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Abstract
In this paper, we present an efficient novel method for mining discriminative itemsets over data streams using the sliding 
window model. Discriminative itemsets are the itemsets that are frequent in the target data stream, and their frequency in the 
target stream is much higher in comparison to their frequency in the rest of the streams. The problem of mining discriminative 
itemsets has more challenges than mining frequent itemsets, especially in the sliding window model, as during the window 
frame sliding, the algorithms have to deal with the combinatorial explosion of itemsets in more than one data stream, for the 
transactions coming in and going out of the sliding window. We propose a single scan algorithm using two novel in-memory 
data structures for mining discriminative itemsets in a combination of offline and online sliding windows. Offline processing 
is used for controlling the generation of many unpromising itemsets. Online processing is used for getting more up-to-date 
and accurate online answers between two offline slidings. The discovered discriminative itemsets are accurately updated in 
the offline sliding window periodically, and the mining process is continued in the online sliding between two periodic offline 
slidings. The extensive empirical analysis shows that the proposed algorithm provides efficient time and space complexities 
with full accuracy. The algorithm can handle large, fast-speed, and complex data streams.
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Introduction

The data stream is a type of ongoing dataset that is gener-
ated and flows continuously in high volume and at fast speed 
during its period [1]. This has to be quickly processed to 
extract real-time insight from it. The area of frequent itemset 
mining in a single data stream is fulfilled with numerous 
quality algorithms [2]. Working on multiple data streams for 

mining discriminative items and discriminative itemsets is 
an emerging topic [3–6]. The discriminative itemsets in the 
sliding window model are defined as the itemsets that are 
frequent in the target data stream and have much higher fre-
quencies than that of the same itemsets in other data streams 
in a fixed recent period. To make it simpler, we use the term 
'general data stream' for other data streams. Specifically, we 
look for the itemsets that are comparatively frequent in the 
target data stream and infrequent in the general data stream 
during the fixed-size sliding window frame. The discrimi-
native itemsets in this research problem are fundamentally 
used for recognizing the target data stream from all other 
data streams in a finite number of recent transactions or a 
fixed recent period.

The topic of discriminative itemset mining originated in 
[3], is different from our proposed method in this paper. 
First, the method proposed in [3] is looking for the dis-
criminative items while we are looking for discriminative 
itemsets. Second, the discriminative items are discovered 
in the landmark window model while we discover the dis-
criminative itemsets in the sliding window model. Third, 
the discriminative items are discovered approximately while 
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we discover the discriminative itemsets with full accuracy. 
Also, our proposed method has clear differences from the 
DISTree and DISSparse methods proposed in [5–7], for min-
ing discriminative itemsets in a static batch of transactions.

H-DISSparse method [8] is proposed for mining discrimi-
native itemsets over data streams but using the tilted-time 
window model. This has key differences from the proposed 
method in this paper, using the sliding window model. First, 
although they are both single-pass algorithms working on 
data streams, the former works on a better approximation 
for mining discriminative itemsets through history, while the 
latter is an exact efficient algorithm for mining discrimina-
tive itemsets in a fixed recent sliding time frame. Second, the 
tilted-time window model is defined in multiple historical 
different size periods, while the sliding window model is 
defined in a fixed-size recent period. In H-DISSparse, the 
logarithmic tilted-time window model is applied to the DIS-
Sparse [7] which is updated by shifting and merging for 
displaying the recent discriminative itemsets in fine granu-
larities and the historical ones in coarse granularities. The 
sliding window model, on the other side, has a dynamic 
start point moving by time focusing only on the recent time 
frame. The sliding window model should deal with new 
transactions coming to, and old transactions going out of the 
sliding window model. Third, they both define prefix-tree 
structures for holding and updating the discovered patterns 
with a difference that H-DISSparse uses H-DISStream with 
a possible built-in tilted-time window model in each node, 
while in sliding window model S-DISStream (i.e., a sim-
ple prefix-tree structure) holds the discovered patterns from 
the recent transactions in the range of window frame size. 
Fourth, the H-DISStream, with its tilted-time window model 
is updated in offline mode after processing a new batch of 
transactions in the pre-defined time intervals. On the other 
side, the S-DISStream in our proposed sliding model is 
updated in a combination of offline and online modes. It 
accurately reports the discriminative itemsets in offline slid-
ing windows, while using the online monitoring for showing 
the more up-to-date patterns with good approximation. This 
online mode is happening between two offline slidings.

The embedded knowledge in data streams is changing 
over time. Processing the recent transactions is important 
in the applications looking for the recent patterns inside the 
data streams (e.g., anomaly detection and decision mak-
ing). Discovering the recent patterns in a finite number of 
transactions or a fixed period in data streams and contin-
uous monitoring of the variations in these patterns gives 
valuable information for data stream mining based on the 
recent trends. The transactions for pattern mining should be 
restricted to the most recent ones in the fixed-size window 
frame by eliminating the effects of the obsolete transactions 
in the information [9].

Discriminative itemsets differentiate the target data 
stream from others, as they ignore the generally available 
frequent itemsets [3, 5, 6]. Stock market monitoring for 
discovering the fluctuations in the most recent transactions 
in the fixed-size sliding window frame can be useful by 
quickly detecting the discriminative itemsets in the recent 
trends between different markets. Discriminative itemsets 
represented in the sliding window model are useful for data 
stream comparison based on their recent trends by high-
lighting the high demanding itemsets in the target market 
compared with the other markets in the fixed recent period. 
A better web page personalization can be achieved by fol-
lowing the changes in user preferences compared to the com-
mon trends in the fixed recent period. The stated sequences 
of queries in one geographical area that have higher support 
compared to another area are time-related. Monitoring the 
changes in the discriminative pattern trends in networks dur-
ing the last few minutes is very useful for anomaly detection 
and network interference prediction.

