loot. On arrival of the
acknowledgement, the victim deletes the open loot from
the resilient store.

Whereas in the AllFT scheme for DIT, worker results are
local and just have to be included in checkpoints, in NFJ, we
must deal with consistency regarding the results. Recall that,
for result matching, frames are sent back to the victims. This
leads to a similar consistency problem as in stealing insofar
as data (loot or a frame, respectively) are moved from one
worker to another. We solve the problem with a frame return
protocol, which closely resembles the steal protocol, except
that it is initiated by the sender (there is no preceding steal
request).

Figure 4 illustrates our new frame return protocol. It
shows the case of two consecutive frame returns of a parent
frame, first by Thief 1 and then by Thief 0. The protocol
starts when Thief 1 encounters a sync in some task. Then,
Thief 1 writes a checkpoint to the resilient store, called
frame return backup, and additionally saves the continua-
tion (i.e., a frame) of the corresponding task there tempo-
rarily. In analogy to open loot, the frame is denoted as open

Fig. 3 Example of the steal protocol with a successful random steal

 SN Computer Science (2024) 5:320 320 Page 6 of 14

SN Computer Science

while being kept in the resilient store. Next, Thief 1 sends
the frame to the last victim (here: to Victim 1) and continues
task processing with a new task.

If a last victim does not expect the frame, which may
happen during restore (see below), the frame is ignored. In
our example, the frame is expected, and so, Victim 1 saves a
checkpoint, which includes the frame, in the resilient store,
and sends an acknowledgement to Thief 1. This acknowl-
edgement would also be sent for ignored frames for which
the protocol would end afterward.

The figure shows a case where Victim 1 is still processing
the child task when the frame arrives. Therefore, Victim 1
saves the frame locally. When the child task eventually fin-
ishes, Victim 1 looks up the frame and inserts the child task
result. Thereby it recognizes that the frame expects another
result, and therefore, Victim 1 becomes Thief 0 and initiates
another frame return protocol analogously.

For the second frame return, the figure shows a differ-
ent case where Victim 0 has already finished the child task.
Therefore, Victim 0 inserts the result right after the frame
receipt. Victim 0 recognizes that the frame has all needed
results, and so, Victim 0 inserts the frame at the bottom of
its queue.

The restore protocol extends that of AllFT. Let X
denote a failed worker, and B the buddy of X, respectively.
Then, like in AllFT, B adopts all tasks from X’s check-
point and any open loot sent from X. Additionally, now,
B adopts all task results and frames from X’s checkpoint.
B just stores them alongside its own results and frames:
The results will eventually be located by their associated

thieves (see below); and the frames are awaiting results
from X’s tasks, which have been adopted by B as well.
When learning about X’s failure, victims that are awaiting
a frame return from X inspect the resilient store to see if
the frame is open. If so, they take it, and thereby send the
acknowledgement to B instead of X.

Frames sent to X are handled by the sender, as is open
loot sent to X in AllFT. Unlike the loot, however, the
frames cannot be taken back by the sender. Instead, the
sender delivers them to the owner of the associated results,
which is B. The sender locates B as being the next worker
alive in the ring of workers. Frames to X that are finished
later are handled the same way. In any case, if a frame was
already received, it is ignored by the victim.

AllFT assumes all workers are equal when defining
the ring. For our multi-worker processes, we number
the workers in the ring blockwise: workers of process 0
get numbers 0… d − 1 , workers of process 1 get num-
bers d… 2d − 1 , etc. While individual worker failures
can be handled, usually it is processes that fail. A process
failure is handled like a simultaneous failure of multiple
workers. By definition, the buddy of all of these work-
ers is the first worker of the next process. As usual, it is
responsible for the restore of all failed workers. We chose
the above numbering scheme, although it may create some
temporary load imbalances, since it enables many other
workers to continue task processing despite the failure.
Senders of loot/frames to a failed worker recognize that
a whole process has failed and avoid trying every single
worker in the search for the buddy.

Fig. 4 Example of the frame
return protocol with a frame that
was stolen two times: initially
from Victim 0 by Thief 0, and
then from Victim 1 by Thief 1

SN Computer Science (2024) 5:320 Page 7 of 14 320

SN Computer Science

Implementation

Our implementation is based on the APGAS for Java
library [48] for programming distributed parallel applica-
tions, and on a resilient store, called IMap, from Hazel-
cast [16]. The APGAS library provides methods to send
active messages, which are processed by threads of the
Java fork–join pool [24]. Thus, they can be handled in
parallel to task processing at the receiver. Further, the
APGAS library provides failure notifications. More spe-
cifically, it invokes a failure handler on all processes that
have registered for the service. We register all processes.
Each of the failure handlers decides on the role of all of
its workers during restore and, if needed, initiates the
restore protocol.

The IMap internally saves workers and their check-
points as key-value pairs, groups the pairs into parti-
tions, and evenly distributes the partitions over nodes.
We configured the IMap, so that the checkpoints of
all workers from the same process are mapped to the
same partition, to reduce network communication dur-
ing restore. Moreover, the IMap supports transactions,
as it was required in Original Task-Level Checkpointing
and Recovery Schemefor DIT. The IMap works with at
most six replicas of each partition, and we configured it
with one replica. If more cluster nodes than the number
of replicas fail simultaneously or in close succession, a
checkpoint may be irrecoverably lost and the program
aborts. This, as well as the loss of all workers are the
only occasions in which our TC scheme aborts. AllFT, in
contrast, also aborts after failure of worker 0, due to dif-
ferences in termination detection between DIT and NFJ.

The source code of our implementation is available
online [38].

Experiments

Experimental Setting

We evaluated our scheme with four benchmarks:

• FIB: The Fibonacci benchmark resembles that from
"Background" for n = 67 , except that we spawn a task
for only one of the two recursive function calls.

