
Vol.:(0123456789)

SN Computer Science (2023) 4:609
https://doi.org/10.1007/s42979-023-02071-x

SN Computer Science

ORIGINAL RESEARCH

Optimizing the Production of Test Vehicles Using Hybrid Constrained
Quantum Annealing

Adam Glos1 · Akash Kundu1,2 · Özlem Salehi1

Received: 22 August 2022 / Accepted: 21 June 2023
© The Author(s) 2023

Abstract
Optimization of pre-production vehicle configurations is one of the challenges in the automotive industry. Given a list of
tests requiring cars with certain features, it is desirable to find the minimum number of cars that cover the tests and obey the
configuration rules. In this paper, we model the problem in the framework of satisfiability and solve it utilizing the newly
introduced hybrid constrained quadratic model (CQM) solver provided by D-Wave. The problem definition is based on the
“Optimizing the Production of Test Vehicles” use-case given in the BMW quantum computing challenge. We formulate a
constrained quadratic model for the problem and use a greedy algorithm to configure the cars. We benchmark the results
obtained from the CQM solver with the results from the classical solvers like coin-or branch and cut and Gurobi solver.
We conclude that the performance of the CQM solver is comparable to the classical solvers in optimizing the number of
test vehicles, given the noise-prone quantum hardware. However, the CQM solver takes much more time, which prohibits
obtaining useful quantum advantages. As an extension to the problem, we describe how the scheduling of the tests can be
incorporated into the model.

Keywords Vehicle configuration · Constrained quadratic model · Quantum annealing · D-Wave · BMW challenge

Introduction

Quantum computers are deemed promising technologies
for solving industrial problems from various sectors like
automotive, chemical, insurance, and technology. One of
the main problem domains for industrial problems is opti-
mization, as identified in the report prepared by Quantum
Technology and Application Consortium (QUTAC) [1].
Recently, there have been attempts to solve optimization
problems using near-term quantum computers, through vari-
ational quantum eigensolver (VQE) [2], quantum approxi-
mate optimization algorithm (QAOA) [3], and quantum
annealing (QA) [4].

Quantum annealing is a heuristic method for solving opti-
mization problems. It operates in the framework of quan-
tum adiabatic computing, which is a quantum computing

model alternative to gate based. Since many optimization
problems are proven to be NP-hard, quantum annealing has
gained significant interest as an up-and-coming tool to target
them. Quantum annealers are commercially available by the
D-Wave company [5], and a vast amount of research has
been devoted to identifying potential use-cases [6]. D-Wave
quantum annealers have been utilized to solve problems from
different domains such as transportation [7–10], finance [11,
12], chemistry [13–15], and computer science [16–18].

Identified among the use-cases of quantum computing by
BMW Group [19], optimization of pre-production vehicle
configurations is one of the challenges in the automotive
industry. Every year, new features and car components are
launched by the companies, and various tests should be car-
ried out before the series production. The tests under consid-
eration range from the validation of the model’s functional-
ity to the evaluation of the new components. Consequently,
pre-production vehicles are built for testing purposes. As the
construction of pre-production vehicles is costly and com-
plex [20], it is desirable to reduce the number of required test
vehicles. Hence, the test cars should be configured to cover
as many tests as possible, while meeting some dependency
constraints among the different features.

 * Akash Kundu
 akundu@iitis.pl

1 Institute of Theoretical and Applied Informatics, Polish
Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland

2 Joint Doctoral School, Silesian University of Technology,
Akademicka 2A, 44-100 Gliwice, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02071-x&domain=pdf
http://orcid.org/0000-0001-6320-7699
http://orcid.org/0000-0002-3540-1061
http://orcid.org/0000-0003-2033-2881

 SN Computer Science (2023) 4:609 609 Page 2 of 12

SN Computer Science

Some of the attempts in solving the test-vehicle configu-
ration optimization problem use the framework of satisfiabil-
ity. The features of the vehicle are represented by Boolean
variables, indicating whether the feature or the component
exists or not. As each vehicle configuration should satisfy
the feasibility rules concerning the different features of the
car and the requirements imposed by the tests, such rules can
be modeled through Boolean constraints. In Ref. [20], the
authors present a Max-SAT framework that uses a greedy
approach and tests it on small-scale real-world data. The
problem is also studied by finding the minimum set cover
in Ref. [21], where the authors formulate the problem as a
minimum set cover problem and use SAT solver to check the
feasibility of the configurations.

In this paper, our main goal is to exploit quantum anneal-
ing to solve the test-vehicle configuration problem. Our
problem definition is based on the use-case “Optimizing the
Production of Test Vehicles” given in the BMW quantum
computing challenge [22] and takes into account various
buildability constraints. We use an optimization approach,
where all the variables are Boolean, and the conditions are
given through Boolean constraints, and we aim to minimize
the number of vehicles that will be used in testing. Among
the various solvers provided by D-Wave, we use the newly
introduced hybrid solver for constrained quadratic models
[23]. The mentioned hybrid solver requires the problem to be
encoded as a constrained quadratic model (CQM). In CQM,
which is also known as the quadratically constrained quad-
ratic programming in the literature, the problem is identified
through a quadratic objective function and quadratic con-
straints defined over binary and integer variables. Once the
problem is formulated, the hybrid solver takes advantage of
both the classical heuristic methods and the D-Wave quan-
tum processors. As the hybrid solver is proprietary to the
D-Wave company, the exact way it operates is not revealed.

While modeling the problem as a CQM, our primary con-
cern is to use as few qubits as possible. We propose an opti-
mization model for which the total number of qubits grows
in the order O(n(f + o + q)) , where n, f, o, q are the numbers
of vehicles, features, vehicle types, and tests, respectively,
and the number of required qubits is independent of the
number of constraints. The analysis applies for both deci-
sion and optimization formulations. The former answers the
question “Are n cars sufficient to cover all the tests?”, and the
latter aims at ‘maximize the number of tests covered using
n test vehicles‘. To benchmark the results obtained from the
CQM solver, we develop an integer linear programming for-
mulation. Since both problems are notably time-consuming
for current quantum and classical solvers, to benchmark the
efficiency of the classical and quantum solvers, we analyze
the performance of a greedy optimization procedure based
on the optimization formulation. We test the performance
of the algorithms on the dataset provided by the BMW

quantum computing challenge [22] using D-Wave’s hybrid
CQM solver, and the classical solvers CBC (coin-or branch
and cut) and Gurobi solver. The results indicate that the
performance of D-Wave’s hybrid solver in minimizing the
number of required cars is comparable to the performance of
the classical optimization algorithm. Furthermore, we con-
sider a variation of the decision formulation that includes
the scheduling of the tests. However, this model requires far
more qubits; thus, we claim that it is particularly inefficient
for practical purposes. As per the authors’ knowledge, this is
the first attempt to benchmark the performance of the hybrid
solver for CQM compared to classical solvers.

