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Abstract
Optimization of pre-production vehicle configurations is one of the challenges in the automotive industry. Given a list of 
tests requiring cars with certain features, it is desirable to find the minimum number of cars that cover the tests and obey the 
configuration rules. In this paper, we model the problem in the framework of satisfiability and solve it utilizing the newly 
introduced hybrid constrained quadratic model (CQM) solver provided by D-Wave. The problem definition is based on the 
“Optimizing the Production of Test Vehicles” use-case given in the BMW quantum computing challenge. We formulate a 
constrained quadratic model for the problem and use a greedy algorithm to configure the cars. We benchmark the results 
obtained from the CQM solver with the results from the classical solvers like coin-or branch and cut and Gurobi solver. 
We conclude that the performance of the CQM solver is comparable to the classical solvers in optimizing the number of 
test vehicles, given the noise-prone quantum hardware. However, the CQM solver takes much more time, which prohibits 
obtaining useful quantum advantages. As an extension to the problem, we describe how the scheduling of the tests can be 
incorporated into the model.

Keywords Vehicle configuration · Constrained quadratic model · Quantum annealing · D-Wave · BMW challenge

Introduction

Quantum computers are deemed promising technologies 
for solving industrial problems from various sectors like 
automotive, chemical, insurance, and technology. One of 
the main problem domains for industrial problems is opti-
mization, as identified in the report prepared by Quantum 
Technology and Application Consortium (QUTAC) [1]. 
Recently, there have been attempts to solve optimization 
problems using near-term quantum computers, through vari-
ational quantum eigensolver (VQE) [2], quantum approxi-
mate optimization algorithm (QAOA) [3], and quantum 
annealing (QA) [4].

Quantum annealing is a heuristic method for solving opti-
mization problems. It operates in the framework of quan-
tum adiabatic computing, which is a quantum computing 

model alternative to gate based. Since many optimization 
problems are proven to be NP-hard, quantum annealing has 
gained significant interest as an up-and-coming tool to target 
them. Quantum annealers are commercially available by the 
D-Wave company [5], and a vast amount of research has 
been devoted to identifying potential use-cases [6]. D-Wave 
quantum annealers have been utilized to solve problems from 
different domains such as transportation [7–10], finance [11, 
12], chemistry [13–15], and computer science [16–18].

Identified among the use-cases of quantum computing by 
BMW Group [19], optimization of pre-production vehicle 
configurations is one of the challenges in the automotive 
industry. Every year, new features and car components are 
launched by the companies, and various tests should be car-
ried out before the series production. The tests under consid-
eration range from the validation of the model’s functional-
ity to the evaluation of the new components. Consequently, 
pre-production vehicles are built for testing purposes. As the 
construction of pre-production vehicles is costly and com-
plex [20], it is desirable to reduce the number of required test 
vehicles. Hence, the test cars should be configured to cover 
as many tests as possible, while meeting some dependency 
constraints among the different features.
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Some of the attempts in solving the test-vehicle configu-
ration optimization problem use the framework of satisfiabil-
ity. The features of the vehicle are represented by Boolean 
variables, indicating whether the feature or the component 
exists or not. As each vehicle configuration should satisfy 
the feasibility rules concerning the different features of the 
car and the requirements imposed by the tests, such rules can 
be modeled through Boolean constraints. In Ref. [20], the 
authors present a Max-SAT framework that uses a greedy 
approach and tests it on small-scale real-world data. The 
problem is also studied by finding the minimum set cover 
in Ref. [21], where the authors formulate the problem as a 
minimum set cover problem and use SAT solver to check the 
feasibility of the configurations.

In this paper, our main goal is to exploit quantum anneal-
ing to solve the test-vehicle configuration problem. Our 
problem definition is based on the use-case “Optimizing the 
Production of Test Vehicles” given in the BMW quantum 
computing challenge [22] and takes into account various 
buildability constraints. We use an optimization approach, 
where all the variables are Boolean, and the conditions are 
given through Boolean constraints, and we aim to minimize 
the number of vehicles that will be used in testing. Among 
the various solvers provided by D-Wave, we use the newly 
introduced hybrid solver for constrained quadratic models 
[23]. The mentioned hybrid solver requires the problem to be 
encoded as a constrained quadratic model (CQM). In CQM, 
which is also known as the quadratically constrained quad-
ratic programming in the literature, the problem is identified 
through a quadratic objective function and quadratic con-
straints defined over binary and integer variables. Once the 
problem is formulated, the hybrid solver takes advantage of 
both the classical heuristic methods and the D-Wave quan-
tum processors. As the hybrid solver is proprietary to the 
D-Wave company, the exact way it operates is not revealed.

While modeling the problem as a CQM, our primary con-
cern is to use as few qubits as possible. We propose an opti-
mization model for which the total number of qubits grows 
in the order O(n(f + o + q)) , where n, f, o, q are the numbers 
of vehicles, features, vehicle types, and tests, respectively, 
and the number of required qubits is independent of the 
number of constraints. The analysis applies for both deci-
sion and optimization formulations. The former answers the 
question “Are n cars sufficient to cover all the tests?”, and the 
latter aims at ‘maximize the number of tests covered using 
n test vehicles‘. To benchmark the results obtained from the 
CQM solver, we develop an integer linear programming for-
mulation. Since both problems are notably time-consuming 
for current quantum and classical solvers, to benchmark the 
efficiency of the classical and quantum solvers, we analyze 
the performance of a greedy optimization procedure based 
on the optimization formulation. We test the performance 
of the algorithms on the dataset provided by the BMW 

quantum computing challenge [22] using D-Wave’s hybrid 
CQM solver, and the classical solvers CBC (coin-or branch 
and cut) and Gurobi solver. The results indicate that the 
performance of D-Wave’s hybrid solver in minimizing the 
number of required cars is comparable to the performance of 
the classical optimization algorithm. Furthermore, we con-
sider a variation of the decision formulation that includes 
the scheduling of the tests. However, this model requires far 
more qubits; thus, we claim that it is particularly inefficient 
for practical purposes. As per the authors’ knowledge, this is 
the first attempt to benchmark the performance of the hybrid 
solver for CQM compared to classical solvers.

