
Vol.:(0123456789)

SN Computer Science (2024) 5:78
https://doi.org/10.1007/s42979-023-02367-y

SN Computer Science

ORIGINAL RESEARCH

Parametrized Optimization Based on an Investigation of Musical
Similarities Using SPARK and Hadoop

Savita Chaudhary1 · V. Karthik2 · R. Shankar3 · Ayesha Taranum4 · E. Naresh5

Received: 13 June 2023 / Accepted: 26 September 2023
© The Author(s) 2023

Abstract
The big data processing framework Spark is used to power a parameterizable recommender system that can make recom-
mendations for music based on a user’s individual tastes and take into account a variety of musical tonal qualities. The system
as it is presently built is completely scalable, which means that additional songs can be contributed to the data, the cluster
size could be increased, and new types of audio information, in addition to more cutting-edge similarity evaluations, may
be included. Another issue discussed in this research paper is the parallel collection of required audio characteristics on a
computer cluster. Song recommendations for a dataset including more than 114,000 songs may be created on a Spark cluster
with 16 nodes in under 12 s by integrating eight distinct audio feature types and similarity assessments. After the features
have been retrieved, they are sent to the Spark-based recommender system to be processed. The calculated distance was
displayed, examined, and graphically depicted. By computing the distance depending on the melody, rhythmic, and timbral
components of the music, the final software controls song suggestion.

Keywords Big data · Hadoop · Music information retrieval · Optimization · Spark

Introduction

The primary goal of this work is to aid consumers in locating
and obtaining music. There are currently numerous music
services that provide this functionality. Apple', iPod
and the associated iTunes Music Store [1], which provides
consumers with several ways to discover music, are particu-
larly well-known. The portal recently sold its one billionth
song [2]. Because of Amazon, iTunes, and other online
stores, the way music is disseminated online is changing.

Unlimited shelf space, highly effective suggestions based
on consumer profiles, and 24-h availability render physical
businesses uncompetitive [3, 4].

The purpose of this work is to suggest a transparent
method for matching music that is based on a number of
weighted characteristics rather than a predetermined com-
bination. Applying different weights to various features ena-
bles similarity retrieval techniques to look for various simi-
larities, allowing the user to select the features that are most
significant to them and providing music recommendations

This article is part of the topical collection “Diverse Applications
in Computing, Analytics and Networks” guest edited by Archana
Mantri and Sagar Juneja.

 * E. Naresh
 naresh.e@manipal.edu

 Savita Chaudhary
 savitha_cs@sirmvit.edu

 V. Karthik
 karthikv.v1@gmail.com

 R. Shankar
 shankar@bmsit.in

 Ayesha Taranum
 dr.ayesha.tara@gmail.com

1 Department of Computer Science and Engineering, Sir M
Visvesvaraya Institute of Technology Bengaluru, Bengaluru,
India

2 Department of Information Science and Engineering,
Ramaiah Institute of Tech, B’lore, India

3 Department of Computer Science and Engineering, BMS
Institute of Technology and Engineering, Bengaluru, India

4 Department of Computer Science and Engineering,
Vidyavardhaka College of Engineering, Mysuru, India

5 Department of Information Technology, Manipal Institute
of Technology Bengaluru, Manipal Academy of Higher
Education, Manipal, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02367-y&domain=pdf
http://orcid.org/0000-0002-8368-836X

 SN Computer Science (2024) 5:78 78 Page 2 of 16

SN Computer Science

based on their tastes. For instance, weighting a song’s pace
and beat more heavily than its melody allows for the devel-
opment of playlists for exercise and sports, while melodic/
timbral/other commonalities enable the search for songs
from related musical subgenres [5].

The development of a parameterized similarity definition
is made possible by the use of a big data framework like
Spark. The musical distance between two pieces could be
determined by combining and taking into account a vari-
ety of musical elements. This provides a more varied music
recommendation system than those that are presently in
place. In order to do this, a variety of features must first be
retrieved from the audio data. In order to speed up opera-
tions, content (such as audio features) and context (such as
listener behavior) data can then be supplied into a big data
framework [6, 7]. But for this thesis, content-based informa-
tion is the only thing that matters.

There has already been an extensive study on context-
based collaborative filtering methods that employ big data
frameworks and take into account other users’ listening hab-
its. However, the purpose of this thesis is to exclusively rely
on the musical qualities of the songs in order to suggest a
user-centered recommendation engine. There won't be any
prejudice based on the musicians' popularity if the criteria
are entirely based on the musical aspects of the songs [8].

Related Work

Based on how useful each piece is to a specific query, large
collections of music or musical information are looked for it
and structured using a process known as music information
retrieval (MIR). This is especially important given the vast
volumes of musical data accessible in digital format as well
as the prevalence of music-related digital services. A growing
community of multi-disciplinary scientists, such as library
staff, software engineers, musicians, digital engineers, and
music critics, among others, have come together, thanks to
the Conference on Music Information Retrieval (ISMIR), a
substantial conference series that was launched over the past
four years. The majority of video streaming producers and
sellers (like Philips, Sony, and Apple) also are fully engaged
in the course's research, thanks to its evident commercial
appeal, and many institutions are attempting to integrate MIR
aid in some form in their digital services [9, 10].