The rest of the paper is organized as follows. In “Prelimi-
naries”, we present basic concepts related to SAT, Max-SAT,
linear programming, quantum annealing, and constrained
quadratic model. In “Buildability Constraints”, we describe
the problem formulation and the optimization approach for
solving the problem. In “Problem Solution”, we present and
discuss the experimental results. We conclude with final
comments in “Conclusion and Future Work”.

Preliminaries

In this section, we briefly explain the necessary background
information on satisfiability problems, linear programming,
and quantum annealing concepts.

Satisfiability Problems

Satisfiability problem [24] (SAT) is the problem of determin-
ing whether there exists an assignment to the binary vari-
ables that make a given Boolean expression true. A Boolean
expression consists of Boolean variables x1, x2,… , xn , that
are combined together using logical OR (∨) and AND (∧)
operations and the negation operator (¬). For instance, the
Booelan expression � = (¬x1 ∧ x2) ∨ x3 is satisfiable as
x1 = 0, x2 = 1, x3 = 0 is a satisfying assignment for � . SAT
is the first problem to be proven to be NP-complete [25, 26].
Hence, solving a large family of problems recognized as core
to several areas in computer science and mathematics is as
hard as solving the SAT problem.

A formula is said to be in conjunctive normal form
(CNF), if it is written as the conjunction of clauses. A clause
is a disjunction of literals, where a literal is either a vari-
able (positive literal) or its negation (negative literal). Any
Boolean formula can be expressed in CNF. For instance, we
can express � in CNF as (¬x1 ∨ x3) ∧ (x2 ∨ x3) . SAT problem
can be equivalently defined as the question of whether there
exists an assignment to the Boolean variables that make the
formula

SN Computer Science (2023) 4:609 Page 3 of 12 609

SN Computer Science

satisfiable, where Ci is a clause and there are m clauses in
total.

Maximum satisfiability problem (Max-SAT) is a gener-
alization of the SAT problem and can be considered as the
optimization variant of the decision formulation. The goal is
to find an assignment that maximizes the number of satisfied
clauses. Note that knowing the optimal number of satisfied
clauses, we can also deduce the solution to the SAT prob-
lem; therefore, we can conclude that the Max-SAT problem
is NP-Hard.

A further generalization is the weighted maximum satisfi-
ability problem (weighted Max-SAT), in which each clause
is associated with a weight, and the aim is to maximize the
weighted sum of the satisfied clauses.

Linear Programming

Linear programming (LP) is concerned with the optimiza-
tion of an objective function subject to equality and inequal-
ity constraints, such that the objective and the corresponding
constraints are linear. Linear programs can be expressed in
the canonical form as

where c ∈ ℝ
n , A ∈ ℝ

n×n and b ∈ ℝ
n . The aim is to find the

vector of variables x that minimizes the objective function
subject to the given constraints. When all variables xi are
integers, then the problem takes the name integer linear pro-
gramming (ILP) which is NP-Hard in general. If the vari-
ables are further restricted to the set {0, 1} , then the problem
is called 0–1 linear programming (0–1 LP). Any ILP can be
converted into 0–1 LP. For solving ILPs, there are heuristic
methods like simulated annealing [27] and exact methods
including cutting plane [28] and branch-and-bound methods
[29].

There are various commercial and open-source solvers
and toolkits for solving linear programs. PulP is a Python
library [30] that provides tools for modeling problems and
an interface for accessing various solvers. In this paper, we
use PulP to model our problems and two different solvers
to get the results: coin-or branch and cut (CBC) [31] solver,
which is the default one in PulP, and Gurobi solver [32].

Quantum Annealing

Adiabatic quantum computing (AQC) is an analog com-
putational model that relies on the quantum adiabatic

(1)C1 ∧ C2 ∧ C3 ∧⋯ ∧ Cm =

m
⋀

i=1

Ci,

minimize c⊺x

subject to Ax ≤ b

x ≥ 0,

theorem which states that a quantum state that is initially
in the ground state is likely to stay in the ground state
given that the evolution takes place slow enough. Some
assumptions of AQC are lifted in Quantum annealing
(QA), which is a meta-heuristic method for solving opti-
mization problems using the quantum adiabatic theorem.

The problem Hamiltonian Hp is designed so that its
ground state encodes the solution to the problem of inter-
est, and an initial Hamiltonian H0 is picked whose ground
state is known and easy to prepare. The system is initial-
ized with the ground state of H0 , and an adiabatic evolu-
tion path is followed so that the system ends up in the
ground state of Hp . This is achieved by evolving the sys-
tem with the time-varying Hamiltonian H(t) expressed as

The quantum adiabatic theorem assures that the system
always remains at the ground state of H(t) for sufficiently
large real evolution time � . When t = � , H(t) equals Hp and
ideally the system is expected to be in the ground state of Hp.

Commercially available quantum annealers are pro-
vided by the D-Wave company. D-Wave quantum process-
ing units (QPUs) implement the initial Hamiltonian
H0 = −

∑

i �
x
i
 , where �x

i
 is the Pauli-X operator acting on

i-th qubit and the problem Hamiltonian should be stated
in the form of an Ising model Hp =

∑

i>j Jij𝜎
z

i
𝜎z

j
+
∑

i hi𝜎
z

i
 ,

where Jij denotes the interaction between sites i and j, hi is
the external magnetic field applied on-site i and �z

i
 is the

Pauli-Z operator. Nevertheless, it is much more convenient
to formulate problems over binary variables. Any problem
that is expressed as a quadratic unconstrained binary opti-
mization (QUBO) problem can be easily converted into an
Ising model by replacing the binary variables bi with
(1 − si)∕2 . QUBO involves the minimization of a quadratic
objective function defined over binary variables. While it
is an unconstrained model, using the penalty method, one
can incorporate the constraints to the objective function
[33]. We would like to point out that any ILP formulation
can be formulated as a QUBO and we refer readers to [8]
for a detailed explanation.

When running a problem on D-Wave QPUs, the vari-
ables need to be mapped to the QPU architecture as the
underlying graph representing the interactions in the QPU
is not fully connected; this process is known as the minor
embedding [34]. Hence, the number of variables in the
QUBO formulation should be much smaller than the actual
number of physical qubits, making it unachievable to run
real-world problems because D-Wave Advantage QPU has
5640 qubits.

D-Wave hybrid solvers can solve much larger problems
using a classical-quantum hybrid workflow. With the

(2)H(t) =
(

1 −
t

�

)

H0 +
t

�
Hp.

 SN Computer Science (2023) 4:609 609 Page 4 of 12

SN Computer Science

announcement of the new hybrid solver for constrained
quadratic models (CQMs), D-Wave’s hybrid solver service
(HSS) now consists of three different solvers. The binary
quadratic model (BQM) solver accepts problems defined
in the form of QUBO. One can define problems over dis-
crete variables in an unconstrained form and use the dis-
crete quadratic model (DQM) solver. In this paper, we will
use the CQM solver, which is described in more detail in
“Constrained Quadratic Model”. All solvers in HSS follow
the same workflow. After taking the input, classical heuris-
tic solvers that run parallel on the cloud are called. These
solvers have heuristic and quantum modules that send que-
ries to D-Wave Advantage QPU. The responses taken from
the QPU are used to guide the classical heuristic process
and improve the quality of the solutions obtained so far.
Finally, the heuristic solver returns a solution to the user.