• UTS: The Unbalanced Tree Search benchmark gener-
ates an irregular tree, using some statistical method that
allows to control the number of child nodes. The tree is
not stored, but its number of nodes is counted on-the-fly.
We spawn a task for each tree node. We used a geometric
distribution with expected value b = 4 for the distribution

of the number of child nodes, initial seed s = 19 for a
pseudorandom number generator, and tree height d = 19.

• NQ: The N-Queens benchmark counts the number of
valid placements of n queens on an n × n chessboard,
such that no two queens can attack each other. The
computation begins with one task which operates on
the first column of the chessboard. Each task loops
through the fields of its column and attempts to place a
queen on it. If successful, it spawns a task for the next
column. We used n = 18.

• SYN: The synthetic benchmark recursively spawns
tasks, so that they form a perfect w-ary task tree. Each
task runs a dummy computation with configurable dura-
tion and then reports back to its parent [36]. We con-
figured m = 106 tasks per worker with total duration
T
calc

= 100 s, and v = 20% load variance between work-
ers.

We used the existing FIB, UTS, and SYN implementa-
tions from reference [39], and implemented NQ from
scratch.

FIB, UTS, and NQ allow setting a sequential cut-off (C),
which is a problem size threshold at which the spawn key-
word is ignored: for FIB, it refers to calls with n < C , for
UTS, it refers to all tree nodes with a depth greater than C,
and for NQ, it refers to tasks with at most C unplaced
queens. Like in reference [39], we set C = 30 for FIB, C = 13
for UTS, and we found C = 6 to perform well for NQ. Recall
that parameter k denotes the number of tasks that a worker
processes before answering steal requests. Like in reference
[39], we set k = 10 for FIB, k = 16 for UTS, and k = 1 for
NQ and SYN. We set R = 10 s, like in reference [35].

Experiments were conducted on two clusters:
Goethe: We used a partition of the Goethe cluster of the

University of Frankfurt [50], which consists of homoge-
neous Infiniband-connected nodes, each with two 20-core
Intel Xeon Skylake Gold 6148 CPUs and 192 GB of main
memory. We assigned one process with 40 workers to each
cluster node.

Lichtenberg: We used a partition of the Lichtenberg
cluster of the Technical University of Darmstadt [51], which
consists of homogeneous Infiniband-connected nodes, each
with two 48-core Intel Xeon Platinum 9242 CPUs and
384 GB of main memory. We assigned one process with
96 workers to each cluster node.

On both clusters, we used Java version 19.0.2 and the
APGAS for Java library from [18].

Failure‑Free Runs

Figure 5 depicts the performance of failure-free FIB, UTS,
NQ, and SYN executions with and without protection on

 SN Computer Science (2024) 5:320 320 Page 8 of 14

SN Computer Science

Goethe and Lichtenberg. Corresponding raw data are given
in Tables 1 and 2. All values are averages over 10 runs.

Figures 5a–c depict running times. They employ strong
scaling to give an impression of magnitudes. In all cases, the
costs for protection increase with the number of workers. On
Goethe at 1280 workers, the difference in running times of
protected vs unprotected runs is 144.3 s vs 113.7 s (FIB),
114.3 s vs 89.1 s (UTS), and 107.01 s vs 85.38 s (NQ). On
Lichtenberg at 1536 workers, it is 179.67 s vs 126.05 s (FIB),
126.5 s vs 89.6 s (UTS), and 139.64 s vs 98.74 s (NQ).

Figure 5d depicts the difference between measured run-
ning times and T

calc
 , called overall runtime overhead, which

includes both the costs of load balancing and the costs of
protection. One can see that this overhead increases with the
number of workers up to 32.9% on Goethe and up to 50.98%
on Lichtenberg. For comparison, the pure work stealing
overhead in unprotected runs is up to 4.27% on Goethe and
up to 5.45% on Lichtenberg.

The results from Fig. 5 are summarized in Fig. 6. The
figure shows the protection overhead, which is the quotient
of the running times of protected runs over unprotected runs
minus one as percentage. As can be seen in the figure, the
protection overhead curves are similar for the four bench-
marks, with a maximum of 28.3% at 1280 workers on Goe-
the, and 43.98% at 1536 workers on Lichtenberg.

These numbers are roughly in line with previously
reported protection overheads for AllFT. To see this, observe

that our protection overheads can be expected to be roughly
twice of those of AllFT, since each AllFT steal gives rise to
the execution of a steal protocol, whereas each of our steals
gives rise to the execution of both a steal and a frame return
protocol. Thus, the number of checkpoint writings, which
are the most expensive operations, approximately doubles.

The most recent performance evaluation of AllFT is given in
[36]. This reference only reports protection overheads for SYN
with up to 144 workers on a different cluster. Additionally, it
reports running times for UTS with up to 640 workers on Goe-
the. We used the raw data of these running times to calculate
the protection overhead of AllFT at 640 workers on Goethe.
It is about 5.5% . Comparing this number with the protection
overhead of our new scheme at 640 workers on Goethe, which
is 13.6% , our expectation of a factor of two is approximately
met. The remaining difference can be attributed to a different
design of the data structures (e.g., larger task descriptors in NFJ
vs DIT), and to a slightly less sophisticated implementation.

Estimation of Restore Overhead

In a second group of experiments, we estimated the restore
overhead after worker failures. This overhead includes the
times for: failure detection, execution of the restore protocol,
and reprocessing of the lost tasks. It does not include the
increase in running time that is due to our usage of a shrink-
ing recovery, i.e., to the use of less resources after the failure.

