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Abstract
This study aims to determine an acquisitional and computational workflow that yields the highest quality spatio-spectral 
reconstructions in four-dimensional neutron tomography studies. The properties of neutrons enable unique image contrast 
modes, but accessing these modes requires defining the energy of the neutron beam, resulting in long acquisition times. We 
seek sparse angular tomography approaches to collect of order 100 tomograms at different neutron wavelengths using the 
minimum number of input projection images. In these computational image workflows, we identified and evaluated the main 
factors affecting the quality of the tomographic reconstruction such as the projection number, the reconstruction method, 
and the post-processing method and we report relationships between 3D reconstruction quality metrics and acquisition time. 
Based on these relationships, the performance of seeded simultaneous iterative reconstruction-based techniques (SIRT and 
SIRT with total variation regularization) yielded improved image quality and more accurate estimates of the reconstructed 
attenuation values compared to other methods, which included convolutional neural networks. The methods were then applied 
to a dose-reduced monochromatic dataset and characterized via signal-to-noise ratio (SNR) and single-voxel resolution.

Keywords 3D reconstruction image quality · Dose reduction · Neutron imaging · Bragg-edge tomography

Introduction

The properties of the neutron, a massive, neutral, spin-1/2 
particle that interacts primarily through the strong nuclear 
force, enables one to create images with unique sources 
of contrast compared to other penetrating probes [1]. The 
diverse set of neutron image contrasts include quantitative 

imaging of magnetic and electric fields with polarized neu-
tron imaging [2, 3], characterizing the porosity with sub-
pixel resolution through dark-field or phase imaging [4, 5], 
and crystal phase mapping with Bragg-edge imaging [6, 
7], and can be thought of as hyperspectral images. Com-
mon to these measurements is the desire to form full tomo-
graphic datasets across a range of experimental conditions 
for the same sample, repeating the tomographic acquisition 
at many different neutron wavelengths or other instrument 
settings. However, with few neutron facilities, intrinsically 
weak neutron sources (especially compared to synchrotron 
facilities), and limited beam time per experiment, it is not 
possible to measure a fully sampled tomography dataset in 
each configuration. This work examines strategies for recon-
structing neutron tomograms from sparse angular samples 
and employing computational imaging methods to minimize 
noise and artifacts.

In neutron tomography, the beam direction is fixed and 
the sample is rotated through a series of angles with a projec-
tion image taken at each angle. Similar to X-ray tomography, 
reconstructing the neutron attenuation of the sample can be 
realized via the Radon transform or iteratively via algebraic 
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and statistical methods [8]. The underlying measurement 
uncertainty follows Poisson counting statistics, with the 
signal-to-noise ratio (SNR) proportional to the square root 
of measurement time [9]. Further, neutron imaging studies 
are conducted on a wide array of samples of widely varying 
structure. This is a subtly different problem than presented in 
medical imaging, wherein anatomical structures share simi-
larities between patients. Thus, we seek methods that require 
limited high-quality data for either training supervised mod-
els or forming a priori estimates for parameterized models.

A property of the wavelength-selective image contrasts 
is that the image contrast varies slowly with wavelength. 
We postulate that we can obtain quantitative data for the 
entire wavelength series by measuring one tomogram with a 
large number of projections (which we refer to as the “high-
quality tomogram”) and using it to aid the reconstruction 
of a series of sparsely sampled measurements at the other 
wavelengths. The high-quality tomogram serves either as 
training data for machine learning, selecting subsets of the 
rotation angles to generate sparsely sampled training data or 
as an a priori estimate (i.e., seed) for iterative algorithms. To 
test this hypothesis, we used Bragg-edge imaging to identify 
the crystal phases in samples of well-known composition in 
a scene also comprised of unknown materials. We compared 
several different reconstruction and de-noising techniques 
including simultaneous iterative reconstruction technique 
(SIRT) as implemented in the ASTRA Toolbox [10, 11], 
a regularized iterative reconstruction method that imposes 
smoothness constraints (total variation minimization with 
SIRT: TV-SIRT, based on the work of Sidky et al. [12]), 
the stochastic primal dual hybrid gradient method (SPDHG) 
[13] as implemented via the core imaging library [14, 15] 
and three machine learning algorithms: a mixed-scale dense 
convolutional neural network (MS-D Net) [16, 17], the fil-
tered back projection convolutional neural network (FBP-
ConvNet) [18] and the hybrid-domain network (HDNet) 
[19]. Throughout the manuscript, these are referred to as 
the convolutional neural network (CNN) methods.

Our objective is to establish models and rankings among 
the factors that affect 3D reconstruction image quality and 
acquisition time. These factors can guide neutron imag-
ing experimentalists in (a) maximizing image quality and 
minimizing acquisition time, and (b) quantifying the trade-
offs between several image quality metrics and different 
dose-reduction approaches with a factorial design. In our 
experimental design, we varied the number of projections 
(60, 80, 360, 600, and 800) for each workflow (e.g., SIRT, 
SIRT+seed, TV-SIRT+seed) with the polychromatic dataset 
to determine baseline metrics. For the SIRT reconstructions, 
the FBPConvNet and MS-D Nets were trained as a post-
processing step with the input training sets consisting of 
dose-reduced images paired with fully sampled images. The 
HDNet operates partially as a pre-processing step (projection 

domain) and a post-processing step (image domain), with the 
reconstruction operation occurring between. The SPDHG 
method is included here as a method that incorporates 
smoothing along the energy channel, it is, therefore, exclu-
sively analyzed in the monochromatic analysis and omitted 
from the polychromatic comparisons.

First, accuracy of reconstructed tomographic volumes is 
related to the number of acquired 2D projections via a theo-
retical relationship. This was followed by characterizing and 
contrasting the image quality of seeded SIRT reconstruc-
tions as a function of iterations. Next, all the reconstruction 
and CNN methods were compared across key image qual-
ity metrics (root mean square error (RMSE), a no-reference 
perceptual blur metric (NRPBM) and SNR). Finally, the 
performance of the different methods on a dose-reduced 
monochromatic scan was reported.

The contributions of our work lie in: 

1. Designing a factorial experimental design to understand 
trade-offs between acquisition time and image quality of 
3D tomographic reconstructions from neutron imaging 
data,

2. Evaluating (a) reference material-based image quality, 
such as SNR, (b) imaging quality focused metrics, such 
as blur, (c) reference 3D reconstruction acquired for 
over-sampled 2D projections, such as RMSE, and (d) 
theory for circularly symmetric objects and the relation-
ship between intensity variance and the number of 2D 
projections.