The Apriori property defined for the frequent itemsets 
does not stand true in discriminative itemsets mining, con-
sequently, the frequent itemset mining algorithms cannot be 
directly applied. Moreover, the explosion in the number of 
itemsets combinations is worse in the sliding window com-
pared to other window models, as new transactions are com-
ing to the sliding window and old transactions are going out 
of the sliding window [10]. The sliding window model has 
to be updated by adding a large number of itemset combina-
tions of recent transactions and deleting the effects of the old 
transactions from the sliding window frame. Depending on 
the application, the sliding window frame is defined based 
on a fixed period or fixed number of transactions, and the 
discriminative itemsets are represented in offline and online 
updating states. The greatest challenge is a generation of 
compact in-memory data structures by processing only the 
recent potential discriminative itemsets in the offline and 
online sliding states. Moreover, unsynchronized data streams 
with different speeds add more challenges to the sliding win-
dow updating process.

In this paper, we first define the “discriminative item-
sets” mining in data streams with the sliding window model. 
We develop the novel S-DISSparse algorithm for efficiently 
discovering the discriminative itemsets in the fixed-size 
sliding window frame. We propose two novel data struc-
tures named S-FP-Tree and S-DISStream based on the basic 
principles presented in FP-Growth [11]. We propose two 
determinative heuristics for exact and efficient mining of 
discriminative itemsets using the offline sliding window. 
S-DISStream is updated in an offline state when a new par-
tition, i.e., a group of transactions coming through the time, 
arrives. S-DISStream is also used for online (or real-time) 
monitoring of discriminative itemsets between two offline 
slidings. Empirical analysis shows efficient time and space 
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complexity gained by the S-DISSparse algorithm for min-
ing discriminative itemsets in the offline and online sliding 
window. To the best of our knowledge, the proposed method 
in this paper is the first algorithm for mining discriminative 
itemsets in data streams using the sliding window model.

The following are contributed to this paper:

• Developing the single-pass algorithm called S-DISSparse 
(i.e., Sliding DIScriminative Sparse; being sparse is the 
characteristic of these itemsets) for mining discriminative 
itemsets in data streams using an efficient sliding window 
model;

• Introducing efficient offline and online updating of the 
sliding window using novel in-memory data structures;

• Applying two determinative heuristics to the algorithm 
for removing the impossible discriminative itemsets from 
the mining process, only based on the recent transactions 
in the sliding window frame.

• Conducting extensive experiments on the proposed algo-
rithm in large synthetic and real datasets with different 
parameter settings;

• Indicating practical tactics and principles for parameter 
settings following the application domain necessities and 
dataset characteristics;

The rest of the paper is organized as follows: The related 
works are discussed in “Related Works”. The definition of 
the research problem is presented in “Problem Statement”. 
The sliding window model and its offline updating process 
are discussed in “Offline Sliding Window”. The online 
sliding window is discussed in “Online Sliding Window”. 
The S-DISSparse method is proposed in Sect. 6. Experi-
mental results are reported in “S-DISSparse Method”. Sec-
tion “Conclusion and Future Works” finalizes and concludes 
the paper.

Related Works

The Moment is a famous method proposed for mining closed 
frequent patterns from data streams using a sliding window 
model [12]. Compared to the frequent itemsets, the discrimi-
native itemsets are a much smaller subset and they are a type 
of contrast pattern [13]. The concept of closed frequent item-
sets does not apply to the discriminative itemset mining as 
it does not follow the Apriori property. Our proposed algo-
rithm in this paper assumes that the Apriori property does 
not hold. This is the basic assumption in contrast mining 
[13]. The DISSparse algorithm [6, 7] is an efficient method 
for mining discriminative itemsets in one batch of transac-
tions. H-DISSparse [8] is the most related work to our pro-
posed S-DISSparse method. This method uses several well-
defined characteristics to improve the approximate support 

of the discovered discriminative itemsets in the offline loga-
rithmic tilted-time window model. In contrast, S-DISSparse 
is an exact algorithm working on a sliding window model. 
The discriminative itemsets in the offline state are discov-
ered accurately and efficiently and then used for approximate 
online sliding between two offline slidings. In the sliding 
window model, the mining is limited to the recent transac-
tions fitted in the window frame by removing the older trans-
actions out of the window frame. A few simpler and less 
challenging problems were proposed for mining discrimina-
tive items in data streams [3, 4]. As well-known contrasting 
patterns, the emerging patterns (EPs) are presented [14]. 
They are the patterns whose frequencies grow significantly 
higher in one dataset in comparison to another one.

The definition of discriminative itemsets is very similar 
to Emerging Patterns (EPs), however, there exist several 
differences. First, the EPs methods use maximal itemsets 
occurring between two borders to find emerging patterns, 
and the real support of EPs is not recorded. In discriminative 
itemsets mining, frequencies of itemsets have to be known 
to distinguish between highly and lowly discriminative item-
sets. Second, the EPs algorithms are mostly designed for 
static datasets except for a small number of works in stream 
mining that are based on the same idea of border definition 
[15, 16]. Authors in [15] have attempted emerging pattern 
mining in data streams. This method showed the EPs related 
to each block of transactions, and discard the block from the 
process. Third, in the discriminative itemsets mining method 
proposed in this paper, only the promising combinations of 
itemsets are generated.

The �-discriminative emerging patterns are defined as a 
special type of useful emerging patterns [17] for mining the 
statistically important emerging patterns. The �-discrimina-
tive emerging patterns are the frequent patterns in the target 
dataset that have minimum frequency (i.e., less than � ) in the 
other datasets. The proposed DPM algorithm eliminates part 
of the patterns as redundant compared to the discriminative 
itemsets defined in this paper. The full set of discrimina-
tive itemsets is discovered without redundancy, each with 
explicit frequencies in data streams. Moreover, the Condi-
tional Discriminative Patterns Mining method (CDPM) [18] 
is proposed for discovering a set of significant non-redun-
dant discriminative patterns, without any similar discrimina-
tive power in their subsets. Other research tracks are looking 
for statistically significant patterns [19] and discriminative 
sequential patterns [20].

