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Abstract
The big data processing framework Spark is used to power a parameterizable recommender system that can make recom-
mendations for music based on a user’s individual tastes and take into account a variety of musical tonal qualities. The system 
as it is presently built is completely scalable, which means that additional songs can be contributed to the data, the cluster 
size could be increased, and new types of audio information, in addition to more cutting-edge similarity evaluations, may 
be included. Another issue discussed in this research paper is the parallel collection of required audio characteristics on a 
computer cluster. Song recommendations for a dataset including more than 114,000 songs may be created on a Spark cluster 
with 16 nodes in under 12 s by integrating eight distinct audio feature types and similarity assessments. After the features 
have been retrieved, they are sent to the Spark-based recommender system to be processed. The calculated distance was 
displayed, examined, and graphically depicted. By computing the distance depending on the melody, rhythmic, and timbral 
components of the music, the final software controls song suggestion.

Keywords Big data · Hadoop · Music information retrieval · Optimization · Spark

Introduction

The primary goal of this work is to aid consumers in locating 
and obtaining music. There are currently numerous music 
services that provide this functionality. Apple&#39, iPod 
and the associated iTunes Music Store [1], which provides 
consumers with several ways to discover music, are particu-
larly well-known. The portal recently sold its one billionth 
song [2]. Because of Amazon, iTunes, and other online 
stores, the way music is disseminated online is changing. 

Unlimited shelf space, highly effective suggestions based 
on consumer profiles, and 24-h availability render physical 
businesses uncompetitive [3, 4].

The purpose of this work is to suggest a transparent 
method for matching music that is based on a number of 
weighted characteristics rather than a predetermined com-
bination. Applying different weights to various features ena-
bles similarity retrieval techniques to look for various simi-
larities, allowing the user to select the features that are most 
significant to them and providing music recommendations 
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based on their tastes. For instance, weighting a song’s pace 
and beat more heavily than its melody allows for the devel-
opment of playlists for exercise and sports, while melodic/
timbral/other commonalities enable the search for songs 
from related musical subgenres [5].

The development of a parameterized similarity definition 
is made possible by the use of a big data framework like 
Spark. The musical distance between two pieces could be 
determined by combining and taking into account a vari-
ety of musical elements. This provides a more varied music 
recommendation system than those that are presently in 
place. In order to do this, a variety of features must first be 
retrieved from the audio data. In order to speed up opera-
tions, content (such as audio features) and context (such as 
listener behavior) data can then be supplied into a big data 
framework [6, 7]. But for this thesis, content-based informa-
tion is the only thing that matters.

There has already been an extensive study on context-
based collaborative filtering methods that employ big data 
frameworks and take into account other users’ listening hab-
its. However, the purpose of this thesis is to exclusively rely 
on the musical qualities of the songs in order to suggest a 
user-centered recommendation engine. There won't be any 
prejudice based on the musicians' popularity if the criteria 
are entirely based on the musical aspects of the songs [8].

Related Work

Based on how useful each piece is to a specific query, large 
collections of music or musical information are looked for it 
and structured using a process known as music information 
retrieval (MIR). This is especially important given the vast 
volumes of musical data accessible in digital format as well 
as the prevalence of music-related digital services. A growing 
community of multi-disciplinary scientists, such as library 
staff, software engineers, musicians, digital engineers, and 
music critics, among others, have come together, thanks to 
the Conference on Music Information Retrieval (ISMIR), a 
substantial conference series that was launched over the past 
four years. The majority of video streaming producers and 
sellers (like Philips, Sony, and Apple) also are fully engaged 
in the course's research, thanks to its evident commercial 
appeal, and many institutions are attempting to integrate MIR 
aid in some form in their digital services [9, 10].

In response to a textual query submitted by the user, like 
“David Bowie Heroes,” simple MIR algorithms retrieve 
data. The technology basically becomes equivalent to 
any text-based web browser in certain situations by com-
paring the text with the textual data associated to albums 
and tracks (e.g., Google, Yahoo). Nevertheless, given the 

characteristics of the material be retrieved, there's a require-
ment for systems that really can accept "musical" queries, 
such as scores, sang tunes (query by hum), or audio input 
snippets (query by example). The latter scenario is the topic 
of my proposition [11].

