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Abstract
Imbalanced data are typically observed in many real-life classification problems. However, mainstream machine learning 
algorithms are mostly designed with the underlying assumption of a relatively well-balanced distribution of classes. The 
mismatch between reality and algorithm assumption results in a deterioration of classification performance. One form of 
approach to address this problem is through re-sampling methods, although its effectiveness is limited; most re-sampling 
methods fail to consider the distribution of minority and majority instances and the diversity within synthetically generated 
data. Diversity becomes increasingly important when minority data becomes more sparse, as each data point becomes more 
valuable. They should all be considered during the generation process instead of being regarded as noise. In this paper, we 
propose a cluster-based diversity re-sampling method, combined with NOAH algorithm. Neighbourhood-based Clustering 
Diversity Over-sampling (NBCDO) is introduced with the aim to complement our previous cluster-based diversity algorithm 
Density-based Clustering Diversity Over-sampling (DBCDO). It first uses a neighbourhood-based clustering algorithm to 
consider the distribution of both minority and majority class instances, before applying NOAH algorithm to encourage 
diversity optimisation during the generation of synthetic instances. We demonstrate the implementation of both cluster-based 
diversity methods by conducting experiments over 10 real-life datasets with ≤ 5% imbalance ratio and show that our proposed 
cluster-based diversity algorithm (NBCDO, DBCDO) brings performance improvements over its comparable methods (DB-
SMOTE, MAHAKIL, KMEANS-SMOTE, MC-SMOTE).
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Introduction

Imbalanced data are the situation whereby the proportion 
of “Negative” (majority class) instances is disproportion-
ately larger to the number of instances marked as “Positive” 
(minority class). Without any treatment, this can negatively 
impact the performance of learning classifiers trained upon it 
as these classifiers would most likely interpret these minority 
instances as an outlier or anomaly [1]. Mainstream classi-
fication algorithms are typically designed with the goal of 
maximising predictive accuracy or minimising classification 
error, with the underlying assumption that distribution of 
instances between classes is relatively balanced. Therefore, 
this leads to a strong tendency for these classifiers to gener-
ate prediction of majority class, resulting in False Negative 
Rates (FNR) [2, 3]).

The treatment and handling of imbalanced data in cur-
rent literature can be grouped into three main approaches, 
namely, cost-sensitive learning, ensemble-based methods, 
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and re-sampling techniques. The target outcome for re-
sampling techniques is the creation of a more balanced 
dataset for training and learning purposes by either ran-
dom or synthetic measures. One variation of re-sampling 
is the application of over-sampling, where the most basic 
approach is Random Over-sampling. Throughout many 
years of research, there is also a wide variety of synthetic 
over-sampling approaches. Synthetic instances, as the name 
suggests, are not exact replications of the original minority 
instances. They aim to broaden the decision region com-
pared to random over-sampling by reducing the likelihood of 
model overfitting. This leads to an improved False Negative 
Rate and helps enhanced performance of learning classifiers 
[4]. However, these algorithms have recently been proven 
to have a reduced effectiveness as they typically generate 
minority instances on a linear path on the “feature level” 
[5], and therefore prevent learning classifiers from obtaining 
a holistic view of the entire decision region of the minority 
class [6].

In our previous work, we illustrated how performance 
improvements can be obtained by introducing a strategy 
which optimises for diversity while protecting the integ-
rity of the distribution of minority data space. We denote 
this algorithm as Density-based Clustering Diversity Over-
sampling (DBCDO, previously named as CDO) [7]. The 
algorithm generates robust synthetic minority instances by 
taking a 2-step approach. A density-based clustering method 
is first applied to analyse and identify density distribution of 
minority instances. Synthetic data generation for each cluster 
is performed as the next step through NOAH algorithm to 
encourage diversity.

In this paper, we aim to extend the cluster-based diver-
sity algorithm by incorporating a neighbourhood-based 
clustering algorithm. The proposed method is named as 
Neighbourhood-based Clustering Diversity Over-sampling 
(NBCDO). This paper also enhances the parameter selection 
for the original DADO and DIWO algorithms to achieve a 
more optimal result. Additionally, a comparison with alter-
native over-sampling approaches is conducted. With the 
two proposed cluster-based diversity algorithms, we have 
demonstrated significant improvement in handling extreme 
imbalanced scenario compared to the existing methods in 
the literature.

Related Work

SMOTE is a well-known synthetic over-sampling technique 
in literature [5]. Synthetic minority class instances are gen-
erated via a random selection of specified k-nearest neigh-
bours of a minority sample, and apply a multiplier based 

on a uniform random distribution (0,1). This results in a 
“synthetic” instance which sits between the two minority 
points. SMOTE improved the performance of classifiers 
trained on imbalance dataset by expanding decision regions 
housing nearby minority instances as compared to basic ran-
dom over-sampling which enhanced and narrowed decision 
regions with contrasting effects [5].

Recent studies have identified that traditional over-
sampling methods (i.e. SMOTE) are limited to its casual 
tendency to generate synthetic instances, which some-
times extends into the input region of the majority class 
instances. This negatively impacts the performance of the 
subsequent learning classifier built [6, 8]. These stud-
ies have recognised the dual importance of maintaining 
the integrity of the minority sample region, in addition 
to boosting the diversity of minority class data. Subse-
quent studies have been conducted to address the above 
challenge.

ECO-ensemble is a cluster-based synthetic oversampling 
ensemble method [9]. Its underlying concept originates from 
the identification of suitable oversampling cluster regions 
with Evolutionary Algorithm (EA) to obtain the opti-
mised ensemble. The SMOTE-Simple Genetic Algorithm 
(SMOTE-SGA) method is proposed to enhance diversity 
within the generated dataset [10]. The over-generalisation 
problem in SMOTE is addressed by the algorithm which 
determines instances to be generated and the number of syn-
thetic instances created from the selected instance (sampling 
rate).

MAHAKIL is proposed with the purpose of generating 
more diverse synthetic instances [6]. It achieves this by pair-
ing minority instances with previously generated synthetic 
instances to create instances inspired by the Chromosomal 
Theory of Inheritance. Its measure of diversity is based on 
Mahalanobis Distance and utilises the core concept of inher-
itance and genetic algorithm. The underlying idea is to cre-
ate unique synthetic minority instances using two relatively 
distant parent instances which are different to their parents 
(i.e. existing minority class).

