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Abstract
Providing rationales for decisions can enhance transparency and cultivate trust. Nevertheless, in light of economic incentives 
and other factors that may encourage manipulation, the reliability of such explanations comes into question. This manuscript 
builds upon a previous conference paper∗ by introducing a conceptual framework for deceptive explanations and constructing 
a typology grounded in interdisciplinary literature. The focus of our work is on how AI models can generate and detect decep-
tive explanations. In our empirical evaluation, we focus on text classification and introduce modifications to the explanations 
generated by GradCAM, a well-established method for explaining neural networks. Through a user study comprising 200 
participants, we demonstrate that these deceptive explanations have the potential to mislead individuals. However, we also 
demonstrate that machine learning (ML) techniques can discern even subtle deceptive tactics with an accuracy exceeding 
80%, given sufficient domain expertise. Furthermore, even in the absence of domain knowledge, unsupervised learning can 
be employed to identify inconsistencies in the explanations, provided that fundamental information about the underlying 
predictive model is accessible.
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Introduction

Artificial intelligence (AI) holds the potential to enhance 
global prosperity and improve overall well-being. However, 
concerns regarding its various applications persist, with one 
significant worry being the lack of adequate oversight of 

online content, which has resulted in the proliferation of 
deceptive information. For example, online media platforms 
constantly grapple with the challenge of combating the 
spread of "fake news". Similarly, e-commerce platforms ded-
icate substantial resources to identify and remove misleading 
product reviews. Notably, there exist marketing strategies 
that deliberately generate fraudulent reviews, aiming either 
to exaggerate the virtues of products or to misrepresent their 
quality [62]. Generative AI models, such as large language 
models like ChatGPT, have the potential to exacerbate the 
issue of deception [18, 56].

Due to the limited moderation of online content, various 
attempts at deception are on the rise. Online media platforms 
are grappling with the pervasive issue of disseminating "fake 
news," while e-commerce websites are investing consider-
able efforts to detect and counter deceptive product reviews 
(see [62] for an extensive review). Some marketing strate-
gies even involve the deliberate creation of fake reviews to 
artificially enhance product perceptions or make false claims 
about product quality [3].

There are multiple motives for providing "altered" expla-
nations for the functioning of predictive AI systems. Pro-
viding entirely truthful explanations may risk exposing the 
underlying logic of the AI system, including its intellectual 
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property. Decision-makers may also choose to deviate from 
AI-generated recommendations at their discretion. For 
example, a bank employee might deny a loan to a disliked 
potential client, citing an AI model’s recommendation as the 
basis, supported by a fabricated explanation, regardless of 
the system’s actual recommendation.

AI systems might achieve improved performance by lev-
eraging information that should not be used but is nonethe-
less available. For instance, private health information about 
an individual could be utilized by insurance companies to 
accept or reject applicants. Even though such practices are 
prohibited in certain countries, the information remains 
highly valuable in estimating the expected costs associated 
with applicants. Additionally, product recommendations 
delivered through recommender systems often come with 
explanations [17], intended to boost sales. Companies may 
be inclined to provide explanations that entice customers 
into making purchases, irrespective of their accuracy.

Consequently, there are incentives to develop systems that 
employ such information covertly, concealing their use of 
"illicit" decision criteria from authorities or even citizens. 
In Europe, the GDPR law grants individuals the right to 
access explanations for decisions made through automated 
processes. Such legal initiatives have been introduced with 
the intent of addressing the adverse aspects of AI. Neverthe-
less, given the evolving nature of AI and, more specifically, 
the field of explainable AI (XAI) [33], there remains a lim-
ited understanding of both explainability and the potential 
for deception through explanations.

This paper builds upon a previous conference version by 
incorporating a conceptual framework that delves into the 
realm of deceptive XAI (Deceptive XAI—Typology, Crea-
tion and Detection). In summary, this paper presents several 
notable contributions: 

1.	 Conceptualization: The paper makes a valuable contri-
bution by offering a comprehensive conceptualization 
of the problem, drawing upon prior research. This con-
tribution encompasses the development of a typology 
for categorizing deceptive explanations and the intro-
duction of an explainee model tailored for understand-
ing deceptive explanations. Recognizing that deceptive 
AI involves both technical and human dimensions, the 
paper incorporates insights not only from computer sci-
ence but also from related fields such as information 
systems and social sciences, particularly addressing the 
human aspects. The typology serves the additional pur-
pose of identifying research gaps and providing guid-
ance for future researchers.

2.	 Deception mechanisms evaluated with a user study: 
The paper focuses its attention on deceptions arising 
from the manipulation of relevance scores, a particu-
larly relevant area given that explanations often rely on 

relevance scores. This aligns with common practices in 
various XAI techniques, including popular approaches 
like LIME, SHAP, and GradCAM. Through empirical 
analysis, including a user study, the paper reinforces 
prior findings by demonstrating that deceptive AI expla-
nations can indeed mislead individuals.

3.	 Formal analysis of detection boundaries: The paper 
conducts a formal, theoretical analysis that establishes 
generic conditions for detecting deceptive explanations. 
It highlights the essential role of domain knowledge 
in uncovering certain forms of deception that may be 
beyond the grasp of explainees (i.e., recipients of expla-
nations).

4.	 Detection algorithms: We contribute to the ongoing 
efforts to combat deceptive explanations by introducing 
both supervised and unsupervised detection methods. 
These methods represent an initial step in the pursuit 
of detecting deceptive explanations. Furthermore, the 
paper underscores that the success of deception detec-
tion hinges on various factors, including the specific 
type of deception, the availability of domain-specific 
knowledge, and a fundamental understanding of the 
deceptive system.

Conceptualization of Deceptive 
Explanations

In this section, we begin by establishing the foundational 
context for explanations and the concept of deception. 
We then proceed to formulate a comprehensive typology 
of deceptive explanations, drawing upon insights from a 
range of academic disciplines. Additionally, we introduce 
an explainee model that explores different stimuli and their 
corresponding responses in the context of deceptive expla-
nations. It is crucial to acknowledge that explanations are 
ultimately intended for human consumption, underscoring 
the importance of comprehending the mechanisms govern-
ing how humans perceive and process AI predictions and 
their associated explanations.

Explanation and Deception

Several definitions of explanation and deception exist, but 
the ones particularly relevant to the perspective of deceptive 
XAI are as follows:

•	 Explanation:“An explanation is the details or reasons that 
someone gives to make something clear or easy to under-
stand.” [13].

•	 Deception: “A communicator’s deliberate attempt to fos-
ter in others a belief or understanding which the com-
municator considers to be untrue.” [12, p. 1553].
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Two crucial facets emerge from these definitions. First, 
deception is inherently an intentional action. This implies 
that actions resulting in user misguidance due to inadvertent 
technological flaws or lack of knowledge are not catego-
rized as deceptive. Second, deception manifests through the 
transmission of information, which is essentially a form of 
communication. In the context of deceptive explanations, 
this pertains to systems utilized by individuals to obtain 
information, encompassing information systems and human-
computer interaction, given that explanations are fundamen-
tally directed at a human audience.

The individual in the role of the explainer, responsible for 
providing explanations, typically possesses knowledge that 
the explainee, who is the recipient of the explanation, does 
not have. Consequently, there exists an inherent informa-
tion asymmetry between these two parties. Specifically, the 
explainer possesses a certain level of insight into the accu-
racy and truthfulness of the explanations. Within our con-
text, an explanation is comprised of a collection of ration-
ales used to elucidate specific outcomes of an AI (referred 
to as local explanations) or the AI as a whole (referred to 
as global explanations). A reason is a piece of information 
providing clarification through contextual, causal, or other 
knowledge. It might be expressed as simple facts or complex 
decision rules. Reasons are potentially accompanied by two 
pieces of auxiliary information provided by the explainer, 
namely: a relevance estimate of the reason and the certainty 
of the estimate. The relevance estimate serves to quantify the 
degree of impact attributed to each rationale.

In the context of AI, a comprehensive understanding of 
explanations hinges on the elucidation of the information 
that forms the foundation of the explanation process. This 
information delineates the scope within which alterations 
and fabrications may occur. In the context of AI-driven 
explanations, the explanation method draws upon three 
primary sources of information: the model’s inputs, the 
model’s outputs, and the model itself. Inputs can be further 

distinguished into data that altered the model, i.e., training 
data used to fit model parameters and test data possibly used 
during deployment. Outputs of the model typically consti-
tute a decision, but for generative models, they might also 
consist of an artifact such as a photorealistic image, a piece 
of music, etc. The model consists of a model definition, 
called architecture in deep learning, and fitted parameters. 
Other, less prevalent auxiliary information used by an XAI 
method is information on the explainee, e.g., to personal-
ize explanations, and contextual information, e.g., on how 
training data is obtained, or meta-data, e.g., a description of 
attributes in the training data.

Typology

To derive a typology of deceptive explanations, we inves-
tigate both technical and non-technical aspects. We assess 
the state of XAI based on recent surveys [1, 33, 54], i.e., 
how explanations are typically computed and presented. In 
addition, we build on generic theory describing how expla-
nations emerge as deceptive from a human perspective, e.g., 
[64] describe deceptive information practices in human-
computer interaction focusing on an E-commerce setting. 
The combination of both viewpoints helps in a more com-
prehensive treatment. The final typology shown in Fig. 1 
highlights three deception mechanisms. The first, altering 
scores, originates from existing XAI techniques. Existing 
literature on XAI treats explanations commonly as a set of 
fixed reasons accompanied by relevance scores. Relevance 
scores quantitatively capture how important a reason is 
compared to others, which allows for comparing reasons. 
For example, for attribution-based techniques, GradCAM, 
LIME, and SHAP compute relevance scores of input attrib-
utes but do so in a different manner. Reasons are mostly fixed 
and simple, e.g., reasons could be the presence or absence of 
input attributes. For example-based XAI methods that state 
the most influential samples from the training data, a reason 

Fig. 1   Deviations of explana-
tion from the truth. Each reason 
is accompanied by a relevance 
and confidence score
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could also be the presence of a sample in the training data. 
A natural extension to reporting relevance scores is adding 
a confidence score to each relevance score to capture uncer-
tainty in the estimate. An explainability method typically 
defines a measure, commonly in the form of an algorithm 
that determines how relevance scores are computed. Decep-
tion can alter scores. That is, a truthful explanation might 
be altered by changing relevance and confidence scores. A 
trivial mechanism simply sets scores to zero, which corre-
sponds to hiding that a specific reason played a role. Scores 
might also be altered indirectly by constructing or modifying 
XAI algorithms.