The rest of the paper is organized as follows. In “Prelimi-
naries”, we present basic concepts related to SAT, Max-SAT, 
linear programming, quantum annealing, and constrained 
quadratic model. In “Buildability Constraints”, we describe 
the problem formulation and the optimization approach for 
solving the problem. In “Problem Solution”, we present and 
discuss the experimental results. We conclude with final 
comments in “Conclusion and Future Work”.

Preliminaries

In this section, we briefly explain the necessary background 
information on satisfiability problems, linear programming, 
and quantum annealing concepts.

Satisfiability Problems

Satisfiability problem [24] (SAT) is the problem of determin-
ing whether there exists an assignment to the binary vari-
ables that make a given Boolean expression true. A Boolean 
expression consists of Boolean variables x1, x2,… , xn , that 
are combined together using logical OR ( ∨ ) and AND ( ∧ ) 
operations and the negation operator ( ¬ ). For instance, the 
Booelan expression � = (¬x1 ∧ x2) ∨ x3 is satisfiable as 
x1 = 0, x2 = 1, x3 = 0 is a satisfying assignment for � . SAT 
is the first problem to be proven to be NP-complete [25, 26]. 
Hence, solving a large family of problems recognized as core 
to several areas in computer science and mathematics is as 
hard as solving the SAT problem.

A formula is said to be in conjunctive normal form 
(CNF), if it is written as the conjunction of clauses. A clause 
is a disjunction of literals, where a literal is either a vari-
able (positive literal) or its negation (negative literal). Any 
Boolean formula can be expressed in CNF. For instance, we 
can express � in CNF as (¬x1 ∨ x3) ∧ (x2 ∨ x3) . SAT problem 
can be equivalently defined as the question of whether there 
exists an assignment to the Boolean variables that make the 
formula
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satisfiable, where Ci is a clause and there are m clauses in 
total.

Maximum satisfiability problem (Max-SAT) is a gener-
alization of the SAT problem and can be considered as the 
optimization variant of the decision formulation. The goal is 
to find an assignment that maximizes the number of satisfied 
clauses. Note that knowing the optimal number of satisfied 
clauses, we can also deduce the solution to the SAT prob-
lem; therefore, we can conclude that the Max-SAT problem 
is NP-Hard.

A further generalization is the weighted maximum satisfi-
ability problem (weighted Max-SAT), in which each clause 
is associated with a weight, and the aim is to maximize the 
weighted sum of the satisfied clauses.

Linear Programming

Linear programming (LP) is concerned with the optimiza-
tion of an objective function subject to equality and inequal-
ity constraints, such that the objective and the corresponding 
constraints are linear. Linear programs can be expressed in 
the canonical form as

where c ∈ ℝ
n , A ∈ ℝ

n×n and b ∈ ℝ
n . The aim is to find the 

vector of variables x that minimizes the objective function 
subject to the given constraints. When all variables xi are 
integers, then the problem takes the name integer linear pro-
gramming (ILP) which is NP-Hard in general. If the vari-
ables are further restricted to the set {0, 1} , then the problem 
is called 0–1 linear programming (0–1 LP). Any ILP can be 
converted into 0–1 LP. For solving ILPs, there are heuristic 
methods like simulated annealing [27] and exact methods 
including cutting plane [28] and branch-and-bound methods 
[29].

There are various commercial and open-source solvers 
and toolkits for solving linear programs. PulP is a Python 
library [30] that provides tools for modeling problems and 
an interface for accessing various solvers. In this paper, we 
use PulP to model our problems and two different solvers 
to get the results: coin-or branch and cut (CBC) [31] solver, 
which is the default one in PulP, and Gurobi solver [32].

Quantum Annealing

Adiabatic quantum computing (AQC) is an analog com-
putational model that relies on the quantum adiabatic 

(1)C1 ∧ C2 ∧ C3 ∧⋯ ∧ Cm =

m
⋀

i=1

Ci,

minimize c⊺x

subject to Ax ≤ b

x ≥ 0,

theorem which states that a quantum state that is initially 
in the ground state is likely to stay in the ground state 
given that the evolution takes place slow enough. Some 
assumptions of AQC are lifted in Quantum annealing 
(QA), which is a meta-heuristic method for solving opti-
mization problems using the quantum adiabatic theorem.

The problem Hamiltonian Hp is designed so that its 
ground state encodes the solution to the problem of inter-
est, and an initial Hamiltonian H0 is picked whose ground 
state is known and easy to prepare. The system is initial-
ized with the ground state of H0 , and an adiabatic evolu-
tion path is followed so that the system ends up in the 
ground state of Hp . This is achieved by evolving the sys-
tem with the time-varying Hamiltonian H(t) expressed as

The quantum adiabatic theorem assures that the system 
always remains at the ground state of H(t) for sufficiently 
large real evolution time � . When t = � , H(t) equals Hp and 
ideally the system is expected to be in the ground state of Hp.