The goal of search by instance is to identify musical com-
positions that are comparable to a particular audio document 
within a vast collection of digital music resources. The capa-
bility for investigation by example is a crucial prerequisite 
for MIR systems. It has a variety of challenges, including 
concerns with computation and complexity, test-bed design, 
and the requirement to select an appropriate format for the 
audio inside the query or music collection [80, 81]. The 
audio representation that is used affects the connections 
that the system can identify. Current representation selec-
tion techniques may be broadly divided into those that aim 
to evaluate high-level (like note, rhythm, etc.) or low-level 
(acoustic) similarities [12].

Low‑Level Resemblance

Low noise similarity-based algorithms are frequently created 
to recognize a particular record even now in noisy settings 
and with significant signal degradation. These sound finger-
printings convert audio from a set of basic selected features 
into a more compact form with the help of a categorization 
system: Halker and Kalker [13] For logarithmically spaced 
sub-bands, Allamanche et al. use quantization and Fourier 
coefficients. Battle and Cano employ MPEG-7 low-level 
spectral properties, although [6, 14] use Mel Frequency Cep-
strum Coefficients (MFCC), followed by decoding Hidden 
Markov Models, to get the appropriate labeling (HMMs). 
It is possible to extract these features from the signal using 
frame-by-frame analysis, which needs little to no musical 
theory or expertise.

This method has shown exceptional ability to identify 
a flawless one-to-one connection between both the audio 
query as well as a record in the database, regardless of 
whether the audio query has indeed been compromised 
by compression or background noise [15]. It has been 
employed commercially for music recognition for end 
users and radio broadcast monitoring [16]. Yet, acoustic 
similarity studies exclude any relationship to the sound's 
musical characteristics. As a result, even if two recordings 
of the same song employ the same singer and equipment, 
if they are different from one another, they cannot be near-
matched in a similarity-ranked list. Low-level similarity 
assessments make it challenging to locate musically per-
tinent close matches [17].
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High‑Level Resemblance

As an alternate to limited similarity for music retrieval, we 
may aim to develop high-level representation from sound 
that highlights musical similarities across recordings.

Our strategy in the OMRAS project, which used high-
level representations, showed some effectiveness in find-
ing musical similarities [18]. It was based on the contrast 
between the representation of the audio inquiry and a col-
lection of symbol information (polyphonic music scores). 
The approach was based on automated transcribing of music, 
which involved the conversion of aural information into a 
powerful symbol approximating a score. As this conversion 
is usually inaccurate, a one-to-one matching of transcription 
or database events is ineffective for retrieval purposes [19]. 
Harmonic distributions were generated from the transcribed 
or stored data, as similarity was assessed by measuring the 
difference between the two distribution within a single event 
space. OMRAS [90] was the first system to be able to suc-
cessfully extract polyphony score from polyphonic audio 
requests. Moreover, OMRAS provided meaningful near-
matches with high similarity scores ("similar" songs).

Automatic transcription and harmonic modeling tech-
niques are constrained by the sorts of instruments and music 
that may be analyzed. While not usually connected to the 
sonic quality of recorded music, it has a lot to do with the 
way formal music notation is used [20]. The range of work-
able musical queries is constrained when an extremely high 
level of information is used for retrieval that is musically 
acceptable. This is especially important since a musical 
piece is better represented in a performance than it is in 
a score (e.g., pop music as opposed to classical music). In 
order to accurately identify musical similarities, we need a 
different representation from the low-level data that is not 
important to music and the imperfect and constrained high-
level music theory. We propose mid-level representations as 
this alternative [21].

Mid-level descriptions of music are measures that result 
from the transformation of an audio signal into a signifi-
cantly subsampled function that describes the properties of 
musical constructs in the original signal. This strategy is 
important to a vast class of musical methods for processing 
signals (e.g., onset and pitch detection, tempo and chord esti-
mation). These approaches were developed after a thorough 
examination of musical knowledge and human perception 
[22].

Without being bound by the constraints put by the laws 
of music notation, mid-level representation can effectively 
describe the rhythm framework of a piece and achieve higher 
levels of semantic richness than low-level elements. These 
capabilities effectively represent a broad variety of musi-
cal signals, including numerous musical styles and genres, 
according to our work on onset detection [23].

Initial attempts to offer additional relevant representa-
tion for retrieving included the use of spectral envelopes to 
identify timbral similarities [24, 25] and attempts to record 
the beat of a song utilizing periodicity histograms [26] or 
temporal sequences [27]. However, the chosen feature sets' 
simplicity—which may still be classified as low-level—lim-
ited their popularity. Recent advancements in semantics of 
music, which include ours in our opinion, make it possi-
ble to construct a set of features which is more artistically 
pertinent.