In response to a textual query submitted by the user, like
“David Bowie Heroes,” simple MIR algorithms retrieve
data. The technology basically becomes equivalent to
any text-based web browser in certain situations by com-
paring the text with the textual data associated to albums
and tracks (e.g., Google, Yahoo). Nevertheless, given the

characteristics of the material be retrieved, there's a require-
ment for systems that really can accept "musical" queries,
such as scores, sang tunes (query by hum), or audio input
snippets (query by example). The latter scenario is the topic
of my proposition [11].

The goal of search by instance is to identify musical com-
positions that are comparable to a particular audio document
within a vast collection of digital music resources. The capa-
bility for investigation by example is a crucial prerequisite
for MIR systems. It has a variety of challenges, including
concerns with computation and complexity, test-bed design,
and the requirement to select an appropriate format for the
audio inside the query or music collection [80, 81]. The
audio representation that is used affects the connections
that the system can identify. Current representation selec-
tion techniques may be broadly divided into those that aim
to evaluate high-level (like note, rhythm, etc.) or low-level
(acoustic) similarities [12].

Low‑Level Resemblance

Low noise similarity-based algorithms are frequently created
to recognize a particular record even now in noisy settings
and with significant signal degradation. These sound finger-
printings convert audio from a set of basic selected features
into a more compact form with the help of a categorization
system: Halker and Kalker [13] For logarithmically spaced
sub-bands, Allamanche et al. use quantization and Fourier
coefficients. Battle and Cano employ MPEG-7 low-level
spectral properties, although [6, 14] use Mel Frequency Cep-
strum Coefficients (MFCC), followed by decoding Hidden
Markov Models, to get the appropriate labeling (HMMs).
It is possible to extract these features from the signal using
frame-by-frame analysis, which needs little to no musical
theory or expertise.

This method has shown exceptional ability to identify
a flawless one-to-one connection between both the audio
query as well as a record in the database, regardless of
whether the audio query has indeed been compromised
by compression or background noise [15]. It has been
employed commercially for music recognition for end
users and radio broadcast monitoring [16]. Yet, acoustic
similarity studies exclude any relationship to the sound's
musical characteristics. As a result, even if two recordings
of the same song employ the same singer and equipment,
if they are different from one another, they cannot be near-
matched in a similarity-ranked list. Low-level similarity
assessments make it challenging to locate musically per-
tinent close matches [17].

SN Computer Science (2024) 5:78 Page 3 of 16 78

SN Computer Science

High‑Level Resemblance

As an alternate to limited similarity for music retrieval, we
may aim to develop high-level representation from sound
that highlights musical similarities across recordings.

Our strategy in the OMRAS project, which used high-
level representations, showed some effectiveness in find-
ing musical similarities [18]. It was based on the contrast
between the representation of the audio inquiry and a col-
lection of symbol information (polyphonic music scores).
The approach was based on automated transcribing of music,
which involved the conversion of aural information into a
powerful symbol approximating a score. As this conversion
is usually inaccurate, a one-to-one matching of transcription
or database events is ineffective for retrieval purposes [19].
Harmonic distributions were generated from the transcribed
or stored data, as similarity was assessed by measuring the
difference between the two distribution within a single event
space. OMRAS [90] was the first system to be able to suc-
cessfully extract polyphony score from polyphonic audio
requests. Moreover, OMRAS provided meaningful near-
matches with high similarity scores ("similar" songs).

Automatic transcription and harmonic modeling tech-
niques are constrained by the sorts of instruments and music
that may be analyzed. While not usually connected to the
sonic quality of recorded music, it has a lot to do with the
way formal music notation is used [20]. The range of work-
able musical queries is constrained when an extremely high
level of information is used for retrieval that is musically
acceptable. This is especially important since a musical
piece is better represented in a performance than it is in
a score (e.g., pop music as opposed to classical music). In
order to accurately identify musical similarities, we need a
different representation from the low-level data that is not
important to music and the imperfect and constrained high-
level music theory. We propose mid-level representations as
this alternative [21].

Mid-level descriptions of music are measures that result
from the transformation of an audio signal into a signifi-
cantly subsampled function that describes the properties of
musical constructs in the original signal. This strategy is
important to a vast class of musical methods for processing
signals (e.g., onset and pitch detection, tempo and chord esti-
mation). These approaches were developed after a thorough
examination of musical knowledge and human perception
[22].

Without being bound by the constraints put by the laws
of music notation, mid-level representation can effectively
describe the rhythm framework of a piece and achieve higher
levels of semantic richness than low-level elements. These
capabilities effectively represent a broad variety of musi-
cal signals, including numerous musical styles and genres,
according to our work on onset detection [23].

Initial attempts to offer additional relevant representa-
tion for retrieving included the use of spectral envelopes to
identify timbral similarities [24, 25] and attempts to record
the beat of a song utilizing periodicity histograms [26] or
temporal sequences [27]. However, the chosen feature sets'
simplicity—which may still be classified as low-level—lim-
ited their popularity. Recent advancements in semantics of
music, which include ours in our opinion, make it possi-
ble to construct a set of features which is more artistically
pertinent.

