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Abstract
Intestinal parasitic infection leads to several morbidities in humans worldwide, especially in tropical countries. The traditional 
diagnosis usually relies on manual analysis from microscopic images which is prone to human error due to morphologi-
cal similarity of different parasitic eggs and abundance of impurities in a sample. Many studies have developed automatic 
systems for parasite egg detection to reduce human workload. However, they work with high-quality microscopes, which 
unfortunately remain unaffordable in some rural areas. Our work thus exploits a benefit of a low-cost USB microscope. This 
instrument however provides poor quality images due to the limitation of magnification (10× ), causing difficulty in parasite 
detection and species classification. In this paper, we propose a CNN-based technique using transfer learning strategy to 
enhance the efficiency of automatic parasite classification in poor-quality microscopic images. The patch-based technique 
with a sliding window is employed to search for the location of the eggs. Two networks, AlexNet and ResNet50, are examined 
with a trade-off between architecture size and classification performance. The results show that our proposed framework 
outperforms the state-of-the-art object recognition methods. Our system combined with the final decision from an expert 
may improve the real faecal examination with low-cost microscopes.

Keywords Human intestinal parasites · USB microscope · Automatic detection · Deep learning · Convolutional neural 
networks · Transfer learning

Introduction

Intestinal parasitic infection leads to several morbidities such 
as diarrhea digestive disorders, malnutrition, anemia or even 
death to humans worldwide, especially in tropical countries 
[1]. There are more than 100 different species of human 

intestinal parasites [2] that can grow with a considerably 
rapid rate of 200,000 eggs re-produced daily [3]. Indubi-
tably, over 415,000 human deaths due to parasite infesta-
tion are reported annually [4]. The conventional methods to 
diagnose intestinal parasitic infection depend exclusively on 
medical technicians in microscopic examinations of faecal 
samples. The potential problems are morphological similar-
ity of parasites and abundance of impurities in a sample, 
causing a difficulty to manually inspect different types of 
parasite eggs via a microscope [3, 5]. This thus requires 
extensive training to gain adequate expertise in diagnosis. 
This examination is laborious and time-consuming, averag-
ing 8–10 mins required for an expert technician to examine 
one sample [4]. In addition, the lack of skilled workers in 
this field leads to exhaustion, which means this method is 
prone to human errors [6]. Moreover, these conventional 
methods do not provide a data-sharing system and record 
historical data of diagnosis. For these reasons, the invention 
of an automated diagnostic system would become a signifi-
cant contribution to assist the traditional diagnosis.
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Since the development of image processing techniques 
and computer vision, the automated diagnosis systems have 
become more feasible. Many studies have implemented the 
systems to analyse microscopic image of faecal samples 
based on machine learning, e.g. support vector machine 
(SVM) [7, 8] and artificial neural networks (ANN) [5, 7]. 
The core components of these systems commonly include 
pre-processing, feature extraction and classification to 
identify species of parasitic eggs. The approaches generally 
consider the difference in the external features such as size, 
shape and smoothness of eggshell. These traditional machine 
learning approaches do not require very complex designs; 
however, they rely heavily on the selectively extracted fea-
tures. This means a tremendous effort is needed for tuning 
the features in feature extraction stage.

In the last decade, as computer performance and quantity 
of available image datasets have both increased, the deep 
learning-based algorithms have rapidly become more popu-
lar [9]. Deep learning shows high efficiency to tackle prob-
lems in many different domains, such as text recognition, 
computer-aided diagnosis, face recognition and drug discov-
ery [10]. In the parasite egg detection task, deep learning, 
especially the convolutional neural networks (CNNs), moti-
vates novel parasite classification research by its promising 
performance and speed in object detection [4, 6, 11–14]. 
CNNs have an advantage to avoid manual feature extraction 
by using its ability to learn the relevant features automati-
cally from a large amount of data that represents the desired 
behaviour of the data [15]. CNNs have demonstrated high 
accuracy in numerous different tasks of pathogen detection 
such as malaria, tuberculosis, and intestinal parasite [6]. 
With this approach, the intestinal parasite diagnosis can be 
independent of the experts, save time, increase sensitivity, 
and hopefully be used on-site.

