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Abstract
This study proposes a framework for short-term production planning of a Portuguese company operating as a tier 2 supplier 
in the automotive sector. The framework is intended to support the decision-making process regarding a single progres-
sive hydraulic press, which is used to manufacture cold-stamped parts for exhaust systems. The framework consists of two 
sequential levels: (1) a Mixed-Integer Linear Programming (MILP) model to determine the optimal production quantities per 
week while minimizing the total cost; (2) a dynamic production sequencing rule for scheduling operations on the hydraulic 
press. The two levels are combined and implemented in Excel, where the MILP model is solved using the Solver add-in, 
and the second level uses the optimal production quantities as inputs to determine the production sequence using a dynamic 
priority rule. To validate the framework, a proposed optimal plan was compared to a real plan executed by the company, and 
it was found that the framework could save up to 22.1% of the total cost observed in reality while still satisfying demand. 
To address uncertainties, the framework requires a rolling weekly planning horizon.

Keywords  Mixed-integer linear programming · Short-term production planning · Responsible production

Introduction

The United Nations (UN) has set 17 Sustainable Develop-
ment Goals (SDG), which are a group of guidelines that 
intend to build a better world by 2030. The topic of these 
goals involves social (hunger, poverty, equality), economic 

(industry, innovation, partnership), and environmental 
aspects (natural resources, fauna, flora) [1]. The 12th SDG is 
entitled “Responsible Consumption and Production”, which 
states that the global economy’s dependence on the natural 
environment and its resources increased by 65% from 2000 
to 2019 [2]. All targets set by the 12th SDG are related to 
sustainable management and efficient use of resources while 
reducing all kinds of waste through prevention, reduction, 
recycling, and reuse. In this context, the Linear Program-
ming (LP) optimization technique is frequently used as 
an efficient approach to promote sustainable production, 
since it helps companies to save resources and operate in 
an optimal way [3]. The most common application of LP 
involves determining the optimal scenario for a set of activi-
ties toward an objective. Most of the time, these activities 
compete for resources between each other, such as energy 
and raw materials.

For any company to achieve responsible production, 
developing and applying a good production plan is essen-
tial. However, this task can be complex, since it requires a lot 
of effort and cooperation between everyone responsible for 
the decision-making process. A good plan will always lead 
to a good workflow, promoting efficient resource usage and 
responsible production. Usually, production planning can be 
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separated into three different time horizons: (1) long-range 
plans, (2) medium-range plans, and (3) short-range plans [4].

Long-range plans consider a period longer than 18 
months and are related to new infrastructure, research and 
development, new products, facility location, and capacity 
[5]. Medium-range plans are elaborated to always match 
supply and demand in terms of rough volume and product 
mix, which means maintaining enough raw material, work 
in process, and inventory level to meet the demand while 
also absorbing possible fluctuations. Finding the balance 
between all these requirements while aligning them with 
the company’s strategic plan is known as Sales and Opera-
tions Planning (S &OP). The ultimate result of an S &OP 
is an Aggregate Production Plan (APP), which involves the 
determination of the rough quantities and timing of produc-
tion for a period between 3 and 18 months from the present 
[5]. The short-range plans can be subdivided into two steps 
whose order matters: the Master Production Schedule (MPS) 
and the Detailed Production Schedule (DPS) [6]. The pro-
cess of breaking down the APP is referred to as the MPS. In 
practice, this means converting all rough aggregate quanti-
ties into a specific manufacturing schedule, usually in terms 
of weeks, defining what products (or alternative products) 
should be manufactured, their production timing, and their 
quantities [5]. Based on the quantities to be produced deter-
mined by the MPS, it is possible to develop the Detailed 
Production Schedule (DPS). For each product manufactured 
within the planning period, this detailed schedule should 
indicate start and completion times, machine and employee 
assignments, required resources, and any other relevant 
information [6]. This entire process must be done follow-
ing the Bill of Materials (BOM) structure, which is a docu-
ment that outlines the hierarchy of all components and their 
required quantities to manufacture one unit of each product 
[5].

In order to contribute to the 12th SDG, this work presents 
a framework to support the short-term production planning 
and scheduling of a medium-sized Portuguese company, 
which operates as a tier 2 supplier within the automotive 
production supply chain. The framework is designed to be 
used under a weekly rolling planning horizon composed 
of 4 weeks, meaning that only the first out of the 4 weeks 
of the production plan should be executed, while the other 
weeks should be re-planned until they occur, allowing the 
framework to absorb and anticipate any variation in terms of 
future demand. The first level of the framework is a Mixed-
Integer Linear Programming (MILP) model to optimize the 
MPS and determine the optimal quantities to be produced 
per week, considering a single machine. The second level is 
a DPS related to the same machine, expressed using a Gantt 
Chart, in which the production schedule is determined by 
a dynamic sequencing rule based on the weekly quantities 
to be produced determined on the first level. Both levels 

were fully implemented in the same Excel spreadsheet con-
taining a dashboard created to make the tool easier to use 
by the company’s employees. The MILP model is based 
on the Solver add-in and the Simplex method, whereas the 
dynamic sequencing rule is based on cell-to-cell formulas 
and calculations.