We categorize mid-level portrayals into two groups:
segment-based mid-level representations, which also cat-
egorize characteristics of lengthier melodic segments like
melodic line, tranquilly, chorus, etc., as well as event-based
mid-level representations, which also classify characteristics
of particular musical occurrences like note onsets and pitch
detection. Moreover, we suggest that the former could be
thought of as a language that creates the latter. This is dem-
onstrated by our work on tempo estimate, which successfully
uses onset detection methods to create tempo contours for
a range of input.

Our organization is also looking into tick forecasts for
beat tracking and pitch contour lines in monophonic as well
as polyphonic environments, furthermore to onset detection
systems utilizing high-frequency components, spectroscopic
difference, complicated spectral distinction, step devia-
tion, wavelet familiarity modulus, as well as great shock
reinforcement learning. Moreover, we characterize music
structure using segment-based mid-level representations like
tempo outlines, harmonic curves for tonal assessment, or
texture scores for long-term structure segments.

Methods

Dataset

Archive of Free Music

The largest dataset is the Free Music Archive (FMA), which
has 117,123 distinct tracks comprising over one terabyte of
music data from various music genres. For the majority of
the songs, there is also a wealth of metadata, such as genre
tags [27].

Private Music Library

Metal music makes up the majority of the private music
collection utilized in this work. All rights to the music,
which were properly acquired, belong to their respective
owners. This dataset cannot be made public in association
with this research project as a result. On the other hand,
the personal music library has been accurately categorized,

 SN Computer Science (2024) 5:78 78 Page 4 of 16

SN Computer Science

and the accompanying PDF file is attached as one of the
appendices. Shows how many songs in each genre there are
in this sample (b). Additionally, a private recording dataset
with original music and ambient recordings was used. You
may find the majority of these files on SoundCloud [28]. The
private music collection must be included in order to allow
a subjective assessment of the results from the built recom-
mendation engine because music suggestions are continually
based on personal taste and judgments of the quality of the
results may vary (Fig. 1).

The 1622-Artists dataset as well as the Musicnet dataset
are two alternative sources of music. The 1622-Artists data-
set has 3318 songs from diverse genres, while the Musicnet
dataset contains 332 items of classical annotated with har-
monic progression values. Since MedleyDB pitch estimation
may be performed by device or instrument, multitrack data
could be useful for melodic or pitch-based similarity.

Covers

The covers dataset, which includes 80 original songs, mostly
from the rock and pop musical genres, as well as 80 cover
versions, is made available for cover song identification anal-
ysis. In regard to musical style, rhythm, and timbre, these
cover versions are vastly different from the original.

Spotify API

The Spotify API is another resource for locating audio char-
acteristics, information, and music samples. The downside
of utilizing the Spotify API is that no fully loaded, prepared
test sample with all the essential characteristics is avail-
able. As a result, in the interest of conducting studies, a test
dataset must first be produced. The relevant data may be
obtained easily via a simple Python tool called Spotify [30].
A simple script is included during experimentation that can
be used to collect all audio characteristics and analysis data
from specified songs in a playlist that contain a sample URL
for a 30-s audio excerpt. JSON files are used to contain data
about the following audio attributes and analyses: dance-
ability, acousticness, instrumentality, liveness, intensity,
speechiness, polarity, projected keys, tempo, and volume.

Figure 2a shows the returning chroma aspects of Bee-
thoven’s “Fu r Elise,” while Fig. 2 (b) shows the song’s intro-
duction in more depth with green dots that approximate esti-
mated bar markers. The note values for an octave are shown
by blue dots. These may approximate a number between zero
and 10, where 0 represents the key C, and 11 represents a
B, according to this. A segment is a collection of samples
with a consistent timbre and harmony. For every one of the
semi-tones per segment, the Spotify API actually returns a
chroma feature value. The plots, however, only show the key
that is mostly prevalent inside each segment to emphasize
the main melody line [30].

Fig. 1 a, b Musicnet and
1622-Artists [29]

SN Computer Science (2024) 5:78 Page 5 of 16 78

SN Computer Science

Spotify could offer the all data required to create a siz-
able dataset for MIR, in addition to the 30-s audio samples
that other features like MFCCs may be gathered. Crawling
the Spotify services is clearly forbidden by the terms and
conditions.

So, utilizing the Spotify API to increase the dataset is
not possible without running the risk of breaking the law.
Data mining and information crawling can differ from one
another, and these limitations might not be applicable for
tiny datasets. If used commercially, creating an algorithmi-
cally created playlist identical to the “Discover Weekly”
playlist could result in legal issues, as per Spotify. Nonethe-
less, it does not forbid use in non-commercial settings [26].

The Spotify API will not be used in this study to produce
a test dataset because the Spotify API developer team did
not respond to an early enquiry. Without additional contact
with Spotify, it is not possible to build a test dataset using
the Spotify API.