Commercially available quantum annealers are pro-
vided by the D-Wave company. D-Wave quantum process-
ing units (QPUs) implement the initial Hamiltonian 
H0 = −

∑

i �
x
i
 , where �x

i
 is the Pauli-X operator acting on 

i-th qubit and the problem Hamiltonian should be stated 
in the form of an Ising model Hp =

∑

i>j Jij𝜎
z

i
𝜎z

j
+
∑

i hi𝜎
z

i
 , 

where Jij denotes the interaction between sites i and j, hi is 
the external magnetic field applied on-site i and �z

i
 is the 

Pauli-Z operator. Nevertheless, it is much more convenient 
to formulate problems over binary variables. Any problem 
that is expressed as a quadratic unconstrained binary opti-
mization (QUBO) problem can be easily converted into an 
Ising model by replacing the binary variables bi with 
(1 − si)∕2 . QUBO involves the minimization of a quadratic 
objective function defined over binary variables. While it 
is an unconstrained model, using the penalty method, one 
can incorporate the constraints to the objective function 
[33]. We would like to point out that any ILP formulation 
can be formulated as a QUBO and we refer readers to [8] 
for a detailed explanation.

When running a problem on D-Wave QPUs, the vari-
ables need to be mapped to the QPU architecture as the 
underlying graph representing the interactions in the QPU 
is not fully connected; this process is known as the minor 
embedding [34]. Hence, the number of variables in the 
QUBO formulation should be much smaller than the actual 
number of physical qubits, making it unachievable to run 
real-world problems because D-Wave Advantage QPU has 
5640 qubits.

D-Wave hybrid solvers can solve much larger problems 
using a classical-quantum hybrid workflow. With the 

(2)H(t) =
(

1 −
t

�

)

H0 +
t

�
Hp.
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announcement of the new hybrid solver for constrained 
quadratic models (CQMs), D-Wave’s hybrid solver service 
(HSS) now consists of three different solvers. The binary 
quadratic model (BQM) solver accepts problems defined 
in the form of QUBO. One can define problems over dis-
crete variables in an unconstrained form and use the dis-
crete quadratic model (DQM) solver. In this paper, we will 
use the CQM solver, which is described in more detail in 
“Constrained Quadratic Model”. All solvers in HSS follow 
the same workflow. After taking the input, classical heuris-
tic solvers that run parallel on the cloud are called. These 
solvers have heuristic and quantum modules that send que-
ries to D-Wave Advantage QPU. The responses taken from 
the QPU are used to guide the classical heuristic process 
and improve the quality of the solutions obtained so far. 
Finally, the heuristic solver returns a solution to the user.

Constrained Quadratic Model

Constrained quadratic model (CQM) is the name given by 
D-Wave to the model involving a quadratic objective func-
tion and quadratic constraints that are defined over binary 
or integer variables. In the literature, this is also known 
as quadratically constrained quadratic programming. We 
can define a CQM as

where Pi ∈ ℝ
n×n , qi ∈ ℝ

n and ri ∈ ℝ for i = 0, 1,… ,m . The 
goal is to find the vector x that minimizes the objective func-
tion, where x consists of binary and integer variables.

D-Wave has recently introduced the hybrid solver for 
CQM. Unlike the previous hybrid solvers and quantum 
annealers of D-Wave, the CQM solver naively supports 
equality and inequality constraints. This is advanta-
geous for problems involving constraints compared to the 
QUBO, which is the standard formulation that has been 
used for quantum annealing so far. First of all, there is 
no need for removing the constraints through the penalty 
method, which in turn increases the number of variables 
if the constraints are in the form of inequalities. Second, it 
removes the difficulty of setting penalty coefficients, which 
is challenging as the model becomes sophisticated. Third, 
CQM solver allows the inclusion of quadratic constraints 
directly into the model, which is not possible for QUBO. 
It is also suggested by D-Wave that the hybrid CQM solver 
should be preferred over the other hybrid solvers in case 
the problem naturally involves constraints. An experimen-
tal evidence for performance comparison is available in 
Ref. [23].

minimize x⊺P0x + q
⊺

0
x

subject to x⊺Pix + q
⊺

i
x ≤ ri i = 1,… ,m

x ≥ 0,

Formulation of the Problem

In this section, we will describe the details of the vehicle 
optimization problem and model it through binary variables 
and linear constraints. We provide an integer linear program 
which can be directly used with the classical solvers and 
D-Wave CQM solver. We would like to note that the integer 
linear program is novel and has not been proposed before.

Overview

The configuration of each vehicle is determined by the pres-
ence or absence of the availability of the features, and each 
vehicle has a specific type. Let us discuss the buildability 
constraints that a vehicle configuration should satisfy [22].

– Single type requirement: Each vehicle should have a 
single type.

– Features allowed per type: For a given type, only some 
of the features are available.

– Group features: Certain groups of features cannot be 
implemented together (i.e., at most one can be imple-
mented). This constraint is valid for all types.

– Rules per type: For each type, there are rules which 
govern the feature set that the vehicle of a specific type 
should have. Those are mainly implication rules.

Finally, we have the test requirements that define the 
properties of the cars needed for the testing phase. We will 
assume that each test requires a single car and discuss how 
this assumption can be removed later on.