Table 1 Average running times
in seconds with and without
failure protection on Goethe

Benchmark Protection Workers

40 80 160 320 640 1280

FIB Protected 3532.39 1798.49 907.52 464.96 244.30 144.31
Unprotected 3523.55 1780.05 882.66 447.40 225.07 113.65

UTS Protected 2628.18 1372.52 707.35 370.94 200.20 114.25
Unprotected 2612.21 1342.14 696.51 355.36 176.22 89.06

NQ Protected 2492.58 1300.79 666.83 347.50 184.49 107.01
Unprotected 2477.38 1284.32 652.76 333.88 167.67 85.38

SYN Protected 104.70 106.32 109.05 113.55 118.11 132.93
Unprotected 102.97 102.71 104.13 103.32 103.54 104.27

Table 2 Average running
times in seconds with and
without failure protection on
Lichtenberg

Benchmark Protection Workers

96 192 384 768 1536

FIB Protected 1957.49 987.96 534.15 285.02 179.67
Unprotected 1938.16 959.80 497.94 248.28 126.05

UTS Protected 1446.45 719.23 369.81 205.24 126.50
Unprotected 1422.35 699.10 343.46 176.73 89.6

NQ Protected 1419.61 750.29 399.22 236.11 139.64
Unprotected 1405.37 713.30 368.20 202.63 98.74

SYN Protected 105.40 110.27 116.74 122.86 150.98
Unprotected 103.00 103.60 103.93 104.18 104.86

SN Computer Science (2024) 5:320 Page 9 of 14 320

SN Computer Science

We estimated the overhead with the help of a methodol-
ogy from reference [35]. For that, we measured the running
times of three program executions:

(A) with 640 workers,
(B) with 600 workers, and

Fig. 5 Performance in failure-
free runs on Goethe (left) and
Lichtenberg (right)

100

1000

10000

40 80 160 320 640 1280

T
im

e
in

S
ec

on
d
s

Workers

Protected
Unprotected

100

1000

10000

96 192 384 768 1536

T
im

e
in

S
ec

on
d
s

Workers

Protected
Unprotected

(a) Running times of FIB

10

100

1000

10000

40 80 160 320 640 1280

T
im

e
in

S
ec

on
d
s

Workers

Protected
Unprotected

10

100

1000

10000

96 192 384 768 1536

T
im

e
in

S
ec

on
d
s

Workers

Protected
Unprotected

(b) Running times of UTS

10

100

1000

10000

40 80 160 320 640 1280

T
im

e
in

S
ec

on
d
s

Workers

Protected
Unprotected

10

100

1000

10000

96 192 384 768 1536

T
im

e
in

S
ec

on
d
s

Workers

Protected
Unprotected

(c) Running times of NQ

1

10

100

40 80 160 320 640 1280

O
ve

rh
ea

d
in

S
ec

on
d
s

Workers

Protected
Unprotected

1

10

100

96 192 384 768 1536

O
ve

rh
ea

d
in

S
ec

on
d
s

Workers

Protected
Unprotected

(d) Overall runtime overhead of SYN

 SN Computer Science (2024) 5:320 320 Page 10 of 14

SN Computer Science

(C) with 640 workers, of which we crashed 80 workers
(2 processes) after half of the expected running time
by calling System.exit(). Thereby, the expected
running time was taken from execution (A) (245.23 s).

Because executions (B) and (C) use the same average num-
ber of workers, we roughly estimated the restore overhead
as the difference between the running times of executions
(C) (291.28 s) and (B) (277.38 s). All numbers are averages
over 50 runs of each execution.

As can be seen from the numbers, the restore overhead is
about 5% of the running time. Since this overhead refers to
the failure of 80 workers, the overhead of a single-worker
failure is negligible.

Correctness

To verify that our TC scheme can handle any number of
worker failures, regardless of their timing, we injected pro-
cess failures by calling System.exit() in particularly
difficult situations. The test cases were selected by picking
the hardest cases from a list of test cases for AllFT in refer-
ence [33], and adding new, similar cases to test the frame
return protocol. In the following list of test cases, X denotes
a random worker that was crashed so as to fulfill the test
case. In addition, we always crashed all workers of X’s pro-
cess, and in some cases also the original buddy Y of X. The
X worker was crashed:

 1. after X had written its first regular backup,
 2. after X had sent the acknowledgement during the steal

protocol,
 3. after X had sent loot, but before the acknowledgement

arrived,
 4. after X had written the victim side steal backup, but

before X sent the loot,
 5. after X had saved open loot to the IMap, but before X

saved its checkpoint,

 6. after X had sent loot, and we delayed the thief side
steal protocol until recovery (for all failed workers)
was complete,

 7. after X had saved an open frame to the IMap, but
before X saved its checkpoint,

 8. after X had written the victim side frame return
backup, but before X sent the frame return message,

 9. after X had written the victim side frame return
backup, but before X sent the acknowledgement,

 10. after X had sent a frame return message, and we
delayed the execution of the victim side frame return
protocol until recovery (for all failed workers) was
complete,

 11. at a random time, and
 12. at a random time, and we additionally crashed Y at the

beginning of the restore protocol.

In an additional test case, we crashed 90% of all processes
to test the abort of the computation with an error message.

We run our correctness tests on Goethe with 640 workers
using SYN. Each of the above tests was repeated 25 times.
Our observation of the program log files showed that all
program executions behaved correctly.

Prediction of Running Times

This section derives a formula to predict the running times
of runs with multiple worker failures. Afterwards, we vali-
date the formula by comparing its estimates with measured
running times on Lichtenberg. For generality, the formula
refers to worker failures, but it can be easily extended to
process failures by multiplying the number of failures with
the number of workers per process.