Dataset of a Million Songs

Another exceptional and huge collection is the Million Song
Dataset. It also incorporates additional auxiliary datasets,
such the Last.fm dataset and the tantrum genre annotation,
in addition to a significant quantity of metadata for each
music. Pitch, loudness, vitality, and danceability are just a
handful of the additional audio properties that are part of

the Echo Nest API collection. The SecondHandSongs Data,
containing an inventory of covers discovered in the Million
Song Dataset, is another contribution (Fig. 3).

Because of Spotify API includes audio elements from
the Echo Nest, the MSD in a big data scenario would
provide a simulation of dealing with Spotify information
without the need to mining the actual data. The MSD has

Fig. 2 Spotify APIs

Fig. 3 Million Song Dataset with genre

 SN Computer Science (2024) 5:78 78 Page 6 of 16

SN Computer Science

previously been utilized with big data systems to retrieve
music similarity according to metadata and user input.
Although the MSD's original absence of audio recordings,
30-s samples may be produced once the data was made
accessible using simple programs from 7digital.com. How-
ever, users can no more install the 28-s attached file from
7digital, rendering this dataset useless for this research
endeavor because omitted audio properties like MFCCs
cannot be deduced from the sound recordings themselves
[31].

Big Data

Following an evaluation of various sources of data as
well as the presentation of many strategies for extracting
and processing various audio aspects [32], the next part
offers analysis of data using big data processing platforms,
such as Apache Spark and Hadoop. Most of the Spark
and Hadoop basic knowledge in the following sections
is drawn from Jeffrey Aven’s book, “Data Analytics with
Spark Using Python,” which provides a clear and informa-
tive introduction of the field of big data processing utiliz-
ing PySpark.

Hadoop

The need for toolkits and efficient algorithms to manage
the large volumes of high-dimensional data that are becom-
ing more and more accessible has grown over the past few
years. One method for resolving big data difficulties is to
use parallelism.

Early in 2001, search engine providers like Google and
Yahoo first ran into the problem of using “internet-scale”
data as they struggled to store and handle the ever-growing
volume of indexes from internet-based publications. In 2002,
Google released a white paper titled “The Google File Sys-
tem.” Google created the programming paradigm known as
MapReduce as a response to the problem of internet-scale
data, which was first detailed in the paper “MapReduce:
Simplified Data Processing on Large Clusters” in 2006[33].

Mike Cafarella and Doug Cutting were working on the
“Nutch” web search project at the time. Motivated by the
two publications, Cutting combined Google’s processing
and storage techniques to build Hadoop. In 2006, Hadoop
became a member of the Apache Software Foundation.
Hadoop's basic concept is the MapReduce programming
model for data processing. With big computer clusters,
a scalable application known as Hadoop may be used. It
does not require a supercomputer environment and may be
operated on commodity hardware clusters. To store data
tediously on other nodes, a variable replication factor is

employed, and it regulates how so many copies of each data
block are kept there. As a consequence, errors can be han-
dled simply by restarting.

MapReduce

The incoming data are divided into chunks and dissemi-
nated among cluster nodes in the first step. This is often
maintained by a file system with distributed storage such as
HDFS. All information chunk identifiers are maintained on
a single master node. The data is subsequently sent to the
mappers, who process it before converting it to key–value
tuples. Before being sent to the reducers, the key–value pairs
are usually aggregated in an intermediate step by their keys.
Every tuple that uses the same key is subjected to a unique
procedure by the reducers.

The “replication rate” is defined as the total amount of
key–value pairs produced by all map makers divided by the
entire number of data input (r). The largest number of values
for a single key entered into a reducer is denoted by the letter
“q.” (reducer size). There are usually trade-offs between a
high replication rate (r) and a small reducer size (q), both of
which are highly parallel and generate more network activ-
ity (less network traffic, but reduced parallelism owing to a
smaller total reducer count).

Spark

When compared to more recent options like Spark, utiliz-
ing Hadoop as a platform for big data processing has some
disadvantages. The 2008-launched Spark project was a part
of the Mesos research project. In place of Hadoop’s MapRe-
duce implementation, it was developed. Spark supports
native support in addition to being created in the Java Virtual
Machine (JVM)-compatible programming language Scala.

Using Big Data Frameworks to Compare Music

One-to-many-item similarities are useful to estimate the
similarity. Because of this, only one song may have all of the
commonalities to that song between other songs computed
concurrently. This was the method of inquiry employed in
this study. Making a detailed similarity matrix beforehand
is an alternative (all-pairs similarity). Nevertheless, it would
take a while to use vast databases including millions of
songs. Merging the two techniques includes calculating the
similarities for each song demand individually and keeping
the outcomes in a sparse similarity matrix to expedite sub-
sequent requests for the same songs. Yet this is outside the
purview of the ongoing investigation. The choice to utilize
Spark is explained in the short overview to big data frame-
work that follows.