As an example, for the importance of discriminative item-
set mining and its advantages to the emerging patterns and 
statistically important emerging patterns, we can refer to the 
applications that need discriminative itemsets with explicit 
frequencies. The discriminative itemsets in the market bas-
ket datasets are discovered with explicit frequencies and 
without any redundancy. In these types of applications, the 
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discriminative itemsets are used for mining the discrimina-
tive rules with different supports and different confidences. 
Also, minimizing the number of discriminative itemsets 
based on their statistical importance caused a smaller num-
ber of discovered discriminative itemsets in the sliding win-
dow model and less accuracy.

Depending on the target application domain, the data 
stream processing can be divided into two categories: (1) 
offline, i.e., bulk processing of input transactions; and (2) 
online, i.e., processing by transactions generation through 
time [21]. The proposed S-DISSparse algorithm in this paper 
is designed based on a combination of offline and online 
processing. S-DISSparse can report the accurate set of dis-
criminative itemsets in the offline sliding window, as well as, 
it can show the online results with good approximation by 
online monitoring which is happening between two offline 
slidings. This approach can be applied in real-world sce-
narios with multiple unsynchronized fast-speed data streams. 
The correctness of the proposed algorithm is guaranteed in 
the offline sliding window model.

The sliding window model is widely used for frequent 
pattern mining in applications that need recent patterns, 
ignoring the obsolete information that is currently useless 
or even invalid [9, 22–29]. These frequent pattern mining 
methods have been expanded based on the basic Apriori 
[22, 25–27] and FP-growth [9, 23, 24, 28, 29]. The concept 
of closed [23] and maximal itemsets [28] is utilized in some 
research to deal with the combinatorial problem in the slid-
ing window model. However, this reduced itemsets concept 
is not applicable in discriminative mining, as the Apriori 
property is not valid in them.

Problem Statement

Let 
∑

 be the alphabet set of items, a transaction 
T =

{
e1,… ei, ei+1,… , en

}
 , ei ∈

∑
 , is defined as a set of 

items in 
∑

 . The two data streams Si and Sj are defined as 
the target and general data streams; each consists of a dif-
ferent number of transactions, i.e., ni and nj , respectively. 
The proposed algorithm in this paper can be extended to 
multiple data streams using a specific counter for each data 
stream. A group of input transactions from two data 
streams Si and Sj in the pre-defined period are set as a batch 

of transactions Bn i.e., n ≥ 1 , and n is the latest batch of 
transactions. Let P be a partition fitting an input batch of 
transactions B . The sliding window frame denoted as W  is 
made of a fixed number of partitions Pk i.e., k ≥ 1 and 
Pk ⊆ W  (e.g., in Fig. 1 the sliding window is made of three 
partitions) and refers to the fixed recent period containing 
itemsets made of transactions in two data streams Si and Sj 
with the lengths of nw

i
 and nw

j
 , respectively. All partitions 

cover the same width of the period but the number of trans-
actions in partitions in the sliding window frame W  varies 
depending on the speed of data streams. This means the 
partitions can be in different sizes depending on the size of 
input batches. The time interval for the batch of transac-
tions depends on the partition time frame (i.e., p = W∕k ). 
The window frame W  slides in an offline state by adding 
the itemsets in the recent partition i.e., Pnew , and deleting 
the itemsets in the oldest partition i.e., Pold , as in Fig. 1.

An itemset I is a set of items in 
∑

 that occur together. 
The number of transactions containing the itemset is called 
itemset frequency. We show the frequency of itemset I in 
each data stream Si in the window frame W  as f w

i
(I) and 

rw
i
(I) shows the frequency ratio of itemset I in data stream 

Si in the window frame W  defined as rw
i
(I) = f w

i
(I)∕nw

i
.

In case of a higher frequency ratio of itemset I  in the 
target data stream Si in the sliding window frame W  than 
the frequency ratio in the general data stream Sj , i.e., 
rw
i
(I)

rw
j
(I)

> 1 , the itemset I can be considered as a discrimina-

tive itemset. We defined the Rw
ij
(I) as the ratio between 

rw
i
(I) and rw

j
(I) , i.e., Rw

ij
(I) =

rw
i
(I)

rw
j
(I)

 . With the higher Rw
ij
(I) , 

the itemset I is more discriminative.
We show the discriminative level by a user-defined 

threshold 𝜃 > 1 , with no upper bound. In the case of 
Rw
ij
(I) ≥ � , the itemset I  , is considered discriminative in 

the window frame W  if, which is formally defined as:

The low f w
i
(I) could lead to a very largeRw

ij
(I) . To iden-

tify the discriminative itemsets with reasonable frequency 
in the window frame W  , and also in the case of f w

j
(I) = 0 , 

another user-specified support threshold, 0 < 𝜑 < 1∕𝜃 is 
identified. This eliminates the itemsets with very low fre-
quency in the window frameW  . Consequently, a discrimi-
native itemset I is defined by its frequency in the window 
frame W  greater than ��ni i.e., f w

i
(I) ≥ ��ni.

