
Vol.:(0123456789)

SN Computer Science (2024) 5:91
https://doi.org/10.1007/s42979-023-02106-3

SN Computer Science

ORIGINAL RESEARCH

Exploring SLUG: Feature Selection Using Genetic Algorithms
and Genetic Programming

Nuno M. Rodrigues1 · João E. Batista1 · William La Cava2 · Leonardo Vanneschi3 · Sara Silva1

Received: 7 October 2022 / Accepted: 29 June 2023
© The Author(s) 2023

Abstract
We present SLUG, a recent method that uses genetic algorithms as a wrapper for genetic programming and performs feature
selection while inducing models. SLUG was shown to be successful on different types of classification tasks, achieving state-
of-the-art results on the synthetic datasets produced by GAMETES, a tool for embedding epistatic gene–gene interactions
into noisy datasets. SLUG has also been studied and modified to demonstrate that its two elements, wrapper and learner, are
the right combination that grants it success. We report these results and test SLUG on an additional six GAMETES datasets
of increased difficulty, for a total of four regular and 16 epistatic datasets. Despite its slowness, SLUG achieves the best
results and solves all but the most difficult classification tasks. We perform further explorations of its inner dynamics and
discover how to improve the feature selection by enriching the communication between wrapper and learner, thus taking the
first step toward a new and more powerful SLUG.

Keywords Feature selection · Epistasis · Genetic programming · Genetic algorithms · Wrapper · Learner · Machine
learning

Introduction

Epistasis can generally be defined as the interaction between
genes, and it is a topic of interest in molecular and quantita-
tive genetics [1]. In machine learning (ML), several types
of epistatic interactions have been studied. In evolutionary
computation, epistasis has traditionally been interpreted as
the interaction between characters, sets of characters or,
generally speaking, parts of the chromosome representing
solutions. This type of epistatic interaction has attracted the
interest of researchers mainly because of its effect on fitness
landscapes and, consequently, problem hardness. The topic
has been studied since the early 90s (see, for instance, [2,
3]), and one of the most popular outcomes of those studies
was the NK-landscapes benchmark [4], in which the amount
of epistasis is tunable by means of two parameters, N and K.
This benchmark has been used in several circumstances for
testing the performance of genetic algorithm (GA) variants
(see for instance [5–10], just to mention a few), and more
recently, it has also been extended to genetic programming
(GP) [11].

An in-depth, although not very recent, survey of studies
of epistasis in GA can be found in [12]; while in [13], the
effect of epistasis on the performance of GA is critically

This article is part of the topical collection “Evolution, the New AI
Revolution” guest edited by Anikó Ekárt and Anna Isabel Esparcia-
Alcázar.

 * Nuno M. Rodrigues
 nmrodrigues@fc.ul.pt

 João E. Batista
 jebatista@fc.ul.pt

 William La Cava
 william.lacava@childrens.harvard.edu

 Leonardo Vanneschi
 lvanneschi@novaims.unl.pt

 Sara Silva
 sara@fc.ul.pt

1 LASIGE, Department of Informatics, Faculty of Sciences,
University of Lisbon, Lisbon, Portugal

2 Harvard Medical School, Boston Children’s Hospital,
Boston, MA, USA

3 NOVA Information Management School (NOVA IMS),
Universidade Nova de Lisboa, Campus de Campolide,
1070-312 Lisbon, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02106-3&domain=pdf
http://orcid.org/0000-0001-5312-8276

 SN Computer Science (2024) 5:91 91 Page 2 of 17

SN Computer Science

revised, highlighting the difficulty of GA in optimizing
epistatic problems. In [14], epistasis was used to select the
appropriate basis for basis change space transformations
in GA, and in the same year [15] proposed a method to
decipher the exact combinations of genes that trigger the
epistatic effects, focusing on multi-effect and multi-way
epistasis detection. Recently, a new benchmark was pro-
posed [16] where epistasis-tunable test functions are con-
structed via linear combinations of simple basis functions.
A different way of interpreting epistasis in ML is by study-
ing the interactions between features in data. The problem
of attribute interdependency is well known in ML. It has
been studied in several approaches, using, for instance sev-
eral types of correlation [17] or mutual information [18].

In this paper, we tackle a rather different type of prob-
lem: we want to be able to deal with datasets where,
among many variables, only a very limited number of
them are useful and able to explain the target, and they
must necessarily and only be used together for the model
to be accurate. In other words, all the few “important”
variables must be selected, while the many “confounding”
ones must be left out. If only one (or more) of the “impor-
tant” variables are left out, then the model is not able to
perform better than a simple random guest. Furthermore,
these few important variables are not necessarily corre-
lated between each other, or have any other relationship of
interdependency. This type of behavior can be observed,
for instance, in some of the Korn’s benchmark problems
proposed in [19], or in some medical problems, where
finding epistasis can be crucial to identify the association
between disease and genetic variants, and consequently be
able to develop medical treatments and prevention [20]. It
is a common intuition that, for problems characterized by
such a typology of data, feature selection plays a crucial
role. However, many of the existing feature selection algo-
rithms will fail, for not being able to catch the epistatic
relation between features. The objective of this work is
to present a feature selection strategy that, integrated in a
very natural way with the modeling algorithm, is appropri-
ate for working with epistatic datasets.

The epistatic datasets studied in this paper have been
generated using the GAMETES algorithm, introduced in
[21], and have already been used in [22] as a benchmark to
validate the M4GP classification method. Similar types of
datasets have also been studied in [23], where a GP-based
pipeline optimization tool (TPOT-MDR) was proposed to
automatically design ML pipelines for bioinformatics prob-
lems. For tackling problems characterized by this type of
data, Urbanowicz and colleagues recently presented RelieF-
based feature selection [24], a unique family of filter-style
feature selection algorithms that are sensitive to feature
interactions and that can be applied to various types of prob-
lems, including classification and regression. In [22], this

method has been coupled with M4GP, achieving state-of-
the-art results on the tested GAMETES datasets.

Our proposal consists of using a GA for feature selection.
The idea, presented for instance in [25–27], is framed in a
well-established research track, and surveys can be found in
[28, 29]. With the proliferation of data and the consequent
development of ML, the use of GA for feature selection
increased in the last decade. Numerous recent contributions
can be found, for instance, aimed at improving the method
in presence of vast amounts of data [30, 31], or applying
the method in several different real-world scenarios, includ-
ing medicine [32], economy [33], image processing [34],
remote sensing [35] and sociology [36], just to mention a
few. However, in this work, we match the GA with another
evolutionary algorithm, Genetic Programming (GP), obtain-
ing an integrated, and purely evolutionary, method that is
able to perform feature selection and at the same time induce
good models using the selected features. The GA part acts
as a wrapper to the GP part, that is the learner. We call our
approach SLUG (which stands for feature SeLection Using
Genetic algorithms and genetic programming), and com-
pare it to both standard GP and other GP-based algorithms
already used on the GAMETES datasets, such as M3GP [37]
and M4GP [22]; we also compare it with other GA-wrapped
ML classifiers that also perform feature selection, such as
decision trees, random forests, and XGBoost.

Although substantially different from SLUG, some
related methodologies have been studied in the past. In
[38], the opposite of SLUG was proposed, a methodology
where GP was used for feature selection and GA for feature
construction. In [39], GP is wrapped around GP itself with
the objective of reducing the dimensionality of a dataset
with one million features while also making use of GPU
hardware to speed up the computation. In [40], the authors
proposed a competitive and cooperative coevolutionary
approach (Symbiotic Bid-Based GP) to perform both attrib-
ute subspace identification and classifier design at the same
time. This approach was able to reduce the total attribute
space from hundreds of thousands to no more than seventy
features, while the classifiers themselves only used five to
seven features. In [41], the authors proposed Cooperative
Co-Evolutionary Genetic Programming, a new framework
for high-dimensional problems. The proposed framework
performs co-evolution at three different levels (genotype,
feature, output) and the results showed that performance
improves only when the output level cooperation happens.

Prior research had focused on the selection of features in
high-dimensional datasets, and a notable example of a reli-
able benchmark is the feature selection challenge presented
at the Neural Information Processing Systems (NEURIPS)
conference in 2003 [42]. The aforementioned challenge
evaluated the efficacy of various model combinations from
multiple teams on five UCI datasets with different levels

SN Computer Science (2024) 5:91 Page 3 of 17 91

SN Computer Science

of dimensionality, ranging from 500 to 100,000 features.
Besides establishing robust baselines on what models and
feature combinations are better suited for this task, which
provided interesting insights for future research, it was pos-
sible to conclude that sometimes eliminating extraneous
features is not critical to achieving a good classification
performance, with some of the solutions using all the avail-
able features.

Our proposal also consists of using GP for further fea-
ture selection and for classification. Similar to the work of
several authors that use GP-based methods for classification
in high-dimensional data, such as eGP [43], M3GP [44],
M4GP [22], GP-SVI [35] and the standard GP itself [39,
45–47], SLUG [48] also showed promising results in this
type of problem.

SLUG was first introduced in [48], where it has shown
to be successful on different types of classification tasks,
achieving state-of-the-art results on several GAMETES
datasets. It has also demonstrated that the GA as wrapper
and GP as learner are the right elements that grant SLUG its
success. In this paper, we extend that initial work, by report-
ing the previous results and testing the original SLUG on six
further GAMETES datasets of increased difficulty. Also, we
study and discuss the inner dynamics of SLUG and describe
a simple and promising improvement to its feature selection
process, proposing an enriched combination of wrapper and
learner for a future and more powerful SLUG. The following
are the main contributions of the current work:

• We demonstrate the effectiveness of SLUG on six addi-
tional GAMETES datasets of increased difficulty, show-
ing the applicability of the method on a wider range of
epistatic problems;

• We conduct a comprehensive analysis of the inner work-
ings of SLUG, also proposing an enriched combination
of wrapper and learner that is expected to improve the
performance of SLUG on high-dimensional datasets.