SMOM is proposed as a k-NN-based synthetic minor-
ity oversampling algorithm [11]. Its advantage over 
traditional k-NN based oversampling algorithms is that 
it minimises the minority data region from being over-
generalised by considering both minority and major-
ity data space density. This is achieved by computing 
selection weights to quantify the adverse impacts for all 
other classes if synthetic instances are generated along 
a particular neighbourhood direction. Low weights are 
assigned to neighbourhood directions which will result 
in over-generalisation. The key steps involve the usage 
of neighbourhood-based clustering (NBDOS) to identify 
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outstanding and trapped instances, computation of selec-
tion weights for trapped instances (outstanding instances 
have equal weights in all directions), and generation of 
synthetic instances based on selection weights.

In 2018, Sampling With the Majority (SWIM) was pro-
posed [8]. Synthetic minority instances are generated based 
on the distribution of majority class instances which are 
effective against extremely imbalanced data. In 2021, a 
diversity-based sampling method with a drop-in functional-
ity was proposed to evaluate diversity. It was achieved via a 
greedy algorithm that is used to identify and discard subsets 
that share the most similarity [12].

KMEANS-SMOTE [13] is a data-level oversampling 
method that was introduced in 2018 which combines 
k-means clustering algorithm with SMOTE. It seeks to 
address the shortcomings of SMOTE by aiming for safe 
areas which would benefit from the generation of synthetic 
instances. It achieves this by oversampling safe regions 
within the decision boundary. The author also commented 
that the attractiveness of the proposed K-MEANS SMOTE 
comes from the universal availability and proven effective-
ness of both underlying algorithms.

In 2020, Minority Clustering SMOTE (MC-SMOTE) 
[14] is then introduced. It aims to soften the occurrence of 
sample-intensive and sample-sparse regions after the syn-
thetic data generation process. It incorporates an element of 
K-means algorithm at minority datapoints. The algorithm 
aims to populate synthetic instances between clusters. The 
authors experimented MC-SMOTE to determine wind-tur-
bine fault and concluded that MC-SMOTE outperformed 
SMOTE.

In recent years, the challenges of imbalanced data clas-
sification are also reflected in imaging data. Generative 
Adversarial Neutral Networks (GANs) have attracted much 
focus from researchers due to their ability to model complex 
datasets across many different fields. A recent survey[15] 
was conducted by Sampath, et al., where it categorises exist-
ing GANs based techniques into 3 main groups (image level, 
object level, and pixel level imbalances). This study also 
enables readers to gain an understanding of how GANs are 
used to address the issue of imbalanced datasets.

Most recently, Diversity-based Average Distance Over-
sampling (DADO) and Diversity-based Instance-Wise Over-
sampling (DIWO) have been proposed to promote diversity 
[16]. The objective of the two techniques is to generate well-
diverse synthetic instances close to minority class instances. 
DADO aims to ensure diversity in the region among minor-
ity class instances, when minority instances are compact, 
and performs better when the immediate surrounding area is 
located within the minority space. In the case of DIWO, the 
contrasting approach is taken to ensure synthetic instances 

are clustered as closely to the actual minority class instances 
when minority instances are widely distributed, and the sur-
rounding area does not sit within the minority space.

In our recent paper, we proposed a synthetic sampling 
method, namely Density-based Clustering Diversity Over-
sampling (DBCDO) [7]. Our proposed method combined the 
advantages of both DADO and DIWO by analysing density 
distribution of the minority instances using DBSCAN, a 
density-based clustering approach and maximising diver-
sity optimisation.

In this paper, we aim to expand our proposed cluster-
ing algorithm with an alternative; neighbourhood-based 
clustering algorithm (NBDOS). The workings of NBDOS 
focuses on both minority and majority density, instead of 
only minority density. It is focused on the identification of 
clusters of outstanding instances, which allows us to clas-
sify all remaining minority instances outside of these out-
standing clusters as trapped instances. Once these instances 
are promptly identified, DADO is applied onto clusters of 
outstanding instances and DIWO is applied onto trapped 
instances.

Methodology

Cluster‑Based Diversity Over‑Sampling (CDO)

In this section, we describe our synthetic data generation 
method, Cluster-based Diversity Over-sampling (CDO). 
CDO aims to enhance and improve robustness of synthetic 
data generation by integrating and leveraging the advantages 
of both DADO and DIWO. This is predicated on the out-
come of the density distribution of the minority instances, 
where DADO is applied onto narrow clusters and DIWO 
is applied to disperse clusters. We will start with provid-
ing a brief overview of our proposed implementation of 
CDO using DBSCAN (identified as DBCDO), followed by 
NBDOS (identified as NBCDO).

DBSCAN was originally chosen as our preferred cluster-
ing method as it is more efficient when the problem involved 
identifying arbitrary shaped clusters in comparison to par-
tition-based or hierarchical-based clustering methods [17]. 
DBSCAN was first introduced in 1996 [17] and is a non-
parametric density-based clustering algorithm. It simulta-
neously performs two functions, first by strengthening the 
grouping of instances which are within proximity to each 
other, and secondly by identifying points which are placed in 
low-density areas (points whose nearest neighbours are rela-
tively far away). This implies that DBSCAN is robust against 
outlier detection. Another notable advantage of DBSCAN is 
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its ability to allow for selecting desired levels of similarity 
through hyper-parameter selection.

Neighbourhood-based clustering (or NBDOS) which 
discovers the clusters of outstanding instances is intro-
duced as part of SWOM [11]. It aims to distinguish out-
standing instances (minority instances which are clustered 
closely) and trapped instances (minority instances which 
are dispersed, isolated and sometimes located within 
other majority regions). In our situation, the advantage 
of NBDOS lies in the fact that it is conducted on the 
entire data on both minority and majority data space to 
uncover the minority instances lying in dense clusters or 
spread dispersedly. This differs from DBSCAN, where 
the algorithm is applied solely on minority data to detect 
instances above a certain density threshold. This in turn 
causes NBDOS to be more sensitive towards the hyper-
parameters selection. This will consequently impact the 
identification of “soft core”, “outstanding” and “trapped” 
instances, especially in the use case on a small number of 
minority instances. In extremely imbalanced data space, 
this can result in situations where all instances are classi-
fied as “trapped”.