SN Computer Science (2024) 5:78 Page 7 of 16 78

SN Computer Science

The shared nothing method of Spark is used to calcu-
late the “one-to-many-item” similarity. Concurrent distance
computation is made possible by the fact that the qualities of
different songs are wholly different from one another. The
greatest and the lowest values must total in order to scale
the outcome. In order to return the top results, a sorting
technique must be utilized. Contrary to conventional meth-
ods, which require data shuffles, all the characteristics may
be dispersed throughout a cluster, and the data localization
principle can be used to independently assess how similar
two songs are. With regard to very big datasets, this provides
a completely scalable solution [34]. The audio characteristic
data may also be properly cached in main memory using
Spark. Interactive sequential song requests could be fulfilled
without constantly reading feature data from hard drive if all
of the characteristics from across all songs can fit within the
cluster's main memory. One restriction is that Spark itself
is unable to handle or read audio files. Just the recovered
features must be delivered after the feature extraction pro-
cedure, which must be done independently.

Results and Discussion

Correlation of Features and Distance Distribution

This section analyzes the similarity analysis results to iden-
tify how the ranges from various feature sets connect to
one another as well as how they are spread from across unit
interval [0, 1]. To evaluate this, a test dataset was generated
from the distances the Spark program returned. 97 songs
were chosen at random from the 1619-Artists dataset, and
the locations of each song relative to the others were cal-
culated. The sample consists of 3219 songs that are uni-
formly distributed among more than 15 different genres. It
is imperative to sample distances from different genres when
examining the distribution of distances. Different distances
and distributions apply depending on where the real music
is in the feature space. Songs chosen from the feature space
distribution's periphery will have different distances from
songs chosen from its center.

The framework demonstrated in [35] offers a straight-
forward example to demonstrate this. In this scenario, the
distances between a song from the “Classical” category and
the “Rock” or "Metal" tracks are different, although the dis-
tances between songs with the “Metal” tag and those with
the “Rock” and “Classical” tags are almost the same. Rock
music and classical songs are separated by twice as much as
metal songs are [104]. The connection between the lengths
from different feature categories is depicted in Fig. 4. The
eight different lengths for each song pair are totaled up using
the conventional equation, with all weights set to 1. This
results in a single new combined distance. This entire dis-
tance is shown by the letter “agg” in the following charts.
The multiple rhythmic characteristics and the JS and SKL

Fig. 4 Feature space illustration

Fig. 5 Correlation matrix

 SN Computer Science (2024) 5:78 78 Page 8 of 16

SN Computer Science

components all easily complement one another. Only a tenu-
ous relationship exists between the musical components.

Figure 4 provides a simple illustration to illustrate this
description. While the distances between songs with the
“Metal” tag and those with the “Rock” and “Classical” tags
are roughly the same, in this case, the distances between a
song from the “Classical” genre and the “Rock” or “Metal”

tracks are different. The distance between the Rock songs
and the Classical songs is double that of the Metal songs.

The connection between a feature type and the total dis-
tance from the weighted sum shows how much of an impact
that feature type has (Fig. 5). The total distances are altered
differently based on the type of feature even though distances
are not all spread equally over the unit interval. Figure 6 uses

Fig. 7 shows how the weighted total is affected by SKL scaling

Fig. 6 Cumulative histogram

SN Computer Science (2024) 5:78 Page 9 of 16 78

SN Computer Science

the cumulative histograms across the unit interval to show
how the distances are dispersed. It is particularly clear that
cross-correlation lengths really aren't evenly distributed.

In Fig. 7a and b, intriguingly, there is a declining asso-
ciation between the combined distance (“agg”) and the
Jensen–Shannon-like divergence. One explanation is that
although the SKL and JS distances are strongly connected,
the inadequate scaling prevents the SKL from having any
bearing on the overall distance. The total weighted sum of
the JS divergence results cannot be affected by the results
from the JS divergence alone.

Using the entire scatter plot matrices of the varying dis-
tance for the 95 song samples from diverse genres, Figs. 8,
9 show the correlation and dispersion of the distances. The
histograms of the separations from the relevant special
feature sets are shown on the principal diagonal. It reveals
that every sort of feature, excluding chroma properties,
substantially correlates with the weighted sum of all fea-
tures. The scatter plots make it easy to see the symmetri-
cal Kullback–Leibler diverge, the Jensen–Shannon-like

divergence, as well as the significant association between
both rhythmic patterns and rhythm histograms.

Identification of a Cover Song

Only MFCC-based recommendation system can identify
cover tunes. Algorithms for comparing melodies, The
Scorpions’ rendition of Knightsbridge’s song “Rock you
like a Hurricane” were found by the Spark implementation
to be the top suggestion when using the cross-correlation
during the initial testing on the whole dataset, which com-
prised 121,722 songs. Out of more than 121,722 tracks,
the program was nevertheless able to find a top recom-
mendation for a distinct version of the music “Fu r Elise”
cover.

Although there are two more variations of this song in
the private music collection, a second test used simply

the JavaScript and chroma properties without the rhythm
patterns. Below is another list of the top six suggestions:

 SN Computer Science (2024) 5:78 78 Page 10 of 16

SN Computer Science

Fig. 8 illustrates the correla-
tion of features based on SKL
scaling

Fig. 9 illustrates the correla-
tion of features based on SKL
Unscaling

SN Computer Science (2024) 5:78 Page 11 of 16 78

SN Computer Science

Fig. 10 a 97 tracks, more than 15 genre), 1619 artists are represented Scatter matrix, correlation. b Representation of track for genres

 SN Computer Science (2024) 5:78 78 Page 12 of 16

SN Computer Science

The initial alternate record showed up as the 13th
suggestion in a third inquiry whenever the other record-
ings could only be found using the Jensen–Shannon-like
divergence. This supported the hypothesis that timbral
features, the Jensen–Shannon-like difference, as well as
the symmetrical Kullback–Leibler deviation are helpful
for identifying cover tunes.