Constrained Quadratic Model

Constrained quadratic model (CQM) is the name given by
D-Wave to the model involving a quadratic objective func-
tion and quadratic constraints that are defined over binary
or integer variables. In the literature, this is also known
as quadratically constrained quadratic programming. We
can define a CQM as

where Pi ∈ ℝ
n×n , qi ∈ ℝ

n and ri ∈ ℝ for i = 0, 1,… ,m . The
goal is to find the vector x that minimizes the objective func-
tion, where x consists of binary and integer variables.

D-Wave has recently introduced the hybrid solver for
CQM. Unlike the previous hybrid solvers and quantum
annealers of D-Wave, the CQM solver naively supports
equality and inequality constraints. This is advanta-
geous for problems involving constraints compared to the
QUBO, which is the standard formulation that has been
used for quantum annealing so far. First of all, there is
no need for removing the constraints through the penalty
method, which in turn increases the number of variables
if the constraints are in the form of inequalities. Second, it
removes the difficulty of setting penalty coefficients, which
is challenging as the model becomes sophisticated. Third,
CQM solver allows the inclusion of quadratic constraints
directly into the model, which is not possible for QUBO.
It is also suggested by D-Wave that the hybrid CQM solver
should be preferred over the other hybrid solvers in case
the problem naturally involves constraints. An experimen-
tal evidence for performance comparison is available in
Ref. [23].

minimize x⊺P0x + q
⊺

0
x

subject to x⊺Pix + q
⊺

i
x ≤ ri i = 1,… ,m

x ≥ 0,

Formulation of the Problem

In this section, we will describe the details of the vehicle
optimization problem and model it through binary variables
and linear constraints. We provide an integer linear program
which can be directly used with the classical solvers and
D-Wave CQM solver. We would like to note that the integer
linear program is novel and has not been proposed before.

Overview

The configuration of each vehicle is determined by the pres-
ence or absence of the availability of the features, and each
vehicle has a specific type. Let us discuss the buildability
constraints that a vehicle configuration should satisfy [22].

– Single type requirement: Each vehicle should have a
single type.

– Features allowed per type: For a given type, only some
of the features are available.

– Group features: Certain groups of features cannot be
implemented together (i.e., at most one can be imple-
mented). This constraint is valid for all types.

– Rules per type: For each type, there are rules which
govern the feature set that the vehicle of a specific type
should have. Those are mainly implication rules.

Finally, we have the test requirements that define the
properties of the cars needed for the testing phase. We will
assume that each test requires a single car and discuss how
this assumption can be removed later on.

Consider n test vehicles, a list of f features and assume
that there are o different types available. Let us assume that
there are q test requirements. For vehicle i ∈ [n] , we will
represent the presence/absence of feature j ∈ [f] through the
binary variables bi,j , where bi,j = 1 if and only if (iff) vehicle
i has feature j. Next, we represent the type of the vehicle
using the variable ti,j , where ti,j = 1 iff vehicle i ∈ [n] is of
type j ∈ [o] . And finally, we define the binary variables pi,j ,
to represent whether a vehicle is used in a test, where pi,j = 1
iff vehicle i ∈ [n] is used for test j ∈ [q].

Suppose that there are c buildability constraints in total.
Note that the same set of constraints applies to each vehicle.
Each constraint �k can be expressed using a Boolean expres-
sion over the binary variables we have defined above. First of
all, we would like all buildability constraints to be satisfied
for any given number of cars. This can be expressed using
the following logical expression:

(3)
n
⋀

i=1

c
⋀

k=1

�k(bi,1,… , bi,f , ti,1,… , ti,o).

SN Computer Science (2023) 4:609 Page 5 of 12 609

SN Computer Science

Similarly, we can express the test requirements using
Boolean expressions. To start with, each test requires
absence or presence of certain features. We need constraint
�l to ensure that the variable pi,l representing the l’th test
requirement is set correctly:

Note that if pi,l = 0 , then the expression �l(bi,1,… , bi,f , pi,l)
always evaluates to 1. This is because if car i is not used in
test l there is no need to verify constraint �l . Now, we can
identify two different problems based on how we interpret
test requirements. Given n vehicles, the first problem is to
decide whether there exist configurations for the given cars
so that the buildability constraints are satisfied, and for each
test requirement, then there is at least one car satisfying
the requirement. This results in the following satisfiability
problem:

If one wants to find the smallest number of vehicles for
which the Boolean formula given in Eq. (5) is true, then the
bisection method can be used by starting with a large n and
applying binary search to find the optimal value.

It can be the case that the number of vehicles is fixed,
and the aim is to find a configuration of vehicles that satis-
fies the buildability constraints and maximize the number
of satisfied test requirements. So, unlike in the case of SAT,
it is not required that all the test requirements are satisfied.
Furthermore, each test requirement can be assigned some
weight, in which case the aim is to maximize the weighted
sum of the fulfilled tests. This yields a variant of weighted
maximum satisfiability problem that is expressed mathemati-
cally as follows:

where wl is the weight associated with test requirement l,
subject to the constraints

Note that this problem is not originally given as an SAT
or Max-SAT instance—instead, it was defined through the
collection of rules to be followed [22]. Instead of formulat-
ing an SAT or Max-SAT problem and then transforming it

(4)
n
⋀

i=1

q
⋀

l=1

�l(bi,1,… , bi,f , pi,l).

(5)

n
⋀

i=1

c
⋀

k=1

�k(bi,1,… , bi,f , ti,1,… , ti,o)

∧

n
⋀

i=1

q
⋀

l=1

�l(bi,1,… , bi,f , pi,l) ∧

q
⋀

l=1

n
⋁

i=1

pi,l.

(6)maximize

q
∑

l=1

wl

n
∏

i=1

pi,l,

(7)

n
⋀

i=1

c
⋀

k=1

�k(bi,1,… , bi,f , ti,1,… , ti,o) ∧

n
⋀

i=1

q
⋀

l=1

�l(bi,1,… , bi,f , pi,l).

into ILP, we directly construct an ILP which turned out to
be simpler and more efficient. Since such a formulation is a
special case of CQM solver, it can be directly solved by the
the solver provided by D-Wave.

Buildability Constraints

Having discussed the general overview of the vehicle test-
ing problem, now we are ready to express it as a linear pro-
gram defined over binary variables. We will be expressing
Boolean expressions that correspond to constraints using
equalities and inequalities. We will start with the buildability
constraints, and we will either provide inequality or equality
constraints in each case.

Single Type Requirement

The fact that each vehicle should have a single type can be
incorporated using the constraints

Features Allowed Per Type

Some of the features are not allowed for a specific type. We
encode this constraint through the features which are not
allowed for the given type. In other words, for each type
j ∈ [o] , there exists a collection of features Fj such that
ti,j = 1 ⟹ bi,k = 0 for all k ∈ Fj for all vehicles i ∈ [n] .
This is expressed by the inequality constraints

Group Features

Let FG denote a collection of feature groups. Given a group
of features G ∈ FG , we need to make sure that at most one
feature from each group G is implemented. This is equiva-
lent to inequalities

for each G ∈ FG.