3. Including the CNN-based methods as both post-process-
ing (MS-D Net and FBPConvNet) and hybrid-domain 
(HDNet) de-noising methods to leverage high-quality a 
priori information.

4. Reporting single-voxel resolution and SNR as a func-
tion of wavelength for the different dose-reduction 
approaches.

The novelty of this work is in establishing model-based and 
ranking relationships between 3D reconstruction accuracy 
and acquisition time represented by intensity variance, SNR, 
RMSE, blur, number of 2D projections, number of iterations 
and seeding of 3D tomographic reconstruction (SIRT), and 
supervised and de-noising models (HDNet, MS-D Net and 
FBPConvNet).

Related Work

Tomographic Reconstruction Algorithms

The two most common computed tomography (CT) algo-
rithms that reconstruct the raw 2D projections into 3D space 
are filtered back projection (FBP) and iterative algebraic 
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reconstruction methods. The mathematical theory for these 
algorithms is beyond the scope of this work but are detailed 
in [8]. In back projection (BP), a slice is reconstructed by 
“smearing out” the line integrals for each angle and sum-
ming them together. The FBP improves this process by 
applying a spatial frequency filter to account for the over-
sampling of certain areas [20].

In recent years, improvements in computer process-
ing have made iterative reconstruction (IR) techniques 
popular for dose and noise reduction. There are several 
types of IR algorithms, but they generally follow a proce-
dure of, first, forward-projecting a reconstruction image 
(either initialized with a blank image or a reconstruction 
image) and create a simulated sinogram [21, 22]. Next, 
this simulated sinogram is compared to the sinogram of 
the raw data and corrections to the reconstruction image 
are made. The algorithm iterates through this process a 
set number of times or until some convergence criteria 
is met. In SIRT, the projection differences and sinogram 
differences are weighted. Additional details can be found 
in [8, 10, 21]. For both FBP and SIRT, the image qual-
ity and accuracy increase with an increasing number of 
projections.

While SIRT and other algebraic reconstruction meth-
ods are well suited for incorporating magnitude con-
straints and morphological a priori information, regu-
larized methods can extend this to impose other desired 
features onto the reconstruction such as smoothness. 
Regularized methods are particularly beneficial to dose-
reduced reconstructions because they can suppress some 
of the noise and artifacts that occur from sparse sampling 
(aliasing distortions). The adaptive steepest descent pro-
jection onto convex subsets (ASD-POCS) algorithm [12, 
23] is one such regularized method that balances sensor-
based image fidelity with image smoothness.

Improvements to spectral X-ray detectors and multi-
modal imaging methods such as positron emission tomog-
raphy (PET) have motivated the incorporation of smooth-
ing approaches that leverage energy content to improve 
de-noising [24]. These methods naturally extend the regu-
larization approaches by adding smoothness constraints 
across an energy dimension. Chambolle et al. developed 
both the primal dual hybrid gradient algorithm [25] and 
the more recent stochastic primal dual hybrid gradient 
(SPDHG) algorithm [13], which have seen high utility in 
optimizing regularized problems of this type for PET [24, 
26] and neutron Bragg-edge tomography [27]. Recently, 
Yu et al. proposed a novel regularized method that adap-
tively filters reconstructions with global, local, and non-
local image components for multi-energy CT images [28].

Image De‑noising

With the orders of magnitude increase in performance 
available from graphics processing units (GPUs) and new 
techniques for training deep convolutional neural networks, 
the last decade has seen a tremendous increase in research 
on artificial intelligence and machine learning (ML) across 
many fields, particularly image processing. Foundational to 
the dose reduction-related ML work of the past decade is 
the theory of compressed sensing that subverts the require-
ments of the Nyquist sampling theory. Xu et al. employed 
compressed sensing techniques via global and adaptive 
dictionary-based statistical iterative reconstruction meth-
ods to improve low dose CT reconstructions [29]. These 
dictionary-based methods are effectively single-layer neu-
ral networks that learn a sparse representation of the CT 
images and preceded the large multi-layer convolutional 
networks that followed (e.g., U-net [30]). FBPConvNet 
[18] is a U-net architecture consisting of a series of con-
tractions, forcing generalization by limiting the size of the 
representation, paired with a series of expansions to gen-
erate the target image. An additional skip connection was 
added, reducing the vanishing gradient problem exhibited 
by deep networks early in training. The mixed-scale dense 
network (MS-D Net) [16] is an architecture that maintains 
the image size throughout, replacing the contractions with 
dilations to spread information across the image. Both of 
these architectures are trained using high-quality tomograms 
as the target, with tomograms from subsets of the projec-
tions as the source. The hybrid-domain network (HDNet) 
[19] operates in both the projection image domain (PID) and 
the reconstruction image domain (RID). The HDNet uses 
a modified U-net architecture for both PID and RID which 
replace the max pooling operations with strided convolu-
tions that allow the networks to weight the down-sampling 
along the network contraction path. The HDNet is trained as 
follows: a weighted interpolation scales the sinograms up to 
the fully sampled size, which is the input to the PID U-net. 
The PID U-net is trained on these interpolated sinograms 
and, following training, its inferences are reconstructed 
and used as inputs to train the RID U-net. An extension of 
this hybrid-domain approach is the dual-domain attention 
guided convolutional neural network, which employs the 
same encoder–decoder-type architecture as the U-net, but 
uses spatial attention mechanism blocks to improve recon-
struction fidelity [31]. Fu et al. revisited non-convolutional 
networks with a hierarchical domain decomposition that 
directly maps sinograms to the reconstruction image space 
[32]. Recently, a CNN architecture specifically tailored for 
hyperspectral images was proposed that dramatically reduces 
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the reconstruction time over iterative optimization-based 
methods [33]. Generative adversarial networks (GANs) have 
also seen utility in tomographic image de-noising as Liu 
et al. employed an architecture that uses a U-net generator 
with a typical convolutional discriminator [34]. Work on 
hyperspectral image de-noising is still a highly active area of 
research with recent work by Gkillas leveraging regularized 
methods and neural networks to improve image quality [35]. 
We point readers to reference [36] as a valuable resource for 
insights into the of deep learning for tomographic imaging 
from a medical perspective.

Image Quality Metrics

Comparing different image processing methods neces-
sitates objective quality metrics to determine whether 
one approach is superior to another. We can evaluate (a) 
the reconstruction against a priori known data using the 
RMSE, (b) foreground vs. background discrimination 
using signal-to-noise ratio (SNR) over calibration regions, 
(c) conservation of high-frequency content with blurring 
metrics, and (d) the reconstruction accuracy as a function 
of the number of 2D projections following a theoretical 
model. Each quality evaluation requires some assump-
tions about a priori knowledge. RMSE assumes co-reg-
istered ground truth 3D reconstruction. SNR quantifica-
tion requires known foreground and background masks. 
Blur metrics are derived from intensity histograms using 
multiple mathematical models that must be empirically 
chosen. In our work, the ground truth 3D reconstruction 
was established from over-sampled angular 2D projec-
tions (2400 projections). Next, foreground and back-
ground masks were created manually for two reference 
cylindrical objects filled with known material. Finally, a 
blur model was selected that aligned with human visual 
perception of blur [37, 38].