The cross-correlation, however, is unable to detect
the cover song for some song requests. After the positive
results of the initial testing, the cluster was loaded with
the covers dataset specified in cover songs. The music
requests for the 80 “A-versions” songs were given to the

Spark program, and the resulting closest neighbors were
looked at.

Although 28 from out 78 identified songs don’t always
appear to be a remarkably high strike rate as well as isn't
quite as excellent as the original paper's results, it should
be noted that most of the cover songs in the cover80 set
of data markedly deviate from original tracks in regard to
musical fashion, measuring instruments, rhythm, or even
genre. As a result, cross-correlation is much more exact,
yet more computationally efficient.

Fig. 11 Scatter matrix,
distances for 1517 artists, 1
random Rock & Pop song, and
4 genres

Fig. 12 Scatter matrix, dis-
tances for 1517 artists

SN Computer Science (2024) 5:78 Page 13 of 16 78

SN Computer Science

Genre Relativeness

Occasionally, a single song from a more “contemporary”
genre—such as Hip Hop, Rock & Pop, Electronic & Dance,
or Reggae—will play. Similarly, five songs from the Rock
& Pop genre were put to the test. The results from the
1517-Artists dataset are dispersed throughout 17 of the 20
major genres as shown in Fig. 10a. This may be due to the
fact that the songs in this dataset that have “Rock & Pop”
annotations originate from a wider range of subgenres. If
you look closely at the dataset, you can see that, for instance,
Metal tracks are also classified as Rock & Pop as shown in
Fig. 10b.

Another experiment was conducted to examine the effects
of various feature types on the overall recommendations and
to demonstrate how the distribution of distances differed
by genre. A part of the 1629-Artists dataset that contained
songs from the “Classical,” “Hip Hop,” “Electronic &
Dance,” and “Rock & Pop” categories was used to compute

all distances to the songs for requests for a single song. Fig-
ure 11 shows the scatter matrices for all distances from a sin-
gle Rock & Pop music request. The genre of the suggested
music affects the recommendations' various distances. The
calculated kernel density for the pertinent feature type is
shown diagonally. The JS distances can tell classical music
apart from the other types of music. However, it’s interesting
to notice that it cannot tell Rock/Pop songs from Hip Hop
songs. Nevertheless, rhythmic patterning cannot distinguish
musical instruments from pop and rock music on their own.
Nonetheless, all three genres may be distinguished when
all feature kinds are taken into account. Three sets of songs
from various genres are shown by the scatter diagram of the
rhythm pattern variations and Jensen–Shannon-like diver-
gence combined. Regardless of the feature set employed, the
fourth genre, “Electronic & Dance,” can’t be distinguished
from hip hop music. But it's crucial to remember that all of
these gaps resulted from a Rock/Pop song request.

Fig. 13 Randomly selected Electronic song

 SN Computer Science (2024) 5:78 78 Page 14 of 16

SN Computer Science

The arrangement of the distances varies based on which
part of the feature set the song request is situated. It appears
that there is a similar distance between the desired Rock/Pop
song and music in the Hip Hop and Electronic/Dance genres.
When distributing the distances, a song from the Electronic/
Dance genre sounds entirely different. The weighted total
of all characteristics, includes cross-correlation and Lev-
enshtein distance that are not depicted in the plots, and is
represented by the “agg” graphs. In Figs. 12 and 13, the
aggregate findings of all feature classes primarily propose
further Rock & Pop songs.

The Spark recommender system would have no way to
distinguish between all four of the various genres when
employing a single feature type A list of suggestions that
is overall satisfying may only be recovered when various
rhythmic and timbral features are merged.

Features of Rhythm

The availability of music that is played at nearly the same
pace is another essential requirement for a recommenda-
tions engine. The distances between the results of two song
request that have been made to assess the effectiveness of
the rhythm characteristics are displayed in Fig. 14 for the

dataset 1517-Artists. The scatter plots demonstrate how
close the beat histogram and rhythmic patterns connects
to the music’s overall BPM. As each of the eight different
feature types has a “agg” value, it is feasible to see how the
rhythm features have affected the suggestions overall (the
weighted sum). Overall, the weighted sum of rhythmic ele-
ments makes it more likely that the Spark recommendation
engine would propose songs with comparable BPM. Further
evidence that the BPM is not the only important element
affecting the distances is shown by the request for a classical
song in Fig. 14d.

