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Abstract
The study aims to create a Visible-Light Communication (VLC) system for secure vehicle management at intersections. This 
involves enabling communication between vehicles and infrastructure (V2V, V2I, and I2V) using headlights, streetlights, 
and traffic signals. Mobile optical receivers gather data, determine their location, and read transmitted information through 
joint transmission. An intersection manager coordinates traffic and communicates with vehicles through embedded Driver 
Agents. The system utilizes a "mesh/cellular" hybrid network configuration and encodes data into light signals emitted by 
transmitters. Optical sensors and filtering properties enable reception and decoding. The study demonstrates bidirectional 
communication, employing queue/request/response mechanisms and relative pose concepts for safe vehicle passage. A 
deep reinforcement learning model controls traffic light cycles, validated via simulation in a Simulation of Urban Mobility 
simulator. Results show that this adaptive traffic control system effectively collects detailed vehicle data and ensures secure 
communication within the short-range mesh network.

Keywords Vehicular communication · Traffic control · Light controlled intersection · Queue distance · “Mesh/cellular” 
hybrid network · Deep reinforcement learning model

Introduction

The main objective of the Intelligent Transport System (ITS) 
technology is to optimize traffic safety and efficiency on pub-
lic roads by increasing situation awareness and mitigating 
traffic accidents through vehicle-to-vehicle (V2V) and vehi-
cle-to-infrastructure (V2I) communications [1–3]. The goal 
is to increase the safety and throughput of traffic intersec-
tions using cooperative driving [4, 5]. For self-localization, 
the precise knowledge of the own motion and position is 

important. By knowing, in real time, the location, speed, and 
direction of nearby vehicles, a considerable improvement in 
traffic management is expected.

This work focuses directly on the use of Visible-Light 
Communication (VLC) as a support for the transmission of 
information providing guidance services and specific infor-
mation to drivers. VLC is an emerging technology [6, 7] that 
enables data communication by modulating information on 
the intensity of the light emitted by LEDs. VLC has signifi-
cant potential for various applications because of its sim-
ple design, efficiency, and wide geographical reach. In the 
case of vehicular communications, the use of VLC is made 
easier, because all vehicles, streetlights, and traffic lights are 
equipped with LEDs that are used for illumination. Here, 
the communication and localization are performed using the 
streetlamps, the traffic signaling, and the vehicle front and 
back lamps, enabling the dual use of exterior automotive and 
infrastructure lighting for both illumination and communica-
tion purposes [8, 9]. VLC enables a more accurate measure-
ment of the distance and position of vehicles with sub-meter 
resolution given the high directivity of visible light.

The paper is organized as follows. After the introduc-
tion where background theory on adaptive traffic control is 
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presented and the V-VLC link is explained, in Sect. "Sce-
nario, Environment and Architecture", the V-VLC system 
is described and the scenario, architecture, communica-
tion protocol, and coding/decoding techniques analyzed. 
In Sect. "VLC Evaluation", the experimental results are 
reported, and the system evaluation performed. A phas-
ing traffic flow diagram based on V-VLC is developed, as 
a Proof of Concept (PoC). In Sect. "Intelligent control in 
V-VLC systems", an agent-based dynamic traffic-controlled 
simulation based on an urban mobility simulator tool is dis-
cussed. Finally, in Sect. Conclusions, the main conclusions 
are presented.

Background Theory on Adaptive Traffic Control

The traffic data collected by the current traffic control 
system, utilizing induction loop detectors and other exist-
ing sensors, are limited and based on a non-data-driven 
approach. This means that decision-making in this approach 
does not heavily rely on data analysis or insights. Instead, 
it depends on factors, such as personal experience, intui-
tion, expert opinions, or predetermined rules and heuristics. 
These approaches are often rooted in established practices, 
rules of thumb, or traditional methods that have been effec-
tive in the past. However, it is important to note that these 
approaches may not consider the complete range of pos-
sibilities or adapt well to rapidly changing circumstances. 
With the progress of wireless communication technologies 
and the emergence of V2V and V2I systems, known as Con-
nected Vehicle (CV), better reciprocity between traffic sig-
nal control and traffic flow became a reality. Furthermore, 
technological advancements provide the necessary techno-
logical basis for the development of Vehicle-to-X systems 
and autonomous driving industries. Real-time detection of 
spatial and temporal data from the network traffic status in 
urban areas can provide valuable and accurate information 
for assessing traffic control effectiveness. This data-driven 
approach enables the development of a closed-loop feed-
back self-adaptive control system that can better respond to 
uncertainties and make intelligent decisions. The primary 
differentiator from current self-adaptive traffic control sys-
tems lies in its dependence on traffic control data garnered 
through thorough data analysis and insight. This involves 
collecting, analyzing, and interpreting relevant data to make 
informed decisions, that includes data acquisition, data engi-
neering/filtering, data analysis, and interpretation of results. 
Statistical analysis, machine learning algorithms, and other 
data processing techniques are used to uncover patterns, 
trends, and correlations that guide decision-making. In 
summary, a data-driven approach utilizes data analysis and 
derive insights for decision-making, while a non-data-driven 
approach relies on other factors such as personal experience 
or predetermined rules.

Our adaptive traffic control strategy aims to dynamically 
respond to real-time traffic demand by utilizing current and 
predicted traffic flow data models. In comparison to the 
limited traffic flow and occupancy information provided 
by fixed coil detectors in traditional traffic environments, 
the adaptive traffic control system in a V2X (Vehicle-to-
Everything) environment can gather more detailed data. This 
includes vehicle position, speed, queuing length, and stop-
ping time. While V2V links are crucial for safety features 
like pre-crash sensing and forward collision warning, I2V 
(Infrastructure-to-Vehicle) links provide Connected Vehi-
cles with various useful information [10, 11]. Given that the 
information network of CVs influences driving behavior and 
the requirement for traffic stream control, further research is 
needed in the field of multimodal traffic control theory. This 
research would focus on understanding and optimizing the 
coordination between different modes of transportation to 
enhance overall traffic management.

To conduct effective research and achieve reliable 
results, it is essential to approach the study with meticulous 
planning, utilize suitable simulation tools, make realistic 
assumptions, and thoroughly analyze the collected data. 
The research aims to address the following inquiries: Is it 
feasible to implement a dependable VLC system using the 
proposed I2X vehicular visible communication model within 
controlled intersections? How can VLC be implemented in 
controlled intersections using a network simulator? Fur-
thermore, what impact does the integration of VLC have 
on various traffic performance parameters within an urban 
traffic scenario?

The proposed smart vehicle lighting system consid-
ers wireless communication, computer-based algorithms, 
smart sensor, and optical sources network, which stands out 
as a transdisciplinary approach framed in cyber-physical 
systems.

V‑VLC Communication Link

A Vehicular VLC system (V-VLC) consists of a transmit-
ter to generate modulated light and a receiver to detect the 
received light variation located at the infrastructures and at 
the driving cars. Both the transmitter and the receiver are 
connected through the wireless channel. Line of Sight (LoS) 
is mandatory.

Figure 1 illustrates the basic architecture of a V-VLC 
system. Both communication modules are software defined, 
where modulation/ demodulation can be programed.

The VLC emitter has a dual purpose, emits light, and 
transmits data instantaneously using the same optical power 
without any noticeable flickering. The digital VLC emitter 
module converts the binary data to intensity modulated light 
waves for transmission. A driving circuit controls the switch-
ing of the LED according to the incoming binary data at the 
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given data rate, generating an amplitude modulated light 
beam. Here, the light produced by the LED is modulated 
with ON–OFF-keying (OOK) amplitude modulation [12].