The second dimension is motivated from a non-technical 
perspective of the deception of humans as discussed in [64]. 
The three general types of deception from [64] shown in 
Table 1 are concealment, falsification, and equivocation. 
They focus on deception due to new or altered reasons rather 
than scores. That is, while score-based deception treats rea-
sons as fixed, reason-based deception mechanisms might 
fabricate reasons that could potentially impossibly be rel-
evant. For example, the argument that a bird was classified 
as a specific breed based on her singing, cannot be true for 
a classifier that is only trained on images. A reason-based 
explanation might also conceal reasons, e.g., omit them 
as shown in Fig. 1. However, there is a conceptual differ-
ence compared to score-based omission. In score-based 
omission, the system might output a score of zero, which 
implies that the reason seems relevant though not for the 
specific instance. In reason-based omission, if a reason is 
not mentioned it appears to be as irrelevant as all other non-
mentioned reasons.

The third dimension relates to presentation, e.g., expla-
nations might be visualized [36] or stated in a way that is 
misleading.

Explainee Model of Deceptive Explanations

In Fig. 2 we provide a theoretical model for deceptive expla-
nations from the perspective of the explainee, i.e. the person 
receiving the prediction and explanation. Since there is lit-
tle conceptual work on deceptive explanations in AI, it is 
mainly a synthesis of works on deception and explanation, 
particularly, it builds on models by [64] and [19]. [64] pro-
vides the overarching framework in the context of decep-
tion in information systems, i.e., systems used by people to 
acquire information. [19] provides the perceptions triggered 
by explanations. More precisely, [64] describes the instantia-
tion of the generic stimulus-organism-response framework 
to the context of deceptive information on e-commerce web-
sites. We adopt this framework but alter sections as required 
for deceptive XAI. The “approach behavior toward target 
AI outcome”, i.e., toward predictions and explanations, 
is defined as the positive attitude or action toward them. 
An approach behavior toward target is observed when the 
explainee shows an attitude towards the (deceptive) predic-
tion and explanation that she would not have generated for 
a truthful explanation. This attitude, in turn, might lead to 
positive actions judged by the deceiver. Thus, a deception 
attempt is successful, if a person shows such a behavior. 
For instance, if a person buys a product as a reaction to 
a deceptive recommendation accompanied by a deceptive 
explanation.

The individual, problem, and situational characteris-
tics refer to factors that impact the chances of success of a 
deception attempt. Individual factors cover traits of a per-
son such as being critical or adherence to authority (e.g., 
there is considerable interpersonal variance in credibility 
assigned to automatically generated information [61]) and 
personal relevance (e.g., does the prediction and explana-
tion impact a person strongly?). Individual factors also 
cover domain knowledge of an explainee, i.e. knowledge 

Table 1   Overview of deception types based on reasons

Deception Type Description Example: Explanation of a Recommendation

Equivocation Reasons are vague or ambiguous, but not clearly incorrect Deception: Some of your friends were also interested in the 
product recently. Truth: Two friends looked for informa-
tion on resolving issues with the product, but none showed 
interest in purchasing

Concealment Reasons are withheld, omitted, or disguised Deception: Most people liked the product. Truth: While this 
might be true, the system might conceal that most of your 
friends explicitly disliked it

Falsification Reasons might be fabricated or altered. Fabricated reasons 
are made-up for the sole purpose of deception. It might 
be impossible for a model to decide based on fabricated 
reasons, since, for example, it lacks the information stated in 
the fabricated reasons as inputs. Alteration modifies reasons 
so that they potentially still bear similarity with the original 
reason but can be clearly identified as being untrue

Deception: Some of your friends were also interested in 
the product. (i) The system has no information on who 
your friends are (Fabrication). (ii) The system possesses 
information on friends. But only brief acquaintances were 
interested in the product
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of data the AI operates on, and technical expertise in AI 
technology. For instance, a doctor is more likely to discover 
poor explanations of a medical diagnosis than an ordinary 
person. Problem characteristics refer to the problem the AI 
addresses. Complexity of the problem, available information 
on the problem, etc. play a vital role in the ability to detect 
deception. Situational factors involve available resources to 
investigate the explanation. For instance, an auditor or a gov-
ernment body might have more resources in terms of acces-
sible competencies as well as finances than a private person. 
Deception detection support mechanisms refer to any mech-
anisms that assist in detecting deceptions. Such mechanisms 
might include regulations with respect to system design 
and governance. For example, reporting and transparency 
standards prescribing the structure of explanations and their 
required level of detail can facilitate detection.

The cognitive mechanisms describe the cognitive pro-
cesses through which a deceptive explanation impacts 
an explainee. Cognitive mechanisms consist of beliefs, 
thoughts, or perceptions about predictions and explanations, 
the AI system, or the instance that can be held responsi-
ble for the AI system or putting it in use. [19] put forth 
the following perceptions of intelligent systems, which 
are (still) valid: confidence/trust in judgments, agreement 
with conclusions, perceived usefulness, satisfaction, and 
acceptance. Deceptive explanations might result in devia-
tions from an explainee’s preconceived expectation as well 
as observed violations of sound reasoning. These instill a 
two-step deception detection process: identifying anoma-
lies in explanations, which often involves investigating the 
explanation on its own as well as with respect to the predic-
tion and the input to the AI. Anomalies primarily aim at 

the verification of factual claims or processes for which an 
explainee has preconceived expectations. In addition, expla-
nations to support deceptions might suffer from fallacies 
that occurred during the reasoning process, such as “the use 
of invalid or otherwise faulty reasoning” [58]. Humans are 
capable of numerous techniques to attack fallacies [11]. As 
a consequence of the detection process, an explainee might 
believe that the explanation, as well as the prediction, are 
manipulated and the AI system as a whole is deceptive. “Use 
of deceptive explanation” refers to the employment of one or 
more types of deceptive manipulations of a (truthful) expla-
nation, based on the typology presented in Fig. 1.

Problem Definition: Deception Through 
Explanations and Predictions

Explanations should help in understanding a model. This 
understanding is based on providing reasons that lead to 
(reported) predictions of a model. A reported prediction is 
the output class shown to the user. Explanations have to 
be judged together with the model prediction. For global 
explanations of a classification model, these might be gen-
eral rules or concepts guiding the decision-making process 
of the model. For instance, a general rule could be that an 
object is classified as a car if four tires are detected. For local 
explanations, these are the specific concepts or rules for a 
given input that caused the output of the model. Thus, there 
are two sources of deception for an explainee: model deci-
sions and explanations. Explanations can either be truthful 
to the model predictions or not. If an explanation is truthful 
for a reported output it answers the question:

Fig. 2   Theoretical Model of 
Deceptive Explanations
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“What are the reasons that have caused or would have 
caused the model to make the reported prediction?”

More formally, an (AI) model M maps input X ∈ S to 
an output Y, where S is the set of all possible inputs. We 
introduce a reference model M∗ and a reference explain-
ability method H∗ . In practice, M∗ might be a deep learn-
ing model and H∗ a commonly used explainability method 
such as GradCAM, LIME, or SHAP. That is, H∗ might not 
be perfect. Still, we assume that the explainee trusts it, 
i.e. she understands its behavior and in what ways expla-
nations differ from "human" reasoning. The model M∗ is 
optimized with a benign objective, for example, maxi-
mizing accuracy. We assume that M∗ is not optimized 
to be deceptive. However, model M∗ might not be fair 
and behave unethically. The explainee could be a layman 
with limited AI knowledge who assumes that decisions 
are made following M∗ , and explanations are based on 
H∗ though she is generally not aware of model behav-
ior and lacks access to training data. She might also not 
understand model decisions and only possess limited 
knowledge of the explainability method H∗ . A deceiver 
might pursue objectives other than those used for M∗ lead-
ing to the deceiver’s model MD . The model MD might 
simply alter a few decisions of M∗ using simple rules or 
it might be a completely different model. A (truthful) 
explainability method H(X, Y, M) receives input X, class 
label Y, and model M to output an explanation. For the 
reference explanation method H∗ , this conforms to pro-
viding a best-effort, ideally, a truthful, reasoning, why 
model M would output class Y. The deceiver’s method 
HD might deviate from H∗ using arbitrary information. 
It returns HD

(X) , where the exact deception procedure 
is defined in context. In particular, HD

(X) might simply 
modify the reference explanation. For example, it might 
first internally compute H∗

(X) and omit certain reasons. 
The method HD

(X) might also compute an adversarial 
sample X′ based on X and return the explanations H∗

(X�
) . 

The adversarial sample might trick the reference explain-
ability method into outputting deceptive explanations. An 
explainee (the recipient of an explanation) obtains for an 
input X, a decision MD

(X) , and an explanation HD
(X) . The 

decision is allegedly from M∗ and the explanation alleg-
edly from H∗ and truthful to the model MD providing the 
decision. Thus, an explainee should be lured into believ-
ing that M∗

(X) = MD
(X) and HD

(X) = H∗
(X,MD

(X),MD
) . 

However, the deceiver’s model might or might not out-
put MD

(X) = M∗
(X) . A deceiver might also choose an 

explainability method HD that differs from H∗ , or she 
might explain a different class Y.

The goal of a deceiver is to construct an explana-
tion so that the explainee is neither suspicious about 
the decision in case it is truthful nor to the model MD , 
that is, MD

(X) ≠ M∗
(X) , nor to the explanation HD

(X) if 

it deviates from H∗
(X,MD

(X),M∗
) . Thus, an explanation 

might be used to hide an unfaithful decision from the 
model or it might be used to convey a different decision-
making process than occurs in MD.