Definition 1. Discriminative itemsets in the sliding window 
model: Let target data stream Si and general data stream Sj 
be with the current size of nw

i
 and nw

j
 in the sliding window 

frame W  . These data streams contain transactions with 

(1)Rw
ij
(I) =

rw
i
(I)

rw
j
(I)

=
f w
i
(I)nw

j

f w
j
(I)nw

i

≥ �

Fig. 1  Sliding window model W made of three partitions P
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varied lengths made of items in ∑. Considering a user-
defined discriminative level threshold 𝜃 > 1 and a support 
threshold ��(0, 1∕�) , we define the set of discriminative 
itemsets in Si against Sj in the sliding window model in win-
dow frame W  , denoted as DIw

ij
 as:

Moreover, a relaxation of ��(0, 1) is defined for sub-dis-
criminative itemsets. The smaller � leads to a greater num-
ber of sub-discriminative itemsets. We are interested in the 
discriminative itemsets; however, we also kept track of the 
sub-discriminative itemsets during the process as they may 
be discriminative by sliding window frames. We use this 
relaxation only for mining the discriminative itemsets with 
better accuracy in the online sliding window between two 
offline slidings. The discriminative itemsets in the offline 
sliding window are discovered with full accuracy and they 
do not need the definition of relaxation of �.

Definition 2. Sub-discriminative itemsets in the sliding win-
dow model: Let target data stream Si and general data stream 
Sj be with the current size of nw

i
 and nw

j
 in the sliding window 

frame W  . These data streams contain transactions with var-
ied lengths made of items in 

∑
 . Considering a user-defined 

discriminative level threshold 𝜃 > 1 , a support threshold 
��(0, 1∕�) , and a relaxation parameter ��(0, 1) , we define a 
set of sub-discriminative itemsets in Si against Sj in the slid-
ing window model W  , denoted as SDIw

ij
 as:

The itemsets that are not discriminative and not sub-dis-
criminative are defined as non-discriminative itemsets. The 
non-discriminative itemsets are used for tail pruning in the 
sliding window model.

The sliding window model is updated in an offline state 
in the specific time intervals defined for the batch of transac-
tions. The sub-discriminative itemsets are also saved as they 
may become discriminative in the future by online sliding 
window frames. Two determinative heuristics are proposed 
for efficient and exact mining discriminative itemsets in 
the offline sliding window. The online sliding window is 
between two offline sliding of the window model with an 
approximate bound guarantee.

Offline Sliding Window

The sliding window model is made of itemsets from the 
recent transactions in the range of window frame size in 
a prefix tree structure (i.e., S-DISStream as presented in 

(2)DIw
ij
=
{
I ⊆

∑|f w
i
(I) ≥ 𝜑𝜃nw

i
&Rw

ij
(I) ≥ 𝜃

}

(3)SDIw
ij
=
{
I ⊆

∑
∣ f w

i
(I) ≥ 𝛼𝜑𝜃nw

i
&Rw

ij
≥ 𝛼𝜃

}

Fig. 4). The size of the sliding window frame is defined 
based on the desired output range in the application domain 
and the limit of main memory. The frequencies of itemsets 
are held in the full-size sliding window frame and the dis-
criminative itemsets are reported in the offline and online 
updating sliding windows. The general approach is based 
on using the offline and online sliding windows together. 
Offline sliding is happening periodically and online sliding 
is happening between two offline slidings limited to only 
the recently discovered discriminative itemsets i.e., itemsets 
recently exist in S-DISStream prefix-tree structure.

The offline sliding window is updated by the new batch 
of transactions arriving and the oldest batch of transactions 
going out in offline time intervals in the window frame. The 
transactions are stored in a prefix-tree structure which is 
updated in an offline state i.e., S-FP-Tree prefix-tree struc-
ture. S-FP-Tree holds the transactions fitted in the offline 
sliding window. The offline window is updated periodically 
based on the recently updated transactions in S-FP-Tree. 
The discovered discriminative itemsets in the offline state 
are updated in S-DISStream accurately which is also used 
for online sliding between two offline slidings. The online 
sliding window is updated by adding and deleting the recent 
and the oldest transaction respectively in the window frame 
in the real-time frame i.e., limited to only S-DISStream. 
The recent and the oldest transactions update the itemsets’ 
frequencies if they have any subset in S-DISStream. The 
itemsets in S-DISStream then change their status from dis-
criminative to non-discriminative or vice versa in the online 
state. Online sliding is used for more up-to-date and accurate 
online answers between two offline slidings.

Mining Discriminative Itemsets in Sliding Window 
Using Prefix Tree

In FP-Growth [11], a prefix-tree structure is presented out 
of the frequent items of each transaction in a dataset. This is 
a concise prefix tree as it holds the transactions by sharing 
the branches for their most common frequent items. Each 
branch starting from root to a node is the prefix of the item-
sets ending at a node after that node. The prefix-tree nodes 
are associated with a counter representing the frequency of 
the itemset made of the items along the path starting from 
the root and ending at each specific node. In this paper, we 
use the sequence from the root to a node to represent an 
itemset and the two associated values indicate the frequency 
of the itemset in the target data stream and the general data 
stream, respectively, e.g., in Fig. 2 the itemset cb7,3 shows 
the frequency of itemset cb is 7 in the target data stream and 
3 in the general data stream.

Two prefix tree structures are defined for holding the 
transactions and itemsets in the sliding window model, 
respectively. The tree structure is applied as it is the most 
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efficient way for holding the transactions (or itemsets) by 
sharing the most common frequent items in the same branch.

S-FP-Tree: The prefix tree structure proposed in [11] is 
used for holding the items of the transactions, without prun-
ing infrequent items, by sharing the branches for their most 
common frequent items (i.e., S-FP-Tree includes all items). 
The S-FP-Tree is adapted by adding two counters in each 
node for holding the frequencies of the itemsets in the target 
data stream Si and the general data stream Sj , respectively; 
(e.g., there are two counters associated with each node in the 
S-FP-Tree in Fig. 2). The S-FP-Tree is updated during offline 
window sliding by adding the transactions of the new parti-
tion and deleting the transactions of the oldest partition in 
the sliding window frame W . New paths in the S-FP-Tree are 
added for the new transactions or the frequencies of paths 
are updated. The frequencies of paths in the S-FP-Tree are 
decreased by deleting the transactions of the oldest parti-
tion. The nodes in the S-FP-Tree are tagged based on their 
recent status as stable if the frequencies have not changed 
by adding the new partition or deleting the oldest partition, 
respectively, otherwise, they are tagged as updated.