White light tetra-chromatic (WLEDs) sources, positioned 
at the corners of a square, as shown in Fig. 2a, are employed 
to offer distinct data channels for each chip. These sources 
comprise red, green, blue, and violet chips, which are com-
bined in the appropriate ratios to produce white light. At 
each node, only one chip of the LED is modulated for data 
transmission, the Red (R: 626 nm), the Green (G: 530 nm), 
the Blue (B: 470 nm), or the Violet (V: 390 nm). Modulation 
and digital-to-analog conversion of the information bits are 
done using signal processing techniques. However, the typi-
cal bit rates that can be supported by fast moving vehicles is 
usually limited by channel conditions, not by the switching 
speed of the LED.

Transmitters and receiver’s 3D relative positions are dis-
played in Fig. 2a. The LEDs are modeled as Lambertian 
sources where the luminance is distributed uniformly in all 
directions, whereas the luminous intensity is different in all 
directions [13]. The coverage map for a square unit cell is 
displayed in Fig. 2b. All the values were converted to decibel 

(dB). The nine possible overlaps (#1-#9), defined as finger-
print regions, as well as the possible receiver orientations 
(steering angles; δ) are also pointed out for the unit square 
cell. In geolocation, a fingerprint refers to a unique identi-
fier or set of characteristics associated with a specific area. 
These fingerprints capture the distinct attributes of a loca-
tion, including the signal strengths and propagation patterns 
that can be used to determine the geographical coordinates 
or approximate position of a device or user within that loca-
tion. Using fingerprints enhances accuracy and provide more 
precise location information.

The visible light emitted by the LEDs passes through the 
transmission medium and is received by the MUX photode-
tector that acts as an active filter for the visible region of the 
light spectrum [14]. The MUX photodetector multiplexes 
the different optical channels, perform different filtering 
processes (amplification, switching, and wavelength conver-
sion) and decode the encoded signals, recovering the trans-
mitted information. The received channel can be expressed 
as y = µhx + n where y represents the received signal, x is the 
transmitted signal, μ is the photoelectric conversion factor 
which can be normalized as μ = 1, h is the channel gain, and 
n is the additive white Gaussian noise of which the mean is 
0. The responsivity of the receiver depends on its physical 
structure and on the effective area collection. Upon receiv-
ing the signal, it undergoes a series of processing steps to 
prepare it for demodulation. These steps typically involve 
filtering, amplification, and conversion back to digital for-
mat. The device receives multiple signals, finds the centroid 
of the received coordinates, and stores it as the reference 
point position. Nine reference points, for each unit cell, are 
identified giving a fine-grained resolution in the localiza-
tion of the mobile device across each cell (see Fig. 2b). The 
input of the guidance system is the coded signal sent by the 
transmitters to identify the vehicle (I2V), and includes its 
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position in the network P(xi, yj), inside the unit cell (#1-#9) 
and the steering angle, δ (2–9) that guides the driver orienta-
tion across his path.

Scenario, Environment, and Architecture 

Scenario Analysis: Traffic Control in an Intersection

Four-legged intersections are usually two-way–two-way 
intersections (four-legged intersections), which are con-
nected by eight incoming and eight exiting roads to North, 
West, South, and East. The simulated scenario is a four-leg-
ged traffic light-controlled intersection as displayed in Fig. 3.

An orthogonal topology based on clusters of square unit 
cells was considered. The grid size was chosen to avoid an 
overlap in the receiver from the data in adjacent grid points. 
Each transmitter, Xi,j, carries its own color, X, (RGBV) as 
well as its horizontal and vertical ID position in the sur-
rounding network (i,j). During the PoC, it was assumed that 
the crossroad is at the intersection of line 4 and column 3. 
Located along the roadside are the emitters (streetlamps). 
Thus, each LED sends an I2V message that includes the 
synchronism, its physical ID, and the traffic information. 
When a probe vehicle enters the streetlight´s capture range, 
the receiver replies to the light signal, and assigns a unique 
ID and a traffic message [16].

Four traffic flows were considered. One is coming from 
West (W) with seven vehicles approaching the crossroad: 
five ai Vehicles with straight movement and three ci Vehicles 
with left turn only. In the second flow, three bi Vehicles from 
East (E) approach the intersection with left turn only. In the 
third flow, e Vehicle, oncoming from South (S), has right-
turn approach. Finally, in the fourth flow, f Vehicle coming 
from North, goes straight. Road request and response seg-
ments offer a binary (turn left/straight or turn right) choice. 
According to the simulated scenario, each car represents a 
percentage of traffic flow.

Integration of Architecture and Environment: 
A Correlative Framework

The term “Intelligent Control System” refers to any com-
bination of hardware and software, which operates autono-
mously according to the information received and processed. 
After processing, it is able to act toward the desired control 
through rational choices. In this case, it is intended to apply 
an ITS to the CV systems.

The computing and communication workload for CVs 
may also vary over time and locations, which poses chal-
lenges to capacity planning, resource management of com-
putation nodes, and mobility management of the CVs. Thus, 
a well-designed computing architecture is very important for 
CV systems. Its implementation will need such processing 
and storage power that it requires thoughtful management of 

Fig. 3  Simulated scenario: four-legged intersection and environment with the optical infrastructure  (Xij), the generated footprints (1–9), and the 
CV
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resources, so computation offloading techniques are consid-
ered. These will consist of a hierarchy of layers where real-
time decisions are made by edge computing nodes, which 
will be closest to the action and equipped with the necessary 
processing power, where fog computing and cloud comput-
ing will be, respectively, distributed in more distant locations 
to allocate, process, and analyze larger amounts of data.

Figure 4 presents a draft of a mesh cellular hybrid struc-
ture that can be used to create a gateway-free system. As 
illustrated, the streetlights are equipped with one of two 
types of nodes: A “mesh” controller that connects with other 
nodes in its vicinity. These controllers can forward mes-
sages to the vehicles (I2V) in the mesh, acting like routers 
in the network. The other one is the “mesh/cellular” hybrid 
controller that is also equipped with a modem provides IP 
base connectivity to the Intersection Manager (IM) services. 
These nodes act as border-router and can be used for edge 
computing [15].

This architecture enables edge computing, device-to-
cloud communication (I2IM) and peer-to-peer communi-
cation (I2I), to exchange information. It performs much of 
the processing on embedded computing platforms, directly 
interfacing to sensors and controllers. It supports geo-distri-
bution, local decision-making, and real-time load-balancing.

As depicted in Fig. 5, the movement of vehicles along a 
lane can be likened to a queue. Vehicles arrive at the lane, 
wait if the lane is congested, and then resume moving once 
the congestion subsides. This analogy highlights the sequen-
tial and orderly nature of vehicle progression within a lane, 
similar to how individuals queue up and wait their turn in 
a line.

For the intersection manager crossing coordination, the 
vehicle, and the IM exchange information through two 
types of messages, “request” (V2I) and “response” (I2V). 
Inside the request distance, an approach “request” is sent, 
using as emitter the headlights. The “request” contains all 
the information that is necessary for a vehicle’s space–time 

reservation for its intersection crossing (flow's direction and 
its own and followers' speeds).

The received information in the context of the IM is 
utilized to convert it into a sequence of timed rectangular 
spaces. The objective is to let the IM know the position of 
vehicles inside the environment at each step t. Each assigned 
vehicle is then instructed to occupy these spaces within the 
intersection. This process involves mapping the information 
received to determine the specific time intervals and physical 
locations at which each vehicle should be positioned within 
the intersection area. It includes only spatial information 
about the vehicles hosted inside the environment, and the 
cells used to discretize the continuous environment.

A highly congested traffic scenario will be strongly con-
nected. To determine the delay, the number of vehicles 

Fig. 4  Representation of the 
edge computing infrastruc-
ture. Mesh and cellular hybrid 
architecture
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queuing in each cell at the beginning and end of the green 
time is determined by V2V2I observation, as illustrated 
in Fig. 5. The distance, d, between vehicles can be calcu-
lated based on a truncated exponential distribution [16]. An 
acknowledgment message, known as an "IM acknowledge," 
is transmitted from the traffic signal to the in-car application 
of the leading vehicle. This communication confirms the 
receipt of information and serves as a response from the traf-
fic signal to the vehicle's application. Once the response is 
received (message distance in Fig. 5), the vehicle is required 
to follow the provided occupancy trajectories (footprint 
regions, see Figs. 2 and 3). If a request has any potential 
risk of collision with all other vehicles that have already 
been approved to cross the intersection, the control manager 
only sends back to the vehicle (V2I) the “response” after the 
risk of conflict is exceeded.