The algorithm of CDO is shown in Algorithm 1. Cluster-
ing algorithm is applied in Step 2. The choice of clustering 
algorithms (DBSCAN and NBDOS) are denoted in Algo-
rithm 2 & 3 respectively. It is worthwhile to observe that 
DBSCAN only requires minority instances as input, whereas 
NBDOS requires the entire data space (Algorithm 3, line 
3 & 4). After clusters are obtained, CDO applies the fol-
lowing synthetic sampling process: if minority instances do 
not belong to any cluster, then apply DIWO; if minority 
instances belong to a cluster, then all the instances within 
the cluster perform DADO (Algorithm 1, lines 9 and 12). 
The algorithm of DBSCAN and NBDOS is shown in Algo-
rithm 2 & 3, respectively.

Diversity Optimisation

The proposed algorithm for diversity optimisation and 
generation of synthetic instances is the extended form of 
NOAH’s algorithm [18], as shown in Algorithm 4. Algo-
rithm 4 contains 3 stages and requires the following input 
parameters: population size (n), number of generations 
to optimise objective function (g), number of instances 
remaining in the population after bound adaptation (r), 
percentage improvement of bound (v) and finally, the 
stopping criterion diversity maximisation (c). The above 
implies that if the population diversity does not improve 
for c generations, convergence of the diversity maximisa-
tion is achieved. The whole algorithm terminates if the 

bound does not improve for c generation. To further opti-
mise the objective function, Algorithm 4 has incorporated 
the usage of Genetic Algorithm (GA), as it is the most 
popular evolutionary algorithm. Mutation and crossover 
concepts are utilised to create new instances. Instances 
which objective functions are better than bound value (b) 
are kept (Algorithm 4, lines 5 and 14). For DADO, the 
objective function (f) is the average of distance from all 
instances in the minority class. For DIWO, the objective 
function (f) is the distance to each instance.

We also made the following update to the DADO and 
DIWO algorithm, with the aim to further promote diver-
sity within synthetic data. For DADO, the population 
size was initially set to oversampling size + 50 this has 
since been updated to oversampling size + 1. The intui-
tion behind this modification is that lower population 
size encourages a more diverse synthetic sample gen-
eration process. The DIWO boundary was initially set to 
the minimum and maximum of the “isolated” minority 
instances data space, it has since been updated with the 
minimum and maximum of the entire minority instances 
data space. The broader generation region promotes more 
diverse synthetic samples.

Diversity‑Based Selection

The preferred measure of diversity is Solow-Polasky meas-
ure. There are 3 main properties which are required of a 
diversity measure, which are: (1) monotonicity in vari-
ety; (2) monotonicity in distance; (3) twinning. The first 
property implies that the diversity measure will increase 
or at least be non-decreasing when an individual element 
currently not present in the dataset is added. The second 
property requires that the diversity between a particular set 
S (i.e. instances) should not be smaller than another set S’ 
if all pairs in S are as remote as all pairs in S’. The third 
property ensures the diversity measure remains the same 
when an additional element, already in the set, is added. 
Solow-Polasky measure can be expressed in the follow-
ing Eq. (1), where M represents the distance matrix. The 
Euclidean distance between elements of set S is denoted 
as d(si, sj) . Thereafter, our diversity measure is derived 
and computed by the summation of all inverse matrix of 
( M−1 =

[
mij

]−1).

To obtain the best diversity amongst all the instances, 
the ideal scenario would be to generate all possible per-
mutation of subsets. However, this cannot be achieved as it 

(1)D(S) =
∑

M−1 =
∑

i

∑

j

e−d(si,sj)
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would be computationally infeasible and expensive. As an 
alternative methodology, we propose the use of a greedy 
approach which would filter out instances which have 
the least contribution to the diversity of our dataset. Our 
definition of contribution is defined as the difference in 
diversity for our dataset with and without the instance. As 
proven in this study [18], the difference can be expressed 
in the following formula:

where A is the distance matrix of the set without that par-

ticular instance, M =

[
A b

bT c

]
,M−1 =

[
A b

b
T
c

]
 , c and c are 

single elements, b and b are vectors and bT and b
T
 are their 

transpose.

(2)
∑

M−1 −
∑

A−1 =
1

c
(
∑

b + c)
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Validation of Synthetic Dataset

Evaluation Method

The learning classifiers used to evaluate the generated data 
are, Naïve Bayes (NB), Decision Tree (DT), k-Nearest Neigh-
bour (KNN), Support Vector Machine (SVM), and Random 
Forest (RF). We chose KNN and RF as they are sensitive to 
imbalanced data based on their model assumptions [19]. DT 
is selected based on development of decision regions which 
are influenced by re-sampling methods [20]. SVM with radial 
kernel is effective to classify classes which are not separable 
linearly.

We measure the performance of the classifiers on test data 
using AUC, F1-score, G-means, and PR-AUC as classification 
accuracy is not an appropriate measure for imbalanced data.

To calculate F1-score (5), we need to measure recall and 
precision shown as (3) and (4). Recall is the proportion of 
correctly predicted positive instances to all instances in the 
positive class. Precision is the proportion of correctly predicted 
positive instances to all predicted positive instances.

(3)Recall =
TP

TP + FN

The Receiver Operating Characteristic (ROC) curve is a 
technique to summarise the performance of a classifier over 
trade-offs between recall and False Positive Rate (FPR) as 
(6).

(4)Precision =
TP

TP + FP

(5)F1 =
2 × Recall × Precision

Recall + Precision

Table 1   Synthetic datasets characteristics

Dataset Number 
of clus-
ters

Variance of 
minority data 
space

Data points Imbal-
ance ratio 
(%)

DS1 (Example 
3)

2 Medium 315 10

DS2 (Example 
4)

2 High 315 10

DS3 (Example 
6)

1 Low 300 5

DS4 (Example 
7)

1 Medium 300 5
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where FP stands for False Positive that is the number of 
instances from positive class predicted incorrectly.

AUC, the area under the ROC curve, is a suitable measure 
for classifiers’ performance, especially in the situation of 
imbalanced data, and is independent of the decision bound-
ary [5, 21]. PR-AUC denotes the area under the Precision 
Recall curve.

The G-means (7) is the geometric mean of True Positive 
Rate (TPR), which is the same as Recall in (3) and true nega-
tive rate (TNR), which is 1 − FPR.