Materials and Methods

Figure 1 shows an overview of the key components in 
evaluating the trade-offs between acquisition time (dose 
reduction) and 3D reconstruction quality. These key com-
ponents define the relationships among variables, such 
as number of 2D projections (or acquisition time), num-
ber of iterations during 3D reconstruction, variance of 
intensities in 3D reconstructed datasets, SNR, RMSE, 
blur, and availability of highly accurate seed for a 3D 
reconstruction algorithm and supervised post-processing 
model. Following Fig. 1, we describe each component in 
our assessment of dose-reduction strategies.

Samples

The test sample set consisted of four geological samples to 
analyze. The first two samples were a meteorite (LMT204) 
and a 1 cm diameter core of Westerly Granite, which has 
been extensively analyzed in [39, 40]. The other two samples 
were standard reference powders obtained from National 
Institute of Standards and Technology (NIST) Standard Ref-
erence Material (SRM) collection. Several grams of these 
powders were placed in separate 6061-aluminum tubes, with 
316 stainless steel ferrules around them, and sealed on both 
ends with polyimide tape. The powders were not compacted 
or leveled off and aluminum tape was used to secure all the 
samples in place. Figure 1A shows an image of the samples 
before they were placed in the beam.

The SRM powders were used as reference objects for all 
the subsequent metric evaluations. The first powder, SRM 
691—Reduced Iron Oxide, was an iron powder consisting of 
90% by mass of iron and trace amounts of oxides and other 
metals. The second powder, SRM 70b—Potassium Feldspar, 
was prepared from a high-purity feldspar obtained from 
pegmatite deposits in the Black Hills of South Dakota. The 
material is a mixture of alkali feldspar, plagioclase feldspar, 
quartz, and a small amount of mica. The SRMs were blended 
and bottled at NIST.

Beam, Detector and Image Acquisition

Neutron tomography datasets were measured at the NG-6 
Cold Neutron Imaging Instrument at the NIST Center for 
Neutron Research (NCNR) [41]. A densely sampled dataset 

Fig. 1  An overview of processes for assessing the dose-reduction 
strategies
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was collected, with 2400 evenly spaced projections over 360 
degrees (2399 unique projections). This dataset is referred 
to herein as the “high-quality” dataset and serves as ground 
truth. Figure 1B shows an example projection image. The 
high-quality dataset was collected using a polychromatic 
neutron beam that can be approximated from a kinetic 
molecular theory as a Maxwell–Boltzmann distribution with 
characteristic temperature of about 50 K [42]. An Andor 
NEO scientific complementary metal oxide semiconductor 
(sCMOS) camera operating in 12-bit mode [43] was used to 
collect images from a P43 scintillator detector (i.e., gadolin-
ium oxysulfide doped with terbium, Gd2O2S:Tb also known 
as GadOx) with a Nikon Nikkor 50 mm f1.2 lens.

Each image was acquired over 4 s and the median of 5 
images was taken for each projection, leading to maximum 
intensity around 3500 gray levels. The pixel pitch of the 
images was 51.35� m (resolution about 100� m) and the 
field of view was 2560 pixels by 2160 pixels ( ∼13 cm by 
11 cm). This scan took approximately 16.5 h to complete. 
From this original dataset, several subsets were taken to 
simulate smaller projection numbers: 60, 80, 360, 600, and 
800. Angles from these sets were evenly taken throughout 
the 2400 projections in order to span the same 360-degree 
sample space. If these datasets were collected on the poly-
chromatic beam line, they would take 0.4 h, 0.6 h, 2.5 h, 
4.2 h, and 5.5 h, respectively to acquire.

Additionally, monochromatic scans were obtained over 
a series of wavelengths from 0.200 nm to 0.588 nm in 
0.002 nm increments (195 tomograms). Each of these 
sparsely sampled datasets are comprised of 80 evenly 
spaced projections collected over 360 degrees. Two highly 
oriented pyrolytic graphite crystal monochromators were 
used to select the wavelength and the Δ�∕� was about 1%. 
The same camera and lens as above were used to collect 
images from a zinc sulfide/lithium fluoride (ZnS:LiF) 
scintillator. For these data to be consistent with the poly-
chromatic datasets in terms of maximum intensity, the 
lower incident beam intensity required each projection 
image to be acquired over 10 s with a median of 3 images 
(maximum intensity  3500 counts). The pixel pitch of the 
images was 51.35� m (resolution about 250� m) and the 
field of view was 2560 pixels by 2160 pixels ( ∼13 cm by 
11 cm). Each of these scans took approximately 0.8 h to 
complete. Using this same set up (monochromator, scintil-
lator and camera), a scan was taken with 720 projections 
at a wavelength of 0.37 nm, which took approximately 7 h 
to complete. This wavelength was chosen arbitrarily to 
generate a data point for characterizing and validating the 
signal fidelity of the different de-noising methods applied 
to the dose-reduced (80 projection) scan at 0.37 nm. Note 
that it would have required over 55 continuous days to 
complete such a validation scan at all the wavelengths, 
hence, we only validated at one wavelength.

Computational Workflow

Image Pre‑processing

As stated, the images from each projection angle were com-
bined by taking the median to remove non-statistical noise 
such as gamma streaks and hot spots. An image with the 
beam off was used to subtract the additive noise of the detec-
tor background. An image of the open beam was used to 
normalize the projections, and a region of the image that did 
not contain a sample was used to correct for any small drift 
in beam intensity. The normalized projections were formed 
into sinograms, correcting for rotation axis tilt. Ring artifacts 
were removed from the sinograms by the algorithm devel-
oped by Vo et al [44]. As mentioned in the introduction, the 
HDNet differs from the other neural networks by operating 
in both the PID and the RID and is, therefore, an additional 
pre-processing step in its respective workflow.

Tomographic Reconstruction

For this study, we are using the Simultaneous Iterative 
Reconstruction Technique (SIRT) as implemented in the 
ASTRA toolbox [10, 11, 45]. A basic description of alge-
braic IR techniques was given in Sect. “Related Work”. Rig-
orously, SIRT can be written as in [10]

where v is the seed volume, p is the set of projections and W 
is the sparse projection matrix indicating which points in the 
volume contribute to which pixels in the projection. C and R 
are for bookkeeping, with r ii = 1∕

∑
j aij and c jj = 1∕

∑
i aij , 

to avoid over-counting back-projected pixels inside the 
volume.