S-DISStream: The S-DISStream prefix tree structure 
is also defined for holding all the recently discovered dis-
criminative and sub-discriminative itemsets as well, in the 
sliding window. The branches are shared by the most com-
mon frequent items of both discriminative and sub-discrim-
inative itemsets in the same S-DISStream structure (e.g., as 
in Fig. 4). The S-DISStream paths, starting from the root 
of the prefix tree structure, may represent subsets of mul-
tiple discriminative and sub-discriminative itemsets. Each 
node in S-DISStream is adapted with two counters fi and fj , 
each holding the frequencies of an itemset in the target data 
stream Si and the general data stream Sj , respectively in the 
sliding window frame W  . The itemsets in S-DISStream are 
made of transactions from the partitions that fit in the online 
sliding window frame W .

The Header-Table is defined for fast traversing the pre-
fix tree structures using the links holding the itemsets end-
ing with identical items. Each Header-Table item node in 

S-DISStream saves the top ancestor on the first level as the 
root; (e.g., node c is the top ancestor of all different Header-
Table items, including a,e , b , and c in the left-most subtree 
in Fig. 4, and c appears in all nodes in the left-most subtree). 
The nodes in the first level of S-DISStream determine differ-
ent subtrees made of the number of itemsets under the same 
root in the first level of S-DISStream and ending with differ-
ent Header-Table items. Following similar notations as in 
the conditional FP-Tree in DISSparse method [6, 7], a sub-
tree in S-DISStream is denoted as Subtreeroot ; for example, 
the S-DISStream in Fig. 4 has three subtrees under root c , b , 
and e (i.e., Subtreec , Subtreeb , and Subtreee , respectively).

The Header-Table item node in conditional FP-Tree saves 
the top ancestor on the first level as the root as well; (e.g., 
node c is the top ancestor of all different Header-Table items, 
including a , b , and c in the left-most subtree in Fig. 3, and 
c appears in all Header-Table item nodes in the left-most 
subtree). The subtrees which have the potential to contain 
discriminative itemsets are called potential subtrees denoted 
as Potential(Subtreeroot) . The subsets may exist in Subtreeroot 
as internal nodes which are in the paths between the root of 
Subtreeroot and the items in Header_Table_items

(
Subtreeroot

)
 . 

The internal nodes are denoted as Internalnoderoot following 
similar notations as in [6, 7] (e.g., in the left-most subtree 
in conditional FP-Tree in Fig. 6, Subtreec has two inter-
nal nodes i.e., bc and dc , respectively). During processing 
each header item, the set of Header-Table items which are 
linked under their subtree root node using Header-Table 
links is denoted as Header_Table_items(Subtreeroot) . The 
nodes are tagged as discriminative, sub-discriminative or 
non-discriminative (i.e., a subset of discriminative, or sub-
discriminative itemsets). The S-DISStream is updated in the 
sliding window model in offline and online states. The nodes 
in S-DISStream are tagged based on their recent status as 
stable if the frequencies have not changed by offline win-
dow sliding i.e., adding new partitions or deleting the oldest 
partitions, otherwise, they are tagged as updated. The nodes 

Fig. 2  Header-Table and S-FP-Tree structures by P1

Fig. 3  Conditional FP-Tree of Header-Table item a associated with 
the top ancestor on the first level
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in S-DISStream are tagged as online if they are updated dur-
ing online sliding. The concept of the stable nodes in S-FP-
Tree and S-DISStream refers to the itemsets that do not have 
any change in their frequencies during the sliding window 
model.

Initializing the offline sliding window
The S-FP-Tree is initialized by the transactions fitting 

in the first partition P1 ; and discriminative itemsets are 
discovered following the normal process of DISSparse 
algorithm [6, 7] and set to the S-DISStream. All the nodes 
in the S-FP-Tree and S-DISStream are tagged as stable 
(i.e., not updated) before adding the recent partition Pnew 
and deleting the oldest partition Pold i.e., in the full-size 
window frame W  as in Fig. 1. The nodes in S-FP-Tree are 
tagged as updated if the frequencies change during win-
dow model sliding; (e.g., by adding new transactions or 
deleting old transactions).

The conditional FP-Tree is made for each Header-Table 
item based on the item’s conditional patterns in the S-FP-
Tree. The Header-Table items in the conditional FP-Tree 
hold the same status as following the tags in the S-FP-Tree. 
The tags in Header_Table_items(Subtreeroot) in the condi-
tional FP-Tree can show that the itemsets in a Subtreeroot are 
updated or stable during the window model sliding. Similar 
approaches are applied for the updated or stable itemsets 
with subsets of Internalnoderoot in a potential Subtreeroot . 

Two heuristics are proposed accordingly based on the 
recently updated itemsets, for mining discriminative item-
sets out of the updated potential discriminative subsets in the 
conditional FP-Tree. The stable itemsets are checked in the 
S-DISStream and are tagged based on the recent data stream 
lengths in the sliding window frame W .

Example 1. The S-FP-Tree and S-DISStream constructions 
and updating are graphically monitored using the running 
example with two batches of transaction fitting in the first 
two partitions in the sliding window model, respectively. 
The first batch made of data streams S1 and S2 ( n1 = n2 = 15 ) 
fits in P1 and is presented in Table 1. The second batch made 
of data streams S1 and S2 ( n1 = n2 = 5 ) fits in P2 is presented 
in Table 3.