We categorize mid-level portrayals into two groups: 
segment-based mid-level representations, which also cat-
egorize characteristics of lengthier melodic segments like 
melodic line, tranquilly, chorus, etc., as well as event-based 
mid-level representations, which also classify characteristics 
of particular musical occurrences like note onsets and pitch 
detection. Moreover, we suggest that the former could be 
thought of as a language that creates the latter. This is dem-
onstrated by our work on tempo estimate, which successfully 
uses onset detection methods to create tempo contours for 
a range of input.

Our organization is also looking into tick forecasts for 
beat tracking and pitch contour lines in monophonic as well 
as polyphonic environments, furthermore to onset detection 
systems utilizing high-frequency components, spectroscopic 
difference, complicated spectral distinction, step devia-
tion, wavelet familiarity modulus, as well as great shock 
reinforcement learning. Moreover, we characterize music 
structure using segment-based mid-level representations like 
tempo outlines, harmonic curves for tonal assessment, or 
texture scores for long-term structure segments.

Methods

Dataset

Archive of Free Music

The largest dataset is the Free Music Archive (FMA), which 
has 117,123 distinct tracks comprising over one terabyte of 
music data from various music genres. For the majority of 
the songs, there is also a wealth of metadata, such as genre 
tags [27].

Private Music Library

Metal music makes up the majority of the private music 
collection utilized in this work. All rights to the music, 
which were properly acquired, belong to their respective 
owners. This dataset cannot be made public in association 
with this research project as a result. On the other hand, 
the personal music library has been accurately categorized, 
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and the accompanying PDF file is attached as one of the 
appendices. Shows how many songs in each genre there are 
in this sample (b). Additionally, a private recording dataset 
with original music and ambient recordings was used. You 
may find the majority of these files on SoundCloud [28]. The 
private music collection must be included in order to allow 
a subjective assessment of the results from the built recom-
mendation engine because music suggestions are continually 
based on personal taste and judgments of the quality of the 
results may vary (Fig. 1).

The 1622-Artists dataset as well as the Musicnet dataset 
are two alternative sources of music. The 1622-Artists data-
set has 3318 songs from diverse genres, while the Musicnet 
dataset contains 332 items of classical annotated with har-
monic progression values. Since MedleyDB pitch estimation 
may be performed by device or instrument, multitrack data 
could be useful for melodic or pitch-based similarity.

Covers

The covers dataset, which includes 80 original songs, mostly 
from the rock and pop musical genres, as well as 80 cover 
versions, is made available for cover song identification anal-
ysis. In regard to musical style, rhythm, and timbre, these 
cover versions are vastly different from the original.

Spotify API

The Spotify API is another resource for locating audio char-
acteristics, information, and music samples. The downside 
of utilizing the Spotify API is that no fully loaded, prepared 
test sample with all the essential characteristics is avail-
able. As a result, in the interest of conducting studies, a test 
dataset must first be produced. The relevant data may be 
obtained easily via a simple Python tool called Spotify [30]. 
A simple script is included during experimentation that can 
be used to collect all audio characteristics and analysis data 
from specified songs in a playlist that contain a sample URL 
for a 30-s audio excerpt. JSON files are used to contain data 
about the following audio attributes and analyses: dance-
ability, acousticness, instrumentality, liveness, intensity, 
speechiness, polarity, projected keys, tempo, and volume.

Figure 2a shows the returning chroma aspects of Bee-
thoven’s “Fu r Elise,” while Fig. 2 (b) shows the song’s intro-
duction in more depth with green dots that approximate esti-
mated bar markers. The note values for an octave are shown 
by blue dots. These may approximate a number between zero 
and 10, where 0 represents the key C, and 11 represents a 
B, according to this. A segment is a collection of samples 
with a consistent timbre and harmony. For every one of the 
semi-tones per segment, the Spotify API actually returns a 
chroma feature value. The plots, however, only show the key 
that is mostly prevalent inside each segment to emphasize 
the main melody line [30].

Fig. 1  a, b Musicnet and 
1622-Artists [29]
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Spotify could offer the all data required to create a siz-
able dataset for MIR, in addition to the 30-s audio samples 
that other features like MFCCs may be gathered. Crawling 
the Spotify services is clearly forbidden by the terms and 
conditions.