Two regularized reconstruction methods were also used 
in this work, the first of which is based on the ASD-POCS 
algorithm, which is referred to herein as TV-SIRT. The pri-
mary differences between this algorithm and ASD-POCS 
are that it employs SIRT instead of algebraic reconstruction 
technique (ART) as the reconstruction method, and it uses a 
prior image estimate (seed data) instead of being initialized 
to zeros. The pseudo-code for the ASD-POCS algorithm 
can be found on page 4788 of reference [12] and the imple-
mentation details of our TV-SIRT variant can be found in 
Appendix A. The general form of these regularized optimi-
zation problems can be stated as in [26]

where f ∗ is the optimized image, f is the current estimate 
of the image, W is the system matrix that describes the 
transformation between the reconstructed image and the 
sensor information, g is the sensor data. The operator D 

(1)v� = v + CWTR(p −Wv)

(2)f ∗ = arg min {D(Wf − g) + �R(f )}
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is an operator which constrains the image fidelity within 
some norm (e.g., l2 ) and the R operator penalizes solu-
tions that contain undesirable features. The � term balances 
these two operations. TV is the most common regulariz-
ing operator which is the l2,1 norm of the gradient image 
( TV(f ) = ‖∇f‖2,1 ) [23]. This is the method used herein for 
TV-SIRT.

The second regularized method incorporates both the 3D 
information and the spectral information. The formulation 
of this optimization problem is similar to Eq. 2, however, 
it includes a term for the energy channel that has its own 
regularization parameter ( � ) [14] :

where subscripts the e, x, y, z correspond with the energy 
channel and x, y and z directions, respectively, and � is the 
regularization parameter for the energy channel. We employ 
the stochastic primal dual-hybrid gradient (SPDHG) algo-
rithm [13] as implemented via the core imaging library to 
optimize Eq. 3.

Image Post‑processing

The MS-D Net and FBPConvNet post-processing methods 
were applied to the reconstructions generated with SIRT, 
while HDNet also pre-processed sinograms, and, therefore, 
had its own reconstruction input that differed from the inputs 
to MS-D Net and FBPConvNet. Each neural network was 
trained and validated with high/low image quality pairs 
using the Enki high-performance computing (HPC) clus-
ter at NIST, which is equipped with NVIDIA Tesla V100 
SXM2 GPUs. Throughout the manuscript, we use the letter 
M to indicate the number of projections and the subscripts 
Tr and Inf (MTr and M Inf  ) to specify the number of projec-
tions a CNN was trained with and the number of projections 
upon which a CNN made inferences respectively. A total 
of 5 networks were trained, varying the low image quality 
input datasets (MTr = x where x ∈ {800,600,360,80,60}) 
and using the 2400 projection SIRT reconstruction for 
the high-quality dataset throughout. The MS-D Networks 
were each trained for 100 epochs. Each network was then 
applied to all the low-quality datasets (MInf  = x where x 
∈ {800,600,360,80,60}). Likewise, the FBPConvNet was 
trained on each high/low image quality pairing, however, 
the conditions from the original manuscript [18] were used: 
101 epochs, logarithmically decreasing learning rate from 
0.01 to 0.001 with a tiling crop size of 128 x 128 pixels. 
The HDNet was likewise trained for 100 epochs in both the 
projection image space and the reconstruction image space 
with tiles of size 128 x 128.

(3)f ∗ = arg min
1

2
‖Wf − g‖2

2
+ �‖fe‖1 + �TV(fx,y,z)

3D Reconstruction Quality Versus Acquisition Time

Accuracy and Number of 2D Projections

To assess the accuracy of each reconstruction method as 
a function of projection number (focusing on aliasing dis-
tortions [8]), we evaluated the standard deviation of the 
reconstructed values of the SRM powders, as shown in 
Fig. 4. As discussed in Kak and Slaney [8], for a circularly 
symmetric object, the variance of the reconstruction is 
proportional to the inverse of the number of projections 
( var ∝ M−1 ) and is approximated as

where M the number of projections, N0 the number of neu-
trons detected in the center of the object, � is the sampling 
width, and h(t) is the filtering window, which is the ramp 
function for the SIRT algorithm used in this work.

SNR and RMSE

RMSE and SNR metrics were computed by leveraging 
reference data constructed via a tomographic reconstruc-
tion from 2400 projections and manual segmentation of 
image regions delineating standard reference materials in 
the field of view—see Fig. 2. We calculated RMSE and 
SNR using the definitions shown as follows:

(4)var{f̂(0, 0)} =
𝜋2𝜏

MN0
∫

∞

−∞

h2(t)dw

Fig. 2  Left—a cross-section of the reference powders with the mask 
overlain on top. The powder regions are labeled. Right—a cross-sec-
tion of 3D tomographic reconstruction from 2400 projections which 
was considered as a reference
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where yi is the reference value, ŷi is the measured value, n is 
the number of values being compared, �̄� is the average inten-
sity and s is the sample standard deviation of the attenuation.

Blur Metric

Blur mostly affects structure and detail (high-frequency 
content), which are largely absent in the reference pow-
ders. For this reason, the blur metrics were calculated 
over entire reconstruction images and not just the masked 
SRM powders. To determine the optimal blur metric for 
our datasets, we evaluated different blur metrics from [37, 
38]. The no-reference perceptual blur metric (NRPBM) 
developed by Crete et al. [37] was chosen for this work 
as it aligns with human perception of blur. The NRPBM 
varies between 0 and 1 with higher NRPBM values cor-
respond with higher perceptual blur and conversely low 
NRPBM values corresponding with low perceptual blur.

Experimental Results

To compare the under-sampled datasets with ground truth 
(2400 projections), we took samples at a regular interval 
from the polychromatic dataset to form datasets with 60, 
80, 360, 600, and 800 projections, we also refer to these 
datasets as “low-quality”. From each of these under-sam-
pled datasets, we computed five reconstructed volumes. 
We formed the SIRT estimate of the volume using the 
corresponding low-quality FBP as a prior estimate, and 
we designate these as SIRT. The second set of volumes 
seed the SIRT with a prior estimate from the high-qual-
ity (2400 projection SIRT dataset) reconstruction, and 
we designate these as SIRT+seed. For all the polychro-
matic datasets, 3 iterations were used for the SIRT and 
SIRT+seed datasets. Likewise, the TV-SIRT+seed data-
sets were calculated at the same down-sampling condi-
tions and seeded with the 2400 projection SIRT dataset. 
The CNN methods were used to create remaining vol-
umes by de-noising the unseeded SIRT volume (FBP-
ConvNet and MS-D Net) and processing hybrid-domain 
data (HDNet). The 2400 projection dataset was used to 
determine the best approaches to evaluate the blur met-
rics for image quality. Polychromatic reconstructions and 

(5)RMSE =

�∑n

i=1
�yi − ŷi�2

n

(6)SNR =
�̄�

s

de-noised images from the different methods are shown 
in Fig. 3.