(6)FPR =
FP

FP + TN

(7)G − means =
√
TPR × TNR

Synthetic Dataset

To examine our proposed methods under different scenario, 
4 2-dimensional datasets are created. Each of these four 
datasets are eventually split into half, with Imbalance Ratio 
(IR) of 10% and 5%, respectively. These datasets are used in 
our initial experiments to assist in hyper-parameters selec-
tion. Table 1 provides a summary of these datasets (DS1-4). 
There is a varying amount of cluster within each dataset, 
ranging from 0 (randomly distributed data points) in DS3 to 
5 in DS1. For each of the four synthetic datasets, instances 
are randomly divided into training and test datasets with a 
75:25 split. DBCDO and NBCDO are utilised to balance our 
training datasets. Learning classifiers are applied onto the 
balanced training datasets. Performance of these constructed 
learning classifiers is then assessed using the test datasets. 
Performance measures (AUC, F1, G-Means, and PR-AUC) 

Table 2   Performance results of mean and standard error for each measure across synthetic datasets

Bold numbers indicate the mean of method performance is the best among all comparable methods

DS1 DS3

NBCDO DBCDO NBCDO DBCDO

AUC​ 0.9665 ± 0.027 0.9600 ± 0.031 AUC​ 0.9986 ± 0.003 0.9982 ± 0.003
F1 0.7099 ± 0.103 0.7168 ± 0.122 F1 0.8960 ± 0.126 0.8799 ± 0.123
G-means 0.9394 ± 0.036 0.9367 ± 0.042 G-means 0.9620 ± 0.179 0.9606 ± 0.178
PR-AUC​ 0.9887 ± 0.016 0.9883 ± 0.017 PR-AUC​ 0.9981 ± 0.008 0.9981 ± 0.008

DS2 DS4

NBCDO DBCDO NBCDO DBCDO

AUC​ 0.8764 ± 0.050 0.8859 ± 0.059 AUC​ 0.9869 ± 0.012 0.9867 ± 0.011
F1 0.4429 ± 0.118 0.4457 ± 0.128 F1 0.7590 ± 0.167 0.7646 ± 0.173
G-means 0.8423 ± 0.073 0.8389 ± 0.056 G-means 0.9535 ± 0.174 0.9526 ± 0.174
PR-AUC​ 0.9841 ± 0.013 0.9841 ± 0.013 PR-AUC​ 0.9978 ± 0.008 0.9979 ± 0.008

DBSCAN NBDOS

Fig. 1   Plots for clustering methods on minority data points
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are computed for the best performing classifier. The above 
process is repeated 30 times.

Parameter Selection

The distance measures chosen for both objective function 
and diversity measure are the optimal distance measure 
based on experimental results [16]. Euclidean distance 
measure ( DEu ) is chosen for DADO, and Canberra ( Dc ) is 
chosen for DIWO.

Our next step is to determine the optimal hyper-param-
eters for DBSCAN and NDBOS. Based on previous work 

(8)DEu(x, y) =

√∑
i

(
xi − yi

)2

(9)Dc(x, y) =
∑

i

||xi − yi
||

||xi|| + |yi|

([7], the optimal parameter configuration for Epsilon (eps) is 
0.05 and Border Point (p) set as “T” / “True”. For NBDOS, 
there is a total of 4 hyper-parameters which require configu-
ration. nTh (“minimum points per cluster”) is set as 5 given 
our goal is to target extremely imbalanced datasets. rTh is set 
as 0.5 to relax the stringent condition of selecting soft care 
instances. For k1 and k2, extensive study on synthetic data-
sets has been conducted on a series of combinations where 
k1 ∈ (4, 6, 8) and k2 ∈ (5, 6, 7, 8) . Results from our study of 
synthetic datasets suggest that the optimal value for k1 and 
k2 is 8 and 6, respectively. Nevertheless, it is important to 
call out that these parameter selections are sensitive to the 
distribution of majority and minority instances in varying 
datasets, which could impact its capability.

Synthetic Experiment Results

Comparison between DBCDO and NBCDO was conducted 
using 4 synthetic datasets and the performance of each of 

DBCDO NBCDO MAHAKIL

DBSMOTE MCSMOTE KMEANSMOTE

Fig. 2   Plots for synthetic datasets generation region

Table 3   Real-word data 
description

Dataset Name Dim Size Dataset Name Dim Size

D1 Wisconsin 9 683 D6 Glass (0, 1, 2, 3 vs 4, 5, 6) 9 214
D2 Diabetes 8 768 D7 Haberman 3 306
D3 Ecoli (0,1 vs 5) 6 240 D8 New Thyroid 5 215
D4 Ecoli 2 7 336 D9 Pima 8 768
D5 Ecoli 3 7 336 D10 Wine Red Low vs High 11 280
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Table 4   Performance results of mean and standard error across datasets with 5% imbalance levels

Bold numbers indicate the mean of method performance is the best among all comparable methods

Dataset NBCDO DBCDO DBSMOTE MAHAKIL MCSMOTE KMEANSMOTE

F1
 D1 0.9520 ± 0.022 0.9526 ± 0.022 0.9432 ± 0.024 0.9489 ± 0.023 0.9524 ± 0.022 0.9471 ± 0.023
 D2 0.5558 ± 0.081 0.5635 ± 0.074 0.5446 ± 0.111 0.6307 ± 0.040 0.6281 ± 0.049 0.4900 ± 0.127
 D3 0.8356 ± 0.098 0.8260 ± 0.102 0.8460 ± 0.088 0.8177 ± 0.095 0.8051 ± 0.119 0.8114 ± 0.112
 D4 0.8426 ± 0.095 0.8619 ± 0.096 0.8406 ± 0.080 0.8289 ± 0.110 0.8402 ± 0.091 0.8761 ± 0.062
 D5 0.6527 ± 0.087 0.6647 ± 0.094 0.6913 ± 0.079 0.6531 ± 0.101 0.6708 ± 0.086 0.6757 ± 0.091
 D6 0.8468 ± 0.082 0.8616 ± 0.058 0.8238 ± 0.058 0.8499 ± 0.065 0.8505 ± 0.063 0.8126 ± 0.067
 D7 0.4684 ± 0.115 0.4602 ± 0.106 0.3183 ± 0.155 0.4390 ± 0.133 0.4373 ± 0.126 0.2482 ± 0.114
 D8 0.9742 ± 0.042 0.9718 ± 0.035 0.9653 ± 0.034 0.9630 ± 0.037 0.9689 ± 0.037 0.9661 ± 0.040
 D9 0.5650 ± 0.073 0.5625 ± 0.069 0.5423 ± 0.114 0.6307 ± 0.040 0.6281 ± 0.049 0.4900 ± 0.127
 D10 0.7005 ± 0.094 0.7179 ± 0.104 0.6924 ± 0.148 0.6974 ± 0.082 0.6940 ± 0.122 0.6688 ± 0.147