SLUG

The proposed method, feature SeLection Using Genetic
algorithms and genetic programming (SLUG), uses a coop-
erative approach that joins these two evolutionary algo-
rithms. Each GA individual is represented using a binary
chromosome of the same length as the total number of fea-
tures in the original dataset. This chromosome encodes a
selection of features, where an allele equal to 1 means that
the corresponding feature is used, while an allele equal to 0
means that the corresponding feature is not used. The quality
of each GA individual is assessed by running GP with the
features selected by that GA individual. More specifically,
the fitness of the GA individual corresponds to the fitness of

the best GP individual at the end of this GP run. A graphical
representation of the SLUG pipeline is shown in Fig. 1, with
the evaluation of the individuals being detailed in Fig. 2. As
it is customary, once the GA individuals have been evalu-
ated, a new GA population is formed by applying selection
and the genetic operators, and after a number of generations
the GA terminates and returns both the chromosome with
the best selected features and the GP model that achieved the
best results using only those features as input data (Fig. 1).
Finally, the best GP model is evaluated on the test dataset
using the features selected by the GA.

Naturally, the GP model does not have to use all the
GA-selected features, since GP also performs its own fea-
ture selection during its evolution. In fact, this is one of
the strengths of SLUG for epistatic datasets. The number of
informative features on the GAMETES datasets is so low
that not even a method like GP, which has feature selection
abilities, can isolate them from the numerous other ones.
So, in SLUG the GA only has the task of reducing the num-
ber of features that GP can potentially use, so its task is
facilitated. In other words, the strength of SLUG is that the
feature selection step performed by the GA does not need
to be accurate: as long as the right features are among a
reasonable number of selected ones, GP can do the rest of
the job. We may think of the feature selection process of
SLUG as composed of two phases: a sort of “preselection”
(or explicit feature selection) performed by the GA in a pre-
processing phase (where hopefully all the informative fea-
tures are maintained, but many of the non-informative ones
are eliminated), and the final feature selection (or implicit
feature selection) performed by GP at learning time, whose

Dataset

Train data Test data

StartNew GA population

Stop? End

Selected features

Evaluate individuals

Select parents

Apply genetic operators

GP model

Evaluation

Fig. 1 A graphical representation of the SLUG pipeline

 SN Computer Science (2024) 5:91 91 Page 4 of 17

SN Computer Science

objective is to keep all and only the informative features in
the final model.

The main limitation of SLUG, promptly identified in [48],
is its high computational cost, caused by the obvious fact
that an entire GP run is needed for evaluating each GA indi-
vidual. Some alternatives are discussed in Sect. “Wrappers
and Learners”. Given that the goal is not, and never was,
to obtain the best possible model, but rather to identify the
epistatic features, one way to reduce the running time could
be to accelerate the convergence and stop the evolution once
they are found. Recognizing the moment in which the key
features are found has prompted an exploration of the evo-
lutionary dynamics of SLUG, described in Section “Accu-
racy and Key Features”, which ultimately uncovered another
limitation: once the key features are found by GP, they
may be lost because the GA is not informed of which GP-
selected features were responsible for the reported fitness.
Section “Feature Selection Pressure” proposes a possible
solution for this problem.

Data

We test the SLUG method on two distinct sets of problems:
regular and epistatic. For the first set, we use four stand-
ard binary classification problems: HRT (Heart) [49]; ION
(Ionosphere) [49], PRK (Parkinsons) [49] and SON (Sonar)
[50]. Details regarding the composition of these datasets can
be found in Table 1.

For the second set, we use GAMETES datasets, which
are a collection of simulated gene–disease association data-
sets produced by a tool for embedding epistatic gene–gene
interactions into noisy genetic datasets [51]. GAMETES
generates random, pure, strict n-locus models, and respec-
tive simulated datasets for these models. According to [51],
an n-locus model is purely and strictly epistatic if all n loci,
but no fewer, are predictive of disease status.

We use 16 different problems that vary according to three
measures of difficulty: number of epistatic loci (2, 3), which

represent the key genes/features that solve the problem (the
higher the number, the harder the problem); number of fea-
tures (10, 100, 1000) with binary values 0 or 1 (the higher
the number of features, the more difficult it is to find the few
essential ones); signal-to-noise ratio (0.05, 0.1, 0.2, 0.4),
which refers to the degree of separation between the true
signal and the noise (the higher the signal-to-noise ratio,
the easiest it is to locate the key epistatic features). Each
problem consists of a perfectly balanced binary classification
task where a two-way or three-way epistatic interaction (2 or
3 loci) is present but is masked by the presence of confound-
ing features and noise, and the label predicts the presence or
absence of the disease.

Due to computational and time constraints, we did not
perform experiments on all the possible combinations of
number of features and signal-to-noise ratio. We selected
ten two-way (2w) datasets and six three-way (3w) datasets,
and named them (joining the information on features and
ratio): 2w_10_005 , 2w_10_01 , 2w_10_02 and 2w_10_04 ;
2w_100_005 , 2w_100_01 , 2w_100_02 and 2w_100_04 ;
2w_1000_02 and 2w_1000_04 ; 3w_10_01 and 3w_10_02 ;
3w_100_01 and 3w_100_02 ; 3w_1000_01 and 3w_1000_02.

The main advantage of the GAMETES data when com-
pared with the NEURIPS data mentioned earlier [42] is that
it offers a controlled experimental environment, allowing for
the manipulation of the measures previously mentioned to
assess the limits of each model. In contrast, the NEURIPS
data comprise varied and uncorrelated datasets. Nonethe-
less, we believe that conducting additional research evalu-
ating the models explored in this study on datasets like the

Fig. 2 Illustration of the way the
GA individuals are evaluated
by running GP with only the
selected features. The best fit-
ness of the GP run is the fitness
of the respective GA individual

1 0 1 0 1

1 1 0 0 0

0 1 1 1 1

0 1 1 1 0

GA population

...

X1 X3 X5

X1 X2

X2 X3 X4 X5

X2 X3 X4

GP

GP

GP

GP

... ...

best fitness

best fitness

best fitness

best fitness
fitness

fitness

fitness

fitness

Selected features

Table 1 Number of features, observations, and negative/positive ratio
on each dataset

Datasets HRT ION PRK SON

Features 13 33 23 61
Observations 270 351 195 208
Neg/Pos Ratio 45/55 65/35 75/25 46/54

SN Computer Science (2024) 5:91 Page 5 of 17 91

SN Computer Science

ones utilized in the NEURIPS challenge could offer valuable
insights and further strengthen our claims.

Methods

Besides standard GA and standard GP, which are part of the
SLUG method, we also compare our results with the follow-
ing GP-based methods:

M3GP: M3GP stands for multidimensional multiclass
GP with multidimensional populations [37]. Originally
designed for multiclass classification, in M3GP each indi-
vidual is composed of a mutable number of trees, also called
dimensions, from which we extract a set of hyper-features
that are then given to a classifier. Along with the standard
crossover and mutation operators, M3GP includes an addi-
tional crossover, which swaps dimensions between individu-
als, and two additional mutations, which add/remove dimen-
sions to/from an individual. The fitness of each individual
is calculated by running a classifier on the hyper-feature
space created by the trees of the individual. On the original
implementation of M3GP, this is by default the Mahalanobis
distance classifier.

M4GP: While the M3GP uses a tree-based structure
for the individuals, M4GP, the successor of M3GP, uses a
stack-based structure, which naturally provides support for
multiple outputs. Regarding genetic operators, M4GP uses
stack-based operators that are equivalent to the ones used by
M3GP. For selection, M4GP uses lexicase selection, which
outperformed standard tournament selection, and age-fitness
Pareto survival selection in experiments [22].

M4GP+EKF: Expert knowledge filter (EFK) is a pre-
processing feature selection algorithm from the RelieF fam-
ily [52]. In M4GP+EKF it is used to reduce the dataset to
the top ten features before giving it to the M4GP algorithm
[22]. Since EKF is applied only as a preprocessing opera-
tion, it causes only some residual overhead and does not
affect the training time. From now on, we will call this vari-
ant M4GP-E.

As part of the discussion, we also present some results
obtained by replacing the GP part of SLUG with other ML
methods, namely, decision trees (DT), random forests (RF),
and extreme gradient boosting, better known as XGBoost
(XGB). It should be noted that the DT, standard GP, M3GP
and M4GP methods perform implicit feature selection by
evolving models that do not use all available features. We
can say the same about the RF and XGBoost models. How-
ever, due to the ensemble characteristic of the algorithms,
more features are selected, mitigating their feature selection
capabilities. As such, the principal feature selectors in this
work are the GA part of the SLUG variants and the EFK part
of the M4GP-E algorithm.