Rules Per Type

Depending on the type of the vehicle, one may define rules
in the form of implications about the presence or absence of
the features in the vehicle as

(8)
o
∑

j=1

ti,j = 1, i ∈ [n].

(9)ti,j + bi,k ≤ 1, i ∈ [n], j ∈ [o], k ∈ Fj.

(10)
∑

k∈G

bi,k ≤ 1, i ∈ [n],

 SN Computer Science (2023) 4:609 609 Page 6 of 12

SN Computer Science

where T1 is the type of the vehicle, and on the left and right
sides of the implication, we have conjunction or disjunction
of literals. The rule is saying that if a vehicle is of type 1, has
feature 2, and does not have features 4 and 5, then it should
have at least one of features 1 or 3.

We group the constraints into several classes depending
on the form of the constraint and label it with a 4-character
string, where the first two characters are representing the LHS
of implication, and the remaining two are the RHS. The first
character describes whether the variables on the LHS of the
implication are negated or not. There are three possibilities:
“0” if none of the variables are negated, “1” if all variables
are negated, “m” if some of the variables are negated. Second
character on LHS describes the operator used: “&” for AND,
“|” for OR, 1 if only a single variable exists. The next two
characters have the same meaning but describe the RHS of
the constraint. For example, the implication above belongs to
the class m&0|. The cases we will consider are inspired by
the BMW quantum computing challenge dataset and include
the combinations of m& and 0| on the LHS and 0|, 0&, 1|,
1& on the RHS. We give the logical expression and the cor-
responding arithmetic expression for the mentioned cases in
Table 1.

Now, we will investigate the implications of each type,
making use of the arithmetic expressions given in Table 1.
Where, M is the number of positive literals on the LHS, � is
the number of negative literals on the LHS, and N is the num-
ber of literals on the RHS.

Case m&0& This category encapsulates m&01, 0&0&,
1&0&, 0&01, 1&01, 010&, 0101, 110&, 1101. The con-
straints take the form

RHS is 0 iff the assumption is satisfied, in which case
∑N

r=1
bi,kr should be equal to N. If the assumption is not

𝚃𝟷 ∶ 𝙵𝟸 ∧ ¬𝙵𝟺 ∧ ¬𝙵𝟻 ⟹ 𝙵𝟷 ∨ 𝙵𝟹,

(11)

N −

N
∑

r=1

bi,kr ≤ N

(

1 − ti,j +M −

M
∑

r=1

bi,jr +

�
∑

r=1

bi,lr

)

, i ∈ [n].

satisfied, then RHS is at least N, hence the inequality is still
correct.

Case m&1& This category encapsulates m&11, 0&1&,
1&1&, 0&11, 011&, 0111 and the reasoning is the same
as above

Case m&0| This category encapsulates 0&0|, 1&0|,
010|, 110|. The constraints take the form

Note that RHS is 0 iff the assumption is satisfied In this case
∑N

r=1
bi,kr ≥ 1 should be true. If the assumption is not satis-

fied, then the inequality is still correct.
Case m&1| This category encapsulates 0&1|, 1&1|,

011|, 111|. The constraints take the form

Case 0|0|, 0|1| We take the contra positives and obtain
1&1& and 0&1&, respectively, which are already discussed
above.

Case 0|1&, 0|0& The constraints of the form 0|1&
are expressed as ti,j ∧

⋁M

r=1
bi,jr ⟹

⋀N

r=1
¬bi,kr and equiva-

lently, we have conditions

(12)

N
∑

r=1

bi,kr ≤ N

(

1 − ti,j +M −

M
∑

r=1

bi,jr +

�
∑

r=1

bi,lr

)

, i ∈ [n].

(13)

1 −

N
∑

r=1

bi,kr ≤

(

1 − ti,j +M −

M
∑

r=1

bi,jr +

�
∑

r=1

bi,lr

)

, i ∈ [n].

(14)

N
∑

r=1

bi,kr − N + 1 ≤

(

1 − ti,j +M −

M
∑

r=1

bi,jr +

�
∑

r=1

bi,lr

)

, i ∈ [n].

(15)(ti,j ∧ bi,j1) ⟹

N
⋀

r=1

¬bi,kr ,

(16)

⋮

(ti,j ∧ bi,jM) ⟹

N
⋀

r=1

¬bi,kr .

Table 1 Some logical expressions and their corresponding constraints

where M is the number of positive literals on the LHS, � is the number of negative literals on the LHS, and N is the number of literals on the
RHS

Type Position Logical expression Corresponding constraint

m& LHS ti,j ∧
⋀M

r=1
bi,jr ∧

⋀�

r=1
bi,lr 1 − ti,j +M −

∑M

r=1
bi,jr +

∑�

r=1
bi,lr = 0

0& RHS ⋀N

r=1
bi,kr N −

∑N

r=1
bi,kr = 0

1& RHS ⋀N

r=1
¬bi,kr

∑N

r=1
bi,kr = 0

0| RHS ⋁N

r=1
bi,kr 1 ≤

∑N

r=1
bi,kr

1& RHS ⋁N

r=1
¬bi,kr

∑N

r=1
bi,kr ≤ N − 1

SN Computer Science (2023) 4:609 Page 7 of 12 609

SN Computer Science

We have M rules of the form 0&1&. Similarly, the con-
straints of the form 0|0& translate to rules of the form
0&0&.

Test Requirements

Test requirements define the properties of cars needed for the
testing phase. Each test requires the absence or presence of
certain features. We will assume that the test j is in the form

the values T1
j
, T2

j
 and T3

j
 may be equal to 0.

Recall that pi,j indicates whether vehicle i is used in test
j. We need constraints to ensure that the binary variables pi,j
are properly set. Note that test j either imposes some features
to exist in the vehicle, in which case we can express it using
the inequality

or imposes that some features should not exist in the vehicle,
which results in the inequality

or imposes disjunction of some features which translates as
the inequality

We will call the constraints defined in 18–20 as the test con-
straints. The test constraints are needed both in decision and
optimization approaches.

We will lift the assumption that each test requires only
a single car. Let us assume that test j requires kj cars that
satisfy the required properties. In case we want to solve the
decision problem, we include the following constraint in our
formulation to ensure that the number of vehicles that satisfy
test j is kj for each j = 1,… , q:

If we want to solve the optimization problem, then we need
to define an objective function to maximize. One possibility
is to take into account the number of cars that satisfy the test
and reflect this in the weight. This results in the following
objective function:

(17)

bi,k1 ∧⋯ ∧ bi,k
T1
j

∧ ¬bi,l1 ∧⋯ ∧ ¬bi,l
T2
j

∧ (bi,m1
∨⋯ ∨ bi,m

T3
j

),

(18)−bi,kr + pi,j ≤ 0, i ∈ [n], r ∈ [T1
j
],

(19)bi,lr + pi,j ≤ 1, i ∈ [n], r ∈ [T2
j
],

(20)pi,j −

T3
j

∑

r=1

bi,mr
≤ 0, i ∈ [n].