Method‑Based Image Quality Comparisons

Acquisition Time and Estimated Accuracy of 3D 
reconstruction

Acquisition time is directly proportional to the number of 
acquired 2D projections M. Following Eq. 4, the number 
of 2D projections (M) and the number of neutrons ( N0 ) 
influence the standard deviation. This is shown in Fig. 4 
by different slopes and intercept of the fit of the standard 
deviation as a function of M−1∕2 . The standard deviation 
for SIRT+seed, TV-SIRT+seed, MS-D Net and HDNet 
reconstructions do not possess the standard deviation 
dependence on projection number, but instead are approxi-
mately that of the 2400 projection SIRT dataset, which is 
used as the seed or ground truth. The FBPConvNet does 
exhibit some dependence on M−1∕2 , however, it is non-
linear with M−1∕2.

RMSE, NRPBM and SNR

The polychromatic reconstructions for each method are 
compared across RMSE and NRPBM at all down-sampling 
levels in Fig. 5. Note the box-plots at each down-sampling 
level (M) are arranged left to right in the same order as the 
legend, enabling identification of the smaller distributions 
(e.g., SIRT+seed’s RMSE). The reconstructions that com-
prise these distributions are those that were used to calculate 
the SNR in the SRM powders (115 frames total). The RMSE 
value for SIRT is observed deviating from the other methods 
as it becomes highly corrupted by aliasing distortions as M 
decreases. SIRT+seed conversely shows superior RMSE as 
it has only undergone 3 iterations (see Fig. 9) and is still 
highly biased toward its seed. TV-SIRT+seed, likewise, 
has low RMSE values; however, it exhibits no statistically 
meaningful difference in median as a function of M (overlap-
ping box-plot notches [46]). The CNNs had differing trends 
with respect to M, where the FBPConvNet increased RMSE 
with decreased projections, and the MS-D Net decreased its 
RMSE. The HDNet exhibited the lowest RMSE for the case 
that it was trained on (80 projections), which suggests that 
this larger network generalizes more poorly than the MS-D 
net and is likely over-fitting the training data.

For the NRPBM results, SIRT exhibits the lowest percep-
tual blur at all down-sampling conditions. SIRT+seed shows 
very little response to number of projections as it does not 
change significantly over the M values. The FBPConvNet is 
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initially blurrier than SIRT+seed, but at the 60 and 80 pro-
jection conditions it becomes sharper. Likewise, the MS-D 
Net is initially blurrier than TV-SIRT+seed, but becomes 
sharper for the 60 and 80 projection cases. The HDNet 
produced the highest perceptual blur for the case that the 
network was trained on, indicating a high level of smooth-
ing. TV-SIRT+seed generally has high perceptual blur as it 
iteratively reduces its total variation.

The results for the SNR in the two SRM regions for each 
method are shown in Fig. 6. SIRT+seed and TV-SIRT+seed, 
like in Fig. 5, exhibit virtually no change in SNR as a func-
tion of M. The CNNs, however, exhibit high SNRs for M ≥ 
360. This is likely due to high smoothing as seen in the 
NRPBM plots (Fig. 5). The increase in aliasing distortions 

begins to corrupt the CNNs at the 60 and 80 projection 
conditions.

Method‑Specific Trends

SIRT Dataset

The SNR masking method described in section “SNR and 
RMSE” was applied to the polychromatic datasets recon-
structed with SIRT. The differences in SNR values calcu-
lated for the reduced iron oxide and K-feldspar shown in 
Fig. 2 (left) are due to the difference in the average attenu-
ation intensity of the regions, a function of the properties 
of the reference powders, and will vary depending on the 

Fig. 3  Reconstruction and 
de-noising methods at different 
angular down-sampling condi-
tions for polychromatic dataset. 
MS-D Net, FBPConvNet and 
HDNet results are shown for 
networks trained on 80 projec-
tions
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homogeneous material being analyzed. As with most neu-
tron imaging datasets, the noise in the data is dominated 
by Poisson counting statistics with the SNR is given by

(7)SNR =
Nevents√
Nevents

Fig. 4  Standard deviation 
for the two regions of inter-
est (SRMs) as a function 
of inverse square root of 
number of projections M−1∕2 
( var ∝ M−1

→ std ∝ M−1∕2 ). 
We include the dashed lines to 
highlight the relationship of the 
SIRT dataset standard deviation 
to M−1∕2 . In contrast to SIRT 
datasets, the SIRT+seed, TV-
SIRT, MS-D Net and HDNet 
datasets show approximately 
constant standard deviations as 
a function of number of projec-
tions. The FBPConvNet does 
not provide as much smooth-
ing and exhibits a non-linear 
dependence on M−1∕2

Fig. 5  RMSE and NRPBM for 
all methods as a function of 
number of projections (M). The 
MS-D Net, FBPConvNet and 
HDNet distributions shown here 
are for the 80 projection condi-
tion ( MTr = 80). Note these data 
are all polychromatic. Recall 
lower and higher NRPBM 
values indicate lower and higher 
perceptual blur respectively. The 
SNR results that correspond 
with these volumes are shown 
in Fig. 6. These distributions 
are composed of the values of 
reconstruction slices that were 
used to compute the SNRs (115 
reconstructions)
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where Nevents is the number of detected events (incident neu-
trons) [9]. Thus, a factor of four increase in counting sta-
tistics via increased exposure time or increased projections 
produces a factor of two increase in SNR. The application 

of the Beer–Lambert Law, shown in the following equation, 
transforms this into a logarithmic relationship:

where I is the measured intensity, I0 the incident intensity, 
T is the transmission, t is the thickness, and � is the attenu-
ation, a product of the neutron cross-section and the atom 
density (dependent on the material). The expected logarith-
mic relationship between SNR and the number of 2D projec-
tions is observed for the data shown in Fig. 7.