G-Means
 D1 0.9658 ± 0.017 0.9680 ± 0.015 0.9605 ± 0.020 0.9664 ± 0.016 0.9671 ± 0.016 0.9632 ± 0.017
 D2 0.6457 ± 0.065 0.6521 ± 0.061 0.6319 ± 0.090 0.7087 ± 0.031 0.7058 ± 0.040 0.5882 ± 0.109
 D3 0.9095 ± 0.082 0.9004 ± 0.093 0.9006 ± 0.086 0.9090 ± 0.068 0.9094 ± 0.096 0.9088 ± 0.093
 D4 0.9220 ± 0.041 0.9350 ± 0.036 0.9090 ± 0.051 0.9198 ± 0.044 0.9206 ± 0.047 0.9331 ± 0.037
 D5 0.8908 ± 0.046 0.8999 ± 0.046 0.9095 ± 0.052 0.8977 ± 0.041 0.9112 ± 0.040 0.9143 ± 0.037
 D6 0.8909 ± 0.079 0.9039 ± 0.059 0.8636 ± 0.062 0.8943 ± 0.067 0.8998 ± 0.074 0.8576 ± 0.069
 D7 0.6130 ± 0.084 0.6058 ± 0.076 0.4751 ± 0.151 0.6080 ± 0.104 0.6177 ± 0.085 0.4065 ± 0.114
 D8 0.9909 ± 0.019 0.9888 ± 0.021 0.9779 ± 0.031 0.9848 ± 0.021 0.9867 ± 0.023 0.9866 ± 0.025
 D9 0.6534 ± 0.059 0.6511 ± 0.056 0.6301 ± 0.092 0.7087 ± 0.031 0.7058 ± 0.040 0.5882 ± 0.109
 D10 0.7854 ± 0.084 0.7924 ± 0.090 0.7644 ± 0.121 0.7726 ± 0.087 0.7725 ± 0.100 0.7455 ± 0.120

PR-AUC​
 D1 0.9821 ± 0.056 0.9838 ± 0.056 0.9796 ± 0.061 0.9835 ± 0.055 0.9840 ± 0.056 0.9816 ± 0.062
 D2 0.8278 ± 0.065 0.8316 ± 0.062 0.8441 ± 0.064 0.8151 ± 0.066 0.8272 ± 0.063 0.8073 ± 0.066
 D3 0.9837 ± 0.030 0.9832 ± 0.031 0.9823 ± 0.030 0.9808 ± 0.034 0.9835 ± 0.028 0.9827 ± 0.030
 D4 0.9807 ± 0.037 0.9806 ± 0.038 0.9777 ± 0.038 0.9798 ± 0.038 0.9806 ± 0.036 0.9797 ± 0.037
 D5 0.9934 ± 0.004 0.9935 ± 0.004 0.9930 ± 0.005 0.9925 ± 0.006 0.9930 ± 0.005 0.9927 ± 0.005
 D6 0.9788 ± 0.055 0.9796 ± 0.052 0.9830 ± 0.030 0.9775 ± 0.056 0.9767 ± 0.062 0.9822 ± 0.041
 D7 0.8375 ± 0.056 0.8331 ± 0.060 0.8187 ± 0.062 0.8198 ± 0.068 0.8259 ± 0.059 0.8145 ± 0.056
 D8 0.9991 ± 0.001 0.9990 ± 0.001 0.9988 ± 0.002 0.9989 ± 0.001 0.9991 ± 0.001 0.9989 ± 0.002
 D9 0.8290 ± 0.063 0.8290 ± 0.065 0.845 ± 0.064 0.8151 ± 0.066 0.8272 ± 0.063 0.8073 ± 0.066
 D10 0.9658 ± 0.022 0.9721 ± 0.011 0.9641 ± 0.022 0.9726 ± 0.012 0.9719 ± 0.012 0.9633 ± 0.017

AUC​
 D1 0.9916 ± 0.006 0.9904 ± 0.007 0.9892 ± 0.007 0.9887 ± 0.008 0.9893 ± 0.007 0.9904 ± 0.007
 D2 0.7793 ± 0.037 0.7743 ± 0.037 0.7920 ± 0.038 0.7956 ± 0.031 0.7978 ± 0.036 0.7915 ± 0.043
 D3 0.9913 ± 0.008 0.9900 ± 0.008 0.9915 ± 0.008 0.9917 ± 0.008 0.9908 ± 0.007 0.9915 ± 0.007
 D4 0.9640 ± 0.022 0.9654 ± 0.023 0.9647 ± 0.024 0.9627 ± 0.022 0.9669 ± 0.020 0.9684 ± 0.024
 D5 0.9397 ± 0.033 0.9370 ± 0.034 0.9355 ± 0.034 0.9348 ± 0.037 0.9377 ± 0.035 0.9329 ± 0.039
 D6 0.9757 ± 0.022 0.9750 ± 0.023 0.9790 ± 0.020 0.9773 ± 0.019 0.9775 ± 0.021 0.9780 ± 0.021
 D7 0.6993 ± 0.072 0.7020 ± 0.069 0.6537 ± 0.079 0.6741 ± 0.084 0.6861 ± 0.086 0.6733 ± 0.075
 D8 0.9983 ± 0.004 0.9984 ± 0.004 0.9980 ± 0.004 0.9978 ± 0.005 0.9984 ± 0.004 0.9982 ± 0.004
 D9 0.7772 ± 0.038 0.7767 ± 0.036 0.7937 ± 0.037 0.7958 ± 0.031 0.7978 ± 0.036 0.7915 ± 0.043
 D10 0.9334 ± 0.027 0.9273 ± 0.031 0.9413 ± 0.03 0.9298 ± 0.032 0.9286 ± 0.022 0.9363 ± 0.028
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the algorithms are evaluated. In total, there are 16 different 
results, and they are reflected in Table 2. NBCDO performs 
better than DBCDO in 10 out of 16 cases across evaluation 
metrics. This is especially so for DS1, 3, 4 where there is 
low to medium variance in minority space. NBCDO does 
not outperform DBCDO in DS2 where there is high vari-
ance in minority space. The likely explanation for this is 
when the minority data space has high variance, it is more 
likely to be surrounded by majority data points. This may 
have caused NBCDO to cluster and categorise the entire 
data space (which also houses majority class instances) as 
isolated instances, thereby impacting the process of learning.