So, utilizing the Spotify API to increase the dataset is 
not possible without running the risk of breaking the law. 
Data mining and information crawling can differ from one 
another, and these limitations might not be applicable for 
tiny datasets. If used commercially, creating an algorithmi-
cally created playlist identical to the “Discover Weekly” 
playlist could result in legal issues, as per Spotify. Nonethe-
less, it does not forbid use in non-commercial settings [26].

The Spotify API will not be used in this study to produce 
a test dataset because the Spotify API developer team did 
not respond to an early enquiry. Without additional contact 
with Spotify, it is not possible to build a test dataset using 
the Spotify API.

Dataset of a Million Songs

Another exceptional and huge collection is the Million Song 
Dataset. It also incorporates additional auxiliary datasets, 
such the Last.fm dataset and the tantrum genre annotation, 
in addition to a significant quantity of metadata for each 
music. Pitch, loudness, vitality, and danceability are just a 
handful of the additional audio properties that are part of 

the Echo Nest API collection. The SecondHandSongs Data, 
containing an inventory of covers discovered in the Million 
Song Dataset, is another contribution (Fig. 3).

Because of Spotify API includes audio elements from 
the Echo Nest, the MSD in a big data scenario would 
provide a simulation of dealing with Spotify information 
without the need to mining the actual data. The MSD has 

Fig. 2  Spotify APIs

Fig. 3  Million Song Dataset with genre
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previously been utilized with big data systems to retrieve 
music similarity according to metadata and user input. 
Although the MSD's original absence of audio recordings, 
30-s samples may be produced once the data was made 
accessible using simple programs from 7digital.com. How-
ever, users can no more install the 28-s attached file from 
7digital, rendering this dataset useless for this research 
endeavor because omitted audio properties like MFCCs 
cannot be deduced from the sound recordings themselves 
[31].

Big Data

Following an evaluation of various sources of data as 
well as the presentation of many strategies for extracting 
and processing various audio aspects [32], the next part 
offers analysis of data using big data processing platforms, 
such as Apache Spark and Hadoop. Most of the Spark 
and Hadoop basic knowledge in the following sections 
is drawn from Jeffrey Aven’s book, “Data Analytics with 
Spark Using Python,” which provides a clear and informa-
tive introduction of the field of big data processing utiliz-
ing PySpark.

Hadoop

The need for toolkits and efficient algorithms to manage 
the large volumes of high-dimensional data that are becom-
ing more and more accessible has grown over the past few 
years. One method for resolving big data difficulties is to 
use parallelism.

Early in 2001, search engine providers like Google and 
Yahoo first ran into the problem of using “internet-scale” 
data as they struggled to store and handle the ever-growing 
volume of indexes from internet-based publications. In 2002, 
Google released a white paper titled “The Google File Sys-
tem.” Google created the programming paradigm known as 
MapReduce as a response to the problem of internet-scale 
data, which was first detailed in the paper “MapReduce: 
Simplified Data Processing on Large Clusters” in 2006[33].

Mike Cafarella and Doug Cutting were working on the 
“Nutch” web search project at the time. Motivated by the 
two publications, Cutting combined Google’s processing 
and storage techniques to build Hadoop. In 2006, Hadoop 
became a member of the Apache Software Foundation. 
Hadoop's basic concept is the MapReduce programming 
model for data processing. With big computer clusters, 
a scalable application known as Hadoop may be used. It 
does not require a supercomputer environment and may be 
operated on commodity hardware clusters. To store data 
tediously on other nodes, a variable replication factor is 

employed, and it regulates how so many copies of each data 
block are kept there. As a consequence, errors can be han-
dled simply by restarting.

MapReduce

The incoming data are divided into chunks and dissemi-
nated among cluster nodes in the first step. This is often 
maintained by a file system with distributed storage such as 
HDFS. All information chunk identifiers are maintained on 
a single master node. The data is subsequently sent to the 
mappers, who process it before converting it to key–value 
tuples. Before being sent to the reducers, the key–value pairs 
are usually aggregated in an intermediate step by their keys. 
Every tuple that uses the same key is subjected to a unique 
procedure by the reducers.