Experimental Setup

We run SLUG for 50 generations of the GA, using a popula-
tion of 100 individuals. The GP populations also have 100
individuals, but they evolve for only 30 generations, which
our initial experiments revealed to be sufficient to evaluate
the quality of the selected features. GP uses the traditional
binary arithmetic operators [+,−, ∕, ∗] and no random con-
stants. Fitness is the overall accuracy in the training set,
measured after transforming the real-valued outputs of GP
into class labels. The best fitness of each GP run is passed
to the GA as the fitness of each individual, as explained in
Sect. “SLUG”, and therefore the GA (and therefore SLUG)
also uses the overall accuracy as fitness (as do all the other
GP and non-GP methods used here). Both GA and GP select
the parents of the next generation using tournaments of size
5. Regarding the genetic operators, GP uses the standard
subtree crossover and mutation with 50% probability each.
GA also uses standard crossover that swaps same-sized
blocks between 2 chromosomes with probability of 70% ,
and standard mutation that performs bit-flip on the chromo-
some with probability of 1/n (where n is the population size)
and each bit has probability of 1/m of being flipped (where
m is the length of the chromosome, i.e., the number of fea-
tures of the problem). Both GA and GP use some elitism:
GP guarantees that the best individual of one generation
survives into the next; GA does not guarantee the survival
of the best chromosome from one generation to the next,
to avoid diversity loss, but it keeps track and returns the
best chromosome (and respective GP model) that was ever
achieved during the entire run.

Standard GP, M3GP, and both M4GP variants all use pop-
ulations of 500 individuals evolving for 100 generations and,
like SLUG, they all use tournaments of size 5. For more spe-
cific details on the M3GP and M4GP implementations and
settings, the reader should consult Sect. “Methods” and the
papers cited therein. The implementation of the GP methods
will be available for download once the paper is accepted.
The STGP, M3GP, M4GP, and SLUG implementations we
use in this work can be found here.1 Regarding the methods
DT, RF, and XGB mentioned in the discussion, we use the
implementations provided by Scikit-learn [53]. We perform
hyperparameter optimization by means of grid search with
fivefold cross-validation on the entire dataset, for each of
the three methods. For DT, we optimize the split criterion
and maximum depth; for RF, we optimize the split criterion,
number of estimators, and maximum depth; for XGB, we
optimize the learning rate, maximum depth, and number of

1 https:// github. com/ jespb/ Python- STGP, https:// github. com/ jespb/
Python- M3GP, https:// github. com/ caval ab/ m4gp- gamet es and https://
github. com/ NMVRo drigu es/ SLUG.

https://github.com/jespb/Python-STGP
https://github.com/jespb/Python-M3GP
https://github.com/jespb/Python-M3GP
https://github.com/cavalab/m4gp-gametes
https://github.com/NMVRodrigues/SLUG
https://github.com/NMVRodrigues/SLUG

 SN Computer Science (2024) 5:91 91 Page 6 of 17

SN Computer Science

estimators. The GA runs with the exact same parameters as
SLUG. In all cases, we randomly split the datasets 30 times,
one for each run, in 70% training and 30% test.

Results

We measure the overall accuracy of the methods and present
the results as boxplots (training and test) of the 30 runs and
tables with the (test) medians. To assess the statistical sig-
nificance of the results, we perform one-way non-paramet-
ric ANOVA analysis by means of pairwise Kruskal–Wallis

with Holm correction, using 0.05 as the significance thresh-
old. The Appendix contains the Holm-corrected p-values
obtained in all the comparisons.

Regular Classification Tasks

Taking into consideration the results presented in Table 2,
Fig. 3, and Appendix Table 5, we can see that our approach
performs well, on par with the other GP methods such as
M3GP and M4GP. Compared to the baseline of standard
GP, SLUG performs better on both HRT and PRK datasets,
and presents no significant differences on the remaining two.
Regarding the M3GP and M4GP baselines, the results are
also positive, with SLUG outperforming both methods on
one problem, presenting no significant difference on two
others, and being outperformed in the remaining problem.
Lastly, regarding M4GP-E, this method outperforms SLUG
in one problem, and no significant difference was found
between them in the remaining problems. Finally, we could
not help but notice one thing that appears to be different
between SLUG and most other methods, that is the consist-
ently low dispersion of the results on training (observable
in Fig. 3).

Table 2 Median test overall accuracy of each method on the non-
GAMETES binary classification tasks. Best results for each problem
are identified in bold. Results with no statistically significant differ-
ence from the best are also highlighted in bold

HRT PRK ION SON

GP 0.778 0.831 0.858 0.698
M3GP 0.790 0.881 0.873 0.786
M4GP 0.784 0.864 0.868 0.762
M4GP-E 0.802 0.873 0.854 0.738
SLUG 0.827 0.864 0.877 0.730

Fig. 3 Performance on the non-GAMETES binary classification datasets. Each plot contains, for each method, the results on the training (left)
and test (right) sets

SN Computer Science (2024) 5:91 Page 7 of 17 91

SN Computer Science

GAMETES Classification Tasks

Starting with the two-way epistatic datasets, taking into
consideration the results presented in Table 3, Fig. 4 and
Appendix Table 6, the first thing to notice is the fact that
the standard GP baseline was one of the best methods on
the 10-feature GAMETES problems. It outperformed both
M4GP and M4GP-E on the 2w_10_005 dataset, M4GP-E on
2w_10_01 , and all except SLUG on 2w_10_02.2 We hypoth-
esize that, on these easier problems, the exploration of dif-
ferent dimensional feature spaces that M3GP and M4GP
perform is not helpful to the search, preventing the exploita-
tion of better solutions.

Regarding our approach, the results were again highly
positive, with SLUG invariably being one of the top-per-
forming methods in all problems. The GA of SLUG is able
to preselect a set of features which are then further filtered
by the standard GP populations, also producing a ready-to-
use model to apply to the problem.

On the 2w_1000_04 dataset, SLUG produced results
significantly worse than M4GP-E. We attribute this to the
default parameterization of SLUG, which always uses very
small populations of 100 individuals. Particularly in the GA,
this is too small to allow a proper exploration of the search
space on the 1000-feature problems, making it harder for
SLUG to filter out the redundant features. To confirm this
hypothesis, we ran SLUG with a larger GA population of
200 individuals. Although this is the double of the previous
population size, it is still a very low number of individuals
for such a large search space (however, further increasing
the size of the population becomes computationally demand-
ing, an issue that is discussed later). We named this varia-
tion SLUG Large (SLUG-L). As seen on Fig. 5, particularly
on the 2w_1000_04 dataset, SLUG-L is slightly improved,
enough to be significantly better than the other solutions,
and not significantly worse than M4GP-E. Once again we
notice that SLUG exhibits a lower dispersion of results than
most other methods (Fig. 4), this time not only on training
but also on test.

Moving to the three-way epistatic datasets, the results
presented in Table 4, Fig. 6 and Appendix Table 7 show
that, once again, SLUG performs better than the other meth-
ods. On the 10-feature problems, it shares the best results
with both M4GP variants (and with GP on 3w_10_01); on
the 100-feature problems, it is the sole winner, clearly the
only method performing better than random guess; on the
1000-feature problems, no method was significantly better
than the others, all performing as bad as random guess.

Discussion

From the previous results, we can state that SLUG is a pow-
erful method that performs feature selection while inducing
high-quality models. On the set of four regular problems, it
was one of the best methods in three of them. On the set of
ten two-way GAMETES problems, it was always one of the
best methods, although it required a larger population size
on one of them. On this one exception, one of the hardest
problems, the other winner besides SLUG-L was M4GP-E.
Finally, on the six three-way GAMETES problems, SLUG
was the only method that always ranked first, although fail-
ing to produce useful models for the 1000-feature problems,
like all the other methods.

Wrappers and Learners

Published results on M4GP [22] had already shown that
wrapping a feature selection method around a powerful
classifier can improve the results significantly, and here we
confirm that indeed, M4GP-E is often significantly better
than M4GP. Reminding that SLUG is also the product of
wrapping a feature selection method (GA) around a powerful
classifier (GP), our results reconfirm the advantages of such
an approach, since SLUG is very often significantly better
than standalone GP.

Naturally, we are interested in searching for the best match
between wrapper and learner, and we begin by exploring why
SLUG performs so well; which of its parts is more impor-
tant, the GA wrapper of the GP learner. On the one hand, we
observe that M4GP is in general a stronger learner than GP;
on the other hand, M4GP-E is not stronger than SLUG. There-
fore, GA seems to be a better wrapper than the EKF used in
M4GP-E, and mainly responsible for the success of SLUG.

While the combination of GA with M4GP seems like a
promising match to explore in the future, for now we try to
answer a simple question: is GA such a good wrapper that
it can improve also the performance of other ML methods,
arguably less powerful than the GP-based ones, like DT, RF,
and XGB? This question is not only academically interesting,
but also important from a practical point of view. Two evolu-
tionary algorithms nested in each other is never an efficient
solution in terms of computational effort, so it is not a surprise
that SLUG is sluggish. Any of the three other mentioned ML
methods runs much faster than GP, so wrapping GA around
any of them could result in a much faster SLUG. Furthermore,
like GP, these methods can also perform feature selection on
their own, on top of the preselection made by GA.

Therefore, we experiment with alternative variants of
SLUG where GP is replaced by DT, RF, and XGB. The
problem chosen to test these variants is the GAMETES
2w_1000_04 , coincidentally the one problem where SLUG-L

2 We performed 30 runs using the same total number of comparisons
as SLUG using the standard GP (10000 individuals and 1500 gen-
erations). With this, the median test accuracy achieved was 0.4982,
while the best was 0.5348.