Conclusion

The proposed study offered an insight into the subject of
music information retrieval. There were also added multiple
high- and low-level audio aspects that were described in
numerous methods for assessing the similarities of audio
clips depending on audio features. A brief review of big
data technologies, such as Apache Spark and Hadoop,
also was provided, and several resources of acoustic data
were obtained. From audio recordings, timbre, rhythm,
and melodic components could be retrieved and processed

Fig. 14 Random Rock & Pop and Classical tracks

SN Computer Science (2024) 5:78 Page 15 of 16 78

SN Computer Science

beforehand. Several alternative methods were used to calcu-
late the separations between the features that were collected.
The implementation can be prepared using the theoretical
understanding from the preceding chapters. Around 1 TB
of music tracks with 123,767 different songs was combined
from collected data.

To prepare the data to be utilized by the big data pro-
cessing platform Spark, the relevant audio characteristics
were extracted and pre-processed in parallel utilizing MPI
on a computer cluster. As an illustration, the melody and
chroma information was separated. The Spark framework
was used to generate, test, analyze, and improve numer-
ous similarity measures, and the features were added to
a cluster’s HDFS. Many methods (RDD, Filter, Data-
Set, Refined, and Cluster Configurations) were analyzed
using Spark, as well as the runtime was assessed. The cal-
culated distance was displayed, examined, and graphically
depicted. By computing the distance depending on the
melody, rhythmic, and timbral components of the music,
the final software controls song suggestion. The user could
prioritize various features of the music using the customiz-
able suggestions. The system is scalable. The cluster size
can be increased, new songs can be added, different audio
aspects can be included, and more advanced similarity
tests can also be applied.

Funding Open access funding provided by Manipal Academy of
Higher Education, Manipal.

Data Availability The sample data set information is included in the
article that support the findings of this research.

Declarations

Conflict of Interest The authors do not have any conflicts of interest
in this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Gupta A, Thakur HK, Shrivastava R, Kumar P, Nag S. A big data
analysis framework using apache spark and deep learning. In:
2017 IEEE international conference on data mining workshops
(ICDMW). IEEE. 2017. pp. 9–16

 2. Assefi M, Behravesh E, Liu G, Tafti AP. Big data machine learn-
ing using apache spark MLlib. In: 2017 IEEE international confer-
ence on big data (big data). IEEE. 2017. pp. 3492–3498

 3. Fu J, Sun J, Wang K. Spark–a big data processing platform for
machine learning. In: 2016 international conference on industrial
informatics-computing technology, intelligent technology, indus-
trial information integration (ICIICII). IEEE. 2016. pp. 48–51

 4. Ghasemi E, Chow P. Accelerating apache spark big data analysis
with fpgas. In: 2016 Intl IEEE conferences on ubiquitous intel-
ligence & computing, advanced and trusted computing, scalable
computing and communications, cloud and big data computing,
internet of people, and smart world congress (UIC/ATC/ScalCom/
CBDCom/IoP/SmartWorld). IEEE. pp. 737–744.

 5. Han Z, Zhang Y. Spark: a big data processing platform based on
memory computing. In: 2015 seventh international symposium
on parallel architectures, algorithms and programming (PAAP).
IEEE. 2015. pp. 172–176

 6. Maheshwar RC, Haritha D. Survey on high performance analyt-
ics of bigdata with apache spark. In: 2016 international confer-
ence on advanced communication control and computing tech-
nologies (ICAC CCT). IEEE. 2016. pp. 721–725

 7. Hazarika AV, Ram GJSR, Jain E. Performance comparision of
Hadoop and spark engine. In: 2017 international conference on
I-SMAC (IoT in social, mobile, analytics and cloud)(I-SMAC).
IEEE. 2017. pp. 671–674

 8. Wang G, Xu J, He B. A novel method for tuning configuration
parameters of spark based on machine learning. In 2016 IEEE
18th international conference on high performance computing
and communications; IEEE 14th international conference on
smart city; IEEE 2nd International conference on data science
and systems (HPCC/SmartCity/DSS). IEEE. 2016. pp. 586–593

 9. Gu L, Li H. Memory or time: performance evaluation for itera-
tive operation on hadoop and spark. In: 2013 IEEE 10th interna-
tional conference on high performance computing and commu-
nications & 2013 IEEE international conference on embedded
and ubiquitous computing. IEEE. 2013. pp. 721–727

 10. Samadi Y, Zbakh M, Tadonki C. Comparative study between
Hadoop and Spark based on hibench benchmarks. In: 2016 2nd
international conference on cloud computing technologies and
applications (CloudTech). IEEE. 20167. pp. 267–275

 11. Dev D, Patgiri R. Performance evaluation of HDFS in big data
management. In 2014 international conference on high perfor-
mance computing and applications (ICHPCA). IEEE. 2014. pp
1–7

 12. Veiga J, Expósito RR, Pardo XC, Taboada GL, Tourifio J. Per-
formance evaluation of big data frameworks for large-scale data
analytics. In: 2016 IEEE international conference on big data (big
data). IEEE. pp. 424–431

 13. Luo N, Yu Z, Bei Z, Xu C, Jiang C, Lin L. Performance modeling
for spark using svm. In: 2016 7th international conference on
cloud computing and big data (CCBD). IEEE. 2016. pp. 127–131