Previous automatic systems proposed for the parasite egg 
detection have employed high-quality microscopes (1000× ). 
These instruments are expensive and have limited availabil-
ity in rural areas. Therefore, we are motivated to employ a 
low-cost USB microscope in this paper. It comes with low 
magnification (10× ), generating poorer image quality as 
low contrast and relevantly less detail of parasite eggs as 
shown in Fig. 1. At high resolutions (high magnification), 
the images of different parasite species show unique charac-
teristics and textural patterns inside the eggs (left images). 
This aids the CNNs to learn these expressed image patterns 
and assists identifying the parasite species. In contrast, the 
images from low magnification contain obviously fewer 
characteristics and pattern details of the parasitic eggs, lead-
ing to difficulty in detection and species classification.

This paper addresses these challenges by applying 
a transfer learning technique with pretrained CNN net-
works (Fig. 2). Our proposed framework starts with image 
processing to enhance the image quality. We subsequently 

employ the transfer learning strategy and test two pretrained 
networks: AlexNet [16] and ResNet50 [17], to examine a 
trade-off between the lighter-weight architecture and bet-
ter classification performance. These two well-known net-
works were used because they were trained on large data-
sets, acquiring rich and generalisable feature representations. 
They also allow for faster convergence during fine-tuning 
on our task. Our detection technique is a patch-based slid-
ing window, where the unlabelled microscopic images are 
separated into overlapping patches, fed to the trained model, 
and the location of the detected egg is where the maximum 
probability of being parasite egg is. Our proposed automated 
system based on supervised deep learning shows potential 
to enhance the efficiency of automatic parasite egg detection 
and classification in poor-quality microscopic images that 
have never been investigate in the state of the art. Obvi-
ously, there is a difficulty to identify parasite species from 
these USB microscopic images; however, our system could 
be a preliminary diagnostic tool before the next process for 
species identification can be performed for more specific 
species classification.

Materials and Methods

Parasite Eggs in USB Microscopic Images

Our dataset contains 10× magnification microscopic 
images with a resolution of 640×480 pixels. Four differ-
ent types of parasitic eggs present: 67 images of Ascaris 
lumbricoides (AL), 27 images of Hymenolepis diminuta 
(HD), 32 images of Fasciolopsis buski (FB) and 36 images 
of Taenia spp. (Tn). The images were obtained from Chu-
lalongkorn University, Thailand, and were labelled by 
experts. The limitation of the low magnification causes 
difficulty in species identification because of the lack 

Fig. 1  The comparison of parasitic egg images from (left) good qual-
ity microscope and (right) USB microscope
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of details of the parasitic eggs present in the images as 
shown in Fig. 3. The AL is the most common roundworm 
in humans [2]. The egg appearance is generally round but 
slight oval shapes are also found (Fig. 3a) with varied 
degrees of ellipticity. The HD eggs under the USB micro-
scope look very similar to the AL eggs but the HD eggs 
are generally more circular than the AL eggs (Fig. 3b). 
Figure 3c shows a large parasitic egg, Fasciolopsis buski, 
of which the detail showed is very low. The parasitic egg 
in Fig. 3d shows common characteristics of Taenia eggs 
but the egg detail is not enough to specify the Taenia spe-
cies. So, the experts classify these eggs as Taenia spp.

Data Preparations

Greyscale conversion and contrast enhancement are per-
formed before processing the patch overlapping and data 
augmentation. The greyscale conversion reduces the depth 
of the input image from three channels (RGB) to one chan-
nel (greyscale), diminishing the computational complexity 
of the training process. The contrast enhancement improves 
visualisation of the low-magnification microscopic images. 
This aids the CNN model to detect the low-level features, 
like edges and curves, and contributes to the detection per-
formance of higher-level features, like characteristics of 
parasitic eggs.