Deception Scenarios

Deception of an explainee can involve either model deci-
sions or explanations or both. This leads to multiple sce-
narios that we describe next. An explanation H∗

(X, Y ,M) 
provides truthful reasons why model M would yield out-
put Y for an input X. We shall first consider explanations 
for the model MD and the input X, where outputs Y have 
only one of two values, i.e., we use H∗

(Y) ∶= H∗
(X,Y ,MD

) 
with Y ∈ {MD

(X),M∗
(X)} . This yields four scenarios 

shown in Fig. 4. These scenarios judge the truthfulness of 
explanations only based on whether they are aligned with 
the reported prediction, i.e., the output class shown to the 
user. That is, a prediction is also considered truthful if it 
explains why the model MD would output M∗

(X) differing 
from the actual model prediction M∗

(X) = MD
(X) . How-

ever, this view is somewhat simplistic. An explanation for 
the actual prediction, i.e., H(M∗

(X)) , yields valuable infor-
mation on how the input X is processed by the model MD , 
i.e., what are the reasons and relevance scores extracted 
when the model processes input X. This holds even if the 
reported prediction differs, M∗

(X) ≠ MD
(X) . The explana-

tion H∗
(X,M ∗ (X),MD

) might be considered truthful to the 
model and the input (though not for the reported prediction). 
Furthermore, consider an explanation H∗

(X�,Y �,MD
) for an 

input X with X′ ≠ X (differing from the input X to explain) 
and an output Y ′ differing also from both the reported class 
MD

(X) and the class M∗
(X) given by the reference model. 

Even in this case, one might argue that the explanation is 
more truthful than a random prediction. For example, for 
structured input data such an explanation still (truthfully) 
reveals what attributes are relevant for the reference model 
M∗ for some input X′.

In a more general case, one might assume that an arbitrary 
model MD , differing from the reference model M∗ is used, 
that an arbitrary explainability method HD is used, or that 
the reference method H∗ yielding truthful explanations is 
used. If H∗ is used inputs might be altered, i.e., explanations 
being truthful to reported predictions YR , model predictions 
for the input MD

(X) , input X and the model itself MD . For 
example, there might be a reference model M∗ and a deceiver 
model MD such that M∗ was trained using training data with-
out gender and race as attributes and model MD included 
them. For explanations, model M∗ is used, while reported 
(more accurate) predictions stem from MD . This leads to 32 
combinations covering different aspects of truthfulness. We 
only show an extension of the four basic scenarios in Fig. 3 
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by taking truthfulness with respect to inputs into account 
(see Fig. 3). The motivation is that inputs are commonly 
subject to manipulation to deceive classifiers (and humans), 
i.e., manipulated inputs are known as adversarial samples. 
That is, a deceiver might generate samples X′ , e.g., by alter-
ing samples X through adversarial manipulations, though 
that reference explainability method H∗ reports deceptive 
explanations. She might report the output for model MD

(X) , 
but use another sample X′ to compute the explanation. We 
say that input is truthful if the same input is used to compute 
MD

(X) and to compute the explanation. If an explanation is 
truthful to the input, i.e., based on input X, it answers the 
question:

“What are the reasons (including their scores) by the 
model to process the input and make its prediction (though 
not necessarily the reported one)?”

Score‑Based Deceptive Explanations

In this section we conceptualize and analyze score-based 
deception, i.e., we provide a problem definition, measures 
to capture the degree of deception and discuss the creation 
and detection of deceptive explanations by manipulating rel-
evance scores. This constitutes one of the four manipulation 
mechanisms (see Fig. 1). We focus on deception through 
relevance scores because we deem it the most feasible 

approach to be conducted in an automated manner. The 
usage of scores operationalizes measures for deception, i.e., 
to express them in intuitive mathematical terms that require 
only limited explanations and assumptions.

Problem Definition

We consider classification systems that are trained using 
a labeled dataset D = {(X, Y)} with two sources of decep-
tion: model decisions and explanations. Definition of the 
reference and deceiver explainability methods H∗ , HD and 
models M∗ , MD are provided in “Problem definition: decep-
tion through explanations and predictions”. Here, we focus 
specifically on the four scenarios (see Fig. 4). We write 
H∗

(X) ∶= H∗
(X,MD

(X),MD
) . An input X consists of values 

Fig. 3   Scenarios for reported predictions and explanations taking also truthfulness to inputs into account

Fig. 4   Scenarios for reported predictions and explanations
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for n features, F = {i ∣ i = 1… n} , where each feature i 
has a single value xi ∈ Vi of a set of feasible values Vi . For 
example, an input X can be a text document such as a job 
application, where each feature i is a word specified by a 
word id xi . Documents X ∈ S are extended or cut to a fixed 
length n. ML models learn (a hierarchy of) features. Explain-
ing in terms of learned features is challenging since they 
are not easily mapped to unique concepts that are humanly 
understandable. Thus, we focus on explanations that assign 
relevance scores to features F  of an input X.

Formally, we consider explanations H that output a value 
Hi(X, Y ,M) for each feature i ∈ F . Where Hi > 0 implies that 
feature i with value xi is supportive of decision Y. A value of 
zero implies no dependence of i on the decision Y. Hi < 0 
shows that feature i is indicative of another decision.

Measuring Explanation Faithfulness

We measure the faithfulness of an explanation using two 
metrics, namely decision fidelity and explanation fidelity.

Decision Fidelity

Decision fidelity amounts to the standard notion of quanti-
fying whether input X and explanation HD

(X) on their own 
allow deriving the correct decision Y = M∗

(X) [48]. There-
fore, if explanations indicate multiple outputs or outputs 
different from Y, this is hardly possible. Decision fidelity 
fD can be defined as the loss when predicting the outcome 
Y = M∗

(X) of a model M∗ measured using another classifier 
g based on the reported explanations HD

(X) and inputs X 
only, or formally:

The loss might be defined as 0 if g(X,HD
(X)) = Y  and 

1 otherwise. We assume that the reference explanation 
H∗

(X,M∗
(X),M∗

) results in minimum loss, i.e., maximum 
decision fidelity. (Large) decision fidelity does not require 
that an explanation contains all relevant features used to 
derive the decision MD

(X) . For example, in a hiring pro-
cess, gender might influence the decision, but for a particular 
candidate other factors, such as qualification, social skills, 
etc., are dominant and on their own unquestionably lead to 
a hiring decision.

Explanation Fidelity

Explanation fidelity refers to the overlap of the (potentially 
deceptive) explanation HD

(X) and the reference explana-
tion H∗

(X,MD
(X),MD

) for an input X and reported decision 

(1)
fD(X) = −L(g(X,HD

(X)),Y)

with classifier g ∶ (X,HD
(X)) ↦ {0, 1}

MD
(X) . Any mismatch of a feature in the two explanations 

lowers explanation fidelity. It is defined as:

Even if the decision MD
(X) is non-truthful to the model, i.e., 

MD
(X) ≠ M∗

(X) , explanation fidelity might be large if the 
explanation correctly outputs the reasoning that would lead 
to the reported decision. If the reported decision is truthful, 
i.e., MD

(X) = M∗
(X) , there seems to be an obvious correla-

tion between decision- and explanation fidelity. However, 
any arbitrarily small deviation of explanation fidelity from 
the maximum of 1 does not necessarily ensure large deci-
sion fidelity and vice versa. For example, assume that an 
explanation from HD systematically under- or overstates the 
relevance of features, i.e. HD

(X)i = H∗
(X)i ⋅ ci with arbi-

trary ci > 0 and ci ≠ 1 . For ci differing significantly from 1, 
this leads to explanations that are far from the truth, which 
is captured by low explanation fidelity. However, decision 
fidelity might yield the opposite picture, such as maximum 
decision fidelity, since a classifier g (Definition 1) trained on 
inputs (X,HD

(X)) with labels MD
(X) might learn the coef-

ficients ci and predict labels without errors.
Explanation fidelity captures the degree of deceptiveness 

of explanations from HD by aggregating the differences of 
its relevances of features and those of the reference explana-
tions. When looking at individual features from a layperson’s 
perspective, deception can arise due to over- and understat-
ing the feature’s relevance or even fabricating features (see 
Fig. 5). Omission and inverting of features can be viewed as 
special cases of over- and understating. In this work, we do 
not consider feature fabrication.

Creation of Deceptive Explanations

We first discuss goals a deceiver might pursue using decep-
tive explanations, followed by how deceptive explanations 
can be created using these goals in mind.

(2)fO(X) = 1 −
‖H∗

(X,MD
(X),MD

) − HD
(X)‖

‖H∗
(X,MD

(X),MD
)‖

Fig. 5   Deviations of relevance scores from (trusted) reference expla-
nation



SN Computer Science            (2024) 5:81 	 Page 9 of 21     81 

SN Computer Science

Purposes of Deceptive Explanation

	 (i)	 Convincing the explainee of an incorrect prediction, 
i.e. that a model decided Y for input X although the 
model’s output is MD

(X) with Y ≠ MD
(X) . For exam-

ple, a model M∗ in health-care might predict the best 
treatment for a patient trained on historical data D . 
A doctor might change the prediction. She might 
provide the best treatment for well-paying (privately 
insured) patients and choose a treatment that mini-
mizes her effort and costs for other patients.

	 (ii)	 Providing an explanation that does not accurately 
capture model behavior without creating suspicion. 
An incorrect explanation will manifest in low deci-
sion fidelity and explanation fidelity. It involves hid-
ing or overstating the importance of features in the 
decision process (Fig. 5) with more holistic goals 
such as: a) Omission: Hiding that decisions are made 
based on specific attributes such as gender or race to 
prevent legal consequences or a loss of reputation. b) 
Obfuscation: Hiding the decision mechanism of the 
algorithm to protect intellectual property.

The combination of (i) and (ii) leads to the four scenarios 
shown in Fig. 4. The most intricate scenario is providing 
a prediction differing from the model using a non-truthful 
explanation (FF). For example, a college official might opt to 
admit a student to a program because of a bribe although the 
model would not favor her admission. The model might see 
as a strong reason for rejecting poor grades and as a reason 
for accepting a good financial situation of the applicant. In 
scenario FF, the explanation might, for instance, overstate 
features that were not relevant, claiming that the student’s 
age is a reason for acceptance. If the explanation was aligned 
with the (wrong) decision (TF), the explanation might list 
reasons the model provides for accepting her, i.e., how the 
model would explain the acceptance decision. In the exam-
ple, this could be a good financial situation.