 SN Computer Science (2024) 5:91 91 Page 8 of 17

SN Computer Science

Fig. 4 Performance on the
GAMETES two-way datasets.
Each plot contains, for each
method, the results on the train-
ing (left) and test (right) sets

SN Computer Science (2024) 5:91 Page 9 of 17 91

SN Computer Science

was required because SLUG was not one of the best meth-
ods (see Sect. “Results”). We chose this particular problem
because it has already been used in previous studies [22, 43]
where the standalone unwrapped versions of DT, RF, and
XGB were unable to solve the problem.

The obtained results are shown in Fig. 7 and reveal that,
even when wrapped with GA, these methods are not able to
solve the problem, and this means that GP is also essential for
the success of SLUG. Since the other methods also perform
feature selection, the reason why GP is essential is not clear,
particularly after observing that in one of the 30 runs the DT
method, which is undoubtedly the less powerful one, was able
to obtain a high-quality model (highest outlier in test, Fig. 7),
and it did so after only 17 generations.

Accuracy and Key Features

Figure 8 shows the evolution of test accuracy (medians of the
30 runs) for all the 16 GAMETES problems tested here. The
names of the problems are on the right, by the same order as
the respective lines, and the colors, thickness, and markers are
explained in the caption of the figure. Clearly, the difficulty
of the problems is mostly driven by the number of epistatic
loci (two-way problems mostly at the top and three-way at
the bottom). On the two-way problems the difficulty is also

driven by the signal-to-noise ratio; while for the three-way
problems, it is driven by the number of features. As shown
previously, SLUG achieves state-of-the-art results on most
of these problems, except on the two 3w_1000 problems,
the most difficult ones. The reason why SLUG fails on these
problems is because, unlike on the other problems, it is rarely
able to find the three key features. This is shown in Fig. 9,
which plots the distribution of the number of key features
included in the best GA individual at the end of the run, in the
30 runs. It can be observed that, whereas for all the two-way
problems the two key features are always included (with two
outliers on each of the 1000-feature problems), for the three-
way problems this only happens on the 10-feature problems.
On the 100-feature problems, the median is still the correct
number of key features, but on the 1000-feature problems, the
GA seldom includes all of them. Given this failure, we now
perform further explorations of how the accuracy evolves with
generations, and in the next section we discuss why the pres-
sure for feature selection is lower than initially thought, and
how it could be increased in order to improve SLUG.

Figure 10 shows the evolution of accuracy on two
1000-feature problems, one where SLUG succeeded
(2w_1000_04) and one where it failed (3w_1000_02). The
lines represent the medians of the 30 runs, while the boxplot-
like representations behind the lines represent the distribu-
tions of the accuracy values in the different runs. On the top
plot (2w_1000_04 , where SLUG succeeded), the lines reveal
a sharp increase of accuracy once the key features are found.
The distributions reveal a wide dispersion of results, particu-
larly after the initial generations and until more than half of
the evolution. This happens mostly because not all runs find
the key features around the same time in the evolution, which
means that, in any given generation, some runs have already
performed the accuracy “jump” while others have not, result-
ing in wildly different accuracy values. This also explains
why, toward the end of the evolution, when most runs have
already found the key features, the dispersion decreases.

Another factor that causes dispersion is that, even on
a single run, there may occur several jumps in accuracy
because the key features may be found and then lost again.
And the fact that this may happen (and indeed happens) is
a symptom of insufficient feature selection pressure, which

Fig. 5 Performance of different SLUG variants on the two higher
dimensional GAMETES datasets. Each plot contains, for each vari-
ant, the results on the training (left) and test (right) sets

Table 3 Median test overall
accuracy of each method on
the GAMETES two-way tasks.
Best results for each problem
are identified in bold. Results
with no statistically significant
difference from the best are also
highlighted in bold

2w_ 10_005 10_01 10_02 10_04 100_005 100_01 100_02 100_04 1000_02 1000_04

GP 0.628 0.682 0.710 0.663 0.521 0.535 0.509 0.510 0.502 0.495
M3GP 0.622 0.677 0.692 0.796 0.513 0.637 0.680 0.537 0.490 0.507
M4GP 0.617 0.675 0.692 0.792 0.561 0.661 0.681 0.759 0.500 0.511
M4GP-E 0.613 0.665 0.699 0.784 0.607 0.672 0.709 0.781 0.692 0.775
SLUG 0.629 0.682 0.710 0.797 0.617 0.681 0.722 0.777 0.720 0.753
SLUG-L - - - - - - - - 0.720 0.757

 SN Computer Science (2024) 5:91 91 Page 10 of 17

SN Computer Science

may be the cause for the failure of SLUG that is visible on
the bottom plot (3w_1000_02) of Fig. 10.

Feature Selection Pressure

It may seem surprising that, once the key features are found,
they may be lost again. It may also be tempting to think
that, to avoid this, the GA elitism should guarantee that the
best individual is never lost from the population. However,

the problem is not lack of elitism, but rather lack of com-
munication between the GA and the GP. Let us recall that
the GA informs GP of what features GP can use, and GP
informs the GA of what fitness (accuracy) was obtained by
the best model. However, GP never reports to the GA which
of the allowed features were actually included in the model.
Therefore, even if elitism is used to always keep the best GA
individual in the population, this individual does not know
which of its features are important or not. Each time a new

Fig. 6 Performance on the
GAMETES three-way datasets.
Each plot contains, for each
method, the results on the train-
ing (left) and test (right) sets

Table 4 Median test overall
accuracy of each method on the
GAMETES three-way tasks

Best results for each problem are identified in bold. Results with no statistically significant difference from
the best are also highlighted in bold

3w_ 10_01 10_02 100_01 100_02 1000_01 1000_02

GP 0.6241 0.6275 0.4950 0.5033 0.5033 0.4966
M3GP 0.6108 0.6450 0.4958 0.5116 0.4966 0.5108
M4GP 0.6425 0.6558 0.4966 0.5066 0.5016 0.5083
M4GP-E 0.6425 0.6425 0.4908 0.5050 0.4983 0.4900
SLUG 0.6375 0.6575 0.5792 0.5550 0.4967 0.4983

SN Computer Science (2024) 5:91 Page 11 of 17 91

SN Computer Science

GA individual is evaluated, a new GP run is performed, with
new random initial models and a final best model that may
or may not be using the right features. The larger the set of
features allowed by GA, the higher the probability of GP not
finding the important ones.

An enriched communication between GP and the GA is
one of the improvements proposed as future work, in the
next section. If GP reported back to the GA which subset of
allowed features it actually used, the GA could use this infor-
mation to further reduce the number of allowed features.
This would reduce the chances of losing the key features,
therefore speeding the convergence toward good models.
Ideally, this increased pressure to reduce the number of fea-
tures would be useful not only to focus on the key features
but also to obtain the smallest possible models. When ana-
lyzing the high-quality models evolved by the current SLUG

system, we realize that many of them contain not only the
key features that grant them success, but also extra features
that do not seem to bring them any advantage. For example,
on the 2w_1000_04 problem (where SLUG succeeded), 26
of the 30 final models contain the two key features, but 23 of
them also contain some extra features. Although the (nega-
tive) correlation between the number of extra features and
the accuracy of the model is not high (−0.38 on training and
−0.43 on test), maybe it would still be enough to cause a
further reduction of the number of features at the GA level.

What about the cases in which GP is not able to find the key
features, like 3w_1000_02 ? In this case, the problem begins
with the GA, that seldom selects the three key features (see
Fig. 9), and continues with GP that, in these few cases, is not
able to find them among the others. What can GP report back
to GA to inform that it should further reduce the number of fea-
tures? How can GP even know that the reason for not achieving
good models is too many allowed features, and not too few?
The correlation between the number of features used by the
final GP model and its accuracy is practically nonexistent (0.1

Fig. 7 Performance of different SLUG variants using DT, RF, XGB
and GP (the original SLUG) on the GAMETES 2w_1000_04 prob-
lem. Each plot contains, for each variant, the results on the training
(left) and test (right) sets

Fig. 8 Evolution of test accu-
racy on all the GAMETES
problems. Lines are green/yel-
low/blue for 10/100/1000-fea-
ture problems; lines are thicker
for higher signal-to-noise ratios;
lines are dotted for the three-
way problems. The names of the
problems on the right appear by
the same order as the lines

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

All 16 GAMETES Problems

3w_100_02
3w_1000_02
3w_1000_01

2w_100_005
2w_10_005

3w_10_02
3w_10_01

2w_10_04

2w_1000_04
2w_100_04

2w_100_02
2w_1000_02
2w_10_02
2w_100_01
2w_10_01

3w_100_01

2w
_1

0_
00

5

2w
_1

0_
01

2w
_1

0_
02

2w
_1

0_
04

2w
_1

00
_0

05

2w
_1

00
_0

1

2w
_1

00
_0

2

2w
_1

00
_0

4

2w
_1

00
0_

02

2w
_1

00
0_

04

3w
_1

0_
01

3w
_1

0_
02

3w
_1

00
_0

1

3w
_1

00
_0

2

3w
_1

00
0_

01

3w
_1

00
0_

02

0

1

2

3

N
um

be
r o

f k
ey

 fe
at

ur
es

All 16 GAMETES Problems

Fig. 9 Boxplot of the number of key features found by the GA at the
end of the run, for the 30 runs. Two-way problems have two key fea-
tures, while three-way problems have three key features

 SN Computer Science (2024) 5:91 91 Page 12 of 17

SN Computer Science

on training and 0.25 on test), so the enriched communication
between GP and the GA would not be helpful. Forcing a blind
reduction of the number of features at the GA level would be
a highly biased decision, since we cannot safely assume that a
reduction is always needed, particularly on non-epistatic prob-
lems. However, when dealing with epistatic problems like the
ones addressed here, it would certainly help. Other possible
improvements are mentioned in the next section.