Fig. 2  Diagram of the proposed framework for training and testing CNN model

Fig. 3  USB microscopic images 
of 4 types of parasitic eggs a 
Ascaris lumbricoides b Hyme-
nolepis diminuta c Fasciolopsis 
buski and d Taenia spp.
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Overlapping Patches

Each microscopic image is divided into patches, allow-
ing the model to characterise the whole image by analys-
ing local areas. The largest parasite egg is approximately 
80× 20 pixels. The patch size is thus defined to be 100×
100 pixels so that all types of parasitic egg can be entirely 
encapsulated. The positions of patches overlap by four-
fifths of the patch size as shown in Fig. 4. This empirical 
choice provides a good prediction result when merging 
the probability of all patches together to reconstruct the 
probability map corresponding to the input microscopic 
image. To label the training dataset, the patch that contains 
a parasite egg is labelled as an egg patch, whilst the patch 
without parasite egg is labelled as the background.

Data Augmentation

Generally each microscopic image contains only 1–3 eggs, 
resulting highly imbalanced training dataset as there are 
numerous background patches. Data augmentation is 
therefore employed to increase the number of egg patches 
and to balance the number of patches in each class. This 
approach also ensures that data points are positioned to 
prevent overfitting. The augmentation increases the vari-
ance of the training dataset, which makes the model invari-
ant to location and orientation of eggs presenting in each 
patch. In this work, we generate more egg patches by (i) 
randomly flipping horizontally and vertically, (ii) ran-
domly rotating between angle of 0 to 160 degrees, and 
(iii) randomly shifting every 50 pixels horizontally and 
vertically around the egg. This data augmentation tech-
nique increases the egg patches to approximately 10,000 
patches per egg type. We randomly select 10,000 back-
ground patches so that the numbers are balanced.

Methods with Transfer Learning

We employ a transfer learning strategy by fine-tuning pre-
trained networks. This approach is faster and easier than 
training a network with randomly initialised weights from 
scratch. Parameters and features of these networks have been 
learnt from a very large dataset of natural images thereby 
being applicable to numerous specific applications. The last 
two layers are replaced with a fully connected layer and a 
softmax layer to give a classification output related to five 
classes: 4 parasite egg types and background debris. The 
learning rates of the new layers are defined to be faster than 
the transferred layers.

Two pretrained networks are tested, i.e. AlexNet [16] 
and ResNet50 [17], in order to examine a trade-off between 
network size and classification performance. AlexNet is a 
pioneer model that has significantly contributed to the CNN 
performance for object recognition, whilst ResNet50 is more 
modern, deeper architecture and generally gives better per-
formance on image classification.

The prepared patches as described in the previous step 
are resized to the input size required for each network, i.e. 
227×227 and 224×224 pixels for AlexNet and ResNet50, 
respectively. We randomly choose 30 percent of the train-
ing patches for validation in the training process. The initial 
learning rate, mini-batch size, and maximum epochs are var-
ied to find the optimal setting. The data was shuffled every 
epoch to avoid creating a bad mini batch which is a poor rep-
resentation of the overall dataset. We select the best model 
from the first model that provided the lowest validation loss 
to avoid overfitting.

Prediction Process

The testing microscopic images are processed with grey-
scale conversion, contrast enhancement, and patch over-
lapping process usingg the same parameters as the train-
ing dataset. Each patch in an image is classified using 
the trained models which provide the probability of each 
overlapping patch to identify the type of parasite eggs or 
background debris. The classification result of each patch 
gives five probability values of being AL, HD, FB, Tn and 
background. The final prediction result of the whole image 
comes from the maximum value of these five probabilities 
among all overlapping patches of the whole image. We 
combine the probability values of all overlapping patches to 
construct the probability map of the whole image as shown 
in Fig. 5. We achieve this by multiplying the probabilities 
of every overlapping patch with Gaussian weights ( � = 0, 
� = 1, where � and � are the mean and the standard devia-
tion, respectively) , and then summing up the probabilities 
of overlapping pixels too reconstruct the probability map of 
the whole image. As we employed a patch-based technique, Fig. 4  Patch overlapping technique
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the localised information is derived from the patch’s location 
(Fig. 5 bottom part). Therefore, the location of the detected 
parasite egg is the location of the patch that provides the 
highest probability values of being a parasite egg.