The “replication rate” is defined as the total amount of 
key–value pairs produced by all map makers divided by the 
entire number of data input (r). The largest number of values 
for a single key entered into a reducer is denoted by the letter 
“q.” (reducer size). There are usually trade-offs between a 
high replication rate (r) and a small reducer size (q), both of 
which are highly parallel and generate more network activ-
ity (less network traffic, but reduced parallelism owing to a 
smaller total reducer count).

Spark

When compared to more recent options like Spark, utiliz-
ing Hadoop as a platform for big data processing has some 
disadvantages. The 2008-launched Spark project was a part 
of the Mesos research project. In place of Hadoop’s MapRe-
duce implementation, it was developed. Spark supports 
native support in addition to being created in the Java Virtual 
Machine (JVM)-compatible programming language Scala.

Using Big Data Frameworks to Compare Music

One-to-many-item similarities are useful to estimate the 
similarity. Because of this, only one song may have all of the 
commonalities to that song between other songs computed 
concurrently. This was the method of inquiry employed in 
this study. Making a detailed similarity matrix beforehand 
is an alternative (all-pairs similarity). Nevertheless, it would 
take a while to use vast databases including millions of 
songs. Merging the two techniques includes calculating the 
similarities for each song demand individually and keeping 
the outcomes in a sparse similarity matrix to expedite sub-
sequent requests for the same songs. Yet this is outside the 
purview of the ongoing investigation. The choice to utilize 
Spark is explained in the short overview to big data frame-
work that follows.
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The shared nothing method of Spark is used to calcu-
late the “one-to-many-item” similarity. Concurrent distance 
computation is made possible by the fact that the qualities of 
different songs are wholly different from one another. The 
greatest and the lowest values must total in order to scale 
the outcome. In order to return the top results, a sorting 
technique must be utilized. Contrary to conventional meth-
ods, which require data shuffles, all the characteristics may 
be dispersed throughout a cluster, and the data localization 
principle can be used to independently assess how similar 
two songs are. With regard to very big datasets, this provides 
a completely scalable solution [34]. The audio characteristic 
data may also be properly cached in main memory using 
Spark. Interactive sequential song requests could be fulfilled 
without constantly reading feature data from hard drive if all 
of the characteristics from across all songs can fit within the 
cluster's main memory. One restriction is that Spark itself 
is unable to handle or read audio files. Just the recovered 
features must be delivered after the feature extraction pro-
cedure, which must be done independently.

Results and Discussion

Correlation of Features and Distance Distribution

This section analyzes the similarity analysis results to iden-
tify how the ranges from various feature sets connect to 
one another as well as how they are spread from across unit 
interval [0, 1]. To evaluate this, a test dataset was generated 
from the distances the Spark program returned. 97 songs 
were chosen at random from the 1619-Artists dataset, and 
the locations of each song relative to the others were cal-
culated. The sample consists of 3219 songs that are uni-
formly distributed among more than 15 different genres. It 
is imperative to sample distances from different genres when 
examining the distribution of distances. Different distances 
and distributions apply depending on where the real music 
is in the feature space. Songs chosen from the feature space 
distribution's periphery will have different distances from 
songs chosen from its center.

The framework demonstrated in [35] offers a straight-
forward example to demonstrate this. In this scenario, the 
distances between a song from the “Classical” category and 
the “Rock” or "Metal" tracks are different, although the dis-
tances between songs with the “Metal” tag and those with 
the “Rock” and “Classical” tags are almost the same. Rock 
music and classical songs are separated by twice as much as 
metal songs are [104]. The connection between the lengths 
from different feature categories is depicted in Fig. 4. The 
eight different lengths for each song pair are totaled up using 
the conventional equation, with all weights set to 1. This 
results in a single new combined distance. This entire dis-
tance is shown by the letter “agg” in the following charts. 
The multiple rhythmic characteristics and the JS and SKL 

Fig. 4  Feature space illustration

Fig. 5  Correlation matrix
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components all easily complement one another. Only a tenu-
ous relationship exists between the musical components.

Figure 4 provides a simple illustration to illustrate this 
description. While the distances between songs with the 
“Metal” tag and those with the “Rock” and “Classical” tags 
are roughly the same, in this case, the distances between a 
song from the “Classical” genre and the “Rock” or “Metal” 

tracks are different. The distance between the Rock songs 
and the Classical songs is double that of the Metal songs.