The formula is derived with the same methodology as
in reference [36]. Generally speaking, the formula takes
into account three causes of running time increase: pro-
tection costs (as in "Failure-Free Runs"), restore overhead
(as in "Estimation of Restore Overhead"), and the reduc-
tion in the number of available resources due to shrink-
ing recovery (not previously considered). We assume that

Fig. 6 Protection overheads of
the benchmarks in failure-free
execution on Goethe (left) and
Lichtenberg (right)

0.1

1

10

100

40 80 160 320 640 1280

%
P
ro

te
ct
io
n

O
ve

rh
ea

d

Workers

FIB
UTS
NQ

SYN
0.1

1

10

100

96 192 384 768 1536

%
P
ro

te
ct
io
n

O
ve

rh
ea

d

Workers

FIB
UTS
NQ

SYN

SN Computer Science (2024) 5:320 Page 11 of 14 320

SN Computer Science

the failures are uniformly distributed, i.e., a failure occurs
with equal probability at any time during the program
execution. The following notation is used:

• p: number of workers,
• x ≪ p : number of worker failures,
• j: number of steals per worker per second,
• r: number of regular backups per worker per second,
• TNO(p) : average running time of unprotected execu-

tions, and
• TFTx(p) : average running time of protected executions

with x ≥ 0 worker failures.

Let us start with the protection costs. They include the
time for regular backup writing, and the time spent in the
steal and frame return protocols. The time to write a regu-
lar backup is about constant (for a given benchmark), and
we denote it by c

0
 . We calculate the time spent in the pro-

tocols per steal. Per steal, four backups are written, namely
two in the steal protocol and two in the frame return pro-
tocol, and several other actions are performed in the two
protocols. Overall, the protection costs per steal are about
constant, and we denote them by c

1
 . Taking the steal and

regular backup rates into account, we get an estimate for
the running time of failure-free, protected executions

Next, we will estimate the restore overhead. It is composed
of 1) the costs to run the restore protocol itself, and 2) the
costs to re-execute all the tasks that any of the failed workers
had processed since its last checkpoint. The protocol costs
are about constant, and we denote them by c

2
 for each of

the x failures. For the estimation of re-execution costs, we
first determine the length of the backup interval, which is
the average distance between successive backups. Since a
worker writes four backups per steal (if we offset the thief
and victim sides), plus the regular backups, it writes 4j + r
backups per second. Reversely, the length of the backup
interval is b = 1∕(4j + r) . On average, a failure occurs at half
of this interval. Thus, tasks with duration about b/2 need to
be reprocessed per failed worker. This reprocessing is shared
among the available workers, which are p − i workers after
the ith failure. Consequently, the overall restore overhead is

Finally, we will estimate the impact of resource reduction.
Due to the uniform distribution of failures, on average, fail-
ures occur at half of the running time. Thus about x/2 of
the overall computing power is lost due to the shrinking

TFT
0
(p) = (1 + c

0
r + c

1
j)TNO(p).

x
∑

i=1

b

2(p − i)
+ c

2
x.

recovery. This aspect leads to a proportional increase of the
running time to

Putting the above three causes of running time increase
together, we obtain our formula

To complete it, we need values for j, r, and c
0
 to c

2
 . These

values are benchmark-specific, since, for instance, the costs
for backup writing depend on the size of task descriptors.

We experimentally determined the values for the
SYN benchmark on Lichtenberg; see Table 3. For this,
we modified the code to log operation durations, run the
benchmark 25 times with the parameters from "Experi-
ments", and injected a single-worker failure into each run
at a random time. The runs used only 192 workers due to
time and cluster compute time quota restraints. First, we
determined j by summing up the number of steals of each
worker (10,163 total steals) and dividing the sum by the
number of workers and the average running time (112.11 s).
The runs used R = 10 s , and thus, r = 1∕R = 0.1 . For c

0
 , we

measured the duration of writing all regular backups and
divided the sum by the total number of regular backups
and workers. For c

1
 , similarly, we measured the duration

of the bookkeeping and IMap accesses during all steals
and frame returns on the victim and thief sides, summed
them up, and divided the sum by the number of steals and
workers. For c

2
 , we measured the duration of all failure

handler executions at each worker, summed them up, and
divided the sum by the number of failures and the average
number of workers alive.

While the above constants were determined by injecting
single worker failures, we tested the accuracy of our for-
mula by injecting multiple failures. Thus, we compared the
predictions of the formula (including the constants) with
measured running times of SYN executions on Lichten-
berg, into which we injected up to 32 worker failures at
random times. Figure 7 shows the predicted and measured
running times with 192 workers and the same parameter
values as in "Experiments". The measured running times
are averages over 25 runs. We observe that the predictions

p

p − (x∕2)
TFT
0
(p).

(1)

TFT
x
(p) =

p

p − (x∕2)
(1 + c

0
r + c

1
j)TNO(p)

+

x
∑

i=1

b

2(p − i)
+ c

2
x.

Table 3 Constant values averaged over 25 runs

Constant j r c
0

c
1

c
2

Value 0.47 0.1 5ms 68ms 521ms

 SN Computer Science (2024) 5:320 320 Page 12 of 14

SN Computer Science

are close to the measurements, with a maximum difference
of 1.11% percent for 8 worker failures.

Related Work

There is a large body of work on AMTs (surveyed in [9,
14, 49]) and on AMT scheduling (e.g., [5, 25, 52]). The
lifeline scheme was proposed in [41], where it referred to
single-threaded processes. Later, it was extended to a hybrid
scheme, in which the workers of each process balance their
load via work sharing [8]. Reitz and Fohry [39] compared
the hybrid scheme with the simpler lifeline-pure scheme
introduced in that reference, and observed that the lifeline-
pure scheme usually performs better. Its efficiency can be
further improved through locality- and load-aware victim
selection [39].