This paper is organized as follows: "Literature Review" 
encompasses a literature review regarding some common 
approaches related to short-term production planning opti-
mization. "Methodology" proposes a framework designed 
to support the company under study during its short-term 
production planning process. "Results and Discussion" com-
pares a real short-term plan developed and executed by the 
company with an equivalent optimized plan proposed by 
the framework. Finally, "Conclusion" includes the study’s 
conclusions and suggestions for future work.

Literature Review

This section presents some of the studies in the field of pro-
duction planning and scheduling optimization, addressing 
some methods proposed by many authors to plan and sched-
ule short-term production activities in various manufactur-
ing environments.

Master Production Schedule

Omar et  al. [7] disaggregated the APP of a real-world 
resin manufacturer into the MPS using a model based on 
Fuzzy Mixed Integer Linear Programming (FMILP), aim-
ing to incorporate the inherent imprecision of the chemical 
manufacturing process. The production plan obtained using 
the FMILP model was compared to a similar determinis-
tic model based on Integer Weighted Goal Programming 
(IWGP). This IWGP model corresponds to the second of the 
three-level hierarchical production plan proposed by Omar 
and Teo [8]. The objective of both models was to minimize 
the total costs, using as inputs some target values determined 
by the company’s APP. LINGO was used to solve both mod-
els, while Excel was used to export and import data. The 
results showed that the FMILP approach leads to cost sav-
ings compared to the IWGP model, although the latter is 
still viable.

Martín et al. [9] developed an optimization model based 
on MILP for the MPS of a real-world tier 2 supplier of the 
automotive supply chain. The company produces decorative 
parts through injection. According to the authors, this manu-
facturing process is imprecise, and the production time can 
vary greatly. These uncertainties were incorporated using 
two techniques proposed by Soyster [10] and Bertsimas and 
Sim [11]. The objective of both was to minimize the total 
cost while considering several constraints of the productive 
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scenario. The decision variables were the optimal quantities 
to be produced, the number of batches, the net inventory, 
the idle time, and the required overtime. The models were 
solved using the software Maximal, and the results showed 
that the approach proposed by Bertsimas and Sim was better 
than Soyster’s method since the latter was considered by the 
authors excessively conservative.

Lalami et al. [12] developed an MPS model based on 
MILP for the automotive powertrain industry. The objec-
tive was to minimize the total costs associated with four 
different productive aspects: (1) meeting forecast demand; 
(2) satisfying safety stock levels; (3) balancing stock levels 
between products; (4) leveling the production percentage of 
each product. The priority and trade-offs among these four 
aspects were set by the manager using weighting factors. 
The inputs were related to demand levels, initial inventory, 
productivity rates, and fixed costs. The constraints involved 
production capacity, packing size, minimum and maximum 
quantities to be produced, and specific production on cer-
tain days. The main output was the set of all weekly quanti-
ties to be produced of each product in each production line, 
from which some secondary outputs can be calculated, such 
as estimated inventory levels. The model was solved using 
CPLEX, and once the correct parameters and weights were 
determined, the theoretical conclusions matched reality.

Detailed Production Schedule

Sawik et  al. [13] developed the DPS based on a MILP 
model for a real-world hybrid flow shop with multi-capacity 
machines and batch processing mode. Considering various 
due dates and production-related data, the objective of the 
model was to split and distribute customer orders among 
planning periods so that all orders were fulfilled with the 
minimum possible deviation over a certain due date. Sched-
uling both divisible and indivisible orders were addressed 
while considering capacity constraints. The output was a 
detailed schedule showing the optimal allocation of orders 
among planning periods in multiple machines. CPLEX was 
used to solve the model, and the results indicated that the 
formulation regarding indivisible orders was stronger than 
the corresponding formulation for divisible orders.

Cerdá et al. [14] used MILP to develop the DPS of a 
chemical company that produces in batches, involving a set 
of single-stage processes that can be performed on paral-
lel machines. The goal was to determine each machine’s 
ideal sequence of operations considering a continuous time 
domain and constraints related to the BOM structure. Three 
different minimization objectives were addressed: (1) total 
lateness, (2) schedule makespan, and (3) the total number 
of late orders. The models were solved using the General 
Algebraic Modeling System (GAMS) based on advanced 

branch-and-bound algorithms, enhancing the computational 
performance while providing reliable production schedules.

Another way of determining the production sequence is 
using a production priority rule. This approach determines 
the sequence in which products will be processed based on a 
calculated parameter that represents some key aspect within 
the production environment. In static environments, the pro-
duction orders have fixed priority parameters and are sched-
uled assuming that each workstation is idle and ready to 
work, leading to a static production sequence [15]. The First 
Come First Served (FCFS) is a common static priority rule, 
which states that all production orders are assigned in the 
sequence they arrive. The Shortest Processing Time (SPT) 
rule prioritizes the production orders based on the total pro-
cessing time, from the shortest to the longest, working in the 
opposite way of the Longest Processing Time (LPT) rule. 
The Earliest Due Date (EDD) rule prioritizes all production 
orders considering the due date, starting from the earliest to 
the latest [6].