Conclusion and Future Work

We have presented SLUG, a method for feature selection
using genetic algorithms (GA) and genetic programming
(GP). SLUG implements a cooperative approach that joins
these two evolutionary algorithms, where the quality of each
GA individual is assessed by performing a GP run with the
features selected by the GA. The GA acts like a wrapper,
selecting features for GP, the learner. At the end of the pro-
cess, both the set of GA-selected features and the best GP-
induced model are returned, and therefore SLUG comprises
the entire pipeline from data preprocessing to predictive mod-
eling. No efforts are put into the optimization of the model, as
this is not the main purpose of the work.

We tested SLUG on four regular binary classification
datasets and on 16 synthetic datasets produced by GAM-
ETES, a tool for embedding epistatic gene-gene interac-
tions into noisy datasets. We compared the results of SLUG
with the ones obtained by standard GP and other GP-based
methods like M3GP and two different M4GP variants, one

of them also wrapped by the EKF algorithm for feature
selection. SLUG obtained the best results in practically all
the problems, with special relevance for the good results
obtained on the epistatic datasets, whose difficulty was the
driver for this research in the first place. Although we main-
tained the focus on the GAMETES problems, the six new
datasets represent a new level of difficulty (finding three key
features, instead of two) that, to the best of our knowledge,
had not yet been subject to comparative studies. Although
most of the new results did not show statistically significant
differences between the methods used, the few significant
differences revealed an interesting finding: all the methods
solve the 10-feature problems; none of the methods solves
the 1000-feature problems; only SLUG was able to solve the
100-feature problems.

We discussed the merits and weaknesses of SLUG and the
parts that compose it. Its slowness is its obvious limitation,
as it requires considerable computational effort to run two
nested evolutionary algorithms. We experimented with alter-
native implementations, replacing the GP backbone of SLUG
with faster methods like decision trees, random forests and
XGBoost, all wrapped with GA for feature selection. However,
even with tuned parameters, none of them was able to catch
up with SLUG.

From the above, we conclude that SLUG is a powerful
method that performs feature selection while inducing high-
quality models, even without putting any effort into model
optimization. In the future, we intend to address the main lim-
itation of SLUG, by reducing its computational demands and

Fig. 10 Evolution of accu-
racy on the 2w_1000_04 and
3w_1000_02 problems. The
lines represent medians of the
30 runs, training (black) and
test (red); the lighter boxplots
behind them represent the
respective distribution of accu-
racy values

1 10 20 30 40 50

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

2w_1000_04

Generations

 training
 test

1 10 20 30 40 50

0.5

0.6

0.7

0.8
Ac

cu
ra

cy
3w_1000_02

Generations

 training
 test

SN Computer Science (2024) 5:91 Page 13 of 17 91

SN Computer Science

therefore making it less sluggish. Many other improvements
and extensions are possible, like the ones described below.

One possible approach to improve SLUG is by following
the approach described in [39] regarding the optimal size of
a population. The size of the SLUG populations could be
adapted to a calculated number of individuals that can cover
all the available features. This would avoid unnecessary com-
putational expense by having smaller populations for low
dimensional datasets, and would increase the success rate in
high dimensional datasets by improving the coverage rate on
the first generation. This is a promising approach, particularly
because we know that increasing the GA population size has
previously improved the performance of SLUG on the two-way
1000-feature problems [48]. We can hypothesize that increas-
ing the population size may be all that is needed for SLUG to
succeed also on the three-way 1000-feature problems.

Regarding other possible improvements, the backbone of
SLUG is currently standard GP, which is not appropriate for
multiclass classification. However, it can be replaced by other
methods. The ones we tried did not produce good models,
however other options exist, including M3GP and M4GP
themselves, which are some of the best GP-based multiclass
classification methods available today. Replacing GP with
M3GP would give us the added flexibility of being allowed
to plug any learning algorithm to the pipeline to work with
the hyper-features evolved by M3GP. Instead of GA+GP, we
would have a GA+M3GP+classifier pipeline, where GA pre-
selects the features, M3GP uses them to build hyper-features
tailored to classifier, and classifier finally induces an opti-
mized predictive model, with the added advantage that the
classifier can be whatever method best suits the needs of the
domain application. Naturally, the same rationale can be used
for regression instead of classification.

Regarding the improvement of the wrapper, the main
issue with GA is, and has always been, the delicate balance

between exploration and exploitation, here with an intense
concern regarding computational demands. On the one
hand, we want to make GA converge faster to a good subset
of selected features, also to save computational effort; on
the other hand, it must be able to properly explore the search
space, particularly on the most difficult higher dimensional
problems, but without requiring large populations that
would increase the computational time. Alternatively, rather
than optimizing the GA as a wrapper, other feature selec-
tion methods that show good results on high-dimensional
datasets can be explored, e.g., particle swarm optimization
[54] or other evolutionary algorithms [55].

To accelerate convergence, GP (or any other backbone
SLUG is using) could inform GA of what features are
actually being used, from the ones preselected. In case the
backbone does not perform feature selection itself, it can
probably still inform what features are more important. This
way, the GA could use more information from the learner
than just the fitness achieved with each subset of features,
increasing the cooperation between the two methods. It is
reasonable to think that, in this case, the GA binary chro-
mosomes would become real-valued ones, where each bit
would now contain a sort of probability of selecting each
feature, that the learner could use to build its own models.
To promote the exploration of the search space without hav-
ing to increase the population size, and particularly when
adding measures for faster convergence, our idea is to use
novelty search [56] on the GA to increase the bias toward
yet unexplored subsets of features.

Appendix

See Tables 5, 6 and 7.

Table 5 Holm-corrected p values using Kruskal–Wallis for the regular classification problems. The bold/italic colors indicate that the method on
the left is significantly better/worse than the method on the top using p < 0.05

HRT GP M3GP M4GP M4GP-E SLUG PRK GP M3GP M4GP M4GP-E SLUG

GP — 0.9922 1.1556 0.2843 0.0027 GP — 0.0000 0.7658 0.0627 0.0441
M3GP 0.9922 — 0.6884 0.8486 0.0490 M3GP 0.0000 — 0.0597 0.4882 0.1015
M4GP 1.1556 0.6884 — 0.6599 0.0124 M4GP 0.7658 0.0597 — 0.8317 0.7966
M4GP-E 0.2843 0.8486 0.6599 — 0.7852 M4GP-E 0.0627 0.4882 0.8317 — 0.7220
SLUG 0.0027 0.0490 0.0124 0.7852 — SLUG 0.0441 0.1015 0.7966 0.7220 —

 ION GP M3GP M4GP M4GP-E SLUG SON GP M3GP M4GP M4GP-E SLUG

GP — 0.3297 2.2914 1.6595 0.3457 GP — 0.0000 0.0010 0.0154 0.3311
M3GP 0.3297 — 0.9674 0.3734 0.9704 M3GP 0.0000 — 0.2653 0.3660 0.0232
M4GP 2.2914 0.9674 — 1.7345 1.1531 M4GP 0.0010 0.2653 — 0.6295 0.2414
M4GP-E 1.6595 0.3734 1.7345 — 0.3530 M4GP-E 0.0154 0.3660 0.6295 — 0.4270
SLUG 0.3457 0.9704 1.1531 0.3530 — SLUG 0.3311 0.0232 0.2414 0.4270 —

 SN Computer Science (2024) 5:91 91 Page 14 of 17

SN Computer Science

Ta
bl

e
6

 H
ol

m
-c

or
re

ct
ed

 p
 v

al
ue

s
us

in
g

K
ru

sk
al

–W
al

lis
 fo

r t
he

 tw
o-

w
ay

 G
A

M
ET

ES
 p

ro
bl

em
s.

Th
e

bo
ld

/it
al

ic
 c

ol
or

s
in

di
ca

te
 th

at
 th

e
m

et
ho

d
on

 th
e

le
ft

is
 s

ig
ni

fic
an

tly
 b

et
te

r/w
or

se
 th

an
 th

e
m

et
ho

d
on

 th
e

to
p

us
in

g
p

<
 0

.0
5

10
_0

05
G

P
M

3G
P

M
4G

P
M

4G
P-

E
SL

U
G

10
_0

1
G

P
M

3G
P

M
4G

P
M

4G
P-

E
SL

U
G

G
P

—
1.

11
09

0.
06

73
0.

01
07

0.
92

34
G

P
—

0.
21

29
0.

07
01

0.
01

94
0.

55
89

M
3G

P
1.

11
09

—
0.

89
96

0.
23

83
0.

50
35

M
3G

P
0.

21
29

—
1.

39
18

0.
50

30
0.

42
43

M
4G

P
0.

06
73

0.
89

96
—

0.
75

35
0.

04
33

M
4G

P
0.

07
01

1.
39

18
—

0.
96

44
0.

14
72

M
4G

P-
E

0.
01

07
0.

23
83

0.
75

35
—

0.
01

17
M

4G
P-

E
0.

01
94

0.
50

30
0.

96
44

—
0.

02
41

SL
U

G
0.

92
34

0.
50

35
0.

04
33

0.
01

17
—

SL
U

G
0.

55
89

0.
42

43
0.

14
72

0.
02

41
—

 1
0_

02
G

P
M

3G
P

M
4G

P
M

4G
P-

E
SL

U
G

10
_0

4
G

P
M

3G
P

M
4G

P
M

4G
P-

E
SL

U
G

G
P

—
0.