(21)
n
∑

i=1

pi,j = kj, j ∈ [q].

(22)
n
∑

i=1

q
∑

j=1

wjpi,j.

There should be some upper bound on the number of cars
that satisfy a specific test. For example, for a given test j, if
more than kj cars satisfy the test, the excess ones should not
add to the objective. Hence, we need the following constraint
in the case of the optimization approach:

To conclude, to solve both the decision and optimization
problem, we need the buildability and the test constraints
defined in 8–20. For the decision problem, we need addition-
ally the constraint defined in Eq. (21). For the optimization,
we need additionally the constraint defined in Eq. (23) and
the objective function is defined as in Eq. (22).

Scheduling

A related problem in the automotive industry is the sched-
uling of vehicle tests. Aside from the configuration of the
vehicles, there are additional constraints regarding when and
how the tests will be conducted and whether a vehicle may
be used in more than one test, making the problem more
complex. The problem has been considered using classical
approaches like constraint programming and mixed-integer
linear programming in Refs. [30, 31, 35]. From our perspec-
tive, the presented model can be extended to incorporate
scheduling constraints, as we will discuss briefly.

We assume that each test takes a single day, and the tests
should be completed in D days. We extend the previously
introduced pi,j variables into pi,j,d where d ∈ [D] is the day
at which test j is performed with vehicle i. We replace pi,j
in each previously introduced condition with pi,j,d , and if
needed a summation over d should be added. For example,
constraint given in Eq. (21) will be replaced with

for each test j ∈ [q].
From now on, we assume that only a single car is needed

for each test. If the j-th test requires kj cars, we create vari-
ables pij1 , pij2 ,… , pijkj

 for test j. Hence, the constraint pre-
sented in Eq. (24) takes the form

where j belongs to the extended list of tests.
To ensure that test j is performed within the time frame

[tstart
j

, tend
j

] , we need the constraint

(23)
n
∑

i=1

pi,j ≤ kj, j ∈ [q].

(24)
D
∑

d=1

n
∑

i=1

pi,j,d = kj,

(25)
D
∑

d=1

n
∑

i=1

pi,j,d = 1,

 SN Computer Science (2023) 4:609 609 Page 8 of 12

SN Computer Science

If for a given test set J = {j1,… , jm} we need to use differ-
ent vehicles for testing, then the vehicle should be used at
most once for one of the tests in the given test group. This
constraint can be imposed by

for all i ∈ [n] and each test set J .
Let us now consider other conditions on scheduling. Let

K be the number of cars that can be tested per day. We need
to ensure that for each day d ∈ [D] , the number of tests per-
formed is at most K, which is equivalent to

Similarly, one has to ensure that each car i ∈ [n] is tested at
most once in each day d ∈ [D] , which is equivalent to

Let us now consider how one can assign groups to each
test to impose an order condition among tests from different
groups. Let gj be the group id of the test j. We assume, that
gj is an integer in {1,… , ḡ} , s.t. for two tests j, j′ , where j
has to be performed before j′ if gj > gj′ (order condition).
In addition, we assume that the tests from group gj = 1 are
full crash tests, thus not only that they have to be the final
test, but also each car can be used only once for such test
(crash condition).

The order condition can be implemented as follows:
For each vehicle i ∈ [n] , for each pair of tests j, j′ such that
gj > gj′ , and for each d, d� ∈ [D] such that d < d′ , we add
the constraint

Note that with the above approach, we can handle even more
complicated test ordering, like the one defined by a partial
order of tests.

Implementing the crash condition, together with the order
condition, is enough to ensure that the car is used for only
one crash test. Let J1 = {j ∈ [q] ∶ gj = 1} be the set of tests
resulting in a crash. The constraint takes the form of each
vehicle i ∈ [n]

(26)tstart
j

≤ d ⋅

D
∑

d=1

n
∑

i=1

pi,j,d ≤ tend
j

.

(27)
D
∑

d=1

∑

j∈J

pi,j,d = 1,

(28)
n
∑

i=1

q
∑

j=1

pi,j,d ≤ K.

(29)
q
∑

j=1

pi,j,d ≤ 1.

(30)pi,j�,d + pi,j,d� ≤ 1.

(31)
∑

j∈J1

D
∑

d=1

pi,j,d ≤ 1.

Resource Analysis

Let us analyze the number of variables and constraints
required by the formulation. To start with, there exist n ⋅ f
binary variables bi,j , n ⋅ o binary variables ti,j , and n ⋅ q binary
variables pi,j . Overall, we need O(n(f + o + q)) binary vari-
ables, which grow linearly in the number of vehicles.

There are c buildability constraints. The number of test
requirements depends on the individual tests and can be
expressed as q +

∑q

j=1
T1
j
+ T2

j
+ [T3

j
> 0] , where

[T3
j
> 0] = 1 if T3

j
> 0 . The first term results either from the

constraint Eq. (21) or Eq. (23), depending on the problem in
consideration. Assuming that T1

j
 and T2

j
 are negligible com-

pared to q, the total number of constraints can be expressed
as O(c + q).

Let us now consider the number of qubits used for sched-
uling constraints. Previous considerations are still valid up to
the part where pi,j s were computed, as they are now replaced
with pi,j,d . So in total, we need O(n(o + f + qD)) variables.
Note that the polynomial is no longer quadratic.

Problem Solution

In this section, we will describe our implementation details
and present our results

Algorithm

Based on the formulations presented, one can follow dif-
ferent approaches to find the minimum number of required
vehicles. The first is the global bisection method, which is
also proposed in BMW use-case specification. The idea is to
start with a large n value and then use binary search to find
out the optimal n. As the number of variables grows as the
product of the number of vehicles and the number of con-
straints, the limitation of this approach is a large number of
variable requirements. For instance, in the case of the CQM
solver, the number of variables is limited to 5000. In the case
of Gurobi solver, there is no limit on the number of variables
and constraints that can be used in principle, however, the
time needed for solving the problem increases as the number
of variables and constraints increase, which may result in an
intractable problem in practice.

Another approach would be the vehicle-greedy algorithm.
We choose an extra parameter nbunch which denotes the num-
ber of cars that will be configured at each iteration. After
each iteration, the tests are updated by removing the satisfied
ones and by diminishing the number of required cars for a
test if it is partially satisfied. Then the optimization process
is repeated with the new nbunch cars. The procedure stops

SN Computer Science (2023) 4:609 Page 9 of 12 609

SN Computer Science

after all the tests are covered. Note that we actually maxi-
mize the number of covered tests using this approach, thus
solving the optimization problem instance.

Implementation

We used the dataset provided by the BMW quantum comput-
ing challenge, which is created based on the BMW Series
2 Gran Coupe. The features and constraints are based on
the actual numbers resulting in a real-world problem. The
specifications of the dataset are given in Table 2.