Outside the AMT area, fault-tolerance tools for parallel
programs include BLCR [15] and DMTCP [1] for system-
level C/R, and SCR [29] and FTI [3] for application-level
checkpointing [45]. In addition to application-level check-
pointing, other application-level techniques are Algorithm-
Based Fault Tolerance (ABFT) and naturally fault-tolerant
algorithms [44]. All of these techniques protect programs
against permanent node failures. Other resilience techniques
handle silent data corruptions (SDC), such as bit flips. A
prominent technique to protect programs against SDC is
replication [46].

Much of the research on AMT resilience refers to SDC,
e.g., [13, 22, 31]. AMT research to handle permanent node
failures can be classified according to the use of checkpoint-
ing or other techniques. Additionally, it refers to different
task models. Most of this research refers to the DIT model.
In addition to AllFT, other schemes have been studied,
which, e.g., use incremental checkpointing [35], do not rely
on a resilient store [11], or combine fault tolerance with
elasticity [34]. Incremental checkpointing could be applied

to our NFJ scheme to further reduce the protection over-
head. For the hybrid lifeline scheme mentioned above, a
fault-tolerance approach has been sketched in reference
[37]. Another recent checkpointing technique for StarPU
concentrates on checkpointing the data that are communi-
cated between tasks [26]; whereas the tasks themselves are
known from the beginning and can be easily re-run. Some-
what related, Ma and Krishnamoorthy [28] consider tasks
with side effects. They log memory accesses of tasks and
use this information to restore data and to identify tasks to
be re-executed after failure.

A resilience technique for NFJ programs, which is not
based on checkpointing, leverages the natural task dupli-
cation during work stealing. Victims re-initiate execution
of their stolen tasks in case the thief dies, which is some-
times called supervision [20]. Supervision also works for
DIT, where it was compared to TC in [36]. In this reference,
supervision was observed to have less overhead than TC in
failure-free runs, and TC to have lower recovery costs. The
fault tolerance overheads for SYN with up to 144 workers
were less than 1% for both methods in failure-free runs.

Localized recovery has been previously deployed for
both AMT (e.g., [20, 21, 26]) and other parallel programs
(e.g., [12]). It must be supported by a programming environ-
ment such as User-Level Failure Mitigation (ULFM [27]).
An alternative to shrinking recovery is the usage of spare
processes [27].

Theoretical studies on fault tolerance are common. For
instance, models have been studied for determining the opti-
mal checkpointing interval and for comparing fault-tolerance
approaches [4, 7, 47]. We based our running time estimation
on a prior one for the AllFT scheme [36].

Conclusions

This paper has shown that TC can protect NFJ programs
against permanent node failures. We presented the first TC
scheme for NFJ, which is also the first TC scheme for multi-
worker processes under work stealing.

We evaluated the scheme in experiments with four bench-
marks and up to 1536 workers, and observed protection
overheads of up to 43.98% and negligible recovery costs.
The protection overheads are higher than those of TC for
DIT, but lower than typical C/R overheads. The higher costs
than in DIT are mostly due to the need for an additional
frame return protocol. Nevertheless, we expect that they can
be reduced in future work, e.g., through low-level optimiza-
tions, and by combining backups from different protocols
into one.

Further, we proposed a formula for predicting running
times in case of multiple worker failures and experimentally

110

115

120

125

130

135

140

0 1 2 4 8 16 32

R
u
n
n
in
g
T
im

e
in

S
ec

on
d
s

Failed Workers

Prediction
Measured

Fig. 7 Predicted and measured running times for up to 32 failures out
of 192 workers on Lichtenberg

SN Computer Science (2024) 5:320 Page 13 of 14 320

SN Computer Science

validated it. We observed an error of up to 1.11% compared
to measured running times for up to 32 worker failures.

With our work, we were able to transfer a previous TC
scheme from DIT to NFJ. The success of this transfer is
promising, since it suggests that future work may possibly be
able to generalize TC to further task models. Additionally,
future work should consider incremental checkpointing and
more complicated benchmarks.

Acknowledgements The authors gratefully acknowledge the comput-
ing time provided to them on the Goethe-HLR cluster at the Frankfurt
Center for Scientific Computing and on the high-performance computer
Lichtenberg at the NHR Centers NHR4CES at TU Darmstadt. The
Lichtenberg cluster is funded by the Federal Ministry of Education
and Research, and the state governments participating on the basis of
the resolutions of the GWK for national high-performance computing
at universities.

Author Contributions All listed authors have contributed to this
research.

Funding Open Access funding enabled and organized by Projekt
DEAL. This research was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Project no.
512078735.

Data availability statement The source code of this paper is available
online: https:// zenodo. org/ doi/ 10. 5281/ zenodo. 10055 194.

Declarations

 Conflict of interest The authors declare that they have no conflict of
interest.

Research involving human and/or animals This research does not con-
tain any studies with human participants or animals performed by any
of the authors.

 Informed consent Informed consent was obtained from all individual
participants included in this research.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Ansel J, Arya K, Cooperman G. DMTCP: transparent check-
pointing for cluster computations and the desktop. In: Proceed-
ings international parallel and distributed processing symposium
(IPDPS). IEEE. 2009. pp. 1–12. https:// doi. org/ 10. 1109/ ipdps.
2009. 51610 63.

 2. Augonnet C, Thibault S, Namyst R, et al. StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architec-
tures. Concurr Comput Pract Exp. 2011;23:187–98. https:// doi.
org/ 10. 1002/ cpe. 1631.

 3. Bautista-Gomez L, Tsuboi S, Komatitsch D, et al. FTI: High per-
formance fault tolerance interface for hybrid systems. In: Proceed-
ings international conference for high performance computing,
networking, storage and analysis (SC). ACM. 2011. pp. 1–32.
https:// doi. org/ 10. 1145/ 20633 84. 20634 27.