In dynamic production environments, all orders have 
priority parameters that can vary with time and/or pro-
duction progression, which originates a dynamic produc-
tion sequence [15]. The Critical Ratio (CR) is a very usual 
dynamic priority rule where production orders are assigned 
based on the ratio “due date/remaining lead time” from the 
lowest to the highest value; if the ratio is below 1.0, then the 
production is behind schedule; if it is above 1.0, it means 
that the production is ahead of schedule. Another dynamic 
priority rule is the Least Work Remaining (LWR), which 
is a variant of SPT that considers all remaining processing 
time. The Fewest Operations Remaining (FOR) rule is also 
a SPT extension; however, the dynamic aspect is related to 
the number of remaining successive operations. The Slack 
Time (ST) rule is an extension of EDD that discounts setup 
and process times.

Integer Programming

As seen through the literature review, most of the proposed 
models use linear optimization techniques. In operations 
research, LP is an optimization method where the model’s 
objective is represented using a linear function, the so-
called objective function, which can be either maximized 
or minimized depending on the model’s goal. The model’s 
boundary conditions are incorporated based on a set of linear 
constraints, which limit the feasible solution domain. The 
decision variables correspond to the values related to the 
quantifiable decisions to be made. When an LP model is 
solved, the result is the optimal set of values of the decision 
variables that generally lies at a corner of the feasible region 
that has the most favorable value of the objective function. 
As a result, it can be stated that any LP model has three core 
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elements: (1) the objective function, (2) the constraints, and 
(3) the decision variables [3].

When an LP problem allows only integer decision vari-
ables, the model is known as Integer Programming (IP). If 
the problem enables the decision variables to assume both 
integer and non-integer values, then the model is designated 
as Mixed-Integer Linear Programming (MILP) [3]. As shown 
by the literature review, variations of the IP and MILP models 
also exist. For instance, the Integer Weighted Goal Program-
ming (IWGP) method used by Omar et al. [8] is based on IP; 
however, some terms of the objective function are multiplied 
by weights in order to prioritize one aspect over another. Simi-
larly, the Fuzzy Mixed-Integer Linear Programming (FMILP) 
model also used by Omar et al. [7, 8] is essentially a MILP 
model that involves uncertainties based on fuzzy mathematics.

Concerning the entire literature review, two main goals 
were identified as objective functions: cost minimization 
[7–9, 12] and lateness minimization [13, 14].

Each optimization model’s constraints can be unique 
since different production environments face different 
restrictions. Despite this, some constraints are notably 
common among different models proposed in the literature 
review, such as (1) machine capacity, (2) available work-
force, (3) available resources, (4) minimum quantity to be 
produced, (5) maximum storage capacity, (6) hierarchy of 
operations, (7) setup time, and (8) due dates.

As stated in the literature review, the decision variables 
in terms of APP and MPS optimization usually represent the 
(1) quantities to be produced for each product, in each work-
station, during a certain period; the (2) quantities of each 
product that must be outsourced per period; the (3) number 
of workers needed per period; the (4) backorder level per 
product per period; the (5) occurrence of tool change per 
period (and the consequent setup time), usually expressed 
using binary values. Some of these decision variables can be 
found in the works developed by Omar et al. [7, 8], Martín 
et al. [9], and Lalami et al. [12].

Concerning the DPS, the works from Sawik et al. [13] 
and Cerdá et al. [14] addressed a combination of the fol-
lowing decision variables: the (1) number of periods that 
certain order is early or late; the (2) information that certain 
order is early or late; the (3) information that certain order 
will start being produced at a determined period; the (4) 
representation of the production hierarchy between two parts 
accordingly to its BOM. The decision variables (2), (3), and 
(4) are expressed using binary variables. It was not found 
works related to dynamic sequencing rules that were relevant 
to the scope of the framework.

Methodology

This section aims to describe the methodology used to 
develop the proposed framework. Firstly, the company under 
study and its context are briefly described. After, the MPS 
optimization is presented and discussed, followed by the 
proposed dynamic production sequencing rule that is the 
basis of the DPS.

Context Setting

The company under study is a medium-sized firm that pro-
duces cold stamping parts of exhaust systems for the auto-
mobile industry. These parts are sold to customers who 
assemble the full exhaust system. Specifically, the company 
is in the middle of the automobile industry supply chain, and 
therefore, there is huge pressure on accomplishing due dates.

The company has four progressive hydraulic presses in 
its production sector: (1) Zani 600 tons, (2) Rovetta I 600 
tons, (3) Rovetta II 600 tons, and (4) Cattaneo 1000 tons. 
Each press has a limited capacity and can produce a specific 
range of products, but some of them can be manufactured 
on multiple machines. Despite this, the proposed framework 
does not have to assign products to a specific press since the 
company already knows which machine (first option) is more 
efficient for each product based on unitary costs and produc-
tivity rates. The alternative machine (second option) is only 
used when the primary machine is unavailable because of 
corrective maintenance or breakdown. Due to the need for 
high-volume production, limited number of machines, and 
high setup times, the company’s strategy relies on inventory 
to manage unexpected demand.