When analyzing the buildability constraints, we noticed
a significant redundancy in the “rules per type” constraints.
We realized that some of the constraints apply to all types.
Second, some of the constraints apply to all types. In this
case, we used a type-independent constraint and heavily
reduced the number of constraints. For instance, assuming
that the inequality bi,1 ≤ 2 − ti,j − bi,2 exists for all i ∈ [n] and
j ∈ [o] , it can be replaced by bi,1 ≤ 1 − bi,2 for all i ∈ [n] . In
case some constraint was missing for several types, but its
inclusion for the remaining types was not disruptive (since
the left-hand side of the implication could not be satisfied
for the particular type with any combination of features),
we assumed that it applies to all types and used the dis-
cussed simplification. When some features were not avail-
able for the given type yet appeared as a positive literal in
the constraint, they were removed. Finally, some “rule per
type” constraints possessed redundant information because
variables were repeated both on the left and right sides.
Those constraints were simplified as well, resulting in new
constraint types, which are implemented in a form similar
to the ones previously mentioned. Besides the buildability
constraints, we also performed simplification for the test
requirements, by merging the test lines occurring multiple
times in the file. Further details can be found in our imple-
mentation processing which can be found in the [36].

We used the vehicle-greedy algorithm, taking nbunch = 1 ,
hence optimizing a single vehicle at a time. After the
mentioned simplifications, the model has 911 binary vari-
ables and 6313 constraints. We followed the optimization
approach taking Eq. (22) as the objective function and

setting all weights equal to 1. We used PuLP toolkit
and dwave-ocean-sdk to implement the code for gen-
erating the linear program and the constrained quadratic
model. PuLP, Gurobi and CBC solvers were used with their
default settings and no time limit was given. The experi-
ments were run on a computer with the following specifica-
tions: Intel(R) Core(TM) i9-10900KF CPU @ 3.70 GHz;
Ubuntu 20.04.3 LTS, 64 GB RAM.

Results and Discussion

As mentioned earlier, we obtained the results by setting
nbunch = 1 , i.e., one car is configured at each iteration. Hence,
the number of successful iterations (which outputs a valid
car) corresponds to the number of needed vehicles. The
algorithm stops if no tests are remaining to be satisfied. For
the classical solvers, the experiments are repeated 60 times,
and for CQM solver, it is repeated 3 times. CBC and Gurobi
algorithms always return the same result in each experiment,
i.e., they terminate at the same iteration and return the same
number of cars. Meanwhile, for CQM solver, we took the
best possible outcome.

In the Fig. 1a, we illustrate the number of remaining tests
after each iteration using CQM, CBC, and Gurobi solvers
setting nbunch = 1 . CBC solver returns the smallest number
of vehicles which is 62, and Gurobi solver returns 64. We
would like to note that in the experiment with CQM solver,
one test that requires a single vehicle remains after the 65th
iteration. Thus, we can conclude that the CQM solver returns
66; however, the solver fails to find a configuration that satis-
fies the test in the 66’th iteration.

The problem size gets smaller over the iterations as some
tests are removed. We analyze how the runtime changes as
the problem size gets smaller in Fig. 1b for nbunch = 1 . The
runtime is calculated by taking the average over the repeated
experiments. The primary observation while comparing the
performance of CQM, CBC, and Gurobi is that after the first
few iterations, the runtime of the CQM solver saturates near
5 s. This is because the default runtime for the solver is 5
s, and one can not go below it. Meanwhile, the fluctuation
in runtime for CBC solver with the number of iterations is
visible and varies in the range of 1–25 s, and the fluctuations
in runtime comparatively stabilize for the number of itera-
tions ≥ 30 . Finally, for Gurobi solver, the runtime always
stays ≤ 1 s; hence, it takes the least amount of time to satisfy
all the tests. In Table 3, a summary of the overall runtime
taken by the solvers is depicted. Overall, it takes 6.309 s
for Gurobi solver to find the solution, which is significantly
smaller compared to the other solvers. Although CBC solver
takes a longer time, it returns the best solution. CQM solver
performs worse both in runtime and minimizing the number
of required cars, it takes 371.975 s, in which only 0.437 s
spent on QPU.

Table 2 A summary of the number of constraints based on the real-
world problem

Constraint Number

Features allowed per type 25
Rules per type 4032
Group features 41
Test requirements 643

 SN Computer Science (2023) 4:609 609 Page 10 of 12

SN Computer Science

It seems evident that CBC and especially Gurobi solvers
provide slightly better answers using significantly shorter
time. However, in the very first iterations, we can see that the
CQM solver is providing similar quality results in a slightly
shorter time than CBC. Considering the shape of the time
dependency observed in Fig. 1, it is reasonable to expect
that there are problem instances for which the CQM solver
outperforms CBC. Note that we cannot conclude that CQM
solver will be better for arbitrarily large problem instances,
as the time dependency cannot be observed due to fixed opti-
mization time; hence, any potential outperformance of the
CQM solver may be limited to a specific interval of problem
instance sizes.

Considering this, we can make an attempt to estimate the
minimum number of variables for which we might expect to
obtain similar results for the Gurobi and CQM solver. Since
it is anticipated that the time complexity of ILP optimiza-
tion is exponential with the size of the data, we analyzed the
linear dependency between the logarithm of time and the
number of variables, which is depicted in Fig. 2. Here, we
focused on the runtime per iteration and its corresponding
number of variables in that iteration, rather than the overall

runtime across all iterations. Additionally, we also included
the average runtime required by the CQM solver for compar-
ison. Through this analysis, we can estimate the minimum
number of variables that could potentially benefit from the

0 20 40 60
Iterations

0

50

100

150

200

250

300

350

N
um

be
r
of

re
m
ai
ni
ng

te
st
s

56 58 60 62 64 66
0

2

4

6

8

10

(a)

0 20 40 60
Iterations

10−1

100

101

R
un

ti
m
e
(s
)

CQM
Gurobi
CBC

(b)

Fig. 1 Illustration of variation in a number of remaining tests and b runtime with respect to number of iterations for CQM, CBC and Gurobi
solvers

Table 3 The averaged overall runtime by the CBC, Gurobi (classical)
and CQM (quantum) solvers

Solver Overall runtime (in seconds)

Gurobi 6.309
CBC 136.800
CQM 371.975

500 1000 1500 2000
Number of Variables

10−1

100

101

R
un

ti
m
e
(s
)

1959.79

6.52

regression (Gurobi) simulation (Gurobi)

Fig. 2 The dependency between the number of variables for each
iteration vs. runtime of the given iteration. The blue dashed line is
the regression line of log(runtime) = A × (number of variables) + B .
The horizontal red dotted line is the average time over all iterations
for CQM solver, and the vertical red dotted line is the corresponding
number of variables for Gurobi solver based on the regression line.
Note that the crossing point is far away from the data we used for
regression

SN Computer Science (2023) 4:609 Page 11 of 12 609

SN Computer Science

CQM solver. Note that if the CQM solver starts to require
more optimization time within this range, the number of
variables for which we would observe benefits may increase.