The items in the transaction can be in any order. How-
ever, in data stream mining, the transaction items are 
ordered based on the decreasing frequencies order in the 
first batch of transactions as in [11] (i.e., Desc-Flist order 
in Table 2 is constructed out of frequent items in Table 1). 
This will lead to concise data structures and efficient moni-
toring and processing. The Desc-Flist defines the default 
order used for the two prefix tree structures. Moreover, it 
shows the bottom-up processing order in the Header-Table 
(e.g., the Header-Table in Fig. 2 is processed from item a 
which is the least frequent item in the data stream). This 
Desc-Flist remains the same for monitoring and processing 
all the upcoming batches in data streams. All the frequent 
items in each input transaction in the data streams, before 
adding to the prefix tree structures, are sorted based on the 
Desc-Flist order (e.g., the S–FP-Tree and S-DISStream in 
Figs. 2 and 4 are made of transaction items ordered based 
on Desc-Flist).

In our running example, we set the discriminative 
level threshold to � = 2 and the support threshold is set to 
� = 0.1 . The S-FP-Tree and S-DISStream structures made 
of the first partition P1 are represented in Figs. 2 and 4, 
respectively. The highlighted nodes in S-DISStream in 
Fig. 4 refer to the discriminative itemset.

The conditional FP-Tree is presented in Fig. 3 for the 
Header-Table item a which has the lowest frequency). In 
Fig. 3, we process the subtrees one by one as in [6, 7].

Table 1  The first input batch in 
data streams fits in P1

S /T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 abcd abcd abcd abc ab ace bce bc bc bde bd cde cde cde ce
S2 abcd abcd ac ac ac ac a a bcd cde cde cde cd c c

Table 2  Desc-Flist order in S1 
in the first batch

The bold values show the items’ 
order

Item/order a b c d e

Frequency 6 10 12 8 7
Order 4 1 0 2 3

Fig. 4  Header-Table and S-DISStream structures by P1
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Following the same notat ion as  in [6,  7] , 
the set  of i temsets in subtree Subtreeroot  star t-
ing from the root  and ending with a header item 
an,m ∈ Header_Table_items(Subtreeroot) ,  is denoted as 
itemsets(root, a) e.g., itemsets(c, a) =

{
I(a3,2), I(a1,0), I(a1,4)

}
 

as in Fig. 3. The Max_freqi(root, a) denotes the maximum 
frequency of itemsets(root, a) in the target data stream Si 
This is defined as the sum of the frequencies in Si of the 
itemsets in itemsets(root, a) as below.

In the equation above, fi(b) refers to the frequency in Si 
of an itemset b in subtree Subtreeroot (e.g., in Fig. 3 in the 
left-most subtree Subtreec , which contains three itemsets 
ending with a3,2 , a1,0 , and a1,4 , the maximum frequency of 
itemsets in Si is equal to 5 , i.e., Max_freqi(c, a) = 5).

If we consider S as the power set of itemsets(root, a) , 
S = 2itemsets(root,a) , i.e., S consists of all combinatorial sub-
sets of itemsets(root, a) . For B ∈ S and B ≠ {} , the dis-
criminative value of each itemset in B is defined below.

where ri(B) =
∑

b∈Bfi(b)

ni
 and rj(B) =

∑
b∈Bfj(b)

nj
 . ri(B) is called the 

relative support of B inSi . This is the sum of the relative sup-
ports of the itemsets in B in Si andSj , respectively.

When the itemsets b ∈ B do not exist in the dataset Sj , 
the 

∑
b∈B fj(b) = 0 . Here, Dis_value(B) is defined as the ratio 

between the sum of the relative supports of the itemsets of 
B in Si and the discriminative level threshold � . This means 
that the itemset should be both frequent and significant in 
the target data stream.

When at least one of the itemsets in B does exist in the 
general data stream, the 

∑
b∈B fj(b) > 0 which indicates that 

Dis_value(B) is defined as the ratio between the sum of the 
relative supports of the itemsets of B in Si and the sum of the 
relative supports of the itemsets of B inSj . Here, ri(B)

rj(B)
 defines 

the discriminative value ofB , denoted as Rij(B) =
ri(B)

rj(B)
 (e.g., 

i n  t h e  l e f t - m o s t  s u b t r e e  i n  F i g .   3 ,  fo r 
= {cbad, cba, ca},Rij(B) =

5

6
∗

15

15
, ni = nj = 15).

By processing the most recent partition, the S-DISStream 
holds the discriminative itemsets in the offline sliding win-
dow as in Fig. 4. The S-FP-Tree and S-DISStream structures 
are then tagged based on their stable and updated subsets 
for efficient mining by adding the recent partition Pnew and 
deleting the oldest partition Pold.

(4)Max_freqi(root, a) =
∑

b∈itemsets(root,a)

fi(b)

(5)Dis_value(B) =

⎧
⎪⎨⎪⎩

ri(B)

𝜃

∑
b∈B

fj(b) = 0

ri(B)

rj(B)

∑
b∈B

fj(b) > 0

Incremental Offline Sliding Window

The sliding window model can be simply implemented by 
adapting the DISTree algorithm [5] or DISSparse algorithm 
[6, 7], in the offline updating state. The sliding window 
model is updated by discriminative itemsets discovered 
from each new batch of transactions fitting in the new parti-
tion added to the sliding window frame W  , and deleting the 
itemsets belonging to the oldest partition out of the full-size 
sliding window frame W  . However, there are several chal-
lenges with this naïve approach.