 14. Han S, Choi W, Muwafiq R, Nah Y. Impact of memory size on
bigdata processing based on hadoop and spark. In: Proceedings
of the international conference on research in adaptive and con-
vergent systems. 2017. pp. 275–280

 15. Verma A, Mansuri AH, Jain N. Big data management processing
with Hadoop MapReduce and spark technology: a comparison.
In: 2016 symposium on colossal data analysis and networking
(CDAN). IEEE. 2016. pp. 1–4

 16. Gao H, Yang Z, Bhimani J, Wang T, Wang J, Sheng B, Mi N.
AutoPath: harnessing parallel execution paths for efficient
resource allocation in multi-stage big data frameworks. In 2017
26th international conference on computer communication and
networks (ICCCN). IEEE. 2017. pp. 1–9

 17. Wakde A, Shende P, Waydande S, Uttarwar S, Deshmukh G.
Comparative analysis of hadoop tools and spark technology. In:

http://creativecommons.org/licenses/by/4.0/

 SN Computer Science (2024) 5:78 78 Page 16 of 16

SN Computer Science

2018 fourth international conference on computing communica-
tion control and automation (ICCUBEA). 2018. IEEE. pp. 1–4

 18. Lee J, Bryan NJ, Salamon J, Jin Z, Nam J. Disentangled mul-
tidimensional metric learning for music similarity. In: ICASSP
2020–2020 IEEE international conference on acoustics, speech
and signal processing (ICASSP). IEEE. 2020. pp. 6–10

 19. Lu R, Wu K, Duan Z, Zhang C. Deep ranking: triplet MatchNet
for music metric learning. In: 2017 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE. 2017.
pp. 121–125

 20. Wolff D, Weyde T. Learning music similarity from relative user
ratings. Inf Retr. 2014;17:109–36.

 21. Chen K, Liang B, Ma X, Gu M. Learning audio embeddings with
user listening data for content-based music recommendation. In:
ICASSP 2021–2021 IEEE international conference on acous-
tics, speech and signal processing (ICASSP). IEEE. 2021. pp.
3015–3019

 22. Jiang C, Yang D, Chen X. Similarity learning for cover song
identification using cross-similarity matrices of multi-level deep
sequences. In: ICASSP 2020–2020 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE. 2020.
pp. 26–30

 23. West K, Cox S, Lamere P. Incorporating machine-learning into
music similarity estimation. In: Proceedings of the 1st ACM
workshop on audio and music computing multimedia. 2006. pp.
89–96

 24. Logan B, Ellis DP, Berenzweig A. Toward evaluation techniques
for music similarity. 2003

 25. Wang L. Collaborative filtering recommendation of music MOOC
resources based on spark architecture. Comput Intell Neurosci.
2022. https:// doi. org/ 10. 1155/ 2022/ 21170 81.

 26. Kumar L, Mitra A, Mittal M, Sanghvi V, Roy S, Setua SK. Music
tagging and similarity analysis for recommendation system. In:

Computational intelligence pattern recognition: proceedings of
CIPR 2019. Springer Singapore; 2020. p. 477–85.

 27. Song M, Jia L. Big data mining method of thermal power based
on spark and optimization guidance. In 2018 IEEE 7th data driven
control and learning systems conference (DDCLS). IEEE. 2018.
pp. 514–520

 28. Wang B, Qin X, Wang C, Huang W, Song Y, Cui X. A distributed
exam item bank system based on hadoop ecosystem. In: 2020
IEEE 2nd international conference on computer science and edu-
cational informatization (CSEI). IEEE. 2020. pp. 9–12.

 29. Ghimire S. A comparative analysis of cloud based recommenda-
tion system on mapreduce and spark (Doctoral dissertation, Pul-
chowk Campus). 2017

 30. Ameer S, Shah MA, Khan A, Song H, Maple C, Islam SU,
Asghar MN. Comparative analysis of machine learning tech-
niques for predicting air quality in smart cities. IEEE Access.
2019;7:128325–38.

 31. Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev.
2014;1(2):293–314.

 32. Marx V. The big challenges of big data. Nature.
2013;498(7453):255–60.

 33. Bourne PE, Lorsch JR, Green ED. Perspective: sustaining the big-
data ecosystem. Nature. 2015;527(7576):S16–7.

 34. Frankel F, Reid R. Big data: distilling meaning from data. Nature.
2008. https:// doi. org/ 10. 1038/ 45503 0a.

 35. Mattmann CA. A vision for data science. Nature.
2013;493(7433):473–5.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1155/2022/2117081
https://doi.org/10.1038/455030a

	Parametrized Optimization Based on an Investigation of Musical Similarities Using SPARK and Hadoop
	Abstract
	Introduction
	Related Work
	Low-Level Resemblance
	High-Level Resemblance

	Methods
	Dataset
	Archive of Free Music
	Private Music Library
	Covers
	Spotify API
	Dataset of a Million Songs
	Big Data
	Hadoop
	MapReduce
	Spark

	Using Big Data Frameworks to Compare Music

	Results and Discussion
	Correlation of Features and Distance Distribution

	Identification of a Cover Song
	Genre Relativeness
	Features of Rhythm

	Conclusion
	References