The manufacturing process begins by receiving raw 
materials, which are inspected for quality and stored in a 
warehouse until needed. When demand occurs, these raw 
materials are processed using one of the progressive cold 
stamping machines, transforming them into disks, blanks, 
or shaped parts. If the outputs are disks or blanks, they must 
be stored in the corresponding storage area until the next 
stamping cycle is scheduled. Regarding the shaped parts, 
after the stamping process, they must be washed in order 
to remove the lubricant and any other remnants of the pro-
cess. Depending on the project specifications, some of these 
shaped parts must be welded and/or trimmed before they can 
be considered finished products and stored in the warehouse. 
If no additional manufacturing operations are required after 
washing, these shaped parts are considered finished prod-
ucts and stored in the warehouse. Throughout this entire 



SN Computer Science           (2023) 4:824 	 Page 5 of 12    824 

SN Computer Science

production process, only the cold stamping sector presents 
bottlenecks, and therefore this is the main scope of the pro-
posed framework.

Notation

This section presents the notation used in the formulation of 
the framework that is summarized in Table 1.

For both first and second levels of the framework, the 
sub-index i can vary from 1 to 10 since this is the maximum 
amount of different products a single machine produces per 
month; and the sub-index j ranges from 1 to 4 weeks, cor-
responding to a planning horizon of 1 month.

First Level

The company works with production forecasts that support 
the medium-term plan. These forecasts provide aggregated 
demand volumes that must be met over the next 4 months, 
although they are subject to change. In other words, this 
means that the company always has a 4-month APP in place. 
The production volumes are only disaggregated for the cur-
rent month, that is, for the next 28 days from the present. 
This process generates deterministic weekly demand for the 
next 4 weeks for each product.

Based on the disaggregated demand levels, each product’s 
weekly quantity to be produced is determined, originating 
the MPS. This process allows scheduling the machine that 

must operate, the necessary tool changes, resource usage, 
and estimated inventory levels of both finished and unfin-
ished products at the end of each week.

In terms of responsible production, the company always 
seeks to meet customer demand while minimizing the costs 
associated with the manufacturing process, ensuring that 
only the necessary resources are used. In this sense, the 
first level of the framework is the MPS optimization using 
a MILP model (1), involving a single machine at a time, 
with the objective of minimizing the total cost (TC), which 
is composed of three key components: (1) the manufactur-
ing cost (MC i  ), given in €/unit; (2) the inventory holding 
cost (IHCi  ), measured in €/week⋅unit; (3) the unproductive 
machine cost (UMC), given in €/h:

(1)

Minimize TC =

10∑
i=1

4∑
j=1

MCi ⋅ Xij

+

10∑
i=1

4∑
j=1

IHCi ⋅ (Xij + IIij − Dij)

+

10∑
i=1

4∑
j=1

UMC ⋅ (7.25 ⋅ Sj − Pi ⋅ Xij)

(C1)

s.t. Xij ≥ SSi + Dij − IIij i = {1, 2,… , 10}
j = {1, 2, 3, 4}

Table 1   Framework notation
Designation Description
i Product code to be manufactured (i=1, 2, 3, ..., 10)
j Week designation (j= 1, 2, 3, 4)
Variables
Xij Quantity of product i to be produced during week j
�ij Binary value denoting the tool change related to product i during week j,

where 1 indicates that a tool change occurs and 0 the contrary
WPIij Weekly priority index for the product i during the week j
IIij Initial inventory of product i at the beginning of week j [unit]
Costs
TC Total cost [€]
MC i Manufacturing cost per unit of product i [€/unit]
IHC i Inventory holding cost per week for one unit of product i [€/week⋅unit]
UMC Unproductive machine cost [€/h]
Parameters
SS i Safety stock level for product i [unit]
ST i Setup time related to product i [h]
Dij Demand for product i during week j [unit]
Sj Number of shifts available to work during week j [unit]
Pi Time required to produce one unit of product i [h/unit]
Mi Maximum quantity allowed to be produced per product i [unit]
Mtij Maximum theoretical quantity of product i produced per week j [unit]
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Among the components of the objective function, the MCi 
represents the manufacturing cost of producing one unit of 
the product i, encompassing the costs of the hydraulic press 
operating, raw material, and labor. The IHCi is the estimated 
weekly inventory holding cost for each surplus unit of the 
product i. Since the products manufactured by the company 
are cold-stamped metal parts, they do not require special 
care other than maintaining them in the warehouse and pay-
ing the staff involved. However, stored parts are financial 
resources that could generate tangible returns for the com-
pany if used differently, representing an opportunity cost. 
The term UMC represents the hourly cost of the machine 
when it is not producing due to maintenance, tool change 
(setup time), breakdown, or idle state.

The company assumes that its production environment is 
based on limited loading, meaning that the machine has a 
finite available capacity. The main goal of this type of plan-
ning is to use the available time as effectively as possible. 
To achieve this, the two main variables that need to be con-
sidered are (1) the quantities to be produced of each product 
and (2) the setup time attached to the correspondent tool 
change. The tool change holds significant importance as the 
machine can only manufacture one product type at a time. 
Therefore, whenever a different product needs to be manu-
factured, a corresponding tool change becomes necessary. 
In terms of the proposed optimization model (1), these two 
main outputs represent the decision variables and are defined 
as follows: Xij is the quantity of the product i to be produced 
during the week j, whereas �ij is a binary value denoting 
whether or not a tool change related to each product i takes 
place during the week j, represented by 1 and 0, respectively.