Graphical Representation

To provide graphical representations, we created a synthetic 
dataset with two clusters, 10% imbalanced ratio in training 
data with a balanced ratio in testing data. A comparison 
between the two clustering algorithm, DBCAN and NBDOS 
is demonstrated in Fig. 1. DBSCAN identified 3 clusters 
compared to NBDOS, which accurately identified 2 clusters. 
This can be attributed to the additional information about 
majority distribution utilised during the clustering process. 
NBDOS will end up with a more representative data genera-
tion region once DADO is applied due to the more accurate 
identification of actual clusters by NBDOS when compared 
to DBSCAN method.

In Fig. 2, synthetic datasets are generated by DBCDO 
and NBCDO (two cluster-based diversity methods) and 
its 3 comparable methods (DB-SMOTE, MAHAKIL, 
KMEANS-SMOTE and MC-SMOTE). We observe that 
the regions of synthetic generated instances for cluster-
based diversity algorithms, MAHAKIL and KMEANS-
SMTOE are relatively similar. However, cluster-based 
diversity algorithms stand out for its ability to cover all 
the data points of the minority test data with the narrowest 
region. MAHAKIL created synthetic data points between 
the two clusters, which occupies a larger region and could 
result in over-generalisation and higher False Positive 
Rate. The region for DB-SMOTE does not cover all of 
minority test data points, which could result in higher false 
negative rate. The region for MC-SMOTE also has many 
synthetic data generated outside of the clusters, which is 
how this algorithm works.

Validation of Real‑Life Dataset

We validate the proposed CDO algorithm against an assort-
ment of 10 imbalanced datasets, with varying dimensions. 
The datasets and their characteristics are described in 
Table 3, and “Ratio” is used to indicate the original pro-
portion of majority to minority instances. To replicate the 
scenarios with low and extremely low imbalanced ratio, we 

reduce the imbalanced ratio to 5% and 10 absolute count of 
minority instances.

The data within each of the real-world datasets are ran-
domly divided into train and test datasets using a 75:25 
split, respectively. This process is repeated for 30 iterations, 
resulting in 30 unique variations of training datasets and 
accompanying experimental datasets for each of the 10 
real-world datasets. After the initialisation step, we apply 
our proposed methods (NBCDO and CDO) alongside with 
existing methods in the literature, namely DB-SMOTE, 
MAHAKIL, MC-SMOTE and KMEANS-SMOTE to evalu-
ate algorithm performance. Six learning classifiers (GLM, 
NB. DT, KNN, SVM, NN) are then constructed on each of 
the training datasets (n = 30). Subsequently, the trained clas-
sifiers are applied onto test datasets.

For each real-world datasets, the best performing clas-
sifier is selected before computing the mean and standard 
error of the performance measures as F1, AUC, PR-AUC 
and G-mean. Additionally, we examine the statistical signifi-
cance of differences for the performance measures obtained 
from all comparable methods using a non-parametric statisti-
cal test, Mann–Whitney test.

Experimental Results

The mean and standard error (stated in parenthesis) of our 
proposed method (DBCDO, NBCDO) and its comparable 
methods (DB-SMOTE, MAHAKIL, KMEANS-SMOTE 
and MC-SMOTE) are presented in Table 4 (5% imbalanced 
ratio) and Table 5 (10 minority instances).

By looking at the performance metrics for 5% imbal-
anced ratio (Table 4), across all evaluation metric and data-
sets, both DBCDO and NBCDO have the highest mean 10 
times, followed by DB-SMOTE 7 times, MAHAKIL and 
MC-SMOTE 6 times each, and KMEANS-SMOTE 3 times. 
In total, cluster-based diversity algorithm outperformed its 
comparable algorithms 20 out of 40 times.

By looking at the performance metrics for 10 minority 
instances (Table 5), across all evaluation metric and data-
sets, DBCDO has the highest mean 10 times, followed by 
NBCDO 9 times, MAHAKIL 7 times, DB-SMOTE and MC-
SMOTE 6 times, and KMEANS-SMOTE 3 times. In total, 
cluster-based diversity algorithm outperformed its compa-
rable algorithms 19 out of 40 times.

The Mann–Whitney test is performed for each pairing 
of all 6 comparable algorithms. Tables 6 and 7 display the 
results from the test, where each figure represents the fre-
quency that the specified method is statistically better than 
its comparable methods.

Table 6 reports results on 5% imbalanced datasets. MC-
SMOTE statistically outperforms its comparable algorithms 
48 times across all datasets and evaluation metrics, followed 
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Table 5   Performance results of mean and standard error across datasets with 10 minority instances

Bold numbers indicate the mean of method performance is the best among all comparable methods

Datase NBCDO DBCDO DBSMOTE MAHAKIL MCSMOTE KMEANSMOTE

F1
 D1 0.9448 ± 0.022 0.9479 ± 0.021 0.9316 ± 0.033 0.9433 ± 0.022 0.9466 ± 0.020 0.9450 ± 0.022
 D2 0.5398 ± 0.082 0.5456 ± 0.082 0.4049 ± 0.141 0.5832 ± 0.069 0.5811 ± 0.057 0.4348 ± 0.140
 D3 0.8344 ± 0.101 0.8260 ± 0.102 0.8460 ± 0.088 0.8177 ± 0.095 0.8051 ± 0.119 0.8114 ± 0.112
 D4 0.8418 ± 0.102 0.8468 ± 0.109 0.8358 ± 0.080 0.8308 ± 0.098 0.8296 ± 0.115 0.8481 ± 0.111
 D5 0.6525 ± 0.090 0.6611 ± 0.087 0.6871 ± 0.092 0.6497 ± 0.095 0.6611 ± 0.083 0.6623 ± 0.093
 D6 0.8579 ± 0.079 0.8743 ± 0.057 0.8369 ± 0.074 0.8745 ± 0.049 0.8701 ± 0.055 0.8460 ± 0.063
 D7 0.4689 ± 0.094 0.4605 ± 0.110 0.3668 ± 0.144 0.4362 ± 0.115 0.4552 ± 0.098 0.3082 ± 0.127
 D8 0.9694 ± 0.048 0.9831 ± 0.028 0.9482 ± 0.061 0.9785 ± 0.031 0.9752 ± 0.033 0.9674 ± 0.039
 D9 0.5343 ± 0.079 0.5510 ± 0.081 0.4047 ± 0.141 0.5832 ± 0.069 0.5811 ± 0.057 0.4348 ± 0.140
 D10 0.7198 ± 0.048 0.7144 ± 0.084 0.6772 ± 0.141 0.6800 ± 0.072 0.7096 ± 0.074 0.6672 ± 0.114