We have also checked the performance of the solvers
when nbunch = 5 , which is the maximum possible number
that can be taken without exceeding the 5000 variables1 limit
of the CQM solver. Gurobi solver returned 63 cars, so we can
say that the result is slightly improved. However, the over-
all experiment took a significantly longer time (83 s). For
the CQM solver, no feasible solutions were obtained with
the default time limit of 5 s. We observed that the returned
samples either violated the “single type constraint” and the
vehicles had no type (in that case all constraints related to
“rules per type” are automatically satisfied) or several other
constraints were violated. When the time limit was increased
to 10 s, then the CQM solver was able to return a feasible
solution at each iteration. However, after the 13th iteration
(after 65 vehicles were configured), there were still 35 tests
remaining to be satisfied, hence the optimization quality was
worse. We would like to remark that the CBC solver failed to
return any result within a reasonable amount of time.

Conclusion and Future Work

In this paper, we proposed a greedy algorithm for solving the
optimization problem of the production of test vehicles using
the new hybrid CQM solver by D-Wave. We provided a con-
strained quadratic model formulation for the problem that
requires the number of qubits linearly proportional to the
number of vehicles, car types, features, and tests. We imple-
mented the code for generating the constrained quadratic
model and solved the problem instance provided by BMW
quantum computing challenge on D-Wave CQM solver. We
benchmarked the results by implementing the integer linear
program formulation and running the same algorithm using
classical solvers like CBC and Gurobi.

The results show that CQM solver gives comparable
quality results to classical solvers in optimizing the number
of required vehicles. However, the classical solvers require
much less time to provide slightly better results. Keeping
in mind the challenges faced and the ongoing efforts in the
development of quantum computers, CQM solver has the
potential to be a promising tool for large problems in the
near future, provided that the algorithm will be significantly
sped up. Note that the solver relies on quantum hardware,
which is an advanced, very recent noise-prone technology.

The current CQM Solver is limited to 500,000 variables,
while the real-world problems which are not tractable for

classical solvers often require more than that. The problem
size is an important factor as the currently available quantum
solvers are limited in the number of qubits. Several works
try to formulate models for gate-based quantum computers
that are more efficient in the number of qubits used [37–41]
and further research can be pursued in this direction for the
considered problem.

A related and more general problem is product configura-
tion and reconfiguration, where the problem’s scope is not
restricted to vehicles and one may consider any product such
as computer parts. Satisfiability-based approaches have been
considered in Refs. [42, 43]. The presented model can be
extended for such problems and evoke potential use-cases
for D-Wave CQM solver.

Acknowledgements We would like to thank Jarosław Miszczak,
Krzysztof Domino, and Aleksandra Krawiec for discussion on the sub-
ject and their valuable comments on the report. This work has been
partially supported by Polish National Science Center under the Grant
agreement 2019/33/B/ST6/02011. AG has been also supported by Pol-
ish National Science Center under the Grant agreements 2020/37/N/
ST6/02220. We would like to thank the organizers of BMW Group
Quantum Computing Challenge for providing us with the exemplary
dataset used in this manuscript.

Data availability The data supporting the findings of this study are
available at https:// doi. org/ 10. 5281/ zenodo. 60122 61.

Declarations

Conflict of interest The authors have no competing interests to declare.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bayerstadler A, Becquin G, Binder J, Botter T, Ehm H, Ehmer T,
Erdmann M, Gaus N, Harbach P, Hess M, et al. Industry quantum
computing applications. EPJ Quantum Technol. 2021;8(1):25.

 2. Tilly J, Chen H, Cao S, Picozzi D, Setia K, Li Y, Grant E, Woss-
nig L, Rungger I, Booth GH, Tennyson J. The variational quan-
tum eigensolver: a review of methods and best practices. Physics
Reports. 2022;986:1–128.

 3. Farhi E, Goldstone J, Gutmann S. A quantum approximate opti-
mization algorithm. arXiv preprint arXiv: 1411. 4028 (2014).

 4. Das A, Chakrabarti BK. Colloquium: quantum annealing and
analog quantum computation. Rev Mod Phys. 2008;80(3):1061.

 5. Johnson MW, Amin MH, Gildert S, Lanting T, Hamze F,
Dickson N, Harris R, Berkley AJ, Johansson J, Bunyk P,

1 At the time of conducting the experiments, the CQM solver was
limited to 5000 variables.

https://doi.org/10.5281/zenodo.6012261
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1411.4028

 SN Computer Science (2023) 4:609 609 Page 12 of 12

SN Computer Science

et al. Quantum annealing with manufactured spins. Nature.
2011;473(7346):194–8.

 6. Featured Applications: D-Wave. https:// www. dwave sys. com/ learn/
featu red- appli catio ns. Accessed 10 Feb 2022.

 7. Domino K, Kundu A, Salehi Ö, Krawiec K. Quadratic and higher-
order unconstrained binary optimization of railway rescheduling
for quantum computing. Quantum Inf Process. 2022;21(9):1–33.

 8. Salehi Ö, Glos A, Miszczak JA. Unconstrained binary models of
the travelling salesman problem variants for quantum optimiza-
tion. Quantum Inf Process. 2022;21(2):1–30.

 9. Domino, Krzysztof, Mátyás Koniorczyk, Krzysztof Krawiec,
Konrad Jałowiecki, Sebastian Deffner, and Bartłomiej Gardas.
“Quantum annealing in the NISQ era: railway conflict manage-
ment.” Entropy 25, no. 2: 191 (2023).

 10. Yarkoni S, Alekseyenko A, Streif M, Von Dollen D, Neukart F,
Bäck T. Multi-car paint shop optimization with quantum anneal-
ing. In: 2021 IEEE international conference on quantum comput-
ing and engineering (QCE). IEEE; 2021. p. 35–41.

 11. Mugel S, Kuchkovsky C, Sanchez E, Fernandez-Lorenzo S, Luis-
Hita J, Lizaso E, Orus R. Dynamic portfolio optimization with
real datasets using quantum processors and quantum-inspired ten-
sor networks. Phys Rev Res. 2022;4(1):013006.

 12. Kurowski K, Weglarz J, Subocz M, Różycki R, Waligóra G.
Hybrid quantum annealing heuristic method for solving job shop
scheduling problem. In: International conference on computa-
tional science. Springer; 2020. p. 502–15.

 13. Genin SN, Ryabinkin IG, Izmaylov AF. Quantum chemistry on
quantum annealers. arXiv preprint arXiv: 1901. 04715 (2019).

 14. Teplukhin A, Kendrick BK, Tretiak S, Dub PA. Electronic struc-
ture with direct diagonalization on a D-wave quantum annealer.
Sci Rep. 2020;10(1):1–11.

 15. Mato K, Mengoni R, Ottaviani D, Palermo G. Quantum molecu-
lar unfolding. Quantum science and technology 7(3), p.035020
(2022).

 16. Asproni L, Caputo D, Silva B, Fazzi G, Magagnini M. Accuracy
and minor embedding in subqubo decomposition with fully con-
nected large problems: a case study about the number partitioning
problem. Quantum Mach Intell. 2020;2(1):1–7.