Consider n test vehicles, a list of f features and assume 
that there are o different types available. Let us assume that 
there are q test requirements. For vehicle i ∈ [n] , we will 
represent the presence/absence of feature j ∈ [f ] through the 
binary variables bi,j , where bi,j = 1 if and only if (iff) vehicle 
i has feature j. Next, we represent the type of the vehicle 
using the variable ti,j , where ti,j = 1 iff vehicle i ∈ [n] is of 
type j ∈ [o] . And finally, we define the binary variables pi,j , 
to represent whether a vehicle is used in a test, where pi,j = 1 
iff vehicle i ∈ [n] is used for test j ∈ [q].

Suppose that there are c buildability constraints in total. 
Note that the same set of constraints applies to each vehicle. 
Each constraint �k can be expressed using a Boolean expres-
sion over the binary variables we have defined above. First of 
all, we would like all buildability constraints to be satisfied 
for any given number of cars. This can be expressed using 
the following logical expression:

(3)
n
⋀

i=1

c
⋀

k=1

�k(bi,1,… , bi,f , ti,1,… , ti,o).
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Similarly, we can express the test requirements using 
Boolean expressions. To start with, each test requires 
absence or presence of certain features. We need constraint 
�l to ensure that the variable pi,l representing the l’th test 
requirement is set correctly:

Note that if pi,l = 0 , then the expression �l(bi,1,… , bi,f , pi,l) 
always evaluates to 1. This is because if car i is not used in 
test l there is no need to verify constraint �l . Now, we can 
identify two different problems based on how we interpret 
test requirements. Given n vehicles, the first problem is to 
decide whether there exist configurations for the given cars 
so that the buildability constraints are satisfied, and for each 
test requirement, then there is at least one car satisfying 
the requirement. This results in the following satisfiability 
problem:

If one wants to find the smallest number of vehicles for 
which the Boolean formula given in Eq. (5) is true, then the 
bisection method can be used by starting with a large n and 
applying binary search to find the optimal value.

It can be the case that the number of vehicles is fixed, 
and the aim is to find a configuration of vehicles that satis-
fies the buildability constraints and maximize the number 
of satisfied test requirements. So, unlike in the case of SAT, 
it is not required that all the test requirements are satisfied. 
Furthermore, each test requirement can be assigned some 
weight, in which case the aim is to maximize the weighted 
sum of the fulfilled tests. This yields a variant of weighted 
maximum satisfiability problem that is expressed mathemati-
cally as follows:

where wl is the weight associated with test requirement l, 
subject to the constraints

Note that this problem is not originally given as an SAT 
or Max-SAT instance—instead, it was defined through the 
collection of rules to be followed [22]. Instead of formulat-
ing an SAT or Max-SAT problem and then transforming it 

(4)
n
⋀

i=1

q
⋀

l=1

�l(bi,1,… , bi,f , pi,l).

(5)

n
⋀

i=1

c
⋀

k=1

�k(bi,1,… , bi,f , ti,1,… , ti,o)

∧

n
⋀

i=1

q
⋀

l=1

�l(bi,1,… , bi,f , pi,l) ∧

q
⋀

l=1

n
⋁

i=1

pi,l.

(6)maximize

q
∑

l=1

wl

n
∏

i=1

pi,l,

(7)

n
⋀

i=1

c
⋀

k=1

�k(bi,1,… , bi,f , ti,1,… , ti,o) ∧

n
⋀

i=1

q
⋀

l=1

�l(bi,1,… , bi,f , pi,l).

into ILP, we directly construct an ILP which turned out to 
be simpler and more efficient. Since such a formulation is a 
special case of CQM solver, it can be directly solved by the 
the solver provided by D-Wave.

Buildability Constraints

Having discussed the general overview of the vehicle test-
ing problem, now we are ready to express it as a linear pro-
gram defined over binary variables. We will be expressing 
Boolean expressions that correspond to constraints using 
equalities and inequalities. We will start with the buildability 
constraints, and we will either provide inequality or equality 
constraints in each case.

Single Type Requirement

The fact that each vehicle should have a single type can be 
incorporated using the constraints

Features Allowed Per Type

Some of the features are not allowed for a specific type. We 
encode this constraint through the features which are not 
allowed for the given type. In other words, for each type 
j ∈ [o] , there exists a collection of features Fj such that 
ti,j = 1 ⟹ bi,k = 0 for all k ∈ Fj for all vehicles i ∈ [n] . 
This is expressed by the inequality constraints

Group Features

Let FG denote a collection of feature groups. Given a group 
of features G ∈ FG , we need to make sure that at most one 
feature from each group G is implemented. This is equiva-
lent to inequalities

for each G ∈ FG.

Rules Per Type

Depending on the type of the vehicle, one may define rules 
in the form of implications about the presence or absence of 
the features in the vehicle as

(8)
o
∑

j=1

ti,j = 1, i ∈ [n].

(9)ti,j + bi,k ≤ 1, i ∈ [n], j ∈ [o], k ∈ Fj.

(10)
∑

k∈G

bi,k ≤ 1, i ∈ [n],
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where T1 is the type of the vehicle, and on the left and right 
sides of the implication, we have conjunction or disjunction 
of literals. The rule is saying that if a vehicle is of type 1, has 
feature 2, and does not have features 4 and 5, then it should 
have at least one of features 1 or 3.