SIRT+seed Dataset

Applying the SIRT+seed reconstruction method requires 
trade-offs between accuracy, compute time, and image 
quality as illustrated in Figs. 8 and 9, which show sample 
reconstructions at 3, 20, 100 and 1000 iterations (Fig. 8) 
and the dependence of SNR, RMSE, and NRPBM on the 
SIRT iterations (N) for both a polychromatic reconstruc-
tion (left column) and a monochromatic reconstruction 
(right column) (Fig. 9). We include the monochromatic 
reconstruction here to highlight the dependence of the 
image quality on the input sinogram. Note that the RMSE 
in Fig. 9 for the polychromatic is computed with respect 
to the 2400 projection polychromatic scan and the mono-
chromatic is computed with respect to the 720 projection 
monochromatic scan (0.37 nm). The polychromatic recon-
struction maintains generally high SNR and low RMSE 
in both regions (iron and K-feldspar) up to around 100 
iterations. The local peak for RMSE corresponds with a 
dip in both SNR and NRPBM, which indicates the initial 
influence of the low-quality sinogram as the reconstruc-
tion moves away from the seed. The subsequent decrease 
in RMSE (from N=3 to N=30) corresponds with increased 
smoothing from SIRT that is evidenced in the increasing 
NRPBM in that region. Above 100 iterations, the poly-
chromatic reconstruction begins to be dominated by the 
aliasing distortions in the low-quality sinogram which 

(8)T =
I

I0
= e−�t

Fig. 6  SNR for the different methods as a function of number of pro-
jections (M). These data correspond to the same volumes in Fig.  5. 
Again, the CNNs shown here were trained on ( MTr ) 80 projections

Fig. 7  The SNR as a function of the number of projections M in the 
reference powder regions (method = SIRT with no seed; data are 
polychromatic)

Fig. 8  SIRT+seed reconstructed 
slices using 3, 20, 100, and 
1000 iterations (N). The top 
row shows the monochromatic 
reconstructions at 0.37 nm 
and the bottom row shows the 
polychromatic. These data 
correspond with the image 
quality metrics shown in Fig. 9. 
The images are cropped to the 
reduced iron oxide powder 
region (see Fig. 2)
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lowers the SNR and increases RMSE. The monochromatic 
reconstruction exhibits increasing SNR up to 20 iterations 
for the iron region and slightly decreasing SNR for the 
K-feldspar region while the RMSE for both regions passes 
through a local minimum at 100 iterations. The NRPBM 
for the monochromatic reconstruction, like the polychro-
matic, increases up to around 300 iterations then begins 
to decrease. These data illustrate that the polychromatic 
image quality metrics effectively diverge from higher qual-
ity to lower quality as the iterations incorporate increas-
ingly more sensor data. This contrasts with the monochro-
matic reconstruction that passes through local optima for 

the SNR in the reduced iron oxide region and the RMSE 
for both regions. The decrease in SNR for both monochro-
matic and polychromatic as the iterations increase (above 
100 for polychromatic, above 20 for monochromatic) is 
due to over-fitting the noise, which is a known feature of 
SIRT [47].

CNN Datasets

Next, we analyzed the machine learning post-processing 
method for each trained network on the polychromatic data-
sets. We calculated the SNR for each calibration region and 

Fig. 9  SIRT+seed image 
quality metrics as a function of 
iterations (N). The left column 
shows the metrics for a poly-
chromatic reconstruction image 
(frame 121). The right column 
shows the metrics for the 
monochromatic 0.37 nm recon-
struction of the same frame. 
Figure 8 shows reconstructions 
for sample N values (3, 20, 100 
and 1000). Both reconstruc-
tions were seeded with the 
2400 projection polychromatic 
unseeded SIRT. Note the RMSE 
for the monochromatic recon-
struction is with respect to the 
720 projection monochromatic 
reconstruction
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for each network as a function of the number of projections 
using the same procedure as before and the NRPBM for the 
whole volume (see Fig. 10).

The top three rows of Fig. 10 show the results for the 
networks trained on (MTr =) 800, 600, and 360 projections 
respectively. The FBPConvNet and MS-D Net increase 
the SNR at all conditions over the unseeded SIRT recon-
structions (compare with Figure 7) and, SNR magnitudes 

generally follow the same logarithmic increase that was 
observed for the SIRT reconstructions that are highlighted 
in Fig. 10. As the number of training projections (MTr ) 
decreases, we likewise observe an increase in NRPBM at 
all inference conditions.

The fourth and fifth rows of Fig. 10 show the results 
for the networks trained on (MTr =) 80 and 60 projections, 
respectively. The FBPConvNet still follows the general 

Fig. 10  The SNR and NRPBM values for the trained CNNs making 
inferences on the 3D polychromatic datasets. The row designations: 
M Tr = x, indicate the number of projections that the network was 
trained on for that row where x ∈ {800, 600, 360, 80, 60} . The left 
three columns show the results for the MS-D Net, FBPConvNet, and 

HDNet, respectively, for the SNR in the SRM powders, and, the right 
three columns show the respective results for the NRPBM (for the 
entire volume). The x-axis for all plots is labeled M Inf  indicating the 
number of projections for the dataset on which the inferences were 
made
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trend of increasing SNR with the log of number of projec-
tions, however, the MS-D Net begins to diverge from this 
trend, particularly for the M Tr = 60 condition. We see, 
again, the relationship of increasing SNR at a given down-
sampling condition (MInf  ) that is coupled with increasing 
levels of perceptual blur (increased SNR at constant M Inf  
→ increased NRPBM). For this reason, we attribute the 
ability for the networks to produce excessively high SNR 
values to over-smoothing the reconstructions, which is an 
undesirable image feature for our use-cases. The HDNet 
behaved differently from the other networks as its output 
across different down-sampling conditions did not vary 
smoothly (see column 3). Likewise, the levels of percep-
tual blur varied non-linearly as seen in column 6.

Monochromatic Datasets

Table 1 summarizes the performance of the different meth-
ods on the monochromatic dataset at 0.37 nm, which was 
scanned at both 80 and 720 projections as described in sec-
tion “SNR and RMSE”. We show two different SIRT+seed 
reconstructions here to illustrate the difference between 3 
iterations and 20 iterations (maximum SNR in the reduced 
iron oxide powder at N = 20—see Fig. 9). TV-SIRT+seed 
produced the highest SNR for both SRM powders and the 
lowest RMSE in the K-feldspar SRM while SPDHG yielded 
the lowest RMSE both the iron oxide powder and the full 
image. Note these RMSE values were calculated with 
respect to the fully sampled 0.37 nm 720 projection tomo-
gram. The MS-D Net was ranked as the best of the CNNs 
across these image quality metrics, except for the HDNet 
having slightly higher SNR in the K-Feldspar SRM. The 720 
projection reconstruction was not noise-free as evidenced 
by its SNR values which are higher than only FBPConvNet 
and unseeded SIRT.