Color Phasing Diagram: Visualizing Traffic 
Movement Patterns

The specification for the phasing plan necessitates the 
assignment of each traffic movement to a specific timing 
function. This allocation ensures that the desired sequence 
of traffic states is produced, accommodating all the required 
traffic movements in an organized manner. The choice of 
treatments used will determine which timing functions will 
be activated and which will be omitted from the phasing 
plan.

A color phasing diagram for a four-legged intersection is 
shown in Fig. 6. It was assumed four “color poses” linked 
with the radial range of the modulated light in the RGBV 

crossroad nodes [13]. The West straight, South left turn, and 
West right-turn maneuvers correspond to the” Green poses”. 
"Red poses" are related to South straight, East left turn, and 
South right-turn maneuvers. "Blue poses" are related to 
East straight, North left turn, and East right-turn maneu-
vers, and "violet poses" are related to North straight, West 
left turn, and North right-turn maneuvers. In the phasing 
diagram, Phase 2 and Phase 5 offer two alternatives. Only 
one of which may be displayed on any cycle. Vehicles are 
stopped on all approaches to an intersection, while pedes-
trians are given a WALK indication, the phasing is referred 
to as “exclusive”. Functional barriers (dash dot lines) exist 
between exclusive pedestrian and Phase 1and Phase 6.

The problem that the IM has to solve is, in fact, allocat-
ing the reservations among a set of drivers in a way that 
a specific objective is maximized. Signal timing involves 
the determination of the appropriate cycle length (i.e., the 
time required to execute a complete sequence of phases) 
and apportionment of time among competing movements 
and phases. The timing allocation is restricted by the mini-
mum green times that need to be enforced to accommodate 
pedestrians and maintain compliance with motorist expec-
tations. These minimum green times are essential to allow 
pedestrians to safely cross the intersection and to ensure that 
drivers have sufficient time to anticipate and react to the traf-
fic signal changes without feeling rushed or caught off guard.

Multi‑vehicle Cooperative Localization

There are critical points where traffic conditions change: the 
point at which a vehicle begins to decelerate when the traffic 

Fig. 6  Color phasing diagram in 
a four-legged intersection
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light turns red (message distance), the point at which it stops 
and joins the queue (queue distance), the point at which it 
starts to accelerate when the traffic light turns green (request 
distance) or the points at which the coming vehicle is slowed 
by the leaving vehicle (see Fig. 5).

Consequently, by considering the relative positions of 
vehicles and the current traffic signal phase at intersections, 
the hindrances to traffic flow can be dynamically computed. 
This dynamic calculation accounts for the unique conditions 
of the road network and the interaction between vehicles and 
traffic signals, enabling a more precise evaluation of fac-
tors that impede smooth traffic movement. Through V2I2V 
communication, it becomes possible to calculate travel time, 
which in turn influences the channelization of traffic along 
different routes. This communication enables the collec-
tion of real-time data pertaining to speed, spacing, queues, 
and saturation levels across various distances, including 
the queue distance, request distance, and message distance. 
Such data collection and analysis facilitate a comprehensive 
understanding of traffic conditions and support effective traf-
fic management strategies.

In Fig. 7, the movement of the cars in successive moments 
is depicted with their colored poses (colored arrows) and 
qi,j spatial relative poses (dot lines). We denote q(t), q(t´), 
q(t´´), q(t´´’) as the vehicle pose estimation at the time t, t´, 
t´´, t´´´ (request, response, enter, and exit times), respec-
tively. The vehicle speed can be calculated by measuring the 
actual traveled distance overtime, using the ID´s transmit-
ters tracking. Two measurements are required: distance and 
elapsed time. The distance is fixed while the elapsed time 
varies and depends upon the vehicle’s speed and is obtained 
through the instants where the footprint region changes. 
The receivers compute the geographical position in the suc-
cessive instants (path) and infer the vehicle’s speed. When 
two vehicles are in neighborhood and in different lanes, the 

geometric relationship between them (qi,j) can be inferred 
fusing their self-localizations via a chain of geometric rela-
tionships among the vehicles poses and the local maps. For 
a vehicle with several neighboring vehicles, the mesh node 
(Figs. 3 and 4) uses the indirect V2V relative pose estima-
tions method taking advantage of the data of each neighbor-
ing vehicle [17].

In the communication protocol, each request message 
includes the positions and approach speeds of the vehicles. 
If there are followers in a vehicle's group, the request mes-
sage from the group leader includes the position and speed 
information previously received through Vehicle-to-Vehicle 
(V2V) communication. This information serves as an alert 
to the traffic controller regarding subsequent request mes-
sages (V2I) that are confirmed by the following vehicle. By 
including these data, the controller gains insights into the 
positions, speeds, and group dynamics of vehicles, allowing 
for more informed decision-making in traffic management.

VLC Evaluation

In this chapter, we focus on an adaptive traffic control sys-
tem that utilizes VLC, whereby messages are exchanged 
between the traffic control system and vehicles to facili-
tate dynamic and responsive traffic management. The con-
tent and nature of these messages are contingent upon the 
capabilities of the VLC system, the chosen communication 
protocol, and the specific objectives of the adaptive traffic 
control system. The underlying purpose of these messages 
is to enhance communication between the traffic control 
system and vehicles, enabling effective coordination and 
enabling a dynamic approach to traffic management. Fur-
thermore, we present experimental results that shed light 
on the feasibility of implementing Vehicle-to-Vehicle VLC 

Fig. 7  Movement of the cars, 
in the successive moments, 
with their colorful poses (color 
arrows) and qi,j spatial relative 
poses (dot lines)
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(V-VLC) in adaptive traffic control systems. Our primary 
goal is to showcase the potential of the V-VLC system to 
either supplement or replace the existing traffic information 
systems. We also emphasize the significant value of V2V 
communication in the real-time detection and monitoring of 
traffic flows. Through these experimental findings, we aim to 
highlight the capabilities and benefits of integrating V-VLC 
communication within the domain of adaptive traffic control.

Communication Protocol and Coding/Decoding 
Techniques

To code the information, an On–Off keying (OOK) modula-
tion scheme was used, and it was considered a synchronous 
transmission based on a 64-bit data frame.

As exemplified in the top part of Fig. 8, the frame is 
divided into four, if the transmitter is a streetlamp or head-
lamp, or five blocks, if the transmitter is the traffic light. The 
first block is the synchronization block [10101], the last is 
the payload data (traffic message), and a stop bit ends the 
frame. The second block, the ID block, gives the location (x, 
y coordinates) of the emitters inside the array  (Xi,j,). Cell’s 
IDs are encoded using a 4-bit binary representation for the 
decimal number. The δ block [steering angle (δ)] completes 
the pose in a frame time q(x,y, δ, t). Eight steering angles 
along the cardinal points gives the car direction, and are 
coded with the same number of the footprints in the unit cell 
(Fig. 2). If the message is diffused by the IM transmitter, a 
pattern [0000] follows this identification, if it is a request 
(R) a pattern [00] is used. The traffic message completes 
the frame.

Because the VLC has four independent emitters, the opti-
cal signal generated in the receiver can have one, two, three, 
or even four optical excitations, resulting in  24 different 

optical combinations and 16 different photocurrent levels 
at the photodetector.

As an example, in Fig. 8 Vehicle c1 receives two response 
MUX signals as it crosses the intersection. This vehicle, 
driving on the left lane, receives order to enter the intersec-
tion in # 7, turning left (NE) and keeps moving in this direc-
tion across position #1 toward the North exit (Phase2, violet 
pose). In the right side, the received channels are identified 
by its 4-digit binary codes and associated positions in the 
unit cell. On the top, the transmitted channels’ packets [R, 
G, B, and V] are decoded.