Experimental Results and Discussion

The dataset of each parasitic egg type is divided into training 
and testing with a ratio of 60:40. So, the testing dataset con-
sists of 65 images: 27 AL, 11 HD, 13 FB, and 14 Tn images. 
In the fine-tuning process, two optimisers were compared: 
stochastic gradient descent with momentum (SGDM) and 
Adaptive Moment Estimation (Adam). The initial learning 
rate was varied: 0.001, 0.0001 and 0.00001. The mini-batch 
size varied between 20, 50 and 100. For both AlexNet and 
ResNet50, we found that the SGDM optimiser with the 
initial learning rate of 0.0001, the mini-batch size of 100, 
and 20 epochs gave the best result (achieving the training 
accuracy of 93.95% and 99.80% for AlexNet and ResNet50, 
respectively). It should be noted that the results of using a 
pretrained model and a non-pretrained model showed insig-
nificant differences in performance, but the training speed 
was approximately three times faster with the pretrained 
model. While pretrained models are expected to help in 

generalisation and reduce the risk of overfitting, unfortu-
nately we could not verify this on our limited dataset.

The validation in the training process shows that both 
models can classify background patches with 100% accu-
racy. For the AL patches, the ResNet50 only shows one mis-
classified patch to be a background patch whereas AlexNet 
produces more misclassified patches as background as well 
as misclassified patches to be other types of eggs. ResNet50 
identifies HD patches with no mistake while AlexNet shows 
7% misclassified HD patches. The FB patches are the most 
difficult to identify because FB eggs have very low contrast, 
making it less noticeable compared to other parasitic eggs. 
Unsurprisingly, the AlexNet performance to classify the FB 
patches is relatively low compared to other types of eggs. 
However, the ResNet50 provides an impressive result in FB 
patch classification with an interestingly high accuracy of 
93.50%. In the same way, ResNet50 also gives a better result 
than AlexNet for the Tn patches.

Classification Results

In the testing process of classification, the true positive rate 
is relatively low when analysing each patch separately for 
both models, as reported in Table 1 with an analysis type 
of ‘patch’. Several egg patches are classified as background 

Fig. 5  Final probability map 
generation. We create the 
image’s probability map by 
multiplying each patch’s prob-
ability with Gaussian weights 
and summing these values at 
overlapping pixels. The parasite 
egg’s location corresponds to 
the patch with the highest prob-
ability of being an egg
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(the highest probability is given to the background class). 
Most of these patches have an egg located at the edge of 
the patches—in other words, only a partial egg presents 
in the patches as displayed in Fig. 6. In the detection pro-
cess, the probabilities of overlapping patches are merged 
into the probability map of the testing microscopic image. 
This results in an increase in the probability of there being 
a parasitic egg in the egg area. As a result, the true posi-
tive rates increase when analysing the whole image (Table 1 
with analysis type of ‘whole image’). Overall, the ResNet50 
model outperforms the AlexNet one in all egg cases, meas-
ured by the accuracy, true positive and true negative rates. 
The true negative rates are very high for the patch analysis of 
both AlexNet and ResNet50—background patches are clas-
sified as background. Unfortunately, we cannot determine 
the true negative rates for whole image analysis because we 
do not have any microscopic images containing only debris 
(no parasite eggs) to test the model.

Figure  7 shows some false positives in the detec-
tion results of AlexNet. These areas have smaller prob-
ability values than the correctly detected areas in other 
images. The ResNet50 model yields better results than 
the AlexNet model as shown in the confusion matrices of 
Fig. 8. Interestingly, the ResNet50 model achieves 100% 
accuracy of FB detection (Fig. 8d), which is the most 

challenging egg in this study due to the low contrast and 
lack of details inside the eggs. This can be seen via the 
result of the patch analysis, where the FB patches yield 
the lowest accuracy because almost half of FB patches 
are classified as background debris (Fig. 8c). In addi-
tion, the ResNet50 generally gives higher probability than 
the AlexNet for either being parasite eggs or background 
debris, indicating more confidence in prediction. In some 
images, neither AlexNet nor ResNet50 can detect any par-
asite eggs. However, these egg areas have significantly 
lower probability values of being background than other 
parts of the image (Fig. 9).