Creation

To construct deceptive explanations (and decisions), a 
deceiver has access to the model M∗ and MD , the input X, 
and the reference explanation H∗ . She outputs a decision 
MD

(X) in combination with an explanation HD
(X) (see 

Fig. 6). Deceptive explanations are constructed to maximize 
the explainee’s credence of decisions and explanations. We 
assume that an explainee is most confident that the refer-
ence explanation H∗

(X, Y ,MD
) and the model-based decision 

Y = M∗
(X) are correct. This encodes the assumption that the 

truth is most intuitive since any deception must contain some 
reason that can be identified as faulty.

We provide simple means for creating deceptive explana-
tions that are non-truthful explanations (FT and FF). The 
idea is to alter reference explanations. This approach is sig-
nificantly simpler than creating deceptive explanations from 
scratch using complex algorithms as done in other works 
[3, 4, 26], while at the same time guaranteeing high-quality 
deceptive explanations since they are based on what the 
explainee expects as a valid explanation. For non-truthful 
explanations a deceiver aims at over-, understating, or omit-
ting features X′ ⊆ X that are problem- or instance-specific. 
To obtain non-truthful explanations we alter reference expla-
nations in two ways:

Definition 1  (Omission) Remove a fixed set of values V so 
that no feature i has a value xi ∈ V as follows:

In our context, this means denying the relevance of some 
words V related to concepts such as gender or race. The next 
alteration distorts relevance scores of all features, for exam-
ple, to prevent re-engineering through obfuscation.

Definition 2  (Noise addition) Add noise in a multiplicative 
manner for any explanation H∗

(X):

where ri,X is chosen uniformly at random in [−k, k] for a 
parameter k for each feature i and input X ∈ S.

We assume that these alterations are applied consistently 
for all outputs. Note, that this does not imply that all expla-
nations are indeed non-truthful, e.g., for noise it might be 
that by chance explanations are not altered or only very little. 
For omission it might be that a feature is not relevant in the 
decision for a particular input X, i.e., the value of a feature 
H∗

(X)i is zero in this case.

(3)HOmit(X)i ∶=

{
0, if xi ∈ V.

H∗
(X)i, otherwise.

(4)HNoise(X)i ∶= H∗
(X)i ⋅ (1 + ri,X),

Fig. 6   Inputs and outputs for deceiver and explainee for scenario FT 
in Fig. 4. Images by [39]
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Deception Detection

To detect deception attempts, we reason using explana-
tions and decisions of multiple inputs. That is, for a set of 
inputs X ∈ SD , we are given for each input X the reported 
decision MD

(X) and accompanying explanation HD
(X) . 

Our goal is to identify whether a model outputs deceptive 
explanations. For supervised learning, we (even) aim to 
identify the inputs yielding deceptive outputs. We assume 
that only features that are claimed to contribute positively 
to a decision are included in explanations. Features that 
are claimed to be irrelevant or even supportive of another 
decision outcome are ignored. The motivation is that we 
aim at explanations that are as simple to understand as 
possible. The omission of negatively contributing fea-
tures makes detection harder. We first provide theoretical 
insights before looking into practical detection approaches.

Formal Investigation

Ideally, any of the three types of deception {TF,FT ,FF} 
is detected using only one or more inputs X ∈ SD and their 
responses MD

(X) and HD
(X) (see Fig. 6). But, without 

additional domain knowledge (such as correctly labeled 
samples), metadata, or context information, this is impos-
sible for all deception attempts. This follows since data, 
such as class labels, bear no meaning on their own. Thus, 
any form of "consistent" lying is successful, e.g. always 
claiming that a cat is a dog (using explanations for class 
dog) and a dog is a cat (using explanations for class cat) 
is non-detectable for anybody lacking knowledge of cats 
and dogs, i.e., knowing what a cat or a dog is.

Theorem  1  There exist non-truthful reported decisions 
MD

(X) ≠ M∗
(X) that cannot be identified as non-truthful.

Proof  Consider a model MD for dataset {(X, Y)} for binary 
classification with labels Y ∈ {0, 1} and MD

(X) = M∗
(X) . 

Assume a deceiver switches the decision of model M∗ , 
i.e. it returns MD

(X) = 1 −M∗
(X) and H∗

(X,MD
(X),MD

) . 
Consider a dataset with switched labels, i.e. {(X, 1 − Y)} 
and a second model M′D that is identical to MD except 
that it outputs M�D

(X) = 1 − Y = 1 −MD
(X) .  Thus, 

reference explanations are identical, i.e. we have 
H∗

(X,M�D
(X),M�D

) = H∗
(X,MD

(X),MD
) . Thus, for input 

X both the deceiver model MD and model M′D report 
M�D

(X) = MD
(X) = 1 −M∗

(X) and H∗
(X,MD

(X),MD
) . 

Therefore, M′D and MD cannot be distinguished by any 
detector. That is, if a detector reported MD as deceiving it 
would also do so for M′D , which is not deceiving but trained 
on a dataset with switched labels. 	�  ◻

Similarly, non-truthful and truthful explanations 
H ≠ H∗ might be indistinguishable, when using decision 
fidelity as a measure for truthfulness, e.g. using feature 
inversion H(X) = −H∗

(X) . Consider two explainability 
methods H and H∗ , where one is the inverse of the other, 
i.e. H(X)i = −H∗

(X, Y)i . Both allow to achieve the same 
decision fidelity, e.g. a classifier g ∶ (H(X, Y),X) → Y  and 
g� ∶ (H∗

(X,Y),X) → Y  can obviously achieve the same 
accuracy. Thus, without any domain knowledge, both 
explanation methods H and H∗ appear equally truthful with 
respect to decision fidelity.

The following theorem states that one cannot hide that 
a feature (value) is influential if the exchange of the value 
with another value leads to a change in decision.

Theorem 2  Omission of at least one feature value v ∈ V can 
be detected, if there are instances X,X�

∈ S with decisions 
MD

(X) ≠ MD
(X�

) and X�
= X except for one feature j with 

xj, x
�

j
∈ V and x′

j
≠ xj.

Proof  We provide a constructive argument. We can obtain 
for each input X ∈ S , the prediction MD

(X) and explanation 
HD

(X) . By Definition of omission, if feature values V are 
omitted it must hold HD

(X)i = 0 for all (i,X) ∈ FS,v and 
v ∈ V . Omission occurred if this is violated or there are 
X,X�

∈ S that differ only in the value xj ∈ V for feature j and 
MD

(X) ≠ MD
(X�

) . The latter holds because the change in 
decision must be attributed to the fact that of xj ≠ x′

j
 , since 

X and X′ are identical except for feature j with values that are 
deemed omitted. 	� ◻

Theorem 2 is constructive, meaning that it can easily 
be translated into an algorithm by checking all inputs S if 
the stated condition is matched. But, generally all inputs S 
cannot be evaluated due to computational costs. Further-
more, the existence of inputs X,X�

∈ S that only differ in a 
specific feature is not guaranteed. However, from a practi-
cal perspective, it becomes apparent that data collection 
helps in detection, i.e. one is more likely to identify "con-
tradictory" samples X,X′ in a subset S′ ⊂ S the larger S′ is.

Detection Approaches

Our formal analysis showed that only decisions and explana-
tions are not sufficient to detect deception involving flipped 
classes. That is, some knowledge on the domain is needed. 
Encoding domain know-how with a labeled dataset seems 
preferable to using expert rules or the like. Thus, not surpris-
ingly, this approach is common in the literature, e.g. for fake 
news detection [38, 41]. To train a detector, each sample is 
a triple (X, MD

(X) , HD
(X) ) for X ∈ ST together with label 
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L ∈ {TT ,FT , TF,FF} stating the scenario in Fig. 4. After 
training, the classifier can be applied to the explanations and 
decisions of X ∈ SD to investigate. We develop classifiers 
maximizing deception detection accuracy.

Labeling data might be difficult since it requires not 
only domain knowledge of the application but also knowl-
edge of ML, i.e. the reference model and explainability 
method. Thus, we also propose unsupervised approaches 
to identify whether a model, i.e. its explanations, are 

truthful to the model decision. That is, the goal is to assess 
if given explanations HD are true to the model MD

(X) or 
not.

Our first approach is to check, whether the explanations 
of HD and decisions of MD are consistent (see Fig. 7). This 
would be easy, if the model MD was available, i.e. we would 
check if H∗

(X,MD
(X),MD

) = HD
(X) . Since it is not, we aim 

to use a model M′ to approximate model MD and compare 
the explanations H∗ of M′ with HD . Since approximation 
introduces an error, we must determine if differences in 

Fig. 7   Illustration of Algorithm ConsistencyChecker. It is based on comparing explanations of the model to investigate and another classifier, 
serving as a reference model. If explanations of both models match well (for all samples), explanations are not deceptive

Fig. 8   Illustration of Algorithm UsefulnessChecker. It is based on comparing decisions of the model to investigate and a classifier (reference 
model) that obtains explanations as inputs. If decisions are equal (for all samples), explanations are not deceptive

Algorithm 1   Consistency 
Checker Input: Untrained models M′, reference method H∗, inputs SD with

(deceptive) decisions and explanations {(MD(X), HD(X)}
Output: (Outlier) Probability p
SM ′

= s randomly chosen elements from SD with s random in [c0|SD|, |SD|]
(We used: c0 = 0.33)

Train each model M ′ ∈ M′ on (X,MD(X)) for X ∈ SM ′

mi(X) = 1
|M′|

∑
M ′∈M′ H

∗
i (X,MD(X),M ′)

s(M ′) =
∑

i∈[0,n−1],X∈SD (H∗
i (X,MD(X),M′) − mi(X))2

n|SD|

s(MD) =

∑
i∈[0,n−1],X∈SD (HD

i (X)−mi(X))2

n|SD|
µ = 1

|M′|
∑

M ′∈M′ s(M ′)

σ = 1
|M′|

√∑
M ′∈M′(s(M ′)− µ)2

p = prob T > |s(MD)− µ|
∣∣ T ∼ N (0, σ)

)



	 SN Computer Science            (2024) 5:81    81   Page 12 of 21

SN Computer Science

the explanations originate from model approximation or 
from deception. To do so, we train (approximate) reference 
models M�

≈ MD with M�
∈ M

� using the provided data 
(X,MD

(X)) with X ∈ SD . The models might differ, e.g. in 
hyperparameter settings. If explanations of MD are "outliers" 
relative to those of models M�

∈ M
� explanations might be 

untruthful and further investigation is needed. Otherwise, 
any variation of explanation compared to H∗ due to decep-
tion is comparable to variation that might arise if models are 
slightly varied but no deception is attempted.