Adaptive Traffic Control

In the PoC (see Fig. 3), it is assumed that a1, b1, and a2, make 
up the top three requests, followed by b2, a3, and c1 in fourth, 
fifth, and sixth places, respectively. In seventh, eighth, and 
ninth request places are b3, e, and a3, respectively, followed 
in tenth place, by c2. In penultimate request is a5, and in the 
last one is f. Therefore, ta1 < tb1 < ta2 < tb2 < ta3 < tc1 < tb3 < te 
< ta4 < tc2 < ta5 < tf. According to our assumptions, 540 cars 
approach the intersection per hour, of which 80% come from 
east and west. Then, 50% of cars will turn left or right at the 
intersection and the other 50% will continue straight.

In Figs. 9 and 10, the normalized MUX signals and the 
decoded messages assigned to IM received by Vehicle a1, a5, 
b2, b3 at different response times are shown. On the top, the 
transmitted channels [R, G, B, V] are decoded. In the right 
side, the received channels for each vehicle are identified by 
its 4-digit binary codes and associated positions.

Analyzing Figs.  3 and 6, 9 shows the MUX signals 
assigned to response messages received by Vehicle a1, driv-
ing the right lane, that enters Cell  C4,2 in #2 (t’1, Phase1, 
green pose), goes straight to E to position #8 (t’2, Phase1, 

Fig. 8  MUX signal responses 
and the assigned decoded inside 
the intersection; messages 
acquired by vehicle c1, poses 
#7NE, #1NE. On the top, the 
transmitted channels packets [R, 
G, B, V] are decoded
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green pose). Then, this vehicle enters the crossroad through 
#8 and leaves it in the exit #2 keeping always the same direc-
tion (E).

In Fig. 10, vehicles b2 and b3 approach the intersection 
after having asked permission to cross.

The traffic control system can broadcast messages con-
taining the current signal phase and timing information. This 
allows vehicles equipped with VLC receivers to be aware 
of the upcoming signal changes and adjust their speed or 
behavior accordingly.

In the given scenario, both vehicles  (b2 and  b3) intend to 
make a left turn. Therefore, vehicle  b2 will only be granted 
authorization to proceed once vehicle  a5 has exited the inter-
section, which occurs at the end of Phase 2. It is more effi-
cient for traffic management to allow the entire platoon to 
finish crossing the intersection before granting authorization 
to vehicle  b2 to make a left turn. This approach minimizes 
disruptions and optimizes the flow of traffic by allowing 

vehicles in the platoon to move through the intersection as 
a group, rather than interrupting the platoon for a single 
left-turning vehicle. This sequencing ensures the safe and 
orderly flow of traffic, allowing one vehicle to exit the inter-
section before the other is permitted to proceed. Then, Phase 
3 begins with vehicle b1 heading to the intersection (W) 
(pose red), while vehicles ai (1 < i < 5) follow its destination 
toward E (pose green).

Queuing System: Dynamic Traffic Signal Phasing 

The traffic controller uses queue, request, and response mes-
sages, from the ai, bi, ci, ei, and fi vehicles, fusing the self-
localizations qi (t) with their space relative poses qij (t) to 
generate phase durations appropriate to accommodate the 
demand on each cycle.

The following parameters are therefore needed to model 
the queuing system: The initial arrival time  (t0) and velocity 

Fig. 9  Normalized MUX signal 
responses and the assigned 
decoded messages acquired by 
vehicles a1 at different response 
times. Message distance, Poses 
#8E and #2E
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Fig. 10  Normalized MUX sig-
nal responses and the assigned 
decoded messages acquired by 
vehicles a5, b2, b3 at different 
response times. Vehicle a5, pose 
#2E, and Vehicle b2 poses #7W 
and, b3 at #1W
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(v) in each the occupied section. The initial time is defined 
as the time when the vehicles leave the previous section 
(queue, request, or message distances) and move along the 
next section, qi (t, t’). The service time is calculated using 
vehicle speed and distance of the section. The number of 
service units or resources is determined by the capacity of 
the section, n(qi (x,y, δ, t)) and vehicle speed which depends 
on the number of request services, and on the direction of 
movement along the lane qi (x, y, δ, t).

To each driving Vehicle, xi, is assigned the unique time at 
which it must enter the intersection, t’’[xi]. The phase flow 
of the PoC intersection is shown in Fig. 11 according to the 
phasing diagram. In the PoC, it was assumed that ta1 < tb1 < 
ta2 < tb2 < ta3 < tc1 < tb3 < te < ta4 < tc2 < ta5 < tf.

In this diagram, the cycle length is comprised of 5 out 
of the 7 phases that are taken into account (refer to Fig. 6). 
These phases are further divided into 16 time sequences or 
states. The states marked with an asterisk (*) are dynamic 
movable states that vary based on the traffic demand 
throughout the cycle. These dynamic states can be adjusted 
or modified to accommodate the changing traffic conditions 

during the cycle. The exclusive pedestrian phase contains 
the “0”, the “1” and the “16” sequences. The cycle's top 
synchronization starts with sequences "1". The first, second, 
third, and fourth phases contain sequences between "2" and 
"15" and control traffic flow.

The matrix of states allows the traffic light controller to 
monitor, enter, or modify the division of an intersection into 
states, as shown in Fig. 12. The matrix shows the durations 
of the states (sequences) for a given cycle. In this matrix, 
each element represents the lighting state of the traffic light 
(if it is selected, the light is green) for the corresponding 
state. Columns represent the duration of the states in the dif-
ferent arms of the intersection, from cycle minimum [fluid 
traffic] to cycle maximum [dense traffic]. For a medium-traf-
fic scenario, three distinct cycles are considered based on the 
higher volume traffic in the request directions (N–S, W–E 
straight or left). The data are based on the typical values 
used in an urban light-controlled four-legged intersection.

The column on the right of the matrix is called the col-
umn of fixed times.

The Intersection Manager (IM) has the capability to 
perform several operations based on the requests received. 
These operations include: modifying cycle durations (the 
IM can adjust the durations of the entire cycle according 
to specific requirements or changes in traffic conditions); 
entering fixed times (for states that have a consistent dura-
tion across all cycles in the lighting plan, the IM can input 
fixed times); changing durations of transportable states (the 
IM can modify the durations of states that are marked as 
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Fig. 11  Requested phasing of traffic flows (ta1 < tb1 < ta2 < tb2 < ta3 < tc1 
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Sequences
Low-traffic 

scenario 
(s)

N-S 
medium 

traffic 
scenario 

(s)

E-W 
medium 

traffic 
scenario 
(Left)  (s)

E-W 
medium 

traffic 
scenario 
(Straight) 

(s)

High 
traffic 

scenario 
(s)

 Fixed 
time (s)

0 9 3 3 3 3
1 0 6 6 6 6
2 10
3 3
4 0 8 7 10 12
5 5
6 4
7 3
8 3 3 8 8 10
9 3 3 9 9 8
10 4
11 3
12 3 6 3 3 7
13 3 8 3 3 9
14 4
15 3
16 0 4 4 4 6

Cycle 
lenght 60 80 82 85 100 39

Fig. 12  Matrix of states at a four-legged intersection
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transportable at any given time giving flexibility for adjust-
ments based on real-time traffic demands). Also, the IM can 
make changes to the intersection coordination offset, which 
affects the timing and synchronization of traffic signals at 
interconnected intersections. These operations give the IM 
the ability to adapt and optimize the traffic control system 
based on real-time data and requests received.