Table 1  Testing results of 
AlexNet and ResNet50 models

Models Analysis type Accuracy (%) True positive rate (%) True nega-
tive rate 
(%)AL HD FB Tn

AlexNet Patch 96.93 45.45 34.23 19.92 53.76 99.23
Whole image 87.69 96.30 81.82 76.92 85.71 –

ResNet50 Patch 98.25 64.09 73.42 56.39 73.48 99.57
Whole image 90.77 92.59 81.82 100.00 85.71 –

Fig. 6  Examples of testing 
result for egg patches. Red 
values represent the probability 
of the patch being background 
debris. Blue values represent 
the probability of the patch to 
be an AL egg

Fig. 7  AlexNet confusion results: a detected AL egg correctly (red 
area) but also included the debris which have similar morphology as 
AL egg (left bright area), b detected Tn egg correctly (red area) but 
also detect debris as Tn egg with a lower probability (left dim area)
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Comparison with State‑of‑the‑Art Object Detection

We compared our methods with two state-of-the-art object 
detection methods: Single shot detector (SSD) [18] and 
Faster R-CNN [19]. SSD is a very light-weight network 
having one single shot to detect multiple objects within the 
image, whilst Faster R-CNN requires two shots, one for 
searching for regions of interest (ROI), and the other for 
detecting the object in each ROI using CNNs. The back-
bones of SSD and Faster R-CNN used here are VGG-16 
and ResNet50 architectures, respectively. It is worth to 
mention that You Only Look Once (YOLO) [20], a state-
of-the-art real-time object detection, is not suitable for 

Fig. 8  Confusion matrices from the testing process

Fig. 9  Examples of ResNet50 testing results for FB egg. a the debris 
in the upper bright area shows a higher probability than the FB egg 
in the lower bright area. b the debris at the upper bright area shows a 
lower probability than the FB egg in the lower bright area
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our application. This is because YOLO struggles to detect 
small objects within the image.

Table 2 shows the precision results of our methods com-
pared to SSD and Faster R-CNN. The precision, or positive 
predictive value (PPV), indicates the percentage of correctly 
identified eggs from all detected eggs in one particular egg 
type. The proposed method with the ResNet50 gives the best 
average precision, followed by Faster R-CNN. Our AlexNet 
model outperforms SSN despite its smaller architecture 
and fewer parameters. Our method exploits a sliding win-
dow technique which works really well in this application. 
This is because the size of each patch can be fixed, and the 
aspect ratio of the objects we want to detect (parasite eggs) 
is not present in various shapes, unlike natural images that 
contain people, cars and buildings. The adaptive size of a 
bounding box, as offered by SSD and Fast R-CNN, does not 
benefit parasite egg detection. Moreover, background of the 
microscopic image does not contain useful information; it is 
generally just homogeneous and noisy. This is different from 
natural images, where the background informs what objects 
are likely to be located there.

Test with Different Dataset

Our proposed method was rigorously evaluated on a substan-
tial dataset, Chula-ParasiteEgg-11 [21], which was used in 
the ICIP 2022 Challenge. This dataset consists of 11 differ-
ent types of parasitic eggs, exhibiting variations in sizes. For 
each parasitic egg type, 1250 images were obtained from 5 
different devices. Note that these devices are not low-cost 
microscopic images and have higher quality than our dataset. 
1000 images from each class were allocated for training, 
while the remaining 250 images were reserved for testing. 
To facilitate robust evaluation, we applied our data prepara-
tion scheme, involving overlapping patches and data aug-
mentation. Notably, in this new dataset, we altered the patch 
size to 300×300 pixels from the previous 100×100 pixels to 
effectively capture the various sizes of the parasitic eggs.