We group the constraints into several classes depending 
on the form of the constraint and label it with a 4-character 
string, where the first two characters are representing the LHS 
of implication, and the remaining two are the RHS. The first 
character describes whether the variables on the LHS of the 
implication are negated or not. There are three possibilities: 
“0” if none of the variables are negated, “1” if all variables 
are negated, “m” if some of the variables are negated. Second 
character on LHS describes the operator used: “&” for AND, 
“|” for OR, 1 if only a single variable exists. The next two 
characters have the same meaning but describe the RHS of 
the constraint. For example, the implication above belongs to 
the class m&0|. The cases we will consider are inspired by 
the BMW quantum computing challenge dataset and include 
the combinations of m& and 0| on the LHS and 0|, 0&, 1|, 
1& on the RHS. We give the logical expression and the cor-
responding arithmetic expression for the mentioned cases in 
Table 1.

Now, we will investigate the implications of each type, 
making use of the arithmetic expressions given in Table 1. 
Where, M is the number of positive literals on the LHS, � is 
the number of negative literals on the LHS, and N is the num-
ber of literals on the RHS.

Case m&0& This category encapsulates m&01, 0&0&, 
1&0&, 0&01, 1&01, 010&, 0101, 110&, 1101. The con-
straints take the form

RHS is 0 iff the assumption is satisfied, in which case 
∑N

r=1
bi,kr should be equal to N. If the assumption is not 

𝚃𝟷 ∶ 𝙵𝟸 ∧ ¬𝙵𝟺 ∧ ¬𝙵𝟻 ⟹ 𝙵𝟷 ∨ 𝙵𝟹,

(11)

N −

N
∑

r=1

bi,kr ≤ N

(

1 − ti,j +M −

M
∑

r=1

bi,jr +

�
∑

r=1

bi,lr

)

, i ∈ [n].

satisfied, then RHS is at least N, hence the inequality is still 
correct.

Case m&1& This category encapsulates m&11, 0&1&, 
1&1&, 0&11, 011&, 0111 and the reasoning is the same 
as above

Case m&0| This category encapsulates 0&0|, 1&0|, 
010|, 110|. The constraints take the form

Note that RHS is 0 iff the assumption is satisfied In this case 
∑N

r=1
bi,kr ≥ 1 should be true. If the assumption is not satis-

fied, then the inequality is still correct.
Case m&1| This category encapsulates 0&1|, 1&1|, 

011|, 111|. The constraints take the form

Case 0|0|, 0|1| We take the contra positives and obtain 
1&1& and 0&1&, respectively, which are already discussed 
above.

Case 0|1&, 0|0& The constraints of the form 0|1& 
are expressed as ti,j ∧

⋁M

r=1
bi,jr ⟹

⋀N

r=1
¬bi,kr and equiva-

lently, we have conditions

(12)

N
∑

r=1

bi,kr ≤ N

(

1 − ti,j +M −

M
∑

r=1

bi,jr +

�
∑

r=1

bi,lr

)

, i ∈ [n].

(13)

1 −

N
∑

r=1

bi,kr ≤

(

1 − ti,j +M −

M
∑

r=1

bi,jr +

�
∑

r=1

bi,lr

)

, i ∈ [n].

(14)

N
∑

r=1

bi,kr − N + 1 ≤

(

1 − ti,j +M −

M
∑

r=1

bi,jr +

�
∑

r=1

bi,lr

)

, i ∈ [n].

(15)(ti,j ∧ bi,j1 ) ⟹

N
⋀

r=1

¬bi,kr ,

(16)

⋮

(ti,j ∧ bi,jM ) ⟹

N
⋀

r=1

¬bi,kr .

Table 1  Some logical expressions and their corresponding constraints

where M is the number of positive literals on the LHS, � is the number of negative literals on the LHS, and N is the number of literals on the 
RHS

Type Position Logical expression Corresponding constraint

m& LHS ti,j ∧
⋀M

r=1
bi,jr ∧

⋀�

r=1
bi,lr 1 − ti,j +M −

∑M

r=1
bi,jr +

∑�

r=1
bi,lr = 0

0& RHS ⋀N

r=1
bi,kr N −

∑N

r=1
bi,kr = 0

1& RHS ⋀N

r=1
¬bi,kr

∑N

r=1
bi,kr = 0

0| RHS ⋁N

r=1
bi,kr 1 ≤

∑N

r=1
bi,kr

1& RHS ⋁N

r=1
¬bi,kr

∑N

r=1
bi,kr ≤ N − 1
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We have M rules of the form 0&1&. Similarly, the con-
straints of the form 0|0& translate to rules of the form 
0&0&.

Test Requirements

Test requirements define the properties of cars needed for the 
testing phase. Each test requires the absence or presence of 
certain features. We will assume that the test j is in the form

the values T1
j
, T2

j
 and T3

j
 may be equal to 0.

Recall that pi,j indicates whether vehicle i is used in test 
j. We need constraints to ensure that the binary variables pi,j 
are properly set. Note that test j either imposes some features 
to exist in the vehicle, in which case we can express it using 
the inequality

or imposes that some features should not exist in the vehicle, 
which results in the inequality

or imposes disjunction of some features which translates as 
the inequality

We will call the constraints defined in 18–20 as the test con-
straints. The test constraints are needed both in decision and 
optimization approaches.

We will lift the assumption that each test requires only 
a single car. Let us assume that test j requires kj cars that 
satisfy the required properties. In case we want to solve the 
decision problem, we include the following constraint in our 
formulation to ensure that the number of vehicles that satisfy 
test j is kj for each j = 1,… , q:

If we want to solve the optimization problem, then we need 
to define an objective function to maximize. One possibility 
is to take into account the number of cars that satisfy the test 
and reflect this in the weight. This results in the following 
objective function:

(17)

bi,k1 ∧⋯ ∧ bi,k
T1
j

∧ ¬bi,l1 ∧⋯ ∧ ¬bi,l
T2
j

∧ (bi,m1
∨⋯ ∨ bi,m

T3
j

),

(18)−bi,kr + pi,j ≤ 0, i ∈ [n], r ∈ [T1
j
],

(19)bi,lr + pi,j ≤ 1, i ∈ [n], r ∈ [T2
j
],

(20)pi,j −

T3
j

∑

r=1

bi,mr
≤ 0, i ∈ [n].