The PoC assumes that all the leaders approach the inter-
section with similar velocities at different times (Fig. 11). 
Vehicle a1 was the first to request to cross the intersection 
and informed IM about its position and also that four others 
follow it at their positions with their speeds (see Fig. 9). 
Phase 1, sequence 3, therefore, begins at t'a1. Vehicle b1 
requests access later and includes the mappings of its two 
followers in its request. As the order to cross conflicts with ai 
movement, he and his followers will pile up on the stop line 
increasing the total waiting time of the bi cars. The fourth 
sequence is an adaptive sequence (Fig. 12). Due to the pres-
ence of a medium E–W traffic scenario, the IM extends the 
green time to accommodate the passage of all the ai follow-
ers as well as the simultaneous passage of the arriving ci 
(Fig. 8). From the capacity point of view, it is more efficient, 
if Vehicle c1 is given access (Phase 2) before Vehicles bi, and 
Vehicle c2 is given access before Vehicle e, forming a west 
left turn of set of vehicles (platoon) before giving way to the 
fourth phase with north and south conflicting flows, as stated 
in Fig. 6. Meanwhile, the speed of Vehicle e was reduced, 
increasing the total accumulated time in the S–N arm.

Adaptive sequences 8 and 9 kick off Phase 3 (Fig. 11) and 
the sequence times will be adjusted according to the varia-
tion of rt for the left turn of the bi cars. A new phase, Phase 
4, begins and includes two adaptive sequences, sequence 
12 and 13. Their time intervals will be as short as possible, 
which will free up capacity in the cycle for the E–W flows 
that are heavily loaded. Taking into account the accumu-
lated total waiting time in each arm, an 85-s cycle is recom-
mended for this type of flow. The times associated with each 
sequence can be visualized in Fig. 11.

Therefore, the real-time detection of the spatiotemporal 
data based on urban road network traffic status can provide 
rich and high-quality basic data and fine-grained assessment 
of control effects for traffic control.

Intelligent Control in V‑VLC Systems

The purpose here is to develop an intelligent control sys-
tem model that facilitates safe vehicle management through 
intersections using Vehicle-to-Vehicle, Vehicle-to-Infra-
structure, and Infrastructure-to-Vehicle communications 
using fundamentals of deep learning, and applied them to a 
cooperative connected vehicle system.

Dynamic Traffic Flow Control Simulation

Data-driven paradigms are becoming increasingly popular 
in modern transportation systems with the aim of obtaining 
more accurate predictions and advanced control strategies 
[18]. By utilizing these techniques, both researchers and 
commercial entities have begun to investigate how tradi-
tional transportation problems, such as traffic flow and acci-
dent estimation, can be improved or even partially solved. 
Reinforcement Learning (RL) is a machine learning training 
method based on rewarding desired behaviors and/or pun-
ishing undesired ones [19–21]. In general, a reinforcement 
learning agent can perceive and interpret its environment, 
take actions, and learn through trial and error. To incen-
tivize the agent, this technique involves assigning positive 
values to desired actions and negative values to undesirable 
behaviors. The key to the agent's success lies in striving for 
the highest possible long-term reward. As the agent acquires 
experience, it learns to steer clear of negative situations and 
prioritize positive actions instead [22].

The simulations were agent-based and they have been car-
ried out in a tool for Simulation of Urban MObility (SUMO) 
[23]. In SUMO, the traffic lights are controlled by a learn-
ing agent, which makes decisions regarding their operation. 
The behavior of the traffic lights control agent is guided by 
a reward system, wherein the agent receives rewards based 
on its actions. The ultimate objective is to optimize the 
flow of traffic within the system. Figure 13 illustrates the 
action-reward feedback loop of a generic RL model. For the 
best policy, the agent must maximize its total reward while 
exploring new states. The state of the agent, st, describes a 
representation of the state of the environment at a particular 
agentstep t. For the agent to learn how to optimize traffic 
effectively, the state should provide adequate information 
on the distribution of vehicles on each road.

It is possible to detect whether a car has entered the 
incoming lanes of the intersection by segregating the arms 
into discrete message, request, and queue cells (Fig. 5). An 
array will contain all vehicles in simulation at one time, with 
states assigned to them. “vi” is the state of a vehicle, where 

Fig. 13  Illustration of the reinforcement learning’s loop of action-
reward feedback
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i is the order of the crossing request, and it consists of a 
string of two digits, one representing the lane the vehicle is 
in, and the other representing its position in the lane (if it's 
near or far from the intersection). In Fig. 14a, the assignment 
of the lanes to the simulated intersection is displayed, and 
in Fig. 14b, the state representation for the west arm of the 
intersection is exemplified. Between the beginning of the 
road and the intersection’s stop line, there are 4 cells (0/mes-
sage, 1/request, 2, 3/queues) per lane (L/0–7). This results in 
a total of 32 state cells during simulation.

Considering the PoC displayed in Fig. 3, where ta1 < tb1 < 
ta2 < tb2 < ta3 < tc1 < tb3 < te < ta4 < tc2 < ta5 < tf, the states of the 
leaders a1 (L0) and b1 (L4) will be represented as  v1 = ”00″ 
and v2 = ”50”.

An action is performed when the traffic light system acti-
vates a set of lanes for a predetermined time during one of 
several green phases. The yellow time is set at four seconds, 
whereas the green time is set at eight. If the action taken in 
agentstep t is the same as the action taken in the previous 
agentstep t − 1, there is no yellow phase, and the current 
green phase remains. If the action selected in agentstep t 
is not equivalent to the previous action, a 4-s yellow phase 

occurs between the two actions. This indicates that there are 
eight simulation steps between two identical actions, since 
in SUMO, one simulation step corresponds to one second.

Considering the color phasing diagram (Fig. 6), the four 
agent’s potential actions are displayed in Fig. 15. The main 
goal is to increase traffic through the intersection over time. 
Agents use rewards to comprehend the outcome of their 
actions to improve the model for selecting future actions.

In the learning process, the reward (r) represents the 
response of the environment following the agent's decision. 
Rewards play a critical role as they provide feedback to the 
agent, reinforcing both positive and negative outcomes. Posi-
tive rewards are given for previous good actions, indicating 
desirable behavior, while negative rewards stem from previ-
ous bad actions, indicating undesired behavior. By incorpo-
rating rewards into the learning process, the agent can learn 
to optimize its decision-making and strive for actions that 
yield positive outcomes while avoiding actions that result 
in negative consequences. To accomplish this, the incen-
tive should be based on some traffic efficiency performance 
metric, allowing the agent to determine whether the action 
they took reduced or increased intersection efficiency. For 

Fig. 14  a Lanes’ assignment. b 
Agent state  (st) representation in 
the west arm of the intersection

a)

 b)

L 0
L 1

L 2 L 3

L 7 L 6

L4
L 5

v1v3v5

v6

Fig.15  Graphical representation of the agent’s four possible options as actions  (at)
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traffic coordination, in the scenario presented (Fig. 3), the 
IM receives requests (Fig. 9) for access to the intersection 
from all the leading cars at different times. tx1 (Fig. 11). This 
type of information (V2I) enables the IM to know the precise 
location (state representation on each cell) and the speed 
of all the leader vehicles, as well as the location and speed 
from their followers that was sent to the leaders through 
V2V. These data help previewing the initial arrival times 
and speeds at the different sections.

The IM has to minimize accumulated total waiting time 
aTwt in each arm of the intersection defined as [24]

where awt (xi,t) is the amount of time in seconds a vehicle xi 
has a speed of less than 0.1 m/s at step t and n represents the 
total number of vehicles in the environment at step t. When 
the speed is less than 0.1 m/s a queue alert is generated. 
Defining the reward function, r t, as

where aTwtt and aTwtt−1 represent the accumulated total 
waiting time of all the cars in the intersection captured, 
respectively, at step t and t − 1. If rt is negative, more vehi-
cles in queues are added compared to the situation in the pre-
vious step t − 1, resulting in higher waiting times compared 
to the previous step.

The agent determines the reward for the prior action using 
some indicator of the current traffic situation. Data samples 
containing details of the latest simulation steps are stored 
in a memory, which is subsequently extracted for training 
purposes. After selecting a new action based on the current 
state of the environment, the agent will begin to simulate 
until the next interaction takes place. The entire training is 
divided in multiple episodes. The total number of episodes 
is specified by the user, with a number of above 100 epi-
sodes being the norm. By default, SUMO provides a time 
frequency of 1 s per step, and the period of each episode is 
also specified by the user.