Details on the model MD are unknown. For many com-
mon ML tasks, excellent performing architectures are pub-
licly known. Therefore, we assume that we can anticipate 
at least a well-working architecture for the problem – the 
closer it is to MD the better.

Algorithm  1 (ConsistencyChecker) shows details. It 
takes as input a set of untrained models M�

∈ M
� – ideally 

similar to MD . The more information is known on MD , the 
more similar the models can be chosen. If only very little 
information or no information on MD is available, one might 
train models on (X,MD

(X)) for X ∈ SD and choose those that 
perform best.

The second unsupervised approach Algorithm 2 (Use-
fulnessChecker) tries to reproduce the decisions based on 
explanations (see Fig. 8). If this is not possible for expla-
nations from MD but for those of approximate models MD 
then explanations from MD are likely deceptive. As before, 
we train multiple approximate models M�

∈ M
� . For each 

model M′ , we train a classifier CM′ using explanations from 
the approximate models M≃ as well as one on explanations 
from MD . We use the same classifier architecture for all. We 
conduct a statistical test (as in Algorithm 1), if accuracy is 

an outlier. The full pseudo-code is similar to Algorithm 1. 
For the sake of completeness, it is shown in Algorithm 2.

Evaluation

We elaborate on two text classification tasks using a convo-
lutional neural network (CNN) for text classification by [22] 
as our reference model M∗ and GradCAM [55] for generat-
ing reference explanations H∗ . The CNN is well-established, 
conceptually simple, and works reasonably well. GradCAM 
was one of the methods said to have passed elementary san-
ity checks that many other methods did not [2]. Note that 
neither our creation nor deception approaches are depend-
ent on the actual XAI method, i.e., we only require and use 
the relevance scores produced by (any) XAI method but do 
not depend on the method internals. While GradCAM is 
most commonly employed for CNN on image recognition 
the mechanisms for texts are identical. In fact, [27] showed 
that GradCAM on CNNs similar to the one by [22] leads 
to outcomes on human tasks that are comparable to other 
explanation methods such as LIME. The GradCAM method, 
which serves as a reference explanation H∗ , computes a gra-
dient-weighted activation map starting from a given layer or 
neuron within that layer back to the input X. We apply the 
reference explanation method H∗ , i.e., GradCAM, on the 
neuron before the softmax layer that represents the class Y ′ 
to explain. For generating a high fidelity explanation for an 
incorrectly reported prediction MD

(X) ≠ M∗
(X) (scenario FT 

in Fig. 4) we provide as explanation the reference explana-
tion, i.e. HD

(X) = H∗
(X,MD

(X),MD
) . By definition refer-

ence explanations maximize explanation fidelity fO.

Algorithm 2   Usefulness 
Checker Input: Untrained models M′, reference method H∗, inputs SD with (decep-

tive) decisions and expl. {(MD(X), HD(X)}, untrained classifier model
C
Output: (Outlier) Probability p

SM ′
= s randomly chosen elements from SD with s random in [c0|SD|, |SD|]
We used: c0 := 0.33

Train each model M ′ ∈ M′ on (X,MD(X) for X ∈ SM ′

ST = random subset of SD of size c1|SD| We used: c1 := 0.8
CM ′

= trained classifier model C on H∗(X,MD(X),M ′),MD(X)
)
for X ∈ ST

and M ′ ∈ M′

CMD

= trained classifier model C on HD(X,MD(X),MD),MD(X)
)
for X ∈

ST

Acc(CM ) := Accuracy of classifier CM using X ∈ SD \ ST

µ = 1
|M′|

∑
M ′∈M′ Acc(CM ′

)

σ = 1
|M′|

√∑
M ′∈M′(Acc(CM ′)− µ)2

p = prob T > |Acc(CMD

)− µ| | T ∼ N (0, σ)
)
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Setup and Datasets

We employed two datasets. The IMDB dataset [30] consists 
of 50,000 movie reviews and a label indicating positive or 
negative sentiment polarity. We also utilized the Web of Sci-
ence (WoS) dataset consisting of about 47,000 abstracts of 
scientific papers classified into 7 categories [23]. Our CNNs 
for classification achieved accuracies of 87% for IMDB and 
75% for WoS trained with 2/3 of the samples for training 
and 1/3 for testing. We computed explanations for test data 
only. For deception using omission, we removed a randomly 
chosen set of words V (see Definition 1), such that their 
overall contribution to all explanations H∗ is k% (with a tol-
erance of 0.01k %). The contribution of a word v is given 
by 

∑
(i,X)∈F(v,S) H

∗
(X,M∗

(X))i . For explanation distortion 
parameter k (see Definitions 1 and 2) we state values for 
each experiment.

ML‑Based Detection

As detector models, we used CNN models. For supervised 
learning, the model input is a concatenation of three vectors: 
(i) a text vector of word indices, (ii) a heatmap vector of val-
ues obtained via GradCAM, which is a 1:1 mapping of the 
visual output shown to the user, and (iii) a one-hot predic-
tion vector of the decision. Our "simple" CNN detector, i.e. 
classifier, is designed as follows: we perform an embedding 
and concatenate the heatmap vector with the word embed-
ding before doing a 1D convolution. Then we concatenate 
the one-hot prediction vector and use two dense layers. 
The more "complex" CNN adds six more conv1D layers: 
two processing the embedding, two on the heatmap vector, 

and two after the first concatenation. We used dropout for 
regularization. Since labeling is difficult and potentially 
error-prone, we consider different levels of label noise, i.e., 
L ∈ [0, 0.32] , such that a fraction L of all labels was replaced 
with a random label (different from the correct one). For the 
detection experiment, we chose samples that were predicted 
correctly by the truthful model. For unsupervised learning, 
we train 35 classifiers M�

∈ M
� being variations of a CNN 

network [22], i.e., each of the following hyperparameters 
was chosen uniformly at random for each classifier M′ : 
embedding dimension {32, 64, 128} ; 1–3 linear layers; 2–6 
conv layers for the Kim network with a varying number of 
filters. We also varied the training sets in terms of size and 
elements, i.e. we trained a model with a subset of T  of size 
33, 50, and 100%. All models were trained using the Adam 
optimizer for 100 epochs. Train/Test data split was 80/20 for 
all detector models.

Classifiers learning from (deceptive) explanations as done 
in our unsupervised approach UsefulnessChecker tend some-
times to focus on raw inputs X and disregard explanation 
relevance scores HD

i
(X) . That is, they often work well and 

show little variation in accuracy despite large variations in 
explanations. To avoid this, we convolve also an inner rep-
resentation of the network with explanation values enforcing 
stronger entanglement. That is, in the UsefulnessChecker 
model the output of the word embedding of the input is con-
volved with the explanations as follows: First, we perform 
a low-dimensional embedding (just one dimensional) and 
multiply the embedding values with the explanation values 
and add explanation values on top. This is then fed into 3 
Conv1D layers followed by two dense layers.

Fig. 9   Generated sample explanations for scenarios TT (top) and FT (bottom) from Fig. 4
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Human‑Based Detection

We conducted a user study using the IMDB dataset.1 For 
the scenarios of interest, we compare explanations that 
are aligned to the shown prediction, i.e. TT and FT. Two 
samples are shown in Fig. 9. We recruited a total of 200 
participants on Amazon Mechanical Turk from the US 
having at least a high-school degree. We presented each 
participant with 25 predictions together with explanations. 
They had to answer "Is the classification correct?" on a 
scale of five ranging from strongly disagree to strongly 
agree. We randomized the choice of presented samples, 
i.e. we randomly chose a sample of the dataset and we 
randomly chose between scenarios TT and FT in Fig. 4.

Results

Human‑Based Detection

Out of the 200 participants, we removed participants that 
spend less than 5 s per question, since we deemed this 
time too short to provide a reasonable answer. We also 

filtered out participants who always gave the same answer 
for all 25 questions. This left 140 participants amounting 
to 3500 answers. Demographics and answer distributions 
are in Fig. 10 and Table 2.

A t-test of means confirmed that the distributions dif-
fer significantly (p-value of 0.008), though the mean 
scores for "agreeing" of 3.74(TT) and 3.58(FT) show that 
in absolute terms differences are minor. This implies that 
while the majority of humans might be fooled oftentimes, 
they have the capability to collectively detect deceptive 
explanations.

Supervised ML‑Based Detection

Figure 11 shows results for IMDB. Those for WoS are simi-
lar, shown in Fig. 12. The plot shows that for very minor 
deception (small k) detection is more difficult. Accuracy 
rarely tops 60%, which is fairly low given that 50% is the 
baseline for guessing. Accuracy is also more volatile given 
label noise. Beyond some threshold under all scenarios, 
accuracy exceeds 90% for correctly deciding whether a 
decision and/or explanation are deceptive. Accuracy wors-
ens with greater label noise, though it is often better than 
guessing even for a noise level of 32%. Mostly the complex 
CNN (with more layers) outperforms the simple one with 
one exception: the scenario where the explanation is always 
truthful to the model, but the decision is not. Here, a simple 
function allows distinguishing deceptive (FT) from the non-
deceptive scenario (TT). We observed that for the scenario 
with noise on non-truthful explanations for correct decisions 
(TFNoise) small noise levels can lead to very low test accu-
racies. Training accuracies were larger, but mostly close to 
random guessing, indicating that the network fails to learn 
proper conditions what values constitute a noisy relevance 
score and which do not.