(21)
n
∑

i=1

pi,j = kj, j ∈ [q].

(22)
n
∑

i=1

q
∑

j=1

wjpi,j.

There should be some upper bound on the number of cars 
that satisfy a specific test. For example, for a given test j, if 
more than kj cars satisfy the test, the excess ones should not 
add to the objective. Hence, we need the following constraint 
in the case of the optimization approach:

To conclude, to solve both the decision and optimization 
problem, we need the buildability and the test constraints 
defined in 8–20. For the decision problem, we need addition-
ally the constraint defined in Eq. (21). For the optimization, 
we need additionally the constraint defined in Eq. (23) and 
the objective function is defined as in Eq. (22).

Scheduling

A related problem in the automotive industry is the sched-
uling of vehicle tests. Aside from the configuration of the 
vehicles, there are additional constraints regarding when and 
how the tests will be conducted and whether a vehicle may 
be used in more than one test, making the problem more 
complex. The problem has been considered using classical 
approaches like constraint programming and mixed-integer 
linear programming in Refs. [30, 31, 35]. From our perspec-
tive, the presented model can be extended to incorporate 
scheduling constraints, as we will discuss briefly.

We assume that each test takes a single day, and the tests 
should be completed in D days. We extend the previously 
introduced pi,j variables into pi,j,d where d ∈ [D] is the day 
at which test j is performed with vehicle i. We replace pi,j 
in each previously introduced condition with pi,j,d , and if 
needed a summation over d should be added. For example, 
constraint given in Eq. (21) will be replaced with

for each test j ∈ [q].
From now on, we assume that only a single car is needed 

for each test. If the j-th test requires kj cars, we create vari-
ables pij1 , pij2 ,… , pijkj

 for test j. Hence, the constraint pre-
sented in Eq. (24) takes the form

where j belongs to the extended list of tests.
To ensure that test j is performed within the time frame 

[tstart
j

, tend
j

] , we need the constraint

(23)
n
∑

i=1

pi,j ≤ kj, j ∈ [q].

(24)
D
∑

d=1

n
∑

i=1

pi,j,d = kj,

(25)
D
∑

d=1

n
∑

i=1

pi,j,d = 1,
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If for a given test set J = {j1,… , jm} we need to use differ-
ent vehicles for testing, then the vehicle should be used at 
most once for one of the tests in the given test group. This 
constraint can be imposed by

for all i ∈ [n] and each test set J .
Let us now consider other conditions on scheduling. Let 

K be the number of cars that can be tested per day. We need 
to ensure that for each day d ∈ [D] , the number of tests per-
formed is at most K, which is equivalent to

Similarly, one has to ensure that each car i ∈ [n] is tested at 
most once in each day d ∈ [D] , which is equivalent to

Let us now consider how one can assign groups to each 
test to impose an order condition among tests from different 
groups. Let gj be the group id of the test j. We assume, that 
gj is an integer in {1,… , ḡ} , s.t. for two tests j, j′ , where j 
has to be performed before j′ if gj > gj′ (order condition). 
In addition, we assume that the tests from group gj = 1 are 
full crash tests, thus not only that they have to be the final 
test, but also each car can be used only once for such test 
(crash condition).

The order condition can be implemented as follows: 
For each vehicle i ∈ [n] , for each pair of tests j, j′ such that 
gj > gj′ , and for each d, d� ∈ [D] such that d < d′ , we add 
the constraint

Note that with the above approach, we can handle even more 
complicated test ordering, like the one defined by a partial 
order of tests.

Implementing the crash condition, together with the order 
condition, is enough to ensure that the car is used for only 
one crash test. Let J1 = {j ∈ [q] ∶ gj = 1} be the set of tests 
resulting in a crash. The constraint takes the form of each 
vehicle i ∈ [n]

(26)tstart
j

≤ d ⋅

D
∑

d=1

n
∑

i=1

pi,j,d ≤ tend
j

.

(27)
D
∑

d=1

∑

j∈J

pi,j,d = 1,

(28)
n
∑

i=1

q
∑

j=1

pi,j,d ≤ K.

(29)
q
∑

j=1

pi,j,d ≤ 1.

(30)pi,j�,d + pi,j,d� ≤ 1.

(31)
∑

j∈J1

D
∑

d=1

pi,j,d ≤ 1.

Resource Analysis

Let us analyze the number of variables and constraints 
required by the formulation. To start with, there exist n ⋅ f  
binary variables bi,j , n ⋅ o binary variables ti,j , and n ⋅ q binary 
variables pi,j . Overall, we need O(n(f + o + q)) binary vari-
ables, which grow linearly in the number of vehicles.

There are c buildability constraints. The number of test 
requirements depends on the individual tests and can be 
expressed  as  q +

∑q

j=1
T1
j
+ T2

j
+ [T3

j
> 0] ,  where 

[T3
j
> 0] = 1 if T3

j
> 0 . The first term results either from the 

constraint Eq. (21) or Eq. (23), depending on the problem in 
consideration. Assuming that T1

j
 and T2

j
 are negligible com-

pared to q, the total number of constraints can be expressed 
as O(c + q).