Traffic Generation and Simulated States 

Traffic generation is one of the most important elements 
of a simulated intersection that impacts agent performance. 

(1)aTw
t
=
∑n

xi=1
(awt)

xi,t,

(2)r
t
= aTwt

t−1 − aTwt
t
,

The simulation needs to have a wide range of traffic flows 
and patterns to create an adaptive agent capable of genuine 
environmental adaptation.

Vehicles at the intersection can be defined by modeling 
vehicles’ arrival time at that intersection in the given inter-
val of time. For realism, each episode will use a probability 
distribution, the Weibull distribution of shape 2, to generate 
traffic [25].

This distribution simulates the heavy and light traffic vol-
umes during congestion and normal situations. During its 
early stages, the Weibull distribution shows an increase in 
traffic, which represents peak traffic hours. As congestion 
gradually eases, the number of incoming cars declines. In 
the simulation, all vehicles have identical performance and 
physical specifications. There are no variations in terms of 
speed, acceleration, size, or any other physical attributes 
among the simulated vehicles. This standardization allows 
for a fair and consistent comparison of the vehicles' behav-
iors and interactions within the simulated environment.

As a result, the following four different scenarios are 
defined in Table 1, these being inspired in Fig. 12. These 
scenarios consider a simulation time of 1.30 h. Each sce-
nario corresponds to a single episode, and they always cycle 
through in the same order during training.

The considered environment for simulation (Fig. 3), is 
a four-way intersection, 2 lanes on each arm approach the 
intersection from compass directions, leaving two lanes on 
each arm. Each arm is 100 m long. On every arm, each lane 
defines the possible directions that a vehicle can follow: the 
right lane enables vehicles to turn right or going straight, 
while on the left lane, the left turn is the only direction 
allowed. In the center of the intersection, a traffic light sys-
tem, controlled by the IM (also known as agent), manages 
the approaching traffic.

Every lane has a dedicated traffic light (TL) that oper-
ates according to the common European regulations, with 
the only exception being the absence of time between the 
end of a yellow phase and the start of the next green phase 
(considering, therefore, that the vehicles will stop on yel-
low, Y). Figure 16 identifies the number associated to each 
of the traffic lights and displays all the possible trajectories 
of the vehicles.

Considering the phase diagram (Fig. 6), a set of states of 
lights that represent the phases of the system as well as the 

Table 1  Different traffic 
scenarios defined for training 
simulation

Traffic scenario  High  Low  NS medium  E–W medium

Traffic rate per lane (%)  N–S  Straight  37.5  37.5  67.5  7.5
Left 12.5 12.5 22.5  2.5 

E–W Straight 37.5  37.5 7.5 67.5
Left 12.5 12.5 2.5 22.5

Total vehicles (un.) 4000  600  2000  2000 
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transition between them were considered. This set of color 
states (TL States) can be seen in Table 2, where it is speci-
fied its identification, duration, combination of lights, phase 
to which it is intended and next state.

The ordering of the combination of lights (TL State) is 
according to the index of the traffic lights (0–15) shown in 
Fig. 16, being R—Red, Y—Yellow, and G—Green. Note 
that the configuration of the states considers that the vehicles 
stop at the yellow traffic lights.

Some of the states consider variable durations (*), 
depending upon the number of vehicles on each road 
(Table 1). A variable duration has been chosen to improve 
the traffic flow in each state and the ones that follow. It is 
also possible for the state duration to be 0 s if there are no 
vehicles in the lanes in question, also skipping the next yel-
low state. This sequence of 20 states makes up a complete 
cycle of phases, starting with the pedestrian phase (Fig. 6). 
This phase is mandatory for safety reasons and must be sepa-
rated from the phases intended for vehicle circulation (state 
1 with 8 s of pedestrian eviction). Its duration depends upon 
the existence of vehicles near the intersection, this being a 
minimum of 6 s. It was also defined 6 s as the minimum 
that a traffic light should be on. The duration of a minimum 
signal timing is typically determined based on various fac-
tors, including traffic flow characteristics, pedestrian move-
ment, intersection geometry, and safety considerations. The 
purpose of having a minimum signal timing is to ensure 
an adequate amount of time for vehicles and pedestrians to 
safely clear the intersection. The choice of 6 s (or any other 
specific duration) depends on the clearance time, intersec-
tion design, traffic flow, and pedestrian considerations. After 
phases 1 and 4, a decision is made regarding the best option 
for the next phase. This decision-making considers a simple 
comparison of the number of vehicles on the roads. The 
estimation of the duration also considers static variables/
coefficients, which improve it for a given scenario.

V‑VLC Adaptive Traffic Control Evaluation

A static cycle, also known as fixed-time signal control, 
refers to a predetermined and unchanging sequence of 
signal phases and timings that repeat continuously. In this 
approach, the signal timings are set based on historical traf-
fic data. The timings are typically set to provide a balance 
between different traffic movements and prioritize the effi-
cient flow of vehicles and pedestrians. A dynamic cycle, 
also referred to as adaptive or responsive signal control, 
involves adjusting the signal timings in real time based on 
the prevailing traffic conditions. In this approach, sensors or 
other data sources (VLC) continuously monitor the traffic 
flow and provide feedback to a control system. The control 
system analyzes the traffic data and dynamically adjusts the 
signal timings to optimize the traffic flow and reduce conges-
tion. The dynamic cycle takes into account the current traf-
fic demand, queue lengths, and traffic patterns to adaptively 
allocate green time to different movements and phases. By 
dynamically responding to the changing traffic conditions, 
the signal timings can be optimized to improve traffic effi-
ciency and reduce delays.

The traffic scenario described in Fig. 3 was simulated 
for a medium E-W (straight) traffic flow (Table 3). As input 
parameters the data from Sect.  "VLC Evaluation" was 

L 0

L 1

L 2 L 3

L4

L 5

L 7 L 6

Fig. 16  Four-legged intersection. Traffic Lights’ (TL) and Lanes (L) 
identification and vehicles’ possible trajectories

Table 2  Description of the different states of the simulated light sys-
tem. ∗—States with variable durations

State ID Duration TL ( 0-15) states  Phase Next 

0 – RRR RRR RRR RRR GGGG PH0 1 
1 8 RRR RRR RRR RRR RRRR – 2 
2 8*  RRR GGR RRR GGR RRRR PH1  3 or 6 
3 4 RRR YYR RRR GGR RRRR – 4 
4 8* RRR RRR RRR GGG RRRR PH21 5 
5 4 RRR RRR RRR YYG RRRR – 9
6 4 RRR GGR RRR YYR RRRR –  7 
7 8* RRR GGG RRR RRR RRRR PH22 8 
8 4 RRR YYG RRR RRR RRRR − 9 
9 8* RRR RRG RRR RRG RRRR PH3  10 
10 4 RRR RRY RRR RRY RRRR – 11 
11  8*  GGR RRR GGR RRR RRRR PH4 12 or 15 
12 4 GGR RRR YYR RRR RRRR – 13
13  8  GGG RRR RRR RRR RRRR  PH51 14 
14  4 YYG RRR RRR RRR RRRR –  18 
15  4 YYR RRR GGR RRR RRRR – 16 
16 8* RRR RRR GGG RRR RRRR PH52 17 
17  4  RRR RRR YYG RRR RRRR – 18 
18  8* RRG RRR RRG RRR RRRR PH6 19 
19  4 RRY RRR RRY RRR RRRR –  0
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used and compared with results presented in the static case 
(Fig. 11). When all requests have been resolved and the last 
vehicle has left the intersection, the simulation ends.