 17. Jiang S, Britt KA, McCaskey AJ, Humble TS, Kais S. Quantum
annealing for prime factorization. Sci Rep. 2018;8(1):1–9.

 18. Arya A, Botelho L, Cañete F, Kapadia D, Salehi Ö. Applications
of quantum annealing to music theory. Cham: Springer Interna-
tional Publishing; 2022. p. 373–406.

 19. Luckow A, Klepsch J, Pichlmeier J. Quantum computing: towards
industry reference problems. Digitale Welt. 2021;5(2):38–45.

 20. Tiepelt MK, Singh TR. Finding pre-production vehicle configura-
tions using a Max-SAT framework. In: 18th international configu-
ration workshop; 2016. p. 117.

 21. Walter R, Kübart T, Küchlin W. Optimal coverage in automo-
tive configuration. In: International conference on mathematical
aspects of computer and information sciences. Springer; 2015. p.
611–26.

 22. BMW Group. Optimizing Production of Test Vehicles. https://
crowd- innov ation. bmwgr oup. com/ apps/ IMT/ Uploa dedFi les/ 00/f_
b20f2 23487 b934a 44f2d 92db7 60444 34/ 210818_ UC1_ Config.
pdf?v= 16432 93520. Accessed 10 Feb 2022.

 23. Hybrid Solver for Constrained Quadratic Models [WhitePaper].
https:// www. dwave sys. com/ media/ rldh2 ghw/ 14- 1055a-a_ hybrid_
solver_ for_ const rained_ quadr atic_ models. pdf. Accessed 10 Feb
2022.

 24. Gu J, Purdom PW, Franco J, Wah BW. Algorithms for the satis-
fiability (SAT) problem: a survey. Technical report, Cincinnati
University of Department of Electrical and Computer Engineering
(1996).

 25. Cook SA. The complexity of theorem-proving procedures. In:
Proceedings of the third annual ACM symposium on theory of
computing; 1971. p. 151–8.

 26. Garey, M. R.; Johnson, D. S. Computers and Intractability: A
Guide to the Theory of NP-Completeness. A Series of Books in
the Mathematical Sciences. San Francisco, Calif.: W. H. Freeman
and Co. ISBN 0-7167-1045-5. MR 0519066 (1979).

 27. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated
annealing. Science. 1983;220(4598):671–80.

 28. Kelley JE. The cutting-plane method for solving convex programs.
J Soc Ind Appl Math. 1960;8:703–12.

 29. El Lawler DEW. Branch-and-bound methods: a survey. Oper Res.
1966;14:699–719.

 30. Mitchell S, OSullivan M, Dunning I. PuLP: a linear programming
toolkit for python. Auckland: The University of Auckland; 2011.
p. 65.

 31. Forrest J, Lougee-Heimer R. CBC user guide. In: Emerging the-
ory, methods, and applications. INFORMS; 2005. p. 257–77.

 32. Gurobi Optimization, LLC. Gurobi optimizer reference manual.
https:// www. gurobi. com (2021). Accessed 10 Feb 2022.

 33. Lucas A. Ising formulations of many NP problems. Front Phys
vol.2, p.5 (2014).

 34. Choi V. Minor-embedding in adiabatic quantum computa-
tion: I. The parameter setting problem. Quantum Inf Process.
2008;7(5):193–209.

 35. Shi Y, Reich D, Epelman M, Klampfl E, Cohn A. An analyti-
cal approach to prototype vehicle test scheduling. Omega.
2017;67:168–76.

 36. Kundu A. i i t is/bmw_vehicle_opt: v1.0.0. 10.5281/
zenodo.6012261 (remove this reference as we put this on the data
availability statement)

 37. Glos A, Krawiec A, Zimborás Z. Space-efficient binary opti-
mization for variational quantum computing. npj Quantum Inf.
2022;8(1):1–8.

 38. Tabi Z, El-Safty KH, Kallus Z, Hága P, Kozsik T, Glos A, Zim-
borás Z. Quantum optimization for the graph coloring problem
with space-efficient embedding. In: 2020 IEEE international con-
ference on quantum computing and engineering (QCE). IEEE;
2020. p. 56–62.

 39. Campbell C, Dahl E. QAOA of the highest order. In: 2022 IEEE
19th international conference on software architecture companion
(ICSA-C). IEEE; 2022. p. 141–6.

 40. Mohammadbagherpoor H, Dreher P, Ibrahim M, Oh YH, Hall J,
Stone RE, Stojkovic M. Exploring airline gate-scheduling opti-
mization using quantum computers. arXiv preprint arXiv: 2111.
09472 (2021).

 41. Bakó B, Glos A, Salehi Ö, Zimborás Z. Near-optimal circuit
design for variational quantum optimization. arXiv: 2209. 03386
(2022).

 42. Singh TR, Rangaraj N. Generation of predictive configurations for
production planning. In: Configuration workshop; 2013. p. 79–86.

 43. Walter R, Küchlin W. ReMax—a MaxSAT aided product (re-)
configurator. In: Configuration workshop; 2014. p. 59–66.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.dwavesys.com/learn/featured-applications
https://www.dwavesys.com/learn/featured-applications
http://arxiv.org/abs/1901.04715
https://crowd-innovation.bmwgroup.com/apps/IMT/UploadedFiles/00/f_b20f223487b934a44f2d92db76044434/210818_UC1_Config.pdf?v=1643293520
https://crowd-innovation.bmwgroup.com/apps/IMT/UploadedFiles/00/f_b20f223487b934a44f2d92db76044434/210818_UC1_Config.pdf?v=1643293520
https://crowd-innovation.bmwgroup.com/apps/IMT/UploadedFiles/00/f_b20f223487b934a44f2d92db76044434/210818_UC1_Config.pdf?v=1643293520
https://crowd-innovation.bmwgroup.com/apps/IMT/UploadedFiles/00/f_b20f223487b934a44f2d92db76044434/210818_UC1_Config.pdf?v=1643293520
https://www.dwavesys.com/media/rldh2ghw/14-1055a-a_hybrid_solver_for_constrained_quadratic_models.pdf
https://www.dwavesys.com/media/rldh2ghw/14-1055a-a_hybrid_solver_for_constrained_quadratic_models.pdf
https://www.gurobi.com
http://arxiv.org/abs/2111.09472
http://arxiv.org/abs/2111.09472
http://arxiv.org/abs/2209.03386

	Optimizing the Production of Test Vehicles Using Hybrid Constrained Quantum Annealing
	Abstract
	Introduction
	Preliminaries
	Satisfiability Problems
	Linear Programming
	Quantum Annealing
	Constrained Quadratic Model

	Formulation of the Problem
	Overview
	Buildability Constraints
	Single Type Requirement
	Features Allowed Per Type
	Group Features
	Rules Per Type

	Test Requirements
	Scheduling
	Resource Analysis

	Problem Solution
	Algorithm
	Implementation
	Results and Discussion

	Conclusion and Future Work
	Acknowledgements
	References