 4. Benoit A, Herault T, Fèvre VL, et al. Replication is more efficient
than you think. In: Proceedings international conference for high
performance computing, networking, storage and analysis (SC).
ACM. 2019. pp. 1–14. https:// doi. org/ 10. 1145/ 32955 00. 33561 71.

 5. Blumofe RD, Leiserson CE. Scheduling multithreaded computa-
tions by work stealing. J ACM. 1999;46(5):720–48. https:// doi.
org/ 10. 1145/ 324133. 324234.

 6. Chamberlain BL, Callahan D, Zima HP. Parallel programmabil-
ity and the Chapel language. Int J High Perform Comput Appl.
2007;21(3):91–312. https:// doi. org/ 10. 1177/ 10943 42007 078442.

 7. Daly JT. A higher order estimate of the optimum checkpoint inter-
val for restart dumps. Future Gener Comput Syst. 2006;22(3):303–
12. https:// doi. org/ 10. 1016/j. future. 2004. 11. 016.

 8. Finnerty P, Kamada T, Ohta C. Self-adjusting task granularity for
global load balancer library on clusters of many-core processors.
In: Proceedings international workshop on programming models
and applications for multicores and manycores (PMAM). ACM.
2020. pp. 1–10. https:// doi. org/ 10. 1145/ 33805 36. 33805 39.

 9. Fohry C. An overview of task-based parallel programming mod-
els. In: Tutorial at European network on high-performance embed-
ded architecture and compilation conference (HiPEAC). 2020.
https:// doi. org/ 10. 5281/ zenodo. 84259 59.

 10. Fohry C. Checkpointing and localized recovery for nested fork-
join programs. In: International symposium on checkpointing for
supercomputing (SuperCheck). 2021. arXiv: 2102. 12941.

 11. Fohry C, Bungart M, Plock P. Fault tolerance for lifeline-based
global load balancing. J Softw Eng Appl. 2017;10(13):925–58.
https:// doi. org/ 10. 4236/ jsea. 2017. 10130 53.

 12. Gamell M, Teranishi K, Heroux MA, et al. Local recovery and
failure masking for stencil-based applications at extreme scales.
In: Proceedings international conference for high performance
computing, networking, storage and analysis (SC). 2015. pp.
70:1–70:12. https:// doi. org/ 10. 1145/ 28075 91. 28076 72.

 13. Gupta N, Mayo JR, Lemoine AS, et al. Towards distributed soft-
ware resilience in asynchronous many-task programming mod-
els. In: Workshop on fault tolerance for HPC at eXtreme Scale
(FTXS). 2020. pp. 11–20. https:// doi. org/ 10. 1109/ FTXS5 1974.
2020. 00007.

 14. Gurhem J, Petiton SG. A current task-based programming para-
digms analysis. In: Proceedings computational science (ICCS).
Springer; 2020. pp. 203–16. https:// doi. org/ 10. 1007/ 978-3- 030-
50426-7_ 16.

 15. Hargrove PH, Duell JC. Berkeley lab checkpoint/restart (BLCR)
for linux clusters. J Phys Conf Ser. 2006;46:494–9. https:// doi. org/
10. 1088/ 1742- 6596/ 46/1/ 067.

 16. Hazelcast. The leading open source in-memory data grid. 2023.
http:// hazel cast. org.

 17. Herault T, Robert Y. Fault-tolerance techniques for high-perfor-
mance computing. Berlin: Springer; 2015. https:// doi. org/ 10. 1007/
978-3- 319- 20943-2.

 18. IBM. The APGAS library for fault-tolerant distributed program-
ming in Java 8. 2023. https:// github. com/ x10- lang/ apgas.

 19. Kaiser H, Heller T, Adelstein-Lelbach B, et al. HPX: a task based
programming model in a global address space. In: Proceedings
international conference on partitioned global address space pro-
gramming models (PGAS). ACM. 2014. pp. 1–11. https:// doi. org/
10. 1145/ 26768 70. 26768 83.

https://zenodo.org/doi/10.5281/zenodo.10055194
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ipdps.2009.5161063
https://doi.org/10.1109/ipdps.2009.5161063
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1145/3295500.3356171
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1016/j.future.2004.11.016
https://doi.org/10.1145/3380536.3380539
https://doi.org/10.5281/zenodo.8425959
http://arxiv.org/abs/2102.12941
https://doi.org/10.4236/jsea.2017.1013053
https://doi.org/10.1145/2807591.2807672
https://doi.org/10.1109/FTXS51974.2020.00007
https://doi.org/10.1109/FTXS51974.2020.00007
https://doi.org/10.1007/978-3-030-50426-7_16
https://doi.org/10.1007/978-3-030-50426-7_16
https://doi.org/10.1088/1742-6596/46/1/067
https://doi.org/10.1088/1742-6596/46/1/067
http://hazelcast.org
https://doi.org/10.1007/978-3-319-20943-2
https://doi.org/10.1007/978-3-319-20943-2
https://github.com/x10-lang/apgas
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2676870.2676883

 SN Computer Science (2024) 5:320 320 Page 14 of 14

SN Computer Science

 20. Kestor G, Krishnamoorthy S, Ma W. Localized fault recovery for
nested fork-join programs. In: Proceedings international sympo-
sium on parallel and distributed processing (IPDPS). IEEE. 2017.
pp. 397–408. https:// doi. org/ 10. 1109/ ipdps. 2017. 75.