Let us now consider the number of qubits used for sched-
uling constraints. Previous considerations are still valid up to 
the part where pi,j s were computed, as they are now replaced 
with pi,j,d . So in total, we need O(n(o + f + qD)) variables. 
Note that the polynomial is no longer quadratic.

Problem Solution

In this section, we will describe our implementation details 
and present our results

Algorithm

Based on the formulations presented, one can follow dif-
ferent approaches to find the minimum number of required 
vehicles. The first is the global bisection method, which is 
also proposed in BMW use-case specification. The idea is to 
start with a large n value and then use binary search to find 
out the optimal n. As the number of variables grows as the 
product of the number of vehicles and the number of con-
straints, the limitation of this approach is a large number of 
variable requirements. For instance, in the case of the CQM 
solver, the number of variables is limited to 5000. In the case 
of Gurobi solver, there is no limit on the number of variables 
and constraints that can be used in principle, however, the 
time needed for solving the problem increases as the number 
of variables and constraints increase, which may result in an 
intractable problem in practice.

Another approach would be the vehicle-greedy algorithm. 
We choose an extra parameter nbunch which denotes the num-
ber of cars that will be configured at each iteration. After 
each iteration, the tests are updated by removing the satisfied 
ones and by diminishing the number of required cars for a 
test if it is partially satisfied. Then the optimization process 
is repeated with the new nbunch cars. The procedure stops 
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after all the tests are covered. Note that we actually maxi-
mize the number of covered tests using this approach, thus 
solving the optimization problem instance.

Implementation

We used the dataset provided by the BMW quantum comput-
ing challenge, which is created based on the BMW Series 
2 Gran Coupe. The features and constraints are based on 
the actual numbers resulting in a real-world problem. The 
specifications of the dataset are given in Table 2.

When analyzing the buildability constraints, we noticed 
a significant redundancy in the “rules per type” constraints. 
We realized that some of the constraints apply to all types. 
Second, some of the constraints apply to all types. In this 
case, we used a type-independent constraint and heavily 
reduced the number of constraints. For instance, assuming 
that the inequality bi,1 ≤ 2 − ti,j − bi,2 exists for all i ∈ [n] and 
j ∈ [o] , it can be replaced by bi,1 ≤ 1 − bi,2 for all i ∈ [n] . In 
case some constraint was missing for several types, but its 
inclusion for the remaining types was not disruptive (since 
the left-hand side of the implication could not be satisfied 
for the particular type with any combination of features), 
we assumed that it applies to all types and used the dis-
cussed simplification. When some features were not avail-
able for the given type yet appeared as a positive literal in 
the constraint, they were removed. Finally, some “rule per 
type” constraints possessed redundant information because 
variables were repeated both on the left and right sides. 
Those constraints were simplified as well, resulting in new 
constraint types, which are implemented in a form similar 
to the ones previously mentioned. Besides the buildability 
constraints, we also performed simplification for the test 
requirements, by merging the test lines occurring multiple 
times in the file. Further details can be found in our imple-
mentation processing which can be found in the [36].

We used the vehicle-greedy algorithm, taking nbunch = 1 , 
hence optimizing a single vehicle at a time. After the 
mentioned simplifications, the model has 911 binary vari-
ables and 6313 constraints. We followed the optimization 
approach taking Eq.  (22) as the objective function and 

setting all weights equal to 1. We used PuLP toolkit 
and dwave-ocean-sdk to implement the code for gen-
erating the linear program and the constrained quadratic 
model. PuLP, Gurobi and CBC solvers were used with their 
default settings and no time limit was given. The experi-
ments were run on a computer with the following specifica-
tions: Intel(R) Core(TM) i9-10900KF CPU @ 3.70 GHz; 
Ubuntu 20.04.3 LTS, 64 GB RAM.

Results and Discussion

As mentioned earlier, we obtained the results by setting 
nbunch = 1 , i.e., one car is configured at each iteration. Hence, 
the number of successful iterations (which outputs a valid 
car) corresponds to the number of needed vehicles. The 
algorithm stops if no tests are remaining to be satisfied. For 
the classical solvers, the experiments are repeated 60 times, 
and for CQM solver, it is repeated 3 times. CBC and Gurobi 
algorithms always return the same result in each experiment, 
i.e., they terminate at the same iteration and return the same 
number of cars. Meanwhile, for CQM solver, we took the 
best possible outcome.

In the Fig. 1a, we illustrate the number of remaining tests 
after each iteration using CQM, CBC, and Gurobi solvers 
setting nbunch = 1 . CBC solver returns the smallest number 
of vehicles which is 62, and Gurobi solver returns 64. We 
would like to note that in the experiment with CQM solver, 
one test that requires a single vehicle remains after the 65th 
iteration. Thus, we can conclude that the CQM solver returns 
66; however, the solver fails to find a configuration that satis-
fies the test in the 66’th iteration.

The problem size gets smaller over the iterations as some 
tests are removed. We analyze how the runtime changes as 
the problem size gets smaller in Fig. 1b for nbunch = 1 . The 
runtime is calculated by taking the average over the repeated 
experiments. The primary observation while comparing the 
performance of CQM, CBC, and Gurobi is that after the first 
few iterations, the runtime of the CQM solver saturates near 
5 s. This is because the default runtime for the solver is 5 
s, and one can not go below it. Meanwhile, the fluctuation 
in runtime for CBC solver with the number of iterations is 
visible and varies in the range of 1–25 s, and the fluctuations 
in runtime comparatively stabilize for the number of itera-
tions ≥ 30 . Finally, for Gurobi solver, the runtime always 
stays ≤ 1 s; hence, it takes the least amount of time to satisfy 
all the tests. In Table 3, a summary of the overall runtime 
taken by the solvers is depicted. Overall, it takes 6.309 s 
for Gurobi solver to find the solution, which is significantly 
smaller compared to the other solvers. Although CBC solver 
takes a longer time, it returns the best solution. CQM solver 
performs worse both in runtime and minimizing the number 
of required cars, it takes 371.975 s, in which only 0.437 s 
spent on QPU.