First, the sliding window frame W  is made of several 
partitions, and discovering the discriminative itemsets in a 
single partition, and merging them with itemsets in the full-
size sliding window frame can result in high numbers of 
false positives and false negatives, which significantly down-
grades the output quality. Second, many itemsets can be dis-
criminative in a single partition and non-discriminative in 
the sliding window frame W  , causing an inefficient mining 
process. Third, two batch processing must be done during 
the window model sliding i.e., one for adding the discrimi-
native itemsets in the recent batch and one for deleting the 
itemsets in the oldest batch in the sliding window frame W .

In this paper, two heuristics are proposed based on the 
S-FP-Tree nodes’ status (i.e., stable or updated during win-
dow model sliding) within efficient time and space use for 
offline sliding window.

Stable and updated subsets in the offline sliding window
Before processing the next batch of transactions fitting in 

P2 , all the nodes in the S-FP-Tree and S-DISStream struc-
tures are tagged as stable. Figure 5 shows the S-FP-Tree 
structures after adding the second batch of transactions fits 
in P2 (i.e., as in Table 3). The updated nodes in S-FP-Tree are 
represented by thick borders; (e.g., the path bda3,1 appears 

Fig. 5  Header-Table and updated S-FP-Tree structures by adding P2

Table 3  The second input batch 
in data streams fits in P2

S/T 1 2 3 4 5

S1 abd abd abd bd ce
S2 abd ac b ce c
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in the S-FP-Tree after adding the new batch of transactions 
fits in P2).

A Potential(Subtreeroot ) in the conditional FP-Tree in 
the sliding window frame W  satisfies two conditions i.e., 
Max_freqi(root, a) ≥ ��nw

i
 and Max_dis_value(root, a) ≥ � , 

where itemsets(root, a) is the set of itemsets in Subtreeroot end-
ing with a header item a ∈ Header_Table_items(Subtreeroot).

Let S  be the power set of itemsets(root, a) , i.e., 
S = 2itemsets(root,a) , i.e., S  consists of all subsets of 
itemsets(root, a) . For B ∈ S and B ≠ {} , the frequency of 
each itemset in Subtreeroot , concerning the data stream Si in 
the sliding window frame W  , is defined below.

For simplicity, in the equation above, f w
i
(b) refers to the 

frequency in Si of an itemset b ∈ B that belongs to the power 
set of itemsets(root, a) . The frequency of itemset in a subtree 
is stable if all b ∈ B are stable during the offline sliding win-
dow. The discriminative value of each itemset in Subtreeroot 
in the sliding window frame W  is defined below.

where rw
i
(B) =

∑
b∈Bf

w
i
(b)

nw
i

 and rw
j
(B) =

∑
b∈Bf

w
j
(b)

nw
j

 . rw
i
(B) is called 

the relative support of B inSi . It is the sum of the relative 
supports of the itemsets in B in Si andSj , respectively.

A potential Subtreeroot contains discriminative itemsets. 
The potential Subtreeroot is updated if any of its discrimina-
tive itemsets is updated in case of frequencies in Si or in Sj . 
A potential Subtreeroot is stable if all potential discriminative 
itemsets in Subtreeroot are stable during the offline sliding 
window as below.

To find the updated and stable potential discriminative 
itemsets, all possible itemsets in Subtreeroot will have to be 
generated. However, the generation of all possible itemset 
combinations is time-consuming. In this paper, we propose 
the simple method for calculating the Max_freqi(root, a) and 
estimating the Max_dis_value(root, a) in the S-DISSparse 
method.

(6)f w
i
(B) =

∑
b∈B

f w
i
(b)

(7)Dis_value(B) =

⎧⎪⎨⎪⎩

rw
i
(B)

𝜃

∑
b∈B f

w
j
(b) = 0

rw
i
(B)

rw
j

∑
b∈B f

w
j
(b) > 0

(8)

Potentialitemsets

=

{
∀B ∈ S ∣

∑
b∈B

f
w

i
(b) ≥ ��nw

i
∩ Dis_value(B) ≥ �

}

The itemset is stable if it is summed up by the frequencies 
of only stable itemsets. Let B with maximum Rw

ij
(B) in 

Subtreeroot be defined as Bmax . Initially, Bmax is initialized by 
summing up the f w

i
(b) frequencies of the itemsets b with 

f w
j
(b) = 0 . The frequencies of b , with maximum frequency 

ratio, are summed up by Bmax only if it increases its discrimi-
native value i.e., Rw

ij

(
Bmax

)
 . This Bmax is either updated or 

stable. The Bmax is considered as updated if it is summed up 
by the frequencies of any updated itemset b . If the discrimi-
native value of Bmax summed up by any updated b is larger 
than discriminative level � , the Bmax is considered as updated 
(i.e., the overall frequencies are tested only and not summed 
up); for example, in Fig. 6, the maximum discriminative 
value of itemsets in the left-most subtree, Subtreec , is equal 
to 2 , i.e., Max_dis_value(c, a) = 2 , which is calculated by 
the sum of frequencies of two stable itemsets ending with 
the items in Header_Table_items(Subtreec) , i.e., a1,0 and a3,2
.

Following Definition 1, if the f w
j

(
bmax

)
= 0 , then 

Rw
ij

(
bmax

)
=

f w
i (bmax)
�ni

 . The Max_freqi(c, a) = 4 , which is cal-
culated by the sum of the frequency of similar stable item-
sets i.e., I

(
a1,0

)
 and I

(
a3,2

)
 , and the Subtreec , is defined as 

a stable subtree. As a consequence, the Subtreec is stable 
and does not need to be processed for generating all item-
set combinations. The algorithm is proposed for calculat-
ing the Max_freqi(root, a) and Max_dis_value(root, a) for 
finding the stable Subtreeroot in S-DISSparse method for 
mining potential discriminative itemsets. The statement 
f w
(
bmax

)
+ = f w(b) in the algorithm is the short way of two 

statements f w
i

(
bmax

)
+ = f w

i
(b) and f w

j

(
bmax

)
+ = f w

j
(b) , for 

the sake of simplicity.