In the real world, the variables Xij are always integer num-
bers because they denote quantities that need to be produced. 
However, keeping them as integers in the model (1) often led 
to hours of resolving time, especially in the case of overload 
scenarios. To make calculations faster by reducing the com-
putational burden, it was decided to keep Xij as real numbers. 
This approach made the model capable of being solved in a 

(C2)
10∑
i=1

(Xij ⋅ Pi + �ij ⋅ STi) ≤ 7.25 ⋅ Sj j = {1, 2, 3, 4}

(C3)
4∑
j=1

Xij ≤ Mi i = {1, 2,… , 10}

(C4)
Xij − �ij ⋅Mtij ≤ 0 i = {1, 2,… , 10} j = {1, 2, 3, 4}

(C5)Xij ≥ 0 i = {1, 2,… , 10} j = {1, 2, 3, 4}

(C6)�ij= {1, 0} i = {1, 2,… , 10} j = {1, 2, 3, 4}

few minutes. The effect of this simplification on the result 
is minimal since the company only produces quantities in 
the order of thousands of units. Thus, having a non-integer 
number as a result and then rounding it does not cause any 
major problem. In the case of �ij , since it is a binary vari-
able, it is always going to be an integer number. Because 
of these assumptions involving the decision variables, the 
model (1) is classified as a MILP problem.

To reflect the reality of the company’s production process, 
six constraints are considered: (1) the minimum quantity to 
be produced to satisfy the demand (C1), (2) the machine 
availability (C2), (3) the maximum quantity permitted to 
be produced (C3), (4) the dependence between production 
and tool setup (C4); (5) the nonnegativity constraint (C5); 
and (6) the requirement that the variable denoting the tool 
change is a binary value (C6).

The minimum quantity to be produced per week (C1) is 
calculated using the safety stock level (SS i  ), the demand 
( Dij ), and the week’s initial inventory (IIij ). It is important 
to state that the initial inventory of each product i during 
the first week (IIi1 ) is an input. In contrast, for every other 
week j > 1 , the corresponding initial inventory is calculated 
by IIij = IIi(j−1) + Xi(j−1) − Di(j−1) . To absorb potential market 
fluctuations or unexpected setbacks, the company employs a 
safety stock level (SSi).

As previously stated, the company’s scheduling approach 
is based on limited loading, so the total available time to 
produce (C2) must be sufficient to cover all product units 
that will be manufactured and the required tool changes and 
setup time. In practice, knowing the number of available 
working shifts ( Sj ) in each week j and the productive hours 
per shift (7.25 h), one can calculate how many working 
hours the machine will be able to operate over the planning 
horizon. Based on the average time to produce one unit of 
each product ( Pi ) and the occurrence or not of tool change 
( �ij ), these available working hours affect the upper limit on 
the total number of parts that can be manufactured.

The maximum quantity allowed to be produced (C3) of 
each product i during all 4 weeks should be used to limit 
the domain of the decision variables to a more restrictive 
level than the time constraint (C2). Hence, it requires the 
manager’s expertise, as this production limit may depend 
on the combined effect of different factors.

Every time each product i is manufactured, the constraint 
(C4) ensures that a corresponding tool change is necessary. 
The main required parameter is denoted by Mtij , a theoreti-
cal value defining how many units would be manufactured 
if only a certain product i was produced during the week j. 
As can be seen by (C4), given that Mtij is always greater than 
0, whenever Xij is also greater than 0, then �ij is equal to 1; 
if Xij is equal to 0, then mathematically �ij could be equal 
to either 0 or 1 and (C4) still would be satisfied. However, 
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in the latter case, �ij is always indirectly led to be equal to 0 
because of the unproductive machine cost term included in 
the minimization of the objective function (UMC).

Second Level

The production sequencing rule is based on a Weekly Pri-
ority Index (WPIij ). For each week j, the WPIij of every 
product i that needs to be produced in a certain machine 
must be calculated. Then, the production sequence of that 
machine for the week j is determined based on the higher 
order of the WPIij , implying that higher priority is given 
to products with a higher WPIij score.

The WPIij represents the production priority of each 
product i based on its weekly quantities to be produced in 
week j, with 1 meaning the highest priority and 0 mean-
ing the lowest. For each week j, the product i with the 
largest quantity to be produced ( Xij ) will have a WPIij 
equal to 1, whereas the remaining products whose pro-
duction volumes are lower, will have a WPIij proportional 
to their respective Xij . In order to calculate the WPIij , it is 
necessary to define the production volume matrix ( XMj ), 
accordingly to expression (2):

In XMj , each element Xij represents the optimal quantity of 
product i to be produced during week j, determined by the 
MILP model (1) on the first level. This optimal quantity 
takes into account the demand ( Dij ) for the product and aims 
to balance the initial inventory (IIij ) with the safety stock 
level (SSi  ), as described before. At this stage, the Weekly 
Priority Index (WPIij ) for each product i, during week j, can 
be calculated according to expression (3):

Where Xij

MAX(Xij)
 is the normalized value of Xij based on the 

largest element of XMj.
In addition to establishing the production sequence, the 

WPIij also links two successive weeks j and j + 1 using 
a common product i that must be manufactured on both 
weeks. In such case, if the product i is the first scheduled 
for the week j + 1 , then, accordingly to expression (3), its 
corresponding WPIij must be equal to zero, forcing this 
product to be the last produced on week j. This way, an 
unnecessary setup time is avoided since the right tool will 
already be installed at the beginning of the week j + 1.