The connection between a feature type and the total dis-
tance from the weighted sum shows how much of an impact 
that feature type has (Fig. 5). The total distances are altered 
differently based on the type of feature even though distances 
are not all spread equally over the unit interval. Figure 6 uses 

Fig. 7  shows how the weighted total is affected by SKL scaling

Fig. 6  Cumulative histogram
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the cumulative histograms across the unit interval to show 
how the distances are dispersed. It is particularly clear that 
cross-correlation lengths really aren't evenly distributed.

In Fig. 7a and b, intriguingly, there is a declining asso-
ciation between the combined distance (“agg”) and the 
Jensen–Shannon-like divergence. One explanation is that 
although the SKL and JS distances are strongly connected, 
the inadequate scaling prevents the SKL from having any 
bearing on the overall distance. The total weighted sum of 
the JS divergence results cannot be affected by the results 
from the JS divergence alone.

Using the entire scatter plot matrices of the varying dis-
tance for the 95 song samples from diverse genres, Figs. 8, 
9 show the correlation and dispersion of the distances. The 
histograms of the separations from the relevant special 
feature sets are shown on the principal diagonal. It reveals 
that every sort of feature, excluding chroma properties, 
substantially correlates with the weighted sum of all fea-
tures. The scatter plots make it easy to see the symmetri-
cal Kullback–Leibler diverge, the Jensen–Shannon-like 

divergence, as well as the significant association between 
both rhythmic patterns and rhythm histograms.

Identification of a Cover Song

Only MFCC-based recommendation system can identify 
cover tunes. Algorithms for comparing melodies, The 
Scorpions’ rendition of Knightsbridge’s song “Rock you 
like a Hurricane” were found by the Spark implementation 
to be the top suggestion when using the cross-correlation 
during the initial testing on the whole dataset, which com-
prised 121,722 songs. Out of more than 121,722 tracks, 
the program was nevertheless able to find a top recom-
mendation for a distinct version of the music “Fu r Elise” 
cover.

Although there are two more variations of this song in 
the private music collection, a second test used simply 

the JavaScript and chroma properties without the rhythm 
patterns. Below is another list of the top six suggestions:
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Fig. 8  illustrates the correla-
tion of features based on SKL 
scaling

Fig. 9  illustrates the correla-
tion of features based on SKL 
Unscaling
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Fig. 10  a 97 tracks, more than 15 genre), 1619 artists are represented Scatter matrix, correlation. b Representation of track for genres
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The initial alternate record showed up as the 13th 
suggestion in a third inquiry whenever the other record-
ings could only be found using the Jensen–Shannon-like 
divergence. This supported the hypothesis that timbral 
features, the Jensen–Shannon-like difference, as well as 
the symmetrical Kullback–Leibler deviation are helpful 
for identifying cover tunes.

The cross-correlation, however, is unable to detect 
the cover song for some song requests. After the positive 
results of the initial testing, the cluster was loaded with 
the covers dataset specified in cover songs. The music 
requests for the 80 “A-versions” songs were given to the 

Spark program, and the resulting closest neighbors were 
looked at.

Although 28 from out 78 identified songs don’t always 
appear to be a remarkably high strike rate as well as isn't 
quite as excellent as the original paper's results, it should 
be noted that most of the cover songs in the cover80 set 
of data markedly deviate from original tracks in regard to 
musical fashion, measuring instruments, rhythm, or even 
genre. As a result, cross-correlation is much more exact, 
yet more computationally efficient.

Fig. 11  Scatter matrix, 
distances for 1517 artists, 1 
random Rock & Pop song, and 
4 genres

Fig. 12  Scatter matrix, dis-
tances for 1517 artists
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Genre Relativeness

Occasionally, a single song from a more “contemporary” 
genre—such as Hip Hop, Rock & Pop, Electronic & Dance, 
or Reggae—will play. Similarly, five songs from the Rock 
& Pop genre were put to the test. The results from the 
1517-Artists dataset are dispersed throughout 17 of the 20 
major genres as shown in Fig. 10a. This may be due to the 
fact that the songs in this dataset that have “Rock & Pop” 
annotations originate from a wider range of subgenres. If 
you look closely at the dataset, you can see that, for instance, 
Metal tracks are also classified as Rock & Pop as shown in 
Fig. 10b.