00
00

0.
00

17
0.

00
21

1.
45

59
G

P
—

0.
00

00
0.

00
00

0.
00

00
0.

00
00

M
3G

P
0.

00
00

—
0.

76
73

0.
40

77
0.

00
01

M
3G

P
0.

00
00

—
0.

83
01

0.
17

79
1.

39
01

M
4G

P
0.

00
17

0.
76

73
—

0.
81

10
0.

00
20

M
4G

P
0.

00
00

0.
83

01
—

0.
39

62
1.

37
85

M
4G

P-
E

0.
00

21
0.

40
77

0.
81

10
—

0.
01

09
M

4G
P-

E
0.

00
00

0.
17

79
0.

39
62

—
0.

09
75

SL
U

G
1.

45
59

0.
00

01
0.

00
20

0.
01

09
—

SL
U

G
0.

00
00

1.
39

01
1.

37
85

0.
09

75
—

 1
00

_0
05

G
P

M
3G

P
M

4G
P

M
4G

P-
E

SL
U

G
10

0_
01

G
P

M
3G

P
M

4G
P

M
4G

P-
E

SL
U

G

G
P

—
0.

35
09

0.
39

11
0.

00
12

0.
00

01
G

P
—

0.
98

23
0.

01
48

0.
00

60
0.

00
01

M
3G

P
0.

35
09

—
0.

02
13

0.
00

00
0.

00
00

M
3G

P
0.

98
23

—
0.

05
99

0.
00

72
0.

00
00

M
4G

P
0.

39
11

0.
02

13
—

0.
00

00
0.

00
00

M
4G

P
0.

01
48

0.
05

99
—

0.
23

04
0.

00
06

M
4G

P-
E

0.
00

12
0.

00
00

0.
00

00
—

0.
37

13
M

4G
P-

E
0.

00
60

0.
00

72
0.

23
04

—
0.

07
96

SL
U

G
0.

00
01

0.
00

00
0.

00
00

0.
37

13
—

SL
U

G
0.

00
01

0.
00

00
0.

00
06

0.
07

96
—

 1
00

_0
2

G
P

M
3G

P
M

4G
P

M
4G

P-
E

SL
U

G
10

0_
04

G
P

M
3G

P
M

4G
P

M
4G

P-
E

SL
U

G

G
P

—
0.

36
64

0.
00

40
0.

00
00

0.
00

00
G

P
—

0.
07

28
0.

00
00

0.
00

00
0.

00
00

M
3G

P
0.

36
64

—
0.

29
70

0.
00

01
0.

00
00

M
3G

P
0.

07
28

—
0.

05
39

0.
00

00
0.

00
01

M
4G

P
0.

00
40

0.
29

70
—

0.
00

05
0.

00
00

M
4G

P
0.

00
00

0.
05

39
—

0.
00

15
0.

00
84

M
4G

P-
E

0.
00

00
0.

00
01

0.
00

05
—

0.
03

65
M

4G
P-

E
0.

00
00

0.
00

00
0.

00
15

—
0.

13
11

SL
U

G
0.

00
00

0.
00

00
0.

00
00

0.
03

65
—

SL
U

G
0.

00
00

0.
00

01
0.

00
84

0.
13

11
—

 10
00

_0
2

G
P

M
3G

P
M

4G
P

M
4G

P-
E

SL
U

G
SL

U
G

-L
10

00
_0

4
G

P
M

3G
P

M
4G

P
M

4G
P-

E
SL

U
G

SL
U

G
-L

G
P

—
0.

47
26

0.
57

40
0.

00
00

0.
00

00
0.

00
00

G
P

—
0.

35
60

0.
06

76
0.

00
00

0.
00

00
0.

00
00

M
3G

P
0.

47
26

—
0.

07
18

0.
00

00
0.

00
00

0.
00

00
M

3G
P

0.
35

60
—

0.
20

35
0.

00
00

0.
00

00
0.

00
00

M
4G

P
0.

57
40

0.
07

18
—

0.
00

00
0.

00
00

0.
00

00
M

4G
P

0.
06

76
0.

20
35

—
0.

00
00

0.
00

00
0.

00
00

M
4G

P-
E

0.
00

00
0.

00
00

0.
00

00
—

0.
00

03
0.

00
00

M
4G

P-
E

0.
00

00
0.

00
00

0.
00

00
—

0.
01

14
0.

16
50

SL
U

G
0.

00
00

0.
00

00
0.

00
00

0.
00

03
—

0.
91

74
SL

U
G

0.
00

00
0.

00
00

0.
00

00
0.

01
14

—
0.

37
62

SL
U

G
-L

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
91

74
—

SL
U

G
-L

0.
00

00
0.

00
00

0.
00

00
0.

16
50

0.
37

62
—

SN Computer Science (2024) 5:91 Page 15 of 17 91

SN Computer Science

Funding Open access funding provided by FCT|FCCN (b-on).
This work was partially supported by the FCT, Portugal, through
funding of the LASIGE Research Unit (UIDB/00408/2020 and
UIDP/00408/2020); MAR2020 program via project MarCODE
(MAR$$-$$01.03.01-FEAMP-0047); project AICE (DSAIPA/
DS/0113/2019). Nuno Rodrigues and João Batista were supported
by PhD Grants 2021/05322/BD and SFRH/BD/143972/2019, respec-
tively; William La Cava was supported by the National Library Of
Medicine of the National Institutes of Health under Award Number
R00LM012926.

Data availability All datasets used are publicly available. Each dataset
has a reference to the location where it can be obtained.

Declarations

Conflict of interest The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Cordell HJ. Epistasis: what it means, what it doesn’t mean, and
statistical methods to detect it in humans. Human Molecular
Genetics. 2002;11(20):2463–8. https:// doi. org/ 10. 1093/ hmg/ 11.
20. 2463. http:// acade mic. oup. com/ hmg/ artic le- pdf/ 11/ 20/ 2463/
16995 07/ ddf251. pdf

 2. Davidor Y. Epistasis variance: A viewpoint on ga-hardness. Foun-
dations of Genetic Algorithms, vol. 1, pp. 23–35. Elsevier; 1991.
https:// doi. org/ 10. 1016/ B978-0- 08- 050684- 5. 50005-7

 3. Reeves CR, Wright CC. Epistasis in genetic algorithms: An
experimental design perspective. In: Proceedings of the 6th Inter-
national Conference on Genetic Algorithms, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA; 1995. p. 217–224.

 4. Altenberg L. B2.7.2. NK fitness landscapes. In: Handbook of Evo-
lutionary Computation, pp. 5–10. IOP Publishing Ltd and Oxford
University Press, GBR; 1997.

 5. Merz P, Freisleben B. On the effectiveness of evolutionary
search in high-dimensional nk-landscapes. In: 1998 IEEE Inter-
national Conference on Evolutionary Computation Proceed-
ings. IEEE World Congress on Computational Intelligence (Cat.
No.98TH8360), 1998; p. 741–745. https:// doi. org/ 10. 1109/ ICEC.
1998. 700144

 6. Mathias KE, Eshelman LJ, Schaffer JD. Niches in nk-landscapes.
In: Martin, W.N., Spears, W.M. (eds.) Foundations of Genetic
Algorithms 6, Morgan Kaufmann, San Francisco; 2001. pp 27–46.
https:// doi. org/ 10. 1016/ B978- 15586 0734-7/ 50085-8

 7. Chan KY, Aydin ME, Fogarty TC. An epistasis measure based
on the analysis of variance for the real-coded representation in
genetic algorithms. In: The 2003 Congress on Evolutionary Com-
putation, 2003. CEC ’03., vol. 1, pp. 297–3041. 2003. https:// doi.
org/ 10. 1109/ CEC. 2003. 12995 88

 8. Aguirre HE, Tanaka K. Genetic algorithms on nk-landscapes:
Effects of selection, drift, mutation, and recombination. In: Cag-
noni S, Johnson CG, Cardalda JJR, Marchiori E, Corne DW,

Table 7 Holm-corrected p values using Kruskal–Wallis for the three-way GAMETES problems. The bold/italic colors indicate that the method
on the left is significantly better/worse than the method on the top using p < 0.05

10_01 GP M3GP M4GP M4GP-E SLUG 10_02 GP M3GP M4GP M4GP-E SLUG

GP — 1.0438 0.1143 0.1010 0.1007 GP — 0.0777 0.0001 0.0190 0.0000
M3GP 1.0438 — 0.0000 0.0003 0.0000 M3GP 0.0777 — 0.0717 1.1082 0.0346
M4GP 0.1143 0.0000 — 2.1843 0.9175 M4GP 0.0001 0.0717 — 0.1721 0.6680
M4GP-E 0.1010 0.0003 2.1843 — 1.6145 M4GP-E 0.0190 1.1082 0.1721 — 0.1455
SLUG 0.1007 0.0000 0.9175 1.6145 — SLUG 0.0000 0.0346 0.6680 0.1455 —

 100_01 GP M3GP M4GP M4GP-E SLUG 100_02 GP M3GP M4GP M4GP-E SLUG

GP — 0.6412 1.2430 1.2717 0.0000 GP — 1.6806 1.8232 0.8940 0.0024
M3GP 0.6412 — 0.9941 1.0946 0.0005 M3GP 1.6806 — 1.7649 1.6084 0.0118
M4GP 1.2430 0.9941 — 1.5453 0.0004 M4GP 1.8232 1.7649 — 1.4744 0.0288
M4GP-E 1.2717 1.0946 1.5453 — 0.0001 M4GP-E 0.8940 1.6084 1.4744 — 0.0020
SLUG 0.0000 0.0005 0.0004 0.0001 — SLUG 0.0024 0.0118 0.0288 0.0020 —