 21. Kolla H, Mayo JR, Teranishi K, et al. Improving scalability of
silent-error resilience for message-passing solvers via local recov-
ery and asynchrony. In: Proceedings Workshop on fault tolerance
for HPC at eXtreme Scale (FTXS). 2020. pp. 1–10. https:// doi.
org/ 10. 1109/ FTXS5 1974. 2020. 00006.

 22. Kurt MC, Krishnamoorthy S, Agrawal K, et al. Fault-tolerant
dynamic task graph scheduling. In: Proceedings international
conference for high performance computing, networking, storage
and analysis (SC). ACM. 2014. pp. 719–30. https:// doi. org/ 10.
1109/ SC. 2014. 64

 23. Laboratory ORN. Frontier. 2023. https:// www. olcf. ornl. gov/ front
ier.

 24. Lea D. A Java fork/join framework. In: Proceedings of the confer-
ence on java grande. ACM. 2000. pp. 36–43. https:// doi. org/ 10.
1145/ 337449. 337465.

 25. Lifflander J, Slattengren NL, Pébaÿ PP, et al. Optimizing distrib-
uted load balancing for workloads with time-varying imbalance.
In: Proceedings IEEE international conference on cluster comput-
ing (CLUSTER). 2021. pp. 238–48. https:// doi. org/ 10. 1109/ Clust
er489 25. 2021. 00039.

 26. Lion R, Thibault S. From tasks graphs to asynchronous distributed
checkpointing with local restart. In: Proceedings international
conference on high performance computing, networking, storage
and analysis (SC) workshops (FTXS). ACM. 2020. pp. 31–40.
https:// doi. org/ 10. 1109/ FTXS5 1974. 2020. 00009.

 27. Losada N, González P, Martìn MJ, et al. Fault tolerance of MPI
applications in exascale systems: the ULFM solution. Future
Gener Comput Syst. 2020;106:467–81. https:// doi. org/ 10. 1016/j.
future. 2020. 01. 026.

 28. Ma W, Krishnamoorthy S. Data-driven fault tolerance for work
stealing computations. In: Proceedings international conference
on supercomputing (ICS). ACM. 2012. pp. 79–90. https:// doi. org/
10. 1145/ 23045 76. 23045 89.

 29. Moody A, Bronevetsky G, Mohror K, et al. Design, modeling,
and evaluation of a scalable multi-level checkpointing system.
In: Proceedings international conference for high performance
computing, networking, storage and analysis (SC). ACM. 2010.
pp. 1–11. https:// doi. org/ 10. 1109/ SC. 2010. 18.

 30. OpenMP Architecture Review Board. OpenMP application pro-
gramming interface (version 5.2). 2021. https:// www. openmp. org.

 31. Paul SR, Hayashi A, Slattengren N, et al. Enabling resilience in
asynchronous many-task programming models. In: Proceedings
Euro-par: parallel processing. Springer. pp. 346–60. https:// doi.
org/ 10. 1007/ 978-3- 030- 29400-7_ 25.

 32. Posner J. System-level vs. application-level checkpointing. In:
Proceedings international conference on cluster computing
(CLUSTER), extended abstract. IEEE. 2020. pp. 404–5. https://
doi. org/ 10. 1109/ CLUST ER490 12. 2020. 00051.

 33. Posner J, Fohry C. A Java task pool framework providing fault-
tolerant global load balancing. Special Issue Int J Netw Comput.
2018;8(1):2–31. https:// doi. org/ 10. 15803/ ijnc.8. 1_2.

 34. Posner J, Fohry C. Transparent resource elasticity for task-based
cluster environments with work stealing. In: Proceedings inter-
national conference on parallel processing (ICPP) workshops
(P2S2). ACM. 2021. https:// doi. org/ 10. 1145/ 34587 44. 34733 61.

 35. Posner J, Reitz L, Fohry C. A comparison of application-level
fault tolerance schemes for task pools. Future Gener Comput Syst.
2019;105:119–34. https:// doi. org/ 10. 1016/j. future. 2019. 11. 031.

 36. Posner J, Reitz L, Fohry C. Task-level resilience: checkpointing
vs. supervision. Special Issue Int J Netw Comput. 2022;12(1):47–
72. https:// doi. org/ 10. 15803/ ijnc. 12.1_ 47.

 37. Reitz L. Task-level checkpointing for nested fork-join programs.
In: Proceedings international parallel and distributed processing
symposium (IPDPS), Ph.D. forum, extended abstract. IEEE. 2021.
https:// doi. org/ 10. 1109/ IPDPS W52791. 2021. 00160.

 38. Reitz L. Implementations of our nested fork-join AMTs with- and
without task-level checkpointing. 2023. https:// zenodo. org/ doi/ 10.
5281/ zenodo. 10055 194.

 39. Reitz L, Fohry C. Lifeline-based load balancing schemes for asyn-
chronous many-task runtimes in clusters. Special Issue J Parallel
Comput. 2023. https:// doi. org/ 10. 1016/j. parco. 2023. 103020.

 40. Reitz L, Fohry C. Task-level checkpointing for nested fork-join
programs using work stealing. In: Workshop on asynchronous
many-task systems for exascale (AMTE). Springer; 2023 (to
appear).

 41. Saraswat VA, Kambadur P, Kodali S, et al. Lifeline-based global
load balancing. In: Proceedings SIGPLAN symposium on princi-
ples and practice of parallel programming (PPoPP). ACM. 2011.
pp. 201–11. https:// doi. org/ 10. 1145/ 19415 53. 19415 82.

 42. Schardl TB, Lee ITA. OpenCilk: A modular and extensible soft-
ware infrastructure for fast task-parallel code. In: Proceedings of
the 28th SIGPLAN annual symposium on principles and practice
of parallel programming. ACM. 2023. pp. 189–203. https:// doi.
org/ 10. 1145/ 35728 48. 35775 09.