To exemplify the process, in Fig. 17, it is displayed a 
response to leader vehicle b1 at tb1. In the top of the figure, 
the decoded signal is displayed, and in the right side, the 
MUX levels used for in the decoding process are pointed 

out. The simulated scenario at the right side serves as tools 
to guide the eyes and provide visual representations of traf-
fic dynamics. Considering the frame structure, the message 
contains the location of the vehicle in the network (Sync) 
and in the cell (x, y), the flow direction of the vehicle (δ), 
and the traffic message. Data in a traffic message include 
the type of messenger (R, F), the order in which the driver 

Table 3  State duration from the first state cycle for different traffic scenarios

State Low-traffic 
scenario (s) 

N–S medium-traf-
fic scenario (s) 

E–W medium-traffic 
scenario (Left) (s) 

E–W medium-traffic 
scenario (Straight) (s) 

High-traffic 
scenario (s) 

Fixed time (s)

0 9 9 9 9 9 9
1 8 8 8 8 8 8
2 6 6 6 9 6 8
3 4 – 4 4 - 4
4 0 – 2 2 - 8
5 0 – 4 4 - 4
6 – 4 – – 4 –
7 – 0 – – 4 –
8 – 0 – – 4 –
9 0 0 8 0 0 8
10 0 0 4 0 0 4
11 6 9 6 6 9 8
12 – – 4 4 – 4
13 – – 0 0 – 8
14 – – 0 0 – 4
15 4 4 – – 4 –
16 3 3 – – 9 –
17 4 4 – – 4 –
18 0 0 0 0 0 8
19 0 0 0 0 0 4
Cycle length (s) 44 47 55 46 61 89
Average speed (m/s) 6.60 6.76 6.53 7.46 5.1 –

Fig. 17  Normalized MUX 
signal and the assigned and 
decoded messages acquired by 
vehicles b1. Pose  C44, #1W
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requested to cross the intersection (ID), and the payload. 
The End of File (EoF) is also included in the frame. It can 
be seen from Fig. 8 that the vehicle is in cell  C4,4 (message 
distance), footprint #1, and its flow direction is W (code 7). 
The agent identified this vehicle with the order number 2. 
The information obtained from tb1 indicated that the vehicle 
belongs to state  v2 = "50". For the other vehicles, the process 
of acquiring the agent's state, represented as "st," is similar 
(as shown in Fig. 14).

After ensuring all the system settings, we proceed to 
simulate the system against different traffic flow scenarios. 
It is important to mention that the simulations end as soon 
as there are no more vehicles on the network, i.e., after all 
requests are solved and the last vehicle leaves the vicinity 
of the intersection. As far as circulation is concerned, the 
vehicles are all moving at an average of 10 m/s, dropping the 
speed to 5 m/s when reaching the traffic light at the begin-
ning of the cycle, during pedestrian eviction. Considering 
this speed, approximately 3 s of green light are estimated to 
be required for each vehicle to drive through the traffic light.

Different traffic flows were simulated (Table 1) and the 
state cycles and durations compared. The vehicles were gen-
erated 5 s after the start of the simulation to demonstrate 
the variable duration of phase 0, for pedestrians, and not its 
minimum duration. Table 3 organizes the state durations for 
each simulated traffic scenario, as well as the average vehicle 
speed verified in each state cycle. The durations marked with 
a dash correspond to states that did not happen during that 
cycle. The average speed should be seen as a measure that 
shows whether the scenario is benefited by the previously 
mentioned state sequence or not.

Results show that the low-traffic scenario corresponds to 
the lowest cycle duration. In the medium-traffic scenarios, 
cycle length increases with traffic flow, since the phase dura-
tion increases as the flow increases. Two phases are enlarged, 
one for the N–S traffic (state 11) and one for the E–W (left) 
traffic scenario (state 9). E–W medium-traffic scenario 
(straight) is the scenario where the average speed is higher. 
Here, Phase 1 is destined for E–W traffic straight ahead, and 
thus, these vehicles are immediately served and do not need 
to wait for their turn and the total cycle will be lower. In the 
high-traffic scenario, the vehicle flow duplicates, resulting in 
the longest cycle and the slowest average speed. Even though 
there is variation in the cycle length among the different sce-
narios, it has been observed that all of them are significantly 
shorter compared to the expected cycle length when using 
fixed-time states (as shown in Fig. 12). This finding indicates 
that the adaptive traffic control system is able to dynamically 
adjust the cycle length based on real-time traffic conditions, 
resulting in more efficient traffic flow and reduced waiting 
times compared to a fixed-time control approach.

For the medium E–W (straight) traffic scenario, a state 
diagram resulting from the SUMO simulation is generated 

and presented in Fig. 18. At the top of the diagram, two 
important elements were included: the environment and 
the color phasing. The environment represents the external 
surroundings in which the system operates, while the color 
phasing refers to the specific sequence or pattern of signal 
light changes. By including these elements at the top of the 
diagram, they are given prominence and serve as key fac-
tors in the overall system analysis. The arrow points out the 
scenario represented at this instant. The agent in the system 
retrieves the current state by considering various requests 
received, as depicted in Fig. 11. These requests, along with 
the actions illustrated in Fig. 15, are used to determine 
the static cycle of the system. The initial proposed phase 
diagram (Fig. 6) and the set of traffic lights representing 
each phase (Fig. 16) are also taken into account during this 
process.

By accumulating the times recorded for each arm of the 
intersection, the simulation can generate a preview of the 
phasing diagram. This preview provides insights into the 
expected timing and sequencing of signal light changes 
throughout the cycle. Additionally, the simulation calculates 
the average velocity along the cycle, which helps assess the 
overall traffic flow efficiency. By incorporating all these ele-
ments and calculations, the agent can dynamically adjust 
the signal timings and optimize the traffic control system 
to improve the average velocity and overall performance of 
the intersection. The results show a 55-s cycle length com-
posed of 12 sequential states (TL states, Table 2) that make 
up the 4 proposed phases (Fig. 6). In each sequential state, 
the traffic light states (TL) and their green and yellow times 
are indicated.

In Fig. 19, the average speed as a function of the simu-
lated time is displayed for the static and a dynamic cycle. 
The duration of each state is also inserted in the bottom.

As expected, the dynamic system finishes the cycle first 
by adapting the cycles to shorter durations when necessary. 
The better temporal management of phases results in better 
traffic flow and a higher average speed. Although it is still 
possible to improve its performance, the expected improve-
ments can be seen, managing the flow 15 s faster with the 
use of dynamic durations in the states.

The "dynamic" scenario, characterized by moderate dura-
tions due to medium-traffic flow, can be compared to the real 
static phase diagram shown in Fig. 11. It is observed that the 
durations chosen in the simulation were significantly lower 
than those in the static diagram. This observation can be 
interpreted in two ways:

• Proper adaptation and optimization: One interpretation 
is that the simulator effectively adapted the durations, 
resulting in an optimization that aligns closely with the 
ideal scenario. The lower durations may indicate that the 
simulation intelligently adjusted the signal timings based 
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on the real-time traffic conditions, efficiently allocating 
green time and minimizing delays. This suggests that the 
simulation successfully optimized the traffic control sys-
tem.

• Unrealistic simulation: The other interpretation raises the 
possibility that the simulation may have been unrealis-
tic, failing to consider certain factors that occur in a real 
traffic context. Factors such as conflicting movements, 
intersection clearance times for vehicles and pedestri-
ans, queue start times, and "all red" times during phase 
transitions are critical in real-world traffic control. If the 
simulation did not adequately account for these factors, 

the lower durations might not accurately represent the 
real-world performance of the system.

The Intelligent Traffic Control System

To determine which interpretation is more likely, it is impor-
tant to evaluate the simulation methodology, the accuracy 
of the input data, and the representation of real-world traffic 
dynamics. Considering and incorporating the factors men-
tioned above, along with other relevant aspects, can help 
ensure a more realistic and reliable simulation of traffic con-
trol scenarios.