Performance as a Function of Wavelength

Lastly, we assess the performance of the different dose-
reduction methodologies over the spectrum of monochro-
matic scans as described in section “SNR and RMSE”. 
Figure 11 shows the results for the resolution of a single 
voxel across all the scanned wavelengths. The image arrays 
show the reconstruction and inset of the reduced iron oxide 
powder, with the voxel probe position highlighted with the 
red × . Using the crystallography database software GSAS 
[48], the location and relative intensities of Bragg peaks 
were calculated as shown in the dashed vertical lines in the 
bottom row of Fig. 11. Two different wavelengths are shown 
(sharing a constant greyscale range) to highlight the decrease 
in attenuation at 0.42 nm. Both the FBPConvNet and SIRT 
produce large variations in attenuation across the scanned 
wavelengths as seen in the bottom row of Fig. 11. The MS-D 
Net, HDNet and SPDHG improve over these methods, but 
still do not readily resolve all the expected Bragg edges. 
The 20 iteration SIRT+seed case shows higher attenua-
tion than the 3 iteration case and more noise across wave-
lengths. SIRT+seed with 3 iterations and TV-SIRT+seed 
both resolve the voxel smoothly over all the wavelengths and 
align closely with the modeled data.

Taking a large statistical sample of (over 4 million) voxels 
from the SRM powders (via the masks), Fig. 12 illustrates 
the mean, standard deviation and SNR for the different meth-
ods across all the wavelengths. The mean for each method 
captures the expected Bragg-edge position, however, the 
standard deviations vary strongly which impacts the SNR. 
SIRT and FBPConvNet both show large standard deviations 
which lower their respective SNR values significantly. Both 
the MS-D Net and HDNet exhibit relatively high SNR (>10) 
in the 0.25–0.4 nm range but have larger standard devia-
tions at the extrema of the scanned wavelengths. Likewise, 

Table 1  Image quality 
metrics for monochromatic 80 
projection → 720 projection 
( � = 0.37 nm). The best method 
for each criterion is shown 
in bold (highest SNR; lowest 
RMSE)

 Method  SNR  Median RMSE ± std (x10−3)

Iron oxide K-Feldspar Iron oxide K-Feldspar Full image

SIRT 1.29 0.68 25.9 ± 0.54 14.7 ± 0.41 13.26 ± 0.90
SIRT+seed (N=3) 12.20 4.09 9.34 ± 0.14 6.08 ± 0.08 4.07 ± 0.23
SIRT+seed (N=20) 12.67 3.82 7.57 ± 0.09 6.10 ± 0.08 4.02 ± 0.25
TV-SIRT+seed 32.53 9.25 7.87 ± 0.12 5.66 ± 0.09 3.66 ± 0.26
MS-D Net 14.80 5.32 7.42 ± 0.11 5.97 ± 0.15 4.61 ± 0.33
FBPConvNet 4.22 1.24 11.0 ± 0.67 8.93 ± 0.29 7.01 ± 0.62
HDNet 11.13 5.61 7.79 ± 0.19 6.10 ± 0.12 5.44 ± 0.26
SPDHG 17.39 5.61 7.18 ± 0.12 5.73 ± 0.10 3.26 ± 0.32
Ground truth (SIRT—720 Pro) 5.40 1.74 – – –
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TV-SIRT+seed exhibits high SNR for both SRMs but also 
has wavelength dependence. Both the 3 and 20 iteration 
SIRT+seed reconstructions exhibit a larger standard devia-
tion than TV-SIRT, however, this value is nearly constant 
over the scanned spectrum, producing SNR values that are 
effectively a scaled version of the mean. SPDHG, which 
exhibited high SNR for 0.37 nm (Table 1), shows wave-
length-related SNR dependence qualitatively similar to the 
CNN methods.

Discussion

This work examined seven separate methods of improving 
energy-resolved 3D tomographic reconstructions at neutron 
imaging beam lines: (1) one baseline reconstruction method 
as a function of varying input numbers of projections, (2) 
two methods as a function of incorporated seeds into itera-
tive 3D reconstruction algorithms, (3) two post-processing 
methods as a function of incorporated non-linear mappings 
derived from existing datasets, (4) one hybrid-domain 

method that operated in both the projection and reconstruc-
tion domains and (5) one method that incorporated smooth-
ing along the energy-channel of the data without a high-
resolution seed. The first reconstruction algorithm (SIRT) 
established baseline metrics for analyzing neutron tomo-
grams, including SNR and the NRPBM. The second two 
reconstruction algorithms (SIRT+seed and TV-SIRT+seed) 
used a high-quality dataset to initialize the reconstruction. 
The third approaches applied machine learning algorithms 
(MS-D net and FBPConvNet) to sharpen and de-noise the 
reconstruction images. The hybrid-domain smoothed both 
the interpolated sinogram data in the projection domain 
and the subsequent reconstructions in the image domain. 
Last, the SPDHG algorithm incorporated spatial and spec-
tral information to iteratively smooth the monochromatic 
reconstructions.

Using the metrics determined when analyzing the SIRT 
datasets, we found that the SIRT+seed method could utilize 
a high-quality dataset of similar attenuation values and the 
same shape to reconstruct unknown datasets with trade-offs 
between accuracy, time, and image quality (see Fig. 9). The 

Fig. 11  Single-voxel resolution of dose-reduction methods as a func-
tion of wavelength. The top two rows show a reconstruction at the 
0.392 nm wavelength with the inset box on the first row expanded on 
the second row. Likewise, the third and fourth rows show the recon-

struction and its respective inset at 0.42 nm. The bottom row shows 
the attenuation of the voxel highlighted with the red × at all the meas-
ured wavelengths with the vertical lines designating the GSAS [48] 
predicted edge positions
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success of this method is contingent upon having a seed 
dataset of high-quality that is co-registered with the mono-
chromatic datasets. Experiments that involve significant sto-
chastic or morphological changes to the internal structure of 
the sample violate this condition and may be better served 
by different approaches. Employing SIRT in this context can 
dramatically decrease the time required to reconstruct, de-
noise and collect datasets, allowing more advanced neutron 
imaging methods to be more widely adopted.

The post-processing methods using the CNNs demon-
strated the potential of these methods for low-projection 
datasets, especially if the algorithm is trained on a data-
set with the same number of projections. These networks 
showed improvements in SNR values at the expense of 

higher NRPBM which indicates a trade-off in image quality 
between fidelity and smoothness. As shown in the mono-
chromatic wavelength sweep, care must be taken when 
applying machine learning models across multiple configu-
rations on the neutron imaging conditions.