(2)XMj =

⎡⎢⎢⎢⎣

X1j

X2j

…

Xij

⎤⎥⎥⎥⎦
j = {1, 2, 3, 4}

(3)
WPIij =

{

Xij
MAX(Xij)

, if product i is not the first scheduled for week j + 1
0, if product i is the first scheduled for the following week j + 1

Since the WPIij calculation for the week j depends on 
the production sequence of the following week j + 1 , the 
WPIij must be calculated in reverse order from the last to 
the first week. However, since there is no information 
about the production sequence of the fifth week, for every 
product i produced during the fourth week, the WPIi4 must 
be calculated simply by Xi4

MAX(Xi4)
 . This simplification is not 

a problem since the framework is intended to be used on 
a rolling planning horizon at the end of each week, mean-
ing that the production sequence of the fourth week will 
be revised at least three times until it occurs.

Once the production sequence of the last week is defined, 
the production sequence for the third, second, and first week 
can be calculated, in this order, until the entire planning 
horizon is covered.

Data

The data used to test, validate, and implement the model are 
related to the company’s products, machines, and inventory. 
Since this information is known and defined from the start, 
they are considered parameters, meaning they do not intro-
duce uncertainty into the model. In the end, each parameter 
is related to one or more of the three components of the 
total cost: (1) the manufacturing costs (MCi ); (2) the inven-
tory holding cost (IHCi ); (3) the unproductive machine cost 
(UMC). Table 2 shows the statistics about the cost data.

All product structure information was obtained directly 
through a formal document, containing all levels of each 
product, from raw material to the finished good. In terms of 
cold stamping, among the entire company’s portfolio, the 
vast majority of parts is only submitted to a single stamp-
ing step, but on the other hand, there is a range of products 
that must go through two subsequent stamping steps, as 
described before. Despite being dependent on each other 
in terms of manufacturing, these two subsequent processes 

can be considered independent in the proposed framework, 
simply because they occur at two very different moments. In 
practice, the first stamping process generates disks or blanks 

Table 2   Statistics of data related to costs

Parameter Maximum Minimum Average Std. dev. Unit

MC i 3.35 0.04 0.60 0.48 €/unit
IHC i 0.20 0.01 0.03 0.03 €/week⋅unit
UMC 88.16 43.65 61.83 18.77 €/h
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that are stocked to be used later, meaning a complete plan-
ning cycle. When there is demand, the second stamping pro-
cess is planned and executed, consuming some of those disks 
or blanks and leading to the product in its final shape, mean-
ing another complete planning cycle. The same disk type 
can be used for more than one product, which is why the 
company adopts the strategy of stocking disks and blanks, 
seeking to absorb any fluctuations or unforeseen events.

All machine data were easily accessible, as it was only 
necessary to regroup and rearrange them. The main set of 
information was obtained from an electronic spreadsheet 
frequently used by the company. For all hydraulic presses, 
it was possible to extract what products each of them can 
produce, their respective average production rates, the costs 
of each stamping process (MC i  ), and their unproductive 
costs (UMC).

The information about inventory costs (IHC i  ) for both 
finished and unfinished products required processing before 
they could be used. With the company’s support, for each 
product, finished or not, storage costs were determined based 
on the volume that each product container occupies inside 
the warehouse and the logistic costs involved to manipulate 
it.

Results and Discussion

The framework was validated by comparing a real produc-
tion plan created and executed by the company with a plan 
suggested by the framework, demonstrating that the tool 
provides an optimized and feasible production plan.

The company used the machine Rovetta II to produce 
four required products during the 4 weeks from December 
12th, 2022, to January 6th, 2023. The machine operated 
for 5 days during the first, second, and fourth weeks; and 4 
days during the third week, which was affected by Christ-
mas and New Year’s day. During the first week, three work-
ing shifts per day were required, in contrast to the regular 
two shifts per day of the following weeks. Each shift has 
approximately 7.25 h long, with breaks and preparation time 
already excluded. Table 3 presents the complete planning 
horizon description.

Among the four products that needed to be pro-
duced, products 1 and 2 frequently have high demands, 

making them high-runners. In contrast, products 3 and 4 
typically have low demand and therefore are categorized as 
low-runners.

Due to the high demand, high-runners often have a large 
initial inventory, as they are frequently produced. On the 
other hand, when a low-runner must be produced, its initial 
inventory is often low since the company’s strategy con-
sists of producing them in quantities much greater than their 
demand, then gradually consuming the generated inventory 
until it is necessary to produce these products again. These 
aspects can be seen in Table 4, which presents the initial 
inventory (IIi1 ) and demands ( Dij ) for each product i per 
week j within the planning horizon.