The more extreme the distortion of explanations, i.e. the 
larger k, the higher detection accuracy. But even for minor 
modifications, i.e. adding just 1% of noise on the explana-
tion and omitting only words contributing to 1% of the total 
explanation, accuracy exceeds 80% under low label noise 
( L = 0.01 ). The only case in which this is non-obvious is 

Table 2   Participants Demographics with n = 140 participants

Variable Value Percentage

Gender Male 66%
Female 34%

Age ≤ 25 years of age 18%
From 26 to 40 years of age 62%
From 41 to 65 years of age 18%
> 65 years of age 2%

Education High School 16%
Associate Degree 11%
Bachelor’s Degree 56%
Master’s Degree 16%
Doctoral Degree 1%

Fig. 10   Distributions of user 
replies to “The classification is 
correct” (1 = strongly disagree 
to 5 = strongly agree)

1  The WoS dataset seems less suited since it uses expert terminology 
that is often not held by the general public from which participants 
originate as found in [27].
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the scenario TFNoise (in Fig. 11), i.e. decisions are cor-
rect and explanations are not due to noise. In that case, for 
explanations altered with little noise, both classifiers are 

considerably worse than the trivial baseline of 50% accu-
racy. Both overfit the data in these cases. That is, training 
accuracies (not shown) are much higher than test accuracies. 

Fig. 11   Supervised detection 
results for IMDB for scenarios 
in Fig. 4

Fig. 12   ML-based supervised 
detection results for WoS for 
scenarios in Fig. 4
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For larger noise levels ( k = 0.25 ), random forests perform 
much better. CNNs also do well for k = 1 , where test accura-
cies exceeded 90%. Comparing random forests and CNNs, 
CNNs seem to perform better in cases, where the prediction 
is incorrect. It seems that CNNs are able to learn the rela-
tion of inputs X to decision MD

(X) without much need for 
an explanation. This is supported by the observation that 
the degree of deception manifested in the explanations has 
a limited impact on the performance. In contrast, random 
forests seem to rely more on explanations. They perform 
better in situations where decisions are truthful, but expla-
nations are not.

Unsupervised ML‑Based Detection

For a single model, a small probability indicates that it is 
unlikely to witness such an (extreme) outcome, i.e. accuracy 
or deviation from the average explanation. Thus, a small prob-
ability such as 0.05 indicates a high likelihood of deception. 
Figure 13 shows the average as well as the maximum prob-
ability of all 35 models. Detection ability follows an S-curve, 
meaning that for deception with parameterized strength k 
above a threshold detection works fairly well, whereas it fails 
otherwise. Required noise levels are somewhat higher for the 
WoS dataset, as shown in Fig. 12 but qualitatively, results 
are identical. The trained classifier performs worse on WoS 
than IMDB, since WoS is a more complex dataset. Classifiers 
vary (relatively) more in accuracy, which in turn also leads to 
more variance in explanations. Looking at the mean and max 
indicates that for multiplicative noise (TFNoise) all decep-
tive models are reliably detected for k = 0.8 , while below that 
value at least for the most difficult-to-detect model it fails to 
do so. For k < 0.8 , the detection methods are still valuable to 

identify suspicious models, meaning that such models exhibit 
lower probability, but are not low enough to be certain. The 
same reasoning also applies to TFOmit, though here a strong 
difference between methods is apparent. The Consistency-
Checker yields much better outcomes, highlighting that even 
small omissions can be detected reliably. It shows that statis-
tical analysis is preferable to using a downstream task. Our 
models M≃ are very diverse, i.e. models differ by a factor of 
3 in terms of training data and number of layers, as well as in 
neurons/filters per layer. We found that reducing (or increas-
ing) the diversity has a profound impact on results, as shown 
in Figs. 14 and 15.

Difficulty of Deception Detection

We provide intuition for Algorithm ConsistencyChecker 
discussing the difficulty of detection depending on noise 
models and deception strategy. To compute the probabil-
ity, we rely on values s(M) as defined in Algorithm 1. We 
are interested in the gap G(Hi,mi(X)) ∶= E[(Hi − mi(X))

2
] 

between the mean and the relevance score in the expla-
nation of a feature i. For multiplicative noise we have 
HD

i
(X,MD

(X),M) = (1 + U) ⋅ H∗

i
(X,MD

(X),MD
) ,  where 

U is uniformly chosen at random from [−k, k] . We use 
ai ∶= H∗

i
(X,MD

(X),MD
) and mi ∶= mi(X) for ease of nota-

tion. We expect that the deviation for a deceptive explanation 
and the mean is:

G((1 + U)a
i
,m

i
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i
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i
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2
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Fig. 13   Unsupervised detection results for IMDB
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The overall deviation s(M) for a model is just the mean 
across all features i and inputs X. Detection is difficult when

Put in words, detection is difficult, when the distortion due to 
deception (right-hand side term in Eq. 5) is small compared 
to the one due to model variations M≃ (left-hand side term 
in Eq. 5). The closer ai and mi are and the larger k, the easier 
detection. If feature i is omitted then G(ai,mi) = m2

i
 and 

(5)
∑

i,X

(ai − mi)
2
≫

∑

i,X

a2k2∕3

G(ai,mi) = (ai − mi)
2 . Assume a set FD of features is omitted, 

where the size of FD depends on the parameter k. Deception 
is difficult if 

∑
i(ai − mi)

2 ≫
∑

i∈FD m
2

i
+

∑
i∉FD (ai − mi)

2 . 
Clearly, the larger FD the easier detection. Say we omit 
features with mi = ai and we are given the choice of omit-
ting two features with mean m or one with mean 2m. 
The latter is easier to detect since means are squared, i.e. 
m2

+ m2
= 2m2 < (2m)2 = 4m2 . Therefore, it is easier to 

detect few highly relevant omitted features than many irrel-
evant ones.

Fig. 14   Unsupervised detection results for WoS where approximate models vary only in training data (but have the same hyperparameters)

Fig. 15   Unsupervised detection results for WoS where approximate models vary in training data and hyperparameters. Detection is more difficult 
compared to varying training data only (Fig. 14)
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Related Work

Most commonly, deception aims at fooling machine learning 
models themselves. For example, adversarial examples [10] 
typically alter a data sample so that humans cannot recog-
nize any differences, while the classifier is misled to output a 
class possibly chosen by the attacker. Few other works have 
also aimed at fooling both humans and classifiers, e.g., [45, 
46] alter images in subtle ways so that both a classifier is 
confused and also a person assessing the modified sample. 
There have also been some works that aim at altering expla-
nations to confuse persons and, possibly, also other machine 
learning models that might learn from explanations [51].

[21, 57, 60] showed how arbitrary explanations for meth-
ods relying on perturbations can be generated for instances 
by training a classifier with adversarial inputs. [14] trains a 
classifier using an explainability loss term for a feature that 
should be masked in explanations. [16] showed that biases 
in decision-making are difficult to detect in an input–output 
dataset of a biased model if the inputs were sampled in a 
way to disguise the detector. [25] used ML (including expla-
nations) to support the detection of deceptive content. The 
explanations were non-deceptive.

[59] are interested in manipulating the inner workings of 
a deep learning network to output arbitrary explanations. 
Whether the explanations themselves are convincing, is not 
considered, i.e., the paper shows many examples of "incred-
ible" explanations that can easily be detected as non-genu-
ine. [4] focus on manipulating reported fairness based on 
a regularized rule list enumeration algorithm. [26] and [7] 
investigated the effectiveness of misleading explanations to 
manipulate users’ trust. [26] used a model which decisions 
were made using prohibited features such as gender and 
race but misleading explanations were supposed to disguise 
their usage. Both studies [4, 7, 26] found that users can be 
manipulated into trusting high fidelity but misleading expla-
nations for correct predictions. In contrast, we do not gener-
ate fake reviews but only generate misleading justifications 
for review classifications and provide detection methods and 
formal analysis. These initial, mostly empirical and algo-
rithmic works provide interesting insights primarily on the 
creation of deceptive explanations of very specific problems 
and techniques. A formal analysis covering (at least) a wide 
class of problems and explainability methods has been miss-
ing. Furthermore, automatic deception detection has mainly 
been ignored as well as quantitative measures for deception. 
This work addresses these concerns.

Inspiration for detecting deceptive explanations might 
be drawn from methods used for evaluating the quality of 
explanations [24, 34]. In our setup, quality is a relative notion 
compared to an existing explainability method and not to a 
(human) gold standard. We compare the quality of reported 

explanations HD to those of a reference explanation method 
H∗ and not to a gold standard oriented towards humans. Our 
detection algorithms also relate to the field of AI forensics 
[47], since among other things it also aims to understand if 
an AI model was trained to misbehave. [37] investigated the 
influence of classifier accuracy and explanation fidelity on user 
trust. They found that accuracy is more relevant for trust than 
explanation quality though both matter. For three classifiers 
(differing strongly in test accuracy), they considered “random” 
explanations, i.e. using randomly chosen features, and “refer-
ence” explanations, i.e. explanations made by a (trustworthy) 
automatic method.

[35] investigated the impact of explanations on trust. Poor 
explanations reduce a user’s perceived accuracy of the model, 
independent of its actual accuracy. Explanatory helpfulness 
varies depending on task and method [27]. Explanations are 
more helpful in assessing a model’s predictions compared to 
its behavior. Some methods support some tasks better than oth-
ers. For instance, LIME provides the most class discriminating 
evidence, while the layer-wise relevance propagation (LRP) 
method [6] helps assess uncertain predictions.

[3] showed how to create and detect fake online reviews 
of a pre-specified sentiment. In contrast, we do not generate 
fake reviews but only generate misleading justifications for 
review classifications. Fake news detection has also been 
studied [38, 41] based on ML methods and linguistic fea-
tures obtained through dictionaries. [38, 41] use a labeled 
data set. Linguistic cues [29] such as flattery were used 
to detect deception in e-mail communication. We do not 
encode explicit, domain-specific detection features such as 
flattery. ML techniques have been used to detect lies uttered 
by humans in human interaction, e.g., [5].

Our methods might be valuable for the detection of fair-
ness and bias – see [32] for a recent overview. There are 
attempts to prevent ML techniques from making decisions 
based on certain attributes in the data, such as gender or 
race [42] or to detect learnt biases based on representations 
[65] or perturbation analysis for social associations [40]. In 
our case, direct access to the decision-making system is not 
possible – neither during training nor during operations, but 
we utilize explanations.