 1000_01 GP M3GP M4GP M4GP-E SLUG 1000_02 GP M3GP M4GP M4GP-E SLUG

GP — 2.3026 0.9587 1.8317 1.8926 GP — 0.0810 0.4141 0.9882 0.6128
M3GP 2.3026 — 2.1307 2.4733 1.8938 M3GP 0.0810 — 1.1972 0.0730 0.6951
M4GP 0.9587 2.1307 — 2.0380 2.0859 M4GP 0.4141 1.1972 — 0.5304 1.1277
M4GP-E 1.8317 2.4733 2.0380 — 3.2518 M4GP-E 0.9882 0.0730 0.5304 — 0.7222
SLUG 1.8926 1.8938 2.0859 3.2518 — SLUG 0.6128 0.6951 1.1277 0.7222 —

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/hmg/11.20.2463
https://doi.org/10.1093/hmg/11.20.2463
http://academic.oup.com/hmg/article-pdf/11/20/2463/1699507/ddf251.pdf
http://academic.oup.com/hmg/article-pdf/11/20/2463/1699507/ddf251.pdf
https://doi.org/10.1016/B978-0-08-050684-5.50005-7
https://doi.org/10.1109/ICEC.1998.700144
https://doi.org/10.1109/ICEC.1998.700144
https://doi.org/10.1016/B978-155860734-7/50085-8
https://doi.org/10.1109/CEC.2003.1299588
https://doi.org/10.1109/CEC.2003.1299588

 SN Computer Science (2024) 5:91 91 Page 16 of 17

SN Computer Science

Meyer J-A, Gottlieb J, Middendorf M, Guillot A, Raidl GR, Hart
E, editors. Applications of Evolutionary Computing. Berlin, Hei-
delberg: Springer; 2003. p. 131–42.

 9. Pelikan M, Sastry K, Goldberg DE, Butz MV, Hauschild M.
Performance of evolutionary algorithms on nk landscapes with
nearest neighbor interactions and tunable overlap. In: Proceed-
ings of the 11th Annual Conference on Genetic and Evolution-
ary Computation. GECCO ’09, Association for Computing
Machinery, New York, NY, USA; 2009. p. 851–858. https://
doi. org/ 10. 1145/ 15699 01. 15700 18

 10. Tinós R, Whitley D, Chicano F. Partition crossover for pseudo-
boolean optimization. In: Proceedings of the 2015 ACM Confer-
ence on Foundations of Genetic Algorithms XIII. FOGA ’15,
Association for Computing Machinery, New York, NY, USA;
2015. p. 137–149. https:// doi. org/ 10. 1145/ 27254 94. 27254 97

 11. Vanneschi L, Castelli M, Manzoni L. The k landscapes: A tun-
ably difficult benchmark for genetic programming. In: Proceed-
ings of the 13th Annual Conference on Genetic and Evolution-
ary Computation. GECCO ’11, Association for Computing
Machinery, New York, NY, USA; 2011. p. 1467–1474. https://
doi. org/ 10. 1145/ 20015 76. 20017 73

 12. Rochet S. Epistasis in genetic algorithms revisited. Inf Sci.
1997;102(1):133–55. https:// doi. org/ 10. 1016/ S0020- 0255(97)
00017-0.

 13. Jafari S, Kapitaniak T, Rajagopal K, Pham V-T, Alsaadi F.
Effect of epistasis on the performance of genetic algorithms.
Journal of Zhejiang University-SCIENCE A. 2018;20. https://
doi. org/ 10. 1631/ jzus. A1800 399

 14. Lee J, Kim Y-H. Epistasis-based basis estimation method for
simplifying the problem space of an evolutionary search in
binary representation. Complexity. 2019;13:2095167.

 15. Ansarifar J, Wang L. New algorithms for detecting multi-
effect and multi-way epistatic interactions. Bioinformatics.
2019;35(24):5078–85. https:// doi. org/ 10. 1093/ bioin forma tics/
btz463. http:// acade mic. oup. com/ bioin forma tics/ artic le- pdf/ 35/
24/ 5078/ 31797 822/ btz463. pdf

 16. Mo H, Li Z, Zhu C. A kind of epistasis-tunable test functions
for genetic algorithms. Concurrency and Computation: Practice
and Experience. 2021;33(8):5030. https:// doi. org/ 10. 1002/ cpe.
5030. e5030 cpe.5030.

 17. Hall MA. Correlation-based feature selection for machine learn-
ing. PhD thesis. 1999.

 18. Nazareth DL, Soofi ES, Zhao H. Visualizing attribute inter-
dependencies using mutual information, hierarchical cluster-
ing, multidimensional scaling, and self-organizing maps. In:
2007 40th Annual Hawaii International Conference on System
Sciences (HICSS’07), 2007. p. 53–53. https:// doi. org/ 10. 1109/
HICSS. 2007. 608

 19. Korns MF. Genetic programming symbolic classification: A study.
In: Banzhaf W, Olson RS, Tozier W, Riolo R, editors. Genetic
Programming Theory and Practice XV. Cham: Springer; 2018. p.
39–54.

 20. Petinrin OO, Wong K-C. Protocol for epistasis detection with
machine learning using genepi package. Methods Mol Biol.
2021;2212:291–305.

 21. Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA, et al. GAM-
ETES: a fast, direct algorithm for generating pure, strict, epistatic
models with random architectures. BioData Mining, 2012;5(16).
https:// doi. org/ 10. 1186/ 1756- 0381-5- 16

 22. La Cava W, Silva S, Danai K, Spector L, Vanneschi L, Moore JH.
Multidimensional genetic programming for multiclass classifica-
tion. Swarm Evol Comput. 2019;44:260–72. https:// doi. org/ 10.
1016/j. swevo. 2018. 03. 015.

 23. Sohn A, Olson RS, Moore JH. Toward the automated analy-
sis of complex diseases in genome-wide association studies
using genetic programming. In: Proceedings of the Genetic and

Evolutionary Computation Conference. GECCO ’17, Associa-
tion for Computing Machinery, New York, NY, USA; 2017. p.
489–496. https:// doi. org/ 10. 1145/ 30711 78. 30712 12

 24. Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH.
Relief-based feature selection: Introduction and review. J Biomed
Inform. 2018;85:189–203. https:// doi. org/ 10. 1016/j. jbi. 2018. 07.
014.

 25. Lanzi PL. Fast feature selection with genetic algorithms: a filter
approach. In: Proceedings of 1997 IEEE International Confer-
ence on Evolutionary Computation (ICEC ’97), 1997. p. 537–540.
https:// doi. org/ 10. 1109/ ICEC. 1997. 592369

 26. Chaikla N, Qi Y. Genetic algorithms in feature selection. In: IEEE
SMC’99 Conference Proceedings. 1999 IEEE International Con-
ference on Systems, Man, and Cybernetics (Cat. No.99CH37028),
vol. 5, pp. 538–5405. 1999. https:// doi. org/ 10. 1109/ ICSMC. 1999.
815609

 27. Li A-D, Xue B, Zhang M. Multi-objective feature selection using
hybridization of a genetic algorithm and direct multisearch for key
quality characteristic selection. Inf Sci. 2020;523:245–65. https://
doi. org/ 10. 1016/j. ins. 2020. 03. 032.

 28. Hussein F, Kharma N, Ward R. Genetic algorithms for feature
selection and weighting, a review and study. In: Proceedings of
Sixth International Conference on Document Analysis and Recog-
nition, 2001. p. 1240–1244. https:// doi. org/ 10. 1109/ ICDAR. 2001.
953980

 29. Xue B, Zhang M, Browne WN, Yao X. A survey on evolutionary
computation approaches to feature selection. IEEE Trans Evol
Comput. 2016;20(4):606–26. https:// doi. org/ 10. 1109/ TEVC. 2015.
25044 20.

 30. Lavine BK, White CG. Boosting the performance of genetic
algorithms for variable selection in partial least squares spectral
calibrations. Appl Spectrosc. 2017;71(9):2092–101.

 31. Chiesa M, Maioli G, Colombo GI, et al. Gars: Genetic algorithm
for the identification of a robust subset of features in high-dimen-
sional datasets. BMC Bioinformatics, 2020;21(54). https:// doi.
org/ 10. 1186/ s12859- 020- 3400-6

 32. Wutzl B, Leibnitz K, Rattay F, Kronbichler M, Murata M, Golas-
zewski SM. Genetic algorithms for feature selection when clas-
sifying severe chronic disorders of consciousness. PLoS ONE.
2019;14(7):1–16. https:// doi. org/ 10. 1371/ journ al. pone. 02196 83.

 33. Shin K-S, Lee Y-J. A genetic algorithm application in bankruptcy
prediction modeling. Expert Syst Appl. 2002;23:321–8.

 34. Seo K-K. Content-based image retrieval by combining genetic
algorithm and support vector machine. In: de Sá JM, Alexandre
LA, Duch W, Mandic D, editors. Artificial Neural Networks -
ICANN 2007. Berlin, Heidelberg: Springer; 2007. p. 537–45.

 35. Chion C, Landry J-A, Costa LD. A genetic-programming-based
method for hyperspectral data information extraction: Agricultural
applications. IEEE Trans Geosci Remote Sens. 2008;46(8):2446–
57. https:// doi. org/ 10. 1109/ tgrs. 2008. 922061.