Another experiment was conducted to examine the effects 
of various feature types on the overall recommendations and 
to demonstrate how the distribution of distances differed 
by genre. A part of the 1629-Artists dataset that contained 
songs from the “Classical,” “Hip Hop,” “Electronic & 
Dance,” and “Rock & Pop” categories was used to compute 

all distances to the songs for requests for a single song. Fig-
ure 11 shows the scatter matrices for all distances from a sin-
gle Rock & Pop music request. The genre of the suggested 
music affects the recommendations' various distances. The 
calculated kernel density for the pertinent feature type is 
shown diagonally. The JS distances can tell classical music 
apart from the other types of music. However, it’s interesting 
to notice that it cannot tell Rock/Pop songs from Hip Hop 
songs. Nevertheless, rhythmic patterning cannot distinguish 
musical instruments from pop and rock music on their own. 
Nonetheless, all three genres may be distinguished when 
all feature kinds are taken into account. Three sets of songs 
from various genres are shown by the scatter diagram of the 
rhythm pattern variations and Jensen–Shannon-like diver-
gence combined. Regardless of the feature set employed, the 
fourth genre, “Electronic & Dance,” can’t be distinguished 
from hip hop music. But it's crucial to remember that all of 
these gaps resulted from a Rock/Pop song request.

Fig. 13  Randomly selected Electronic song
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The arrangement of the distances varies based on which 
part of the feature set the song request is situated. It appears 
that there is a similar distance between the desired Rock/Pop 
song and music in the Hip Hop and Electronic/Dance genres. 
When distributing the distances, a song from the Electronic/
Dance genre sounds entirely different. The weighted total 
of all characteristics, includes cross-correlation and Lev-
enshtein distance that are not depicted in the plots, and is 
represented by the “agg” graphs. In Figs. 12 and 13, the 
aggregate findings of all feature classes primarily propose 
further Rock & Pop songs.

The Spark recommender system would have no way to 
distinguish between all four of the various genres when 
employing a single feature type A list of suggestions that 
is overall satisfying may only be recovered when various 
rhythmic and timbral features are merged.

Features of Rhythm

The availability of music that is played at nearly the same 
pace is another essential requirement for a recommenda-
tions engine. The distances between the results of two song 
request that have been made to assess the effectiveness of 
the rhythm characteristics are displayed in Fig. 14 for the 

dataset 1517-Artists. The scatter plots demonstrate how 
close the beat histogram and rhythmic patterns connects 
to the music’s overall BPM. As each of the eight different 
feature types has a “agg” value, it is feasible to see how the 
rhythm features have affected the suggestions overall (the 
weighted sum). Overall, the weighted sum of rhythmic ele-
ments makes it more likely that the Spark recommendation 
engine would propose songs with comparable BPM. Further 
evidence that the BPM is not the only important element 
affecting the distances is shown by the request for a classical 
song in Fig. 14d.

Conclusion

The proposed study offered an insight into the subject of 
music information retrieval. There were also added multiple 
high- and low-level audio aspects that were described in 
numerous methods for assessing the similarities of audio 
clips depending on audio features. A brief review of big 
data technologies, such as Apache Spark and Hadoop, 
also was provided, and several resources of acoustic data 
were obtained. From audio recordings, timbre, rhythm, 
and melodic components could be retrieved and processed 

Fig. 14  Random Rock & Pop and Classical tracks
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beforehand. Several alternative methods were used to calcu-
late the separations between the features that were collected. 
The implementation can be prepared using the theoretical 
understanding from the preceding chapters. Around 1 TB 
of music tracks with 123,767 different songs was combined 
from collected data.

To prepare the data to be utilized by the big data pro-
cessing platform Spark, the relevant audio characteristics 
were extracted and pre-processed in parallel utilizing MPI 
on a computer cluster. As an illustration, the melody and 
chroma information was separated. The Spark framework 
was used to generate, test, analyze, and improve numer-
ous similarity measures, and the features were added to 
a cluster’s HDFS. Many methods (RDD, Filter, Data-
Set, Refined, and Cluster Configurations) were analyzed 
using Spark, as well as the runtime was assessed. The cal-
culated distance was displayed, examined, and graphically 
depicted. By computing the distance depending on the 
melody, rhythmic, and timbral components of the music, 
the final software controls song suggestion. The user could 
prioritize various features of the music using the customiz-
able suggestions. The system is scalable. The cluster size 
can be increased, new songs can be added, different audio 
aspects can be included, and more advanced similarity 
tests can also be applied.
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