 43. Schmaus F, Pfeiffer N, Schroder-Preikschat W, et al. Nowa: a wait-
free continuation-stealing concurrency platform. In: International
parallel and distributed processing symposium (IPDPS). 2021. pp.
360–371. https:// doi. org/ 10. 1109/ IPDPS 49936. 2021. 00044.

 44. Semmoud A, Hakem M, Benmammar B. A survey of load bal-
ancing in distributed systems. Int J High Perform Comput Netw.
2019;15:233. https:// doi. org/ 10. 1504/ IJHPCN. 2019. 106124.

 45. Shahzad F, Wittmann M, Kreutzer M, et al. A survey of check-
point/restart techniques on distributed memory systems. Parallel
Process Lett. 2013;23(4):1340011–30. https:// doi. org/ 10. 1142/
s0129 62641 34001 12.

 46. Subasi O, Yalcin G, Zyulkyarov F, et al. Designing and model-
ling selective replication for fault-tolerant HPC applications. In:
International symposium on cluster, cloud and grid computing
(CCGRID). 2017. pp. 452–7. https:// doi. org/ 10. 1109/ CCGRID.
2017. 40

 47. Subasi O, Martsinkevich T, Zyulkyarov F, et al. Unified fault-tol-
erance framework for hybrid task-parallel message-passing appli-
cations. Int J High Perform Comput Appl. 2018;32(5):641–57.
https:// doi. org/ 10. 1177/ 10943 42016 669416.

 48. Tardieu O. The APGAS library: resilient parallel and distributed
programming in Java 8. In: Proceedings SIGPLAN workshop on
X10. ACM. 2015. pp. 25–26. https:// doi. org/ 10. 1145/ 27717 74.
27717 80.

 49. Thoman P, Dichev K, Heller T, et al. A taxonomy of task-based
parallel programming technologies for high-performance comput-
ing. J Supercomput. 2018;74(4):1422–34. https:// doi. org/ 10. 1007/
s11227- 018- 2238-4.

 50. TOP500.org. Goethe-HLR of the University of Frankfurt. 2023.
https:// www. top500. org/ system/ 179588.

 51. TOP500.org. Lichtenberg II (phase 1) of the Technical University
of Darmstadt. 2023b. https:// www. top500. org/ system/ 179857.

 52. Yang J, He Q. Scheduling parallel computations by work stealing:
a survey. Int J Parallel Programm. 2018;46(2):173–97. https:// doi.
org/ 10. 1145/ 324133. 324234.

 53. Zhang W, Tardieu O, Grove D, et al. GLB: Lifeline-based global
load balancing library in X10. In: Proceedings workshop on paral-
lel programming for analytics applications (PPAA). ACM. 2014.
pp. 31–40. https:// doi. org/ 10. 1145/ 25676 34. 25676 39.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ipdps.2017.75
https://doi.org/10.1109/FTXS51974.2020.00006
https://doi.org/10.1109/FTXS51974.2020.00006
https://doi.org/10.1109/SC.2014.64
https://doi.org/10.1109/SC.2014.64
https://www.olcf.ornl.gov/frontier
https://www.olcf.ornl.gov/frontier
https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/337449.337465
https://doi.org/10.1109/Cluster48925.2021.00039
https://doi.org/10.1109/Cluster48925.2021.00039
https://doi.org/10.1109/FTXS51974.2020.00009
https://doi.org/10.1016/j.future.2020.01.026
https://doi.org/10.1016/j.future.2020.01.026
https://doi.org/10.1145/2304576.2304589
https://doi.org/10.1145/2304576.2304589
https://doi.org/10.1109/SC.2010.18
https://www.openmp.org
https://doi.org/10.1007/978-3-030-29400-7_25
https://doi.org/10.1007/978-3-030-29400-7_25
https://doi.org/10.1109/CLUSTER49012.2020.00051
https://doi.org/10.1109/CLUSTER49012.2020.00051
https://doi.org/10.15803/ijnc.8.1_2
https://doi.org/10.1145/3458744.3473361
https://doi.org/10.1016/j.future.2019.11.031
https://doi.org/10.15803/ijnc.12.1_47
https://doi.org/10.1109/IPDPSW52791.2021.00160
https://zenodo.org/doi/10.5281/zenodo.10055194
https://zenodo.org/doi/10.5281/zenodo.10055194
https://doi.org/10.1016/j.parco.2023.103020
https://doi.org/10.1145/1941553.1941582
https://doi.org/10.1145/3572848.3577509
https://doi.org/10.1145/3572848.3577509
https://doi.org/10.1109/IPDPS49936.2021.00044
https://doi.org/10.1504/IJHPCN.2019.106124
https://doi.org/10.1142/s0129626413400112
https://doi.org/10.1142/s0129626413400112
https://doi.org/10.1109/CCGRID.2017.40
https://doi.org/10.1109/CCGRID.2017.40
https://doi.org/10.1177/1094342016669416
https://doi.org/10.1145/2771774.2771780
https://doi.org/10.1145/2771774.2771780
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://www.top500.org/system/179588
https://www.top500.org/system/179857
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/2567634.2567639

	Task-Level Checkpointing and Localized Recovery to Tolerate Permanent Node Failures for Nested Fork–Join Programs in Clusters
	Abstract
	Introduction
	Background
	Nested Fork–Join Programs (NFJ)
	Lifeline-Pure Scheme
	Original Task-Level Checkpointing and Recovery Scheme for DIT

	Task-Level Checkpointing for NFJ
	Implementation
	Experiments
	Experimental Setting
	Failure-Free Runs
	Estimation of Restore Overhead
	Correctness

	Prediction of Running Times
	Related Work
	Conclusions
	Acknowledgements
	References