Based on the initial scenario presented in Table 4, the 
company developed and executed the production plan shown 
in Table 5.

Regarding the optimal plan, no safety level (SS i  ) was 
initially set, mainly because this was not clearly defined 
on the real plan either. However, not considering a safety 
level resulted in a plan with several unproductive hours 
and, at some weeks, null inventory levels. Such plans are 
not practical as they put the company at risk of not meet-
ing due dates if any problem occurs. As a solution, it was 
decided to assign a safety level equal to 10,000 units for 
both high-runners (SS1 and SS2 ), and equal to 5000 units 
for the low-runners (SS3 and SS4 ). This configuration lead 
to the optimal plan presented in Table 6.

Regarding the high-runners, the optimal plan features 
a more consistent inventory level throughout the planning 
horizon, especially for product 2. In the optimal plan, the 
estimated initial inventory for product 2 at the beginning 
of the fourth week (II24 ) is 10,000 units, which is equal 
to the safety stock level for the high-runners. In the real 
plan, this initial inventory was equal to 47,898 units. This 
difference proves that the optimal plan only recommends 
producing enough to meet demand and satisfy the safety 
stock level.

In terms of the low-runners, by establishing a safety stock 
level of 5000 units for products 3 and 4 (SS3 and SS4 ), the 
optimal plan suggests producing them in greater quantities 
than their total demand, which is aligned with the company’s 
strategy of generating inventory for such products. However, 
while the optimal plan recommends producing a total of 

Table 3   Time to produce along the entire planning horizon

Week Start date Days Shifts/day h/shift h

1 12/12/22 5 3 7.25 108.75
2 19/12/22 5 2 7.25 72.50
3 26/12/22 4 2 7.25 58.00
4 02/01/23 5 2 7.25 72.50

Table 4   Initial inventory and weekly demands over the planning hori-
zon

Product IIi1 Di1 Di2 Di3 Di4

1 3606 12,600 7800 5400 20,400
2 14,415 12,768 8736 6048 19,488
3 69 198 33 0 33
4 0 0 960 480 1920
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5195 units of product 3 and 8360 units of product 4, the 
real plan shows that, in reality, 7439 units of product 3 and 
5000 units of product 4 were produced. These differences 
evidence that the real plan focused on product 3, whereas 
the optimal plan prioritizes product 4, which is more coher-
ent due to its higher demand. Figures 1 and 2 show the 

differences on the inventory level for the real plan and the 
optimal plan, respectively.

The manager manually established the production 
sequence of the real plan, resulting in the production sched-
ule shown in Fig. 3.

The production schedule shows that the machine was 
operating most of the time, only stopping during six tool 
changes, represented by the setup times in Fig. 3.

The production sequence of the optimal plan is deter-
mined by the second level of the proposed framework, which 

Table 5   Real production plan

Product Week 1 Week 2 Week 3 Week 4 4∑
j=1

Xij

IIi1 Di1 Xi1 IIi2 Di2 Xi2 IIi3 Di3 Xi3 IIi4 Di4 Xi4

1 3606 12,600 22,000 13,006 7800 0 5206 5400 10,000 9806 20,400 31,280 63,280
2 14,415 12,768 9000 10,647 8736 30,000 31,911 6048 22,035 47,898 19,488 0 61,035
3 69 198 7439 7310 33 0 7277 0 0 7277 33 0 7439
4 0 0 0 0 960 5000 4040 480 0 3560 1920 0 5000

Table 6   Optimal production plan

Product Week 1 Week 2 Week 3 Week 4 4∑
j=1

Xij

IIi1 Di1 Xi1 IIi2 Di2 Xi2 IIi3 Di3 Xi3 IIi4 Di4 Xi4

1 3606 12,600 18,994 10,000 7800 7800 10,000 5400 13,648 18,248 20,400 121,523 52,594
2 14,415 12,768 8353 10,000 8736 8736 10,000 6048 6048 10,000 19,488 19,488 42,625
3 69 198 5195 5066 33 0 5033 0 0 5033 33 0 5195
4 0 0 5000 5000 960 1781 5821 480 1579 6920 1920 0 8360

Fig. 1   Initial inventory levels per product i during the real plan

Fig. 2   Initial inventory levels per product i during the optimal plan

Fig. 3   Production schedule of the real plan
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is based on the Weekly Priority Index (WPIij ). The WPIij of 
each product i per week j is presented in Table 7.

As a result, the framework is capable of presenting the 
optimal production schedule shown in Fig. 4.

The first aspect seen in the production schedule is that 
all weeks have their plans connected by a common product, 
which is the expected outcome of the proposed production 
sequencing rule. In addition, since the optimal plan aims 
to produce as close to demand as possible, it proposes nine 
tool changes and setup times, which is higher than the six 
tool changes that occurred in the real plan. Lastly, it can be 
seen that the optimal plan predicts some unproductive time 
during the second week.