G-Means
 D1 0.9591 ± 0.020 0.9635 ± 0.016 0.9484 ± 0.032 0.9610 ± 0.018 0.9623 ± 0.016 0.9619 ± 0.017
 D2 0.6342 ± 0.062 0.6371 ± 0.067 0.5113 ± 0.130 0.6746 ± 0.050 0.6679 ± 0.048 0.5522 ± 0.104
 D3 0.8997 ± 0.094 0.9007 ± 0.093 0.9006 ± 0.086 0.9090 ± 0.068 0.9094 ± 0.096 0.9088 ± 0.093
 D4 0.9158 ± 0.045 0.9309 ± 0.039 0.9100 ± 0.048 0.9192 ± 0.039 0.9248 ± 0.040 0.9243 ± 0.054
 D5 0.8917 ± 0.061 0.8984 ± 0.049 0.8919 ± 0.070 0.8977 ± 0.062 0.9125 ± 0.035 0.9113 ± 0.038
 D6 0.8900 ± 0.071 0.9136 ± 0.053 0.8758 ± 0.066 0.9104 ± 0.044 0.9091 ± 0.054 0.8843 ± 0.064
 D7 0.6137 ± 0.079 0.6036 ± 0.081 0.5201 ± 0.129 0.6087 ± 0.092 0.6299 ± 0.079 0.4445 ± 0.148
 D8 0.9850 ± 0.032 0.9961 ± 0.007 0.9700 ± 0.054 0.9920 ± 0.017 0.9913 ± 0.018 0.9849 ± 0.024
 D9 0.6298 ± 0.060 0.6415 ± 0.066 0.5111 ± 0.129 0.6746 ± 0.050 0.6679 ± 0.048 0.5522 ± 0.104
 D10 0.8053 ± 0.047 0.7865 ± 0.082 0.7407 ± 0.125 0.7604 ± 0.085 0.7764 ± 0.080 0.7383 ± 0.115

PR-AUC​
 D1 0.9885 ± 0.014 0.9923 ± 0.007 0.9858 ± 0.015 0.9902 ± 0.010 0.9896 ± 0.013 0.9890 ± 0.011
 D2 0.8183 ± 0.058 0.8169 ± 0.059 0.7994 ± 0.071 0.8090 ± 0.063 0.8111 ± 0.063 0.8019 ± 0.065
 D3 0.9839 ± 0.031 0.9831 ± 0.031 0.9823 ± 0.030 0.9808 ± 0.034 0.9835 ± 0.028 0.9827 ± 0.030
 D4 0.9783 ± 0.037 0.9795 ± 0.039 0.9765 ± 0.038 0.9790 ± 0.038 0.9796 ± 0.036 0.9796 ± 0.037
 D5 0.9932 ± 0.004 0.9935 ± 0.004 0.9920 ± 0.008 0.9923 ± 0.005 0.9928 ± 0.006 0.9926 ± 0.006
 D6 0.9574 ± 0.097 0.9561 ± 0.099 0.9572 ± 0.087 0.9564 ± 0.095 0.9551 ± 0.101 0.9558 ± 0.096
 D7 0.8391 ± 0.058 0.8448 ± 0.055 0.8323 ± 0.059 0.8336 ± 0.055 0.8285 ± 0.053 0.8185 ± 0.057
 D8 0.9948 ± 0.025 0.9948 ± 0.025 0.9952 ± 0.022 0.9949 ± 0.026 0.9948 ± 0.026 0.9946 ± 0.026
 D9 0.8185 ± 0.058 0.8165 ± 0.059 0.7994 ± 0.070 0.8090 ± 0.063 0.8111 ± 0.063 0.8019 ± 0.065
 D10 0.9431 ± 0.065 0.9462 ± 0.065 0.9314 ± 0.077 0.9479 ± 0.065 0.9447 ± 0.066 0.9422 ± 0.063

AUC​
 D1 0.9907 ± 0.007 0.9895 ± 0.009 0.9883 ± 0.009 0.9872 ± 0.009 0.9873 ± 0.008 0.9875 ± 0.009
 D2 0.7645 ± 0.036 0.7637 ± 0.036 0.7804 ± 0.034 0.7634 ± 0.045 0.7674 ± 0.037 0.7648 ± 0.038
 D3 0.9911 ± 0.008 0.9910 ± 0.008 0.9914 ± 0.008 0.9912 ± 0.008 0.9908 ± 0.007 0.9915 ± 0.007
 D4 0.9594 ± 0.031 0.9620 ± 0.028 0.9616 ± 0.025 0.9592 ± 0.028 0.9625 ± 0.026 0.9640 ± 0.028
 D5 0.9404 ± 0.031 0.9372 ± 0.034 0.9306 ± 0.046 0.9362 ± 0.034 0.9351 ± 0.038 0.9343 ± 0.038
 D6 0.9758 ± 0.023 0.9804 ± 0.018 0.9793 ± 0.020 0.9787 ± 0.018 0.9815 ± 0.016 0.9798 ± 0.018
 D7 0.7096 ± 0.071 0.7054 ± 0.070 0.6683 ± 0.072 0.6901 ± 0.073 0.6922 ± 0.078 0.6827 ± 0.075
 D8 0.9989 ± 0.003 0.9991 ± 0.002 0.9985 ± 0.003 0.9991 ± 0.002 0.9992 ± 0.002 0.9987 ± 0.004
 D9 0.7639 ± 0.035 0.7638 ± 0.036 0.7812 ± 0.034 0.7631 ± 0.045 0.7674 ± 0.037 0.7648 ± 0.038
 D10 0.9533 ± 0.016 0.9459 ± 0.016 0.9535 ± 0.016 0.9514 ± 0.023 0.9449 ± 0.019 0.9463 ± 0.019



SN Computer Science           (2023) 4:848 	 Page 13 of 16    848 

SN Computer Science

by NBCDO 40 times, DBCDO 39 times, MAHAKIL 32 
times, and both DB-SMOTE 27 and KMEANS-SMOTE 25 
times. Specifically, NBCDO has the best statistical perfor-
mance across AUC and PR-AUC, whereas MC-SMOTE has 
the best statistical performance across F1 and G-means.