In the context of human-to-human interaction using 
mainly audio-visual messages that 47% of lies are disclosed 
as deceptive and 61% of truths as non-deceptive [9]. [20] 
showed in a meta-review that even training only modestly 
improves detection rates. This makes the use of automati-
cally generated explanations even more likely to succeed. 
Furthermore, cognitive human biases play a role and could 
be exploited to deceive humans through explanations [8].

In human-to-human interaction, behavioral cues such 
as response times [28] or non-verbal leakage due to facial 
expressions [15] might have some, but arguably limited 
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impact [31] on deception detection. In our context, this 
might pertain, e.g., to computation time. We do not use such 
information.

Discussion

Explanations introduce novel avenues for deception, as illus-
trated in Fig. 4. This trend is expected to intensify due to the 
increasing prevalence, creativity [52], and personalization 
[49] of AI technologies.

Deceptive explanations might aim at disguising the actual 
decision process, e.g., in case it is non-ethical, or make an 
altered prediction appear more credible. While faithfulness 
of explanations can be clearly articulated mathematically 
using our proposed decision and explanation fidelity meas-
ures, determining when an explanation is deceptive, is not 
always as clear, since it includes a grey area. An explanation 
might be deemed deceptive, though it might alternatively be 
labeled as merely inaccurate or simplified. Consequently, 
the task of detecting deception is a formidable challenge. 
Blatant forms of deception are readily identifiable, whereas 
more subtle variants are arduous to discern. Moreover, some 
degree of domain or model-specific knowledge proves indis-
pensable. This could be data similar or, preferably, identical 
to the model’s training data under investigation. Alterna-
tively, domain experts could contribute insights in the form 
of labeled samples or detection guidelines, effectively evalu-
ating model outputs and adjudicating their faithfulness or 
deception.

The task of identifying deceptive explanations becomes 
significantly more tractable when access to the model itself 
and its training or testing data is available. In such instances, 
the process essentially boils down to comparing model out-
puts against those suggested by the (training) data. We advo-
cate for the enactment of regulatory measures that mandate 
auditors to possess genuine model access, thereby stream-
lining the process of deception detection. This represents 
a critical step towards ensuring that AI serves the broader 
societal good.

Unsupervised deception detection does not require any 
labeling of explanations as deceptive or non-deceptive. But 
it can require significant computation. Our algorithm ‘Con-
sistencyChecker’ requires a model similar to the model to 
investigate. That is both decisions and explanations must be 
similar. If no such (trained) model is available, it must be 
trained, which can be computationally expensive for large 
models found in generative AI, e.g., large language models. 
However, as deceivers are also likely to use or adapt (pub-
licly available) pretrained models for the very same reason, 
this issue might not be such a concern in practice. Algorithm 

UsefulnessChecker only requires a model that is capable of 
predicting decisions from explanations well, which might 
be a simpler problem. That is, it is easier to identify a class, 
if one is aware of all relevant input features encoded in the 
explanation. In fact, it has been shown that learning with 
explanations can help improve classifier performance [51], 
but leveraging explanations in learning is still an active field 
of research.

Detection methods will improve, but so will strategies for 
lying. Thus, it is important to anticipate the weaknesses of 
detection algorithms that deceitful parties might exploit and 
mitigate them early on, for example, with the aid of generic 
security methods [43].The field of explainability is rapidly 
evolving, with a multitude of challenges on the horizon [33]. 
This dynamic landscape offers abundant prospects for future 
research, encompassing investigations into techniques for 
both crafting and identifying deceptive explanations. These 
endeavors may explore innovative avenues such as explana-
tions pertaining to the features or layers of image processing 
systems, diverging from the traditional text-based explana-
tions [50], or extend to the realm of multi-modal models 
[63]. Furthermore, the exploration of alternative models or 
architectures, such as foundation models [44], holds promise 
in enhancing our understanding and management of decep-
tive explanations in the AI landscape.

We limited our study to score-based deception mecha-
nisms, which we deem more feasible than changing or fab-
ricating reasons. However, given advances in the field of AI 
such deception mechanisms might become more practical.

Conclusion

In the realm of AI, a dynamic interplay between "liars" and 
"detectors" is emerging, driven by economic incentives and 
other motivating factors. Our work represents an initial move 
within this evolving game. We have structured the problem 
at hand and made a meaningful contribution by highlighting 
the inherent challenges associated with detecting deception 
attempts in the absence of domain-specific knowledge. Our 
machine learning models, enriched with domain expertise 
garnered from training data, exhibit good accuracy in detect-
ing deception. We also showed that, unsupervised tech-
niques prove effective primarily against more blatant forms 
of deception or when provided with intricate architectural 
insights about the model under scrutiny.

Nonetheless, as underscored by our typology, numerous 
untapped research opportunities beckon, aimed at fortifying 
the prevention of AI misuse and the promotion of ethical AI 
deployment.



	 SN Computer Science            (2024) 5:81    81   Page 20 of 21

SN Computer Science

Author Contributions  Third author: Proofreading, editing, suggestion 
for future work, careful checking, and feedback for theory. Second 
author: Contributed to typology(2.1) /explainee model (2.2), introduc-
tion, and related work.First author: Did most of the work.

Funding  Open access funding provided by University of Liechtenstein. 
No grants. Internal funding.

Availability of Data and Materials  Data from experiments is public and 
referenced.

Code Availability  All models are public. Additional code can be 
provided.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of 
interest.

Ethical Approval  The published conference version was done accord-
ing to the university’s ethical standards. Since the journal version does 
not include additional data analysis or experiments involving humans 
compared to the conference version, no explicit approval was sought.

Consent to Participate  The authors declare that they have no conflict 
of interest.

Consent for Publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Adadi A, Berrada M. Peeking inside the black-box: a sur-
vey on explainable artificial intelligence (xai). IEEE Access. 
2018;6:52138–60.

	 2.	 Adebayo J, Gilmer J, Muelly M, et al. Sanity checks for saliency 
maps. In: Neural information processing systems 2018.

	 3.	 Adelani D, Mai H, Fang F, et al. Generating sentiment-preserv-
ing fake online reviews using neural language models and their 
human-and machine-based detection 2019. arXiv:​1907.​09177

	 4.	 Aivodji U, Arai H, Fortineau O, et al. Fairwashing: the risk of 
rationalization. In: Int. Conf. on Machine Learning(ICML) 2019.

	 5.	 Aroyo AM, Gonzalez-Billandon J, Tonelli A, et  al. Can a 
humanoid robot spot a liar? In: Int. Conf. on Humanoid Robots, 
2018;1045–1052

	 6.	 Bach S, Binder A, Montavon G, et al. On pixel-wise explanations 
for non-linear classifier decisions by layer-wise relevance propa-
gation. PLoS ONE. 2015;10: e0130140.

	 7.	 Banovic N, Yang Z, Ramesh A, et al. Being trustworthy is not 
enough: how untrustworthy artificial intelligence (AI) /can 

deceive the end-users and gain their trust/. Proc ACM Human-
Computer Interact. 2023;7(1):1–17.

	 8.	 Bertrand A, Belloum R, Eagan JR, et al. How cognitive biases 
affect XAI-assisted decision-making: a systematic review. In: Pro-
ceedings of the 2022 AAAI/ACM conference on AI, ethics, and 
society, 2022;78–91.

	 9.	 Bond CF Jr, DePaulo BM. Accuracy of deception judgments. Per-
sona Soc Psychol Rev. 2006;10(3):214–34.

	10.	 Chakraborty A, Alam M, Dey V, et  al. A survey on adver-
sarial attacks and defences. CAAI Trans Intell Technol. 
2021;6(1):25–45.

	11.	 Damer TE. Attacking faulty reasoning. Boston, Massachusetts: 
Cengage Learning; 2013.

	12.	 DePaulo PJ, DePaulo BM. Can deception by salespersons and 
customers be detected through nonverbal behavioral cues? J Appl 
Soc Psychol. 1989;19(18):1552–77.

	13.	 Dictionary (2020) In: Merriam Webster.com, https://​www.​merri​
am-​webst​er.​com/​dicti​onary/​expla​in, Accessed 14 Jan 2020

	14.	 Dimanov B, Bhatt U, Jamnik M, et al. You shouldn’t trust me: 
learning models which conceal unfairness from multiple explana-
tion methods. In: SafeAI@ AAAI 2020.

	15.	 Ekman P, Friesen WV. Nonverbal leakage and clues to deception. 
Psychiatry. 1969;32(1):88–106.

	16.	 Fukuchi K, Hara S, Maehara T. Faking fairness via stealthily 
biased sampling. In: Pro. of the AAAI conference on artificial 
intelligence 2020.

	17.	 Fusco F, Vlachos M, Vasileiadis V, et al. Reconet: an interpretable 
neural architecture for recommender systems. In: Proceedings of 
the 28th international joint conference on artificial intelligence, 
2019;2343–2349.

	18.	 Giorgi S, Markowitz DM, Soni N, et al. I slept like a baby: using 
human traits to characterize deceptive ChatGPT and human text. 
In: International workshop on implicit author characterization 
from texts for search and retrieval (IACT’23) 2023.

	19.	 Gregor S, Benbasat I. Explanations from intelligent systems: 
theoretical foundations and implications for practice. MIS Q 
1999;23:497–530.

	20.	 Hauch V, Sporer SL, Michael SW, et al. Does training improve 
the detection of deception? a meta-analysis. Commun Res. 
2016;43(3):283–343.

	21.	 Heo J, Joo S, Moon T. Fooling neural network interpretations 
via adversarial model manipulation. Adv Neural Inf Process 
Syst 2019;32. https://​proce​edings.​neuri​ps.​cc/​paper/​2019/​hash/​
7fea6​37fd6​d02b8​f0adf​6f7dc​36aed​93-​Abstr​act.​html

	22.	 Kim Y. Convolutional neural networks for sentence classifica-
tion. In: Proc. empirical methods in natural language processing 
(EMNLP) 2014.