The total cost (TC) to execute the real plan is estimated 
using an expression equal to the objective function of the 
MILP model (1) and the data presented in Table 5 as input. 
The total cost includes the manufacturing costs (MC i  ), 
the inventory holding cost (IHC i  ), and the unproductive 
machine cost (UMC). Table 8 shows the direct cost com-
parison between both plans.

The results indicate that implementing the optimal plan 
could result in a 22.1% decrease in the total cost (TC). Spe-
cifically, this would involve a reduction of 22.3% in the man-
ufacturing cost (MC i  ), a 41.1% decrease in the inventory 
holding cost (IHCi  ), and a 5016.4% increase in the unpro-
ductive machine cost (UMC). It is important to note that this 
significant change in UMC is only due to the residual cost of 
€ 30.23 observed in the real plan.

The decrease in the manufacturing cost (MCi ) is because 
the optimal plan only recommends producing the necessary 
quantities. The framework aims to keep every inventory of 
each product i close to its safety level (SS i ), only producing 
in larger quantities if there is a need to anticipate production. 
This is evident by comparing the total production of the real 
plan, which produced 136,754 units, with the optimal plan, 
which suggested producing only 108,774 units, representing 
20.5% less. Since both plans meet all demands, it is clear 
that, in reality, excessive inventories were generated by the 
real plan.

This lean inventory approach of the optimal plan directly 
affects the inventory holding cost (IHCi  ) since fewer units 
stored mean lower cost. In addition, the optimal plan also 
prioritizes producing as close to demand as possible, which 
requires more frequent tool changes, increasing the unpro-
ductive machine cost (UMC), and reducing the inventory 
levels even more, and consequently, the inventory holding 
cost (IHCi ). This tradeoff between the unproductive machine 
cost (UMC) and inventory holding cost (IHCi  ) is a crucial 
aspect of the optimal plan that helps reducing the total cost 
(TC) in order to obtain a sustainable production.

Conclusion

The study aimed to create a framework for short-term pro-
duction planning and scheduling for a medium-sized Portu-
guese company that operates as a tier 2 supplier within the 

Table 7   Obtained production 
sequence for the optimal plan

Week 1 Week 2 Week 3 Week 4

Sequence WPIi1 Sequence WPIi2 Sequence WPIi3 Sequence WPIi4

1st: Product 1 1.00 1st: Product 2 1.00 1st: Product 1 1.00 1st: Product 2 1.00
2nd: Product 3 0.27 2nd: Product 4 0.20 2nd: Product 4 0.12 2nd: Product 1 0.62
3rd: Product 4 0.26 3rd: Product 1 0.00 3rd: Product 2 0.00 – –
4th: Product 2 0.00 – – – – – –

Fig. 4   Production schedule of the optimal plan

Table 8   Total cost for the real and optimal plans

Plan Costs (€)

MC i IHC i UMC TC

Real 77,130.09 7164.80 30.23 84,325.12
Optimal 59,916.68 4219.39 1546.69 65,682.76
Variation (%) −22.3 −41.1 + 5016.4 −22.1
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automotive production chain, producing cold-stamped parts 
for exhaust systems using four progressive hydraulic presses. 
The framework is designed to support the decision-making 
process during the short-term planning of these machines, 
determining the optimal quantities to be produced per week 
and suggesting a production sequence, ultimately resulting 
in a complete production schedule covering a 4-week plan-
ning horizon.

The two levels of the framework include: (1) a MILP 
model to determine the optimal quantities to be produced 
during each week in order to minimize total costs; (2) a 
dynamic production sequencing rule that defines the pro-
duction schedule based on the first level results. Both levels 
of the framework were integrated and implemented into a 
single Excel spreadsheet.

The validation was based on a comparison between an 
optimal plan proposed by the framework with a plan devel-
oped and executed by the company between the end of 2022 
and the beginning of 2023. The results indicate that the opti-
mal production plan could save up to 22.1% of the total cost 
observed in reality, producing as close to the demand. The 
production sequencing rule was validated and approved by 
the company’s manager.

The framework is capable of absorbing uncertainties due 
to the rolling planning approach, which means that only the 
first week of the proposed plan will be executed while the 
other 3 weeks will be re-planned until they occur, so any 
variation in demand or available time to produce is incor-
porated each time the plan is reviewed.

To this point, the framework has yet to be fully imple-
mented in the company’s production planning procedure. 
Before this, the manager must use the framework in parallel 
with the current procedure, comparing both plans to identify 
any necessary changes.

The limitations of the framework include: (1) to plan a 
single machine at a time; (2) to consider a maximum of 10 
different products over the planning horizon; (3) the MILP 
model does not have memory regarding the setup time 
between two consecutive weeks, despite this being consid-
ered by the dynamic production sequencing rule.

Therefore, it is suggested that future work involves mon-
itoring the implementation of the framework and, if nec-
essary, improving it until it can fully replace the current 
planning procedure. In addition, it would be interesting to 
incorporate the MILP model into a more powerful solver to 
evaluate the impacts on the results and conduct sensitivity 
and post-optimization assessments. Finally, it is suggested 
to evaluate the effects of a planning horizon longer than 4 
weeks, aiming to determine whether a longer time frame 
would allow the framework to react even more effectively.
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