This work is not intended to be dismissive of CNN-based 
methods for de-noising neutron tomograms on account of 
two considerations: network optimization and experimental 
configuration. Each of the CNN-based methods was trained 
with hyper parameters and out-of-the-box architectures that 
could be sub-optimal for the size of these datasets. Indeed, 
there are many other architectures for tomogram de-nois-
ing that were not tested in this work that could prove to be 
superior to seeded TV-SIRT. Also, the ability for iterative 
tomographic reconstruction methods to incorporate explicit 
a priori information proved to produce superior reconstruc-
tions in this context where the CNNs were trained on data 
that imply the mapping from low-quality image to high. 
Figure 13 illustrates a key challenge in applying the net-
works trained on polychromatic data to the monochromatic 
data: the underlying projection images contain wavelength-
dependent noise that is larger at the extrema of the surveyed 
wavelengths. We expect this variation in input noise, which 
roughly coincides with low SNRs for the CNN methods 
in Fig. 12, to account for this phenomenon. Future work 
applying neural networks to de-noise wavelength-dependent 
neutron tomograms may benefit from modeling the noise 
process and augmenting NN training with it, particularly 
with implementations, such as the HDNet that can operate 

Fig. 12  SNR of reference powders as a function of wavelength. Each wavelength comprises 4,060,122 voxels

Fig. 13  Variation in SNR of the flat field (open beam) across the 
spectrum (polychromatic is included for reference). Noise from this 
source (lower neutron counts) manifests differently from computing a 
reconstruction with sparse projections



 SN Computer Science           (2023) 4:586   586  Page 16 of 19

SN Computer Science

directly on the noisier projection domain. Measuring the 
wavelength-dependent attenuation of a registered static sam-
ple lends itself to seeded iterative reconstruction methods by 
having essentially no morphological variability across scans. 
Bragg-edge imaging requires such a configuration. However, 
there are other cases of neutron tomography where the sam-
ple undergoes internal morphological changes and where 
the seeding geometry is not as accurate and can require 
many iterations to reconstruct accurately. Instances such as 
this could see high utility in employing these CNN-based 
methods.

The performance of the methods on the dose-reduced 
monochromatic data demonstrates their ability to improve 
image quality of dose-reduced data with different attributes 
than the polychromatic (see Figs. 11 and 12). The seeded 
SIRT-based methods (SIRT+seed N=3, SIRT+seed N=20, 
and TV-SIRT+seed) both produce superior reconstructions 
as a function of wavelength and allow a simpler computa-
tional pipeline that can be optimized and tested more rap-
idly than the CNN-based approaches (see Fig. 9). While the 
SPDHG algorithm produced very promising results (see 
Table 1 and Fig. 12), it exhibits the same dependence on 
wavelength that the CNN methods showed. Further work can 
incorporate a high-resolution seed into this spatio-spectral 
smoothing to produce superior results where Poisson noise 
dominates.

In terms of modeling approaches, the conventional 
approaches to solving the de-noising and artifact removal 
problems use mathematical and statistical models. These 
approaches have limitations when mathematical and statis-
tical models do not capture real data complexity. The deep 
learning models are supervised data-driven methods that 
can increase the accuracy of conventional approaches by 
adapting the data-driven models to specific training data-
sets and hence capturing real data complexities. The aim of 
our work was to explore whether data-driven models were 
increasing accuracy and by how much with respect to con-
ventional models. While the data-driven models have been 
improving in their model capacity and complexity over time, 
the used CNNs did not lack model capacity and/or model 
complexity to encode the neutron imaging datasets (Note: 
model capacity for memorization of each input is highly 
undesirable for general purpose models). Thus, comparing 
performances of the presented neural networks to the higher 
capacity neural network architectures would not change the 
conclusions about the utility of neural networks for address-
ing the de-noising and artifact removal problems in neutron 
Bragg-edge tomography.

Future work will continue to look at computationally effi-
cient regularized methods as they have shown high utility for 
this problem, but are still very time-intensive. Likewise, fur-
ther CNN investigations will look at novel architectures and 
variations of segmentation-tasked neural networks, which 

have seen high portability to tomographic de-noising prob-
lems. The transformer/V-Net architecture employed by Zhao 
et al. is one such network that employs a novel architecture 
to segmentation [49]. Likewise, MRI-based techniques will 
continue to be investigated for these problems [50, 51].

Conclusions

This work presented (1) an experimental design to under-
stand the trade-offs between acquisition time and image 
quality of 3D tomographic reconstructions from neutron 
imaging data, (2) evaluations of SNR, RMSE, blur metrics, 
and intensity variance as measurements of image quality and 
their relationships to acquisition parameters, (3) integration 
of the CNN model-based de-noising to leverage previously 
acquired high-quality dataset and (4) characterized the meth-
ods on a dose-reduced monochromatic dataset. The family 
of seeded SIRT-based methods, including the regularized 
TV-SIRT, exhibited superior SNR and single-voxel resolu-
tion over all the wavelengths, by comparison to the unseeded 
SIRT and CNN methods.

A Appendix

The modified ASD-POCS algorithm (TV-SIRT) is stated 
here (Algorithm 1). The original ASD-POCS algorithm 
can be found on page 4788 of reference [12]. The differ-
ences between TV-SIRT and ASD-POCS are: 

1. We use 10 gradient descent steps (ng in line 2) instead 
of 20

2. We use a seed dataset as input (line 4) instead of initial-
izing f⃗  with zeros

3. We use SIRT instead of algebraic reconstruction tech-
nique (ART) in (line 7)

4. We set the stopping criteria to an image residual lower 
than 0.005: |f⃗ − f⃗0| < 0.005 → Stopping Criteria = True

The gradient of the TV norm with respect to each pixel is 
approximated by

where s and t subscripts are for two-dimensional x and y 
pixel coordinates and � is 10−8 , which keeps the denomina-
tors from being zero.

(9)

∇f⃗ ||f⃗ ||TV =
(fs,t − fs−1,t) + (fs,t − fs,t−1)

√

� + (fs,t − fs−1,t)2 + (fs,t − fs,t−1)2

−
(fs+1,t − fs,t)

√

� + (fs+1,t − fs,t)2 + (fs+1,t − fs+1,t−1)2

−
(fs,t+1 − fs,t)

√

� + (fs,t+1 − fs,t)2 + (fs,t+1 − fs−1,t+1)2



SN Computer Science           (2023) 4:586  Page 17 of 19   586 

SN Computer Science

Dataset Structure

The monochromatic data were represented as a 4D array with 
x, y, and z coordinates accompanied by a wavelength coordi-
nate (see Fig. 14).
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