	23.	 Kowsari K, Brown DE, Heidarysafa M, et al. Hdltex: Hierarchi-
cal deep learning for text classification. In: IEEE Int. conference 
on machine learning and applications (ICMLA) 2017.

	24.	 Krishna S, Han T, Gu A, et al. The disagreement problem in 
explainable machine learning: a practitioner’s perspective 2022. 
arXiv preprint arXiv:​2202.​01602

	25.	 Lai V, Tan C. On human predictions with explanations and pre-
dictions of machine learning models: a case study on decep-
tion detection. In: Proceedings of the conference on fairness, 
accountability, and transparency, 2019;29–38.

	26.	 Lakkaraju H, Bastani O. How do I fool you? Manipulating User 
Trust via Misleading Black Box Explanations. In: Proceed-
ings of the AAAI/ACM conference on AI, ethics, and society, 
2020;79–85.

	27.	 Lertvittayakumjorn P, Toni F. Human-grounded evaluations of 
explanation methods for text classification 2019. arXiv preprint 
arXiv:​1908.​11355

	28.	 Levine TR. Encyclopedia of deception. Sage Publications; 2014.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1907.09177
https://www.merriam-webster.com/dictionary/explain
https://www.merriam-webster.com/dictionary/explain
https://proceedings.neurips.cc/paper/2019/hash/7fea637fd6d02b8f0adf6f7dc36aed93-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7fea637fd6d02b8f0adf6f7dc36aed93-Abstract.html
http://arxiv.org/abs/2202.01602
http://arxiv.org/abs/1908.11355


SN Computer Science            (2024) 5:81 	 Page 21 of 21     81 

SN Computer Science

	29.	 Ludwig S, Van Laer T, De Ruyter K, et al. Untangling a web of 
lies: exploring automated detection of deception in computer-
mediated communication. J Manag Inf Syst. 2016;33(2):511–41.

	30.	 Maas A, Daly R, Pham P, et al. Learning word vectors for senti-
ment analysis. In: Association for computat. linguistics (ACL) 
2011.

	31.	 Masip J. Deception detection: state of the art and future pros-
pects. Psicothema. 2017;29:149–59.

	32.	 Mehrabi N, Morstatter F, Saxena N, et al. A survey on bias and 
fairness in machine learning 2019. arXiv preprint arXiv:​1908.​
09635

	33.	 Meske C, Bunde E, Schneider J, et al. Explainable artificial 
intelligence: objectives, stakeholders, and future research 
opportunities. Inf Syst Manag. 2022;39:53–63.

	34.	 Mohseni S, Zarei N, Ragan ED. A multidisciplinary survey and 
framework for design and evaluation of explainable AI systems. 
Trans Interact Intell Syst. 2021;11:1–45.

	35.	 Nourani M, Kabir S, Mohseni S, et al. The effects of meaning-
ful and meaningless explanations on trust and perceived system 
accuracy in intelligent systems. In: AAAI conference on artifi-
cial intelligence 2019.

	36.	 Pandey AV, Rall K, Satterthwaite ML, et al. How deceptive 
are deceptive visualizations? An empirical analysis of com-
mon distortion techniques. In: Proceedings of the 33rd annual 
acm conference on human factors in computing systems, 
2015;1469–1478.

	37.	 Papenmeier A, Englebienne G, Seifert C. How model accuracy 
and explanation fidelity influence user trust 2019. arXiv preprint 
arXiv:​1907.​12652

	38.	 Pérez-Rosas V, Kleinberg B, Lefevre A, et al. Automatic detection 
of fake news 2017. arXiv preprint arXiv:​1708.​07104

	39.	 Petsiuk V, Das A, Saenko K. Rise: Randomized input sampling 
for explanation of black-box models 2018. arXiv preprint arXiv:​
1806.​07421

	40.	 Prabhakaran V, Hutchinson B, Mitchell M. Perturbation sensitivity 
analysis to detect unintended model biases 2019. arXiv preprint 
arXiv:​1910.​04210

	41.	 Przybyla P. Capturing the style of fake news. In: Proceedings of 
the AAAI conference on artificial intelligence, 2020;490–497.

	42.	 Ross AS, Hughes MC, Doshi-Velez F. Right for the right reasons: 
training differentiable models by constraining their explanations. 
In: Int. joint conference on artificial intelligence (IJCAI) 2017.

	43.	 Schlegel R, Obermeier S, Schneider J. Structured system threat 
modeling and mitigation analysis for industrial automation sys-
tems. In: International conference on industrial informatics 2017.

	44.	 Schneider J. Foundation models in brief: A historical, socio-tech-
nical focus 2022. arXiv preprint arXiv:​2212.​08967

	45.	 Schneider J, Apruzzese G. Concept-based adversarial attacks: 
Tricking humans and classifiers alike. IEEE symposium on secu-
rity and privacy (S &P) workshop on deep learning and security 
2022.

	46.	 Schneider J, Apruzzese G. Dual adversarial attacks: fooling 
humans and classifiers. J Inf Secur Appl. 2023;75: 103502.

	47.	 Schneider J, Breitinger F. Towards AI forensics: did the artificial 
intelligence system do it? J Inf Secur Appl. 2023;76(103):517.

	48.	 Schneider J, Handali JP. Personalized explanation for machine 
learning: a conceptualization. In: European conference on infor-
mation systems (ECIS) 2019.

	49.	 Schneider J, Vlachos M. Personalization of deep learning. In: Data 
science–analytics and applications 2021.

	50.	 Schneider J, Vlachos M. Explaining classifiers by constructing 
familiar concepts. Mach Learn 2022;112:1–34.

	51.	 Schneider J, Vlachos M. Reflective-net: Learning from explana-
tions. Data Min Knowl Discov 2023;1–22. https://​doi.​org/​10.​
1007/​s10618-​023-​00920-0

	52.	 Schneider J, Basalla M, vom Brocke J. Creativity of deep learning: 
conceptualization and assessment. In: International conference on 
agents and artificial intelligence (ICAART) 2022.

	53.	 Schneider J, Meske C, Vlachos M. Deceptive AI explanations: 
Creation and detection. In: Proceedings of the 14th International 
conference on agents and Artificial intelligence - Volume 2: 
ICAART,, 2022;44–55.

	54.	 Schwalbe G, Finzel B. A comprehensive taxonomy for explainable 
artificial intelligence: a systematic survey of surveys on methods 
and concepts. Data Min Knowl Discov 2023;1–59. https://​doi.​org/​
10.​1007/​s10618-​022-​00867-8

	55.	 Selvaraju RR, Cogswell M, Das A, et al. Grad-cam: Visual expla-
nations from deep networks via gradient-based localization. In: 
Int. conference on computer vision (ICCV) 2017.

	56.	 Sison AJG, Daza MT, Gozalo-Brizuela R, et al. ChatGPT: More 
than a weapon of mass deception, ethical challenges and responses 
from the human-Centered artificial intelligence (HCAI) perspec-
tive 2023. arXiv preprint arXiv:​2304.​11215

	57.	 Slack D, Hilgard S, Jia E, et al. Fooling lime and shap: Adversarial 
attacks on post hoc explanation methods. In: AAAI/ACM confer-
ence on AI, ethics, and society 2020.

	58.	 Van Eemeren FH, Garssen B, Meuffels B. Fallacies and judgments 
of reasonableness: empirical research concerning the pragma-dia-
lectical discussion rules, vol. 16. Dordrecht: Springer Science & 
Business Media; 2009.

	59.	 Viering T, Wang Z, Loog M, et al. How to manipulate cnns to 
make them lie: the gradcam case 2019. arXiv preprint arXiv:​1907.​
10901

	60.	 Wilking R, Jakobs M, Morik K. Fooling Perturbation-Based 
Explainability Methods. In: Workshop on trustworthy artificial 
intelligence as a part of the ECML/PKDD 22 program 2022.

	61.	 Wölker A, Powell TE. Algorithms in the newsroom? news read-
ers’ perceived credibility and selection of automated journalism. 
Journalism 2018.

	62.	 Wu Y, Ngai EW, Wu P, et al. Fake online reviews: Literature 
review, synthesis, and directions for future research. Decis Sup-
port Syst. 2020;132: 113280.

	63.	 Wu Y, Ma Y, Wan S. Multi-scale relation reasoning for multi-
modal visual question answering. Signal Process : Image Com-
mun. 2021;96(116):319.

	64.	 Xiao B, Benbasat I. Product-related deception in ecommerce: a 
theoretical perspective. MIS Q. 2011;35(1):169–95.

	65.	 Zhang Q, Wang W, Zhu SC. Examining cnn representations with 
respect to dataset bias. In: AAAI Conf. on artificial intelligence 
2018.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1908.09635
http://arxiv.org/abs/1908.09635
http://arxiv.org/abs/1907.12652
http://arxiv.org/abs/1708.07104
http://arxiv.org/abs/1806.07421
http://arxiv.org/abs/1806.07421
http://arxiv.org/abs/1910.04210
http://arxiv.org/abs/2212.08967
https://doi.org/10.1007/s10618-023-00920-0
https://doi.org/10.1007/s10618-023-00920-0
https://doi.org/10.1007/s10618-022-00867-8
https://doi.org/10.1007/s10618-022-00867-8
http://arxiv.org/abs/2304.11215
http://arxiv.org/abs/1907.10901
http://arxiv.org/abs/1907.10901

	Deceptive XAI: Typology, Creation and Detection
	Abstract
	Introduction
	Conceptualization of Deceptive Explanations
	Explanation and Deception
	Typology
	Explainee Model of Deceptive Explanations
	Problem Definition: Deception Through Explanations and Predictions
	Deception Scenarios

	Score-Based Deceptive Explanations
	Problem Definition
	Measuring Explanation Faithfulness
	Decision Fidelity
	Explanation Fidelity

	Creation of Deceptive Explanations
	Purposes of Deceptive Explanation
	Creation

	Deception Detection
	Formal Investigation
	Detection Approaches

	Evaluation
	Setup and Datasets
	ML-Based Detection
	Human-Based Detection

	Results
	Human-Based Detection
	Supervised ML-Based Detection
	Unsupervised ML-Based Detection

	Difficulty of Deception Detection

	Related Work
	Discussion
	Conclusion
	References