 36. García-Dominguez A, Galván-Tejada CE, Zanella-Calzada LA,
Gamboa-Rosales H, Galván-Tejada JI, Celaya-Padilla JM, Luna-
García H, Magallanes-Quintanar R. Feature selection using
genetic algorithms for the generation of a recognition and clas-
sification of children activities model using environmental sound.
Mobile Information Systems Article ID. 2020;8617430:12.
https:// doi. org/ 10. 1155/ 2020/ 86174 30.

 37. Muñoz L, Silva S, Trujillo L. M3gp - multiclass classification with
gp. In: EuroGP. 2015.

 38. Smith MG, Bull L. Feature construction and selection using
genetic programming and a genetic algorithm. In: Ryan C, Soule
T, Keijzer M, Tsang E, Poli R, Costa E, editors. Genetic Program-
ming. Berlin, Heidelberg: Springer; 2003. p. 229–37.

 39. Langdon WB, Harrison AP. GP on SPMD parallel graph-
ics hardware for mega bioinformatics data mining. Soft

https://doi.org/10.1145/1569901.1570018
https://doi.org/10.1145/1569901.1570018
https://doi.org/10.1145/2725494.2725497
https://doi.org/10.1145/2001576.2001773
https://doi.org/10.1145/2001576.2001773
https://doi.org/10.1016/S0020-0255(97)00017-0
https://doi.org/10.1016/S0020-0255(97)00017-0
https://doi.org/10.1631/jzus.A1800399
https://doi.org/10.1631/jzus.A1800399
https://doi.org/10.1093/bioinformatics/btz463
https://doi.org/10.1093/bioinformatics/btz463
http://academic.oup.com/bioinformatics/article-pdf/35/24/5078/31797822/btz463.pdf
http://academic.oup.com/bioinformatics/article-pdf/35/24/5078/31797822/btz463.pdf
https://doi.org/10.1002/cpe.5030
https://doi.org/10.1002/cpe.5030
https://doi.org/10.1109/HICSS.2007.608
https://doi.org/10.1109/HICSS.2007.608
https://doi.org/10.1186/1756-0381-5-16
https://doi.org/10.1016/j.swevo.2018.03.015
https://doi.org/10.1016/j.swevo.2018.03.015
https://doi.org/10.1145/3071178.3071212
https://doi.org/10.1016/j.jbi.2018.07.014
https://doi.org/10.1016/j.jbi.2018.07.014
https://doi.org/10.1109/ICEC.1997.592369
https://doi.org/10.1109/ICSMC.1999.815609
https://doi.org/10.1109/ICSMC.1999.815609
https://doi.org/10.1016/j.ins.2020.03.032
https://doi.org/10.1016/j.ins.2020.03.032
https://doi.org/10.1109/ICDAR.2001.953980
https://doi.org/10.1109/ICDAR.2001.953980
https://doi.org/10.1109/TEVC.2015.2504420
https://doi.org/10.1109/TEVC.2015.2504420
https://doi.org/10.1186/s12859-020-3400-6
https://doi.org/10.1186/s12859-020-3400-6
https://doi.org/10.1371/journal.pone.0219683
https://doi.org/10.1109/tgrs.2008.922061
https://doi.org/10.1155/2020/8617430

SN Computer Science (2024) 5:91 Page 17 of 17 91

SN Computer Science

Comput. 2008;12(12):1169–83. https:// doi. org/ 10. 1007/
s00500- 008- 0296-x.

 40. Doucette JA, McIntyre AR, Lichodzijewski P, Heywood MI.
Symbiotic coevolutionary genetic programming: a benchmark-
ing study under large attribute spaces. Genet Program Evolvable
Mach. 2012;13:71–101.

 41. Rodriguez-Coayahuitl L, Morales-Reyes A, Escalante HJ, Coello
Coello CA. Cooperative co-evolutionary GP for high dimensional
problems. In: Baeck, T., Preuss, M., Deutz, A., Wang2, H., Doerr,
C., Emmerich, M., Trautmann, H. (eds.) 16th International Con-
ference on Parallel Problem Solving from Nature, Part II. LNCS,
vol. 12270, Springer, Leiden, Holland; 2020. p. 48–62. https:// doi.
org/ 10. 1007/ 978-3- 030- 58115-2_4

 42. Guyon I, Gunn S, Hur AB, Dror G. In: Guyon, I., Nikravesh,
M., Gunn, S., Zadeh, L.A. (eds.) Design and Analysis of the
NIPS2003 Challenge, Springer, Berlin, Heidelberg; 2006. p.
237–263. https:// doi. org/ 10. 1007/ 978-3- 540- 35488-8_ 10

 43. Rodrigues NM, Batista JE, Silva S. Ensemble genetic program-
ming. In: Hu T, Lourenço N, Medvet E, Divina F, editors. Genetic
Programming. Cham: Springer; 2020. p. 151–66.

 44. Batista JE, Rodrigues NM, Cabral AIR, Vasconcelos MJP, Ventu-
rieri A, Silva LGT, Silva S. Optical time series for the separation
of land cover types with similar spectral signatures: cocoa agrofor-
est and forest. Int J Remote Sens. 2022;43(9):3298–319. https://
doi. org/ 10. 1080/ 01431 161. 2022. 20895 40.

 45. Pei W, Xue B, Shang L, Zhang M. New fitness functions in genetic
programming for classification with high-dimensional unbalanced
data. In: 2019 IEEE Congress on Evolutionary Computation
(CEC), IEEE; 2019. p. 2779–2786.

 46. Tran B, Xue B, Zhang M. Genetic programming for feature con-
struction and selection in classification on high-dimensional data.
Memetic Computing. 2015;8(1):3–15. https:// doi. org/ 10. 1007/
s12293- 015- 0173-y.

 47. Silva S, Tseng Y-T. Classification of seafloor habitats using
genetic programming. In: Lecture Notes in Computer Science,
Springer; 2008. p. 315–324. https:// doi. org/ 10. 1007/ 978-3- 540-
78761-7_ 32

 48. Rodrigues NM, Batista JaE, La Cava W, Vanneschi L, Silva S.
Slug: Feature selection using genetic algorithms and genetic

programming. In: Genetic Programming: 25th European Confer-
ence, EuroGP 2022, Held as Part of EvoStar 2022, Madrid, Spain,
April 20–22, 2022, Proceedings, Springer, Berlin, Heidelberg;
2022. p. 68–84. https:// doi. org/ 10. 1007/ 978-3- 031- 02056-8_5

 49. Dua D, Graff C. UCI Machine Learning Repository. 2017. http://
archi ve. ics. uci. edu/ ml

 50. Zhang S. sonar.all-data. Kaggle. 2018. https:// www. kaggle. com/
ypzha ngsam/ sonar allda ta

 51. Urbanowicz RJ, Kiralis J, Sinnott-Armstrong NA, Heberling T,
Fisher JM, Moore JH. Gametes: a fast, direct algorithm for gen-
erating pure, strict, epistatic models with random architectures.
BioData Mining. 2012;5:16–16.

 52. Kononenko I. Estimating attributes: Analysis and extensions of
relief. In: ECML. 1994.

 53. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E. Scikit-learn: Machine learning in Python. J Mach Learn Res.
2011;12:2825–30.

 54. Tran B, Xue B, Zhang M. Variable-length particle swarm opti-
mization for feature selection on high-dimensional classification.
IEEE Trans Evol Comput. 2019;23(3):473–87. https:// doi. org/ 10.
1109/ tevc. 2018. 28694 05.

 55. Shang Y, Zheng X, Li J, Liu D, Wang P. A comparative analysis of
swarm intelligence and evolutionary algorithms for feature selec-
tion in SVM-based hyperspectral image classification. Remote
Sensing. 2022;14(13):3019. https:// doi. org/ 10. 3390/ rs141 33019.

 56. Lehman J, Stanley KO. Exploiting open-endedness to solve prob-
lems through the search for novelty. In: Bullock, S., Noble, J.,
Watson, R.A., Bedau, M.A. (eds.) Proceedings of the Eleventh
International Conference on Artificial Life (Alife XI), MIT Press,
Cambridge, MA; 2008. p. 329–336.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00500-008-0296-x
https://doi.org/10.1007/s00500-008-0296-x
https://doi.org/10.1007/978-3-030-58115-2_4
https://doi.org/10.1007/978-3-030-58115-2_4
https://doi.org/10.1007/978-3-540-35488-8_10
https://doi.org/10.1080/01431161.2022.2089540
https://doi.org/10.1080/01431161.2022.2089540
https://doi.org/10.1007/s12293-015-0173-y
https://doi.org/10.1007/s12293-015-0173-y
https://doi.org/10.1007/978-3-540-78761-7_32
https://doi.org/10.1007/978-3-540-78761-7_32
https://doi.org/10.1007/978-3-031-02056-8_5
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.kaggle.com/ypzhangsam/sonaralldata
https://www.kaggle.com/ypzhangsam/sonaralldata
https://doi.org/10.1109/tevc.2018.2869405
https://doi.org/10.1109/tevc.2018.2869405
https://doi.org/10.3390/rs14133019

	Exploring SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming
	Abstract
	Introduction
	SLUG
	Data
	Methods
	Experimental Setup
	Results
	Regular Classification Tasks
	GAMETES Classification Tasks

	Discussion
	Wrappers and Learners
	Accuracy and Key Features
	Feature Selection Pressure

	Conclusion and Future Work
	Appendix
	References