The experimental findings demonstrated that AlexNet 
and ResNet50 achieved average precision values of 65.08% 
and 73.65%, respectively, across all 11 types of parasitic 
eggs. These precision values, although commendable, were 

relatively lower when compared to the results obtained 
with our previous dataset. This is because the Chula-Para-
siteEgg-11 dataset is significantly larger and more diverse 
in terms of the devices used and the image magnification.

Discussion

The CNNs can automatically learn relevant useful features 
even in microscopic images with poor magnification. The 
transfer learning technique is a very efficient method that 
has the capability to produce high-performance parasite 
egg detection within a short time. However, the transferred 
model requires an optimal parameter setting for the training 
process to yield the best result. We found that training the 
model with too many epochs, e.g. 50 or 100 epochs, may 
result in an overfitting problem, where the model provides 
extremely high accuracy for a training result, but the test-
ing accuracy is extremely poor. Therefore, early stopping 
techniques are required or validation loss is monitored as 
we employ in this paper.

The proposed frameworks, especially the model based on 
ResNet50, achieve a satisfactory result for parasite detection 
task with a sufficiently high accuracy in classifying the test-
ing images. The model has the remarkable ability to locate 
a parasite egg position and identify species of the parasite 
egg correctly even in a low-quality microscopic image. The 
ResNet50 model outperforms AlexNet and SSD because 
of its deeper architecture, leading to better handling of the 
variation and non-linearity of data. The deeper networks can 
learn complex features. Misclassified results still occur but 
if we combine the prediction result of the model with the 
final decision from an expert, this will improve the diagno-
sis of parasite infection disease. However, the poor-quality 
microscopic image with insufficient detail is still a big chal-
lenge that prevents the model from correctly discriminating 
between different types of parasite eggs and sample impuri-
ties. Thus, more work is still required to improve this system.

Despite the high classification performance of the model, 
misclassification remains. A larger pretrained network may 
help the model to learn more complex features of the para-
site eggs. Semantic segmentation, e.g. U-Net [22, 23] might 
be employed to label the ground truth more precisely. This 
may aid the model to extract the relevant features more 
accurately.

When testing with the Chula-ParasiteEgg-11 dataset, the 
accuracy drops due to its diversity. In particular, the same 
parasitic egg image, when viewed at different magnifica-
tions with the same patch size, exhibited discernible dif-
ferences, affecting the method’s classification performance. 
To address this inherent limitation, adaptively adjusting the 
patch size corresponding to the image magnification could 
be employed. The suitable patch size could captures the rel-
evant features of parasitic eggs accurately.

Table 2  Comparison with stat-of-the-art object detection

Bold indicates the best performance

Models Precision (%) Avg.

AL HD FB Tn

SSD 86.7 85.1 73.3 67.3 78.1
Faster R-CNN 92.5 97.3 98.9 95.8 96.1
Our AlexNet 96.3 90.0 100 85.7 93.0
Our ResNet50 96.2 90.0 100 100 96.6
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Despite this limitation, our method remains robust and 
highly effective for the majority of parasitic egg types. The 
precision rates for eight out of the eleven classes ranged 
from 65 to 93% with ResNet50, indicating substantial suc-
cess in egg-type classification. While the precision rates for 
the three classes, Capillaria philippinensis, Fasciolopsis 
buski, and Hymenolepis nana eggs, were limited to 50–60% 
with ResNet50, we believe that further optimization and 
fine-tuning could potentially yield improved results for these 
specific classes.

Conclusions

This paper presents a deep learning technology with a trans-
fer learning approach for an automatic system of parasite egg 
detection and classification during a faecal examination. The 
proposed CNN models show a competent ability in learning 
relevant features of the different parasitic eggs even in low-
quality images sourced from a USB microscope. Overall, our 
ResNet50 framework can classify the four types of parasitic 
eggs with high accuracy and outperforms AlexNet, SSD and 
Faster R-CNN. With this satisfactory result, this approach 
may be performed with real faecal examination with USB 
microscopes. The proposed framework is also robust when 
dealing with data containing a larger number of categories 
and high diversity, achieving a precision of 75–93% in the 
majority of parasitic egg types of Chula-ParasiteEgg-11 
dataset.
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