Table 2  A summary of the number of constraints based on the real-
world problem

Constraint Number

Features allowed per type 25
Rules per type 4032
Group features 41
Test requirements 643
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It seems evident that CBC and especially Gurobi solvers 
provide slightly better answers using significantly shorter 
time. However, in the very first iterations, we can see that the 
CQM solver is providing similar quality results in a slightly 
shorter time than CBC. Considering the shape of the time 
dependency observed in Fig. 1, it is reasonable to expect 
that there are problem instances for which the CQM solver 
outperforms CBC. Note that we cannot conclude that CQM 
solver will be better for arbitrarily large problem instances, 
as the time dependency cannot be observed due to fixed opti-
mization time; hence, any potential outperformance of the 
CQM solver may be limited to a specific interval of problem 
instance sizes.

Considering this, we can make an attempt to estimate the 
minimum number of variables for which we might expect to 
obtain similar results for the Gurobi and CQM solver. Since 
it is anticipated that the time complexity of ILP optimiza-
tion is exponential with the size of the data, we analyzed the 
linear dependency between the logarithm of time and the 
number of variables, which is depicted in Fig. 2. Here, we 
focused on the runtime per iteration and its corresponding 
number of variables in that iteration, rather than the overall 

runtime across all iterations. Additionally, we also included 
the average runtime required by the CQM solver for compar-
ison. Through this analysis, we can estimate the minimum 
number of variables that could potentially benefit from the 
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Fig. 1  Illustration of variation in a number of remaining tests and b runtime with respect to number of iterations for CQM, CBC and Gurobi 
solvers

Table 3  The averaged overall runtime by the CBC, Gurobi (classical) 
and CQM (quantum) solvers

Solver Overall runtime (in seconds)

Gurobi 6.309
CBC 136.800
CQM 371.975
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Fig. 2  The dependency between the number of variables for each 
iteration vs. runtime of the given iteration. The blue dashed line is 
the regression line of log(runtime) = A × (number of variables) + B . 
The horizontal red dotted line is the average time over all iterations 
for CQM solver, and the vertical red dotted line is the corresponding 
number of variables for Gurobi solver based on the regression line. 
Note that the crossing point is far away from the data we used for 
regression
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CQM solver. Note that if the CQM solver starts to require 
more optimization time within this range, the number of 
variables for which we would observe benefits may increase.

We have also checked the performance of the solvers 
when nbunch = 5 , which is the maximum possible number 
that can be taken without exceeding the 5000 variables1 limit 
of the CQM solver. Gurobi solver returned 63 cars, so we can 
say that the result is slightly improved. However, the over-
all experiment took a significantly longer time (83 s). For 
the CQM solver, no feasible solutions were obtained with 
the default time limit of 5 s. We observed that the returned 
samples either violated the “single type constraint” and the 
vehicles had no type (in that case all constraints related to 
“rules per type” are automatically satisfied) or several other 
constraints were violated. When the time limit was increased 
to 10 s, then the CQM solver was able to return a feasible 
solution at each iteration. However, after the 13th iteration 
(after 65 vehicles were configured), there were still 35 tests 
remaining to be satisfied, hence the optimization quality was 
worse. We would like to remark that the CBC solver failed to 
return any result within a reasonable amount of time.

Conclusion and Future Work

In this paper, we proposed a greedy algorithm for solving the 
optimization problem of the production of test vehicles using 
the new hybrid CQM solver by D-Wave. We provided a con-
strained quadratic model formulation for the problem that 
requires the number of qubits linearly proportional to the 
number of vehicles, car types, features, and tests. We imple-
mented the code for generating the constrained quadratic 
model and solved the problem instance provided by BMW 
quantum computing challenge on D-Wave CQM solver. We 
benchmarked the results by implementing the integer linear 
program formulation and running the same algorithm using 
classical solvers like CBC and Gurobi.

The results show that CQM solver gives comparable 
quality results to classical solvers in optimizing the number 
of required vehicles. However, the classical solvers require 
much less time to provide slightly better results. Keeping 
in mind the challenges faced and the ongoing efforts in the 
development of quantum computers, CQM solver has the 
potential to be a promising tool for large problems in the 
near future, provided that the algorithm will be significantly 
sped up. Note that the solver relies on quantum hardware, 
which is an advanced, very recent noise-prone technology.

The current CQM Solver is limited to 500,000 variables, 
while the real-world problems which are not tractable for 

classical solvers often require more than that. The problem 
size is an important factor as the currently available quantum 
solvers are limited in the number of qubits. Several works 
try to formulate models for gate-based quantum computers 
that are more efficient in the number of qubits used [37–41] 
and further research can be pursued in this direction for the 
considered problem.

A related and more general problem is product configura-
tion and reconfiguration, where the problem’s scope is not 
restricted to vehicles and one may consider any product such 
as computer parts. Satisfiability-based approaches have been 
considered in Refs. [42, 43]. The presented model can be 
extended for such problems and evoke potential use-cases 
for D-Wave CQM solver.
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