Table 7 reports results on datasets with 10 minority 
instances. DBCDO statistically outperforms its comparable 
algorithms 61 times across all datasets and evaluation met-
rics, followed by NBCDO 42 times, MC-SMOTE 41 times, 
MAHAKIL 33 times, DBSMOTE 17 times and KMEANS-
SMOTE 14 times. Specifically, DBCDO has the best statisti-
cal performance across F1, G-means and PR-AUC, whereas 
NBCDO has the best statistical performance across AUC.

Discussions

As shown in the results for mean comparison (Tables 4 
and 5), both cluster-based diversity methods (NBCDO and 
DBCDO) outperformed its comparable methods.

Cluster-based diversity methods outperformed DB-
SMOTE as they considered the data space distribution and 
generated diverse instances within the boundaries of the 
identified data generation region. In contrast, DB-SMOTE 
method created synthetic instances using linear interpola-
tion. We also observed cluster-based diversity algorithms 
perform better compared to MAHAKIL in situations where 
minority instances are sparser (i.e. when dataset is reduced 
to 10 minority data points). This can be attributed to the 
nature of MAHAKIL algorithm such that it only performs 
well when minority data distribution is convex and in situa-
tions where there are sufficient number of minority instances 
[16].

Cluster-based diversity methods also outperform 
KMEANS-SMOTE. This could be explained by the limi-
tation of KMEANS-SMOTE at high imbalance levels. 
KMEANS-SMOTE performs clustering at dataset level 
and it generates synthetic data within each cluster based on 
selected k-nearest neighbours. In the circumstances where 
there are only a handful of minority class instances within 
the cluster, synthetic data points generated by SMOTE will 
be of relative similarity, resulting in lowered diversity.

With a comparison of NBCDO and DBCDO using their 
mean performance (Table 4, 5), we can conclude NBCDO 
performs better when the dataset has few dimensions (e.g. 
DS 7). In contrast, when there is higher dimensionality 
within the dataset (e.g. DS 1, 6 and 10), DBCDO performs 
better. Since density-based clustering performs better when 
feature set is large, and distance-based clustering performs 
better when feature set is small, the observation can be 
explained by the knowledge that NBCDO is based on dis-
tance-based clustering, and DBCDO is based on density-
based clustering.

An evaluation of the overall statistical performance 
(Table 6, 7) allows us to conclude that most of these results 
echo our findings in the comparison of mean performance. 
We discovered cluster-based diversity measures perform bet-
ter at extremely imbalanced datasets through special and 
individualised treatment of isolated instances, relative to 
existing clustering methods which tends to group them into 
a specific cluster. It also validates our hypothesis that diver-
sity is more important when minority instances are sparse.

Although most evaluation metrics indicate cluster-based 
diversity methods as the best-performing methods, there are 
two metrics, AUC and F1 which favours MC-SMOTE at a 
5% imbalanced level. It is worth highlighting that as the 
imbalance level becomes more extreme (e.g. 10 minority 
instances), the performance edge of MC-SMOTE over clus-
ter-based diversity methods dissipates. A possible explana-
tion for this is that as the issue of imbalance dataset becomes 
more prominent, there is greater likelihood of a data point 
treated as “isolated” and thereby not grouped into a cluster 
with other minority instances. In contrast to MC-SMOTE, 
which has strong tendency to group minority instances into 
clusters, cluster-based diversity methods assess data points 
individually and help to ensure that isolated data points are 
correctly identified. This assists in minimising the likelihood 
of introducing noises (errors) at the commencement of the 
subsequent synthetic data generation process.

Conclusions

In this study, we propose a new cluster-based diversity re-
sampling method named NBCDO, with the aim to comple-
ment our previously introduced density-based clustering 
diversity algorithm (DBCDO). In contrast to DBCDO which 
uses DBSCAN as an underlying clustering algorithm, clus-
tering for NBCDO is performed based on a recent clustering 
algorithm NBDOS, which considers data distribution within 
both minority and majority data space when identifying 
clusters. NBCDO first utilises NBDOS to identify clusters 
and isolated instances. It then utilises this information to 
create synthetic samples while incorporating diversity opti-
misation to promote diversity within each generation region. 
Two cluster-based diversity methods, DBCDO (based on 
DBSCAN) and NBCDO (based NBDOS) are evaluated 
together with its comparable methods on 10 real-world data-
sets with ≤ 5% imbalanced ratio and, in most cases, it has 
been found to have statistically superior performance to its 
comparable methods.

More importantly, this paper highlights the versatility 
of NOAH, our diversity optimisation algorithm. When it 
is paired with both clustering algorithm (DBSCAN and 
NBDOS), empirical results shows that it consistently out-
performs comparable methods in most cases. We summarise 
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and attribute its superior performance to its ability to iden-
tify the minority space for synthetic data generation and its 
ability to obtain optimal spread of generated instances due 
to genetic algorithm.

For future work, we may consequently incorporate other 
typologies of clustering algorithms, such as centroid-based 
clustering (k-means) and distribution-based clustering (e.g. 
Gaussian) in conjunction with our diversity optimisation 
algorithm, NOAH. This would allow us to further test the 
validity of NOAH algorithm. Additionally, the implementa-
tion of NBCDO is based on a fixed hyper-parameters con-
figuration derived from our synthetic experiments. This is 
a one-size-fits-all approach which is then applied onto each 
dataset, regardless of their characteristics. For future work, 
there is a consideration to pre-determine the optimal hyper-
parameters configuration and tailored it specifically for the 
specific dataset. Additionally, due to the superior ability of 
NBDOS to draw accurate and specific decision boundaries 
for each minority instances, we would like to extend this 
algorithm to the multi-class classification problem as the 
class overlapping issue will be more severe and complex, 
thereby requiring more sophisticated clustering algorithm 
before the over-sampling process commences.
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