Fig. 18  State diagram resulting 
from the SUMO simulation. On 
the top, an insert of environ-
ment and the color phasing is 
inserted
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An intelligent system must be prepared to adapt to any 
traffic scenario that occurs. For this reason, training the 
model that describes the system is essential to its perfor-
mance. Deep learning algorithms should be used to take 
advantage of the samples collected over time (short or 
long periods of time) to make decisions and act, or simply 
collect data for further analysis.

To enable real-time responsiveness to fluctuating traffic 
flow across different roads, the implementation of machine 
learning is essential. Specifically, a deep learning (DL) 
algorithm, among other potential options such as conven-
tional ML algorithms like Support Vector Machine (SVM), 
can be utilized. While traditional ML algorithms like 
SVMs still have their merits, especially in scenarios with 
limited data or when interpretability of the model is cru-
cial, DL's ability to handle large-scale, high-dimensional 
data and learn complex representations makes it a power-
ful tool for many modern applications. The choice between 
DL and traditional ML approaches ultimately depends on 
the specific task, data availability, interpretability require-
ments, and the desired level of performance. The Deep 
Q-Network (DQN) is used as the underlying reinforcement 
learning algorithm. The DQN approximates the optimal 
action-value function, which maps states to actions, using 
a deep neural network. The network is trained through an 
iterative process of exploration and exploitation to learn 
the optimal policy. Initially, the system was trained in 
a simulated environment where traffic conditions could 
be manipulated. Agents interact with the environment, 
observe states, take actions, and receive rewards. Through 
multiple iterations, the DQN learns the optimal policy by 
updating its network parameters based on the observed 
rewards and state transitions. Vehicles communicate with 
each other and with the infrastructure through visible light 
communication (V2V and V2I). The experimental data 
were acquired using a simulated scenario, since V-VLC 
ready connected vehicles are not available yet. This will 
allow the vehicles to share information about their posi-
tions (I2V) intentions (V2I), speeds (V2V), and upcoming 
maneuvers (I2V). Cooperative behavior is encouraged by 
enabling vehicles to coordinate actions, such as merging, 
yielding, or optimizing traffic signal timings. For the test 
of the algorithms, different models should be trained and 
the performances compared. The most relevant features for 
training the models are: total number of trained episodes, 
total duration of each episode; total number of randomly 
generated vehicles throughout the simulations; fixed dura-
tion for the yellow state, usually 4 s; fixed duration for 
greens, also serving as the increment duration if the same 
action is chosen by the agent in the following agent step; 
number of possible states for the vehicles (Fig. 14); num-
ber of choice actions for the agent (Fig. 15). It is also 
possible to configure the neural network with regard to 

the number of hidden layers, layer sizes, and also sample 
batches’ sizes. The learning rate can also be modified.

Overall, using VLC for dynamic traffic control offers 
advantages, such as real-time adaptability, enhanced traffic 
management, improved safety, efficient resource utilization, 
flexibility, scalability, and alignment with smart city initia-
tives. These benefits make VLC an attractive technology for 
implementing dynamic and intelligent traffic control systems 
that can adapt to changing traffic conditions and optimize the 
overall transportation network. In short, the result demon-
strates that the creation of a dynamic system that is adaptive 
to a specific traffic scenario is achievable and beneficial. 
Environmental conditions, such as sun, rain, snow, and 
atmospheric factors, can affect VLC system performance. 
Direct sunlight causes interference and reduces signal-to-
noise ratio. Rain, snow, and fog scatter and attenuate sig-
nals, reducing range and introducing errors. Atmospheric 
conditions like dust or haze also impact signal quality. To 
overcome these limitations, future techniques include adap-
tive transmission, adjusting power and modulation based on 
real-time conditions; advanced signal processing to enhance 
signal detection and decoding; and hybrid communication 
systems combining VLC with RF or IR for backup channels 
when environmental factors compromise VLC performance.

In VLC systems, security, error detection and correc-
tion, and limited bandwidth are important considerations. 
Encryption techniques can safeguard transmitted data, error 
detection and correction methods enhance reliability, and 
efficient modulation and coding techniques optimize band-
width utilization. By addressing these aspects, VLC systems 
can provide secure and reliable communication. Ongoing 
research aims to further improve VLC capabilities and over-
come challenges in real-world scenarios.

It is important to improve the coding techniques, in the 
future, to allow only the legitimate receivers to process 
secure request/response messages. Here, the security is 
embedded in the physical transmission. In the LoS chan-
nel, the eavesdropper remains completely passive, meaning 
that although the information is technically available to the 
eavesdropper, it is encrypted and therefore of limited or no 
usefulness to them. Using the street lamp positions to deter-
mine vehicular flow eliminates the need for certificates or 
passwords from the network and replaces them with statisti-
cal secrecy.

Conclusions

With V-VLC-ready connected cars, we propose optimizing 
urban traffic network operation by integrating traffic signal 
control and driving behavior. For managing intersections, 
the adaptive traffic control system uses a queue/request/
response approach. An architecture, scenario, environment, 
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and hybrid mesh/cellular network configuration were devel-
oped and proposed. The V2I2V communications enable real-
time monitoring of queues, requests, and messages, along 
with the travel times necessary to synchronize traffic routing 
in various routes. To demonstrate the concept, a phasing dia-
gram and matrix of states are proposed. A simulation based 
on a urban mobility simulator is presented. A comparison 
between a static case where the green times are fixed and 
the dynamic where they depend on the accumulated time at 
each arm is presented.

Our main goal was to show that VLC can be utilized for 
accurate vehicle localization and positioning. By leveraging 
the optical signals from streetlights, traffic signals, or other 
infrastructure, vehicles equipped with VLC receivers can 
determine their precise location within the network. This 
capability is valuable for applications such as navigation, 
collision avoidance, and efficient traffic management. Results 
show that the adaptive traffic control in a V2X environment 
can collect more detailed data, such as vehicle position, 
speed, queue length, and stopping time, than the traffic flow 
and occupancy information provided by fixed coil detectors. 
The traffic light phase is adjusted to the traffic scenario and 
the duration of the traffic light is changed dynamically which 
reduces travel times and unnecessary waiting for the green 
phase, leading to optimized traffic flow. The introduction 
of VLC between connected vehicles and the surrounding 
infrastructure allows the direct monitoring of critical points 
that are related to the queue formation and dissipation, rela-
tive speed thresholds, and inter-vehicle spacing increasing 
the safety. Overall, the advantages of using VLC in vehicular 
communications include high bandwidth, interference-free 
communication, enhanced security, improved localization 
and positioning, energy efficiency, reduced electromagnetic 
interference, and integration with the existing infrastruc-
ture. These advantages make VLC a promising technology 
for enabling reliable and efficient communication in con-
nected vehicle environments. In future, we plan to extend 
this approach to more complex road networks, with multiple 
signal intersections, and real-world road data set.

Future Trends

The future work will delve into expanding the application 
of V-VLC technology in various traffic scenarios, aiming to 
enhance traffic flow by integrating this technology into con-
nected cars. The system's queue/request/response approach 
for intersection management will be further refined and opti-
mized for real-time monitoring of queues and messages. The 
simulation results have already demonstrated the potential 
for V-VLC technology to provide detailed data compared to 
the traditional fixed coil detectors, showcasing its capabili-
ties in improving traffic control.

The next steps will involve dynamic adjustments to traf-
fic light phases and durations based on the collected data, 
aiming to further reduce travel times and waiting periods at 
intersections. Additionally, the technology's ability to moni-
tor critical points, such as queue formation and dissipation, 
will be harnessed to enhance overall traffic safety.

While the initial simulation was conducted in a simple 
scenario with two intersections, future research will expand 
testing to more complex and realistic traffic situations. This 
will provide a deeper understanding of the effectiveness 
of V-VLC technology in optimizing traffic signal control 
and its potential for widespread application in urban traffic 
networks. In conclusion, the study suggests that adaptive 
traffic control using V-VLC technology holds significant 
promise for improving traffic flow, and ongoing research 
will explore and validate its potential in diverse and intri-
cate traffic scenarios.
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