Fig. 6  Conditional FP-Tree of Header-Table item a updated by P2
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I n  t h e  a b ove  a l g o r i t h m ,  t h e  i t e m s  i n 
Header_Table_items(Subtreeroot) are scanned in the two sep-
arated loops. Each item is checked one time and the updated 
or stable Max_freqi(root, a) and Max_dis_value(root, a) are 
calculated based on the selected items.

Potential and stable Subtreeroot
All discriminative itemsets in a stable Subtreeroot are 

stable in the sliding window frame W  compared to the 
current state in S-DISStream. A potential Subtreeroot can 
be non-potential before offline sliding with different data 
stream lengths in the sliding window frame W  , and new 
discriminative itemsets may be discovered in the sliding 
window frame W  ; (e.g., by decreasing the length of target 
data stream Si or increasing the data streams length ratio, 
nw
j

nw
i

 ). A Potential(Subtreeroot) that satisfies the conditions 
Max_freqi(root, a) ≥ ��nw

i
 and Max_dis_value(root, a) ≥ � 

with a smaller frequency in the target data stream Si , or a 
smaller frequency ratio in target data stream Si vs general 
data stream Sj , compared to the last size of sliding window 

frame W  (i.e., last offline window sliding), is not stable. 
This part has not been considered in Algorithm 1, consid-
ering all partitions are in the same size containing an equal 
number of transactions. The algorithm has to be modified 
by holding the length of data streams in the last offline 
sliding and comparing the Max_freqi(root, a) and 
Max_dis_value(root, a) calculated by the recent and old 
data stream lengths.

A potential Subtreeroot in the sliding window model is 
processed differently.

HEURISTIC 1. A potential Subtreeroot is stable denoted 
as Stable(Subtreeroot ) if all potential discriminative item-
sets in Subtreeroot that satisfy the following conditions are 
stable:

1. Maxfreqi(root, a) ≥ ��nw
i

2. Max_dis_value(root, a) ≥ �

where 𝜃 > 1 is the discriminative level threshold, 
��(0, 1∕�) is the support threshold, nw

i
 is the size of 
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target data stream Si in the sliding window frame W  and 
Max_freqi(root, a) and Max_dis_value(root, a) are stable if 
any itemset in Subtreeroot that satisfies the two conditions 
is stable.

Lemma 1 (Stable subtree) HEURISTIC 1 ensures that any 
discriminative itemset in a Stable(Subtreeroot ) is stable in the 
sliding window model.

Proof The two conditions in HEURISTIC 1 ensure that any 
itemset that is frequent in the target data stream Si and has a 
discriminative value larger than the discriminative level � is 
stable in the sliding window model. This implies that all dis-
criminative itemsets in a Stable(Subtreeroot ) exist in the slid-
ing window model by processing the Potential(Subtreeroot ) 
during previous offline sliding in the window. The itemset 
combinations in a Stable(Subtreeroot ) are tagged as discrim-
inative or non-discriminative in the Subtreeroot of S-DIS-
Stream, based on the recent data stream lengths in the sliding 
window frame W . This implies that the discriminative item-
sets are discovered based on the recent data stream lengths 
that have been changed by adding the new partition and 
deleting the oldest partition in the sliding window frame W .

For a subtree, if any of the two conditions is updated, the 
subtree is considered a potential discriminative subtree, and 
the potential discriminative itemset combinations are gener-
ated from the subtree as it may contain new discriminative 
itemsets.

In Fig. 6, the left-most subtree related to the processing 
Header-Table item a under root node c (i.e., Subtreec ) is sta-
ble as the only subset of itemsets in the subtree that satisfy 
the conditions in HEURISTIC 1 i.e., I(a3,2) and I(a1,0) by 
a3,2, a1,0 ∈ B , and B ∈ S , is stable as below.

(9)
∑
b∈B

f w
i
(b) ≥ 3 + 1 = 4 ≥

(
��nw

i
= 0.1 ∗ 2 ∗ 20 = 4

)

(10)

Dis_value(B) =

∑
b∈B f

w
i
(b)∑

b∈B f
w
j
(b)

∗
nw
j

nw
i

=
(3 + 1)

(2 + 0)
∗
20

20
=

4

2
≥ (� = 2)

In this paper, for the sake of simplicity, the dataset 
lengths are omitted from ratios as n1 = n2 . In the case of 
data streams with different lengths (i.e., n2

n1
≠ 1 ), the ratios 

must be multiplied by the constant of n2
n1

 . The conditional 
FP-Tree of Header-Table item a made out of S-FP-Tree 
updated with partition P2 is presented as in Fig. 6.

The Stable(Subtreeroot) is ignored from the new itemset 
combination generation. The current itemset combina-
tions of a Stable(Subtreeroot) in Subtreeroot of S-DISStream 
are traversed using Header-Table links and tagged as dis-
criminative or non-discriminative based on the recent data 
stream lengths in the sliding window frame W  ; (e.g., in 
Stable(Subtreec) the itemset I

(
a4,2

)
 i.e., cba4,2 in Subtreec of 

S-DISStream ending with Header_Table_items(Subtreec) , 
is tagged as discriminative as in Fig. 7).

Potential and stable Internalnoderoot
A Potential(in )  in  a  Potential(Subtreeroot) ( i .e . , 

in ∈ Internalnoderoot  )  in the conditional FP-Tree 
in the sliding window frame W  satisfies two con-
d i t i o n s  i . e . ,  Max_freqi(root, in, a) ≥ ��nw

i
 a n d 

Max_dis_value(root, in, a) ≥ � , where itemsets(root, in, a) 
is a set of itemsets in Subtreeroot ending with a header item 
a ∈ Header_Table_items(Subtreeroot) with the internal node 
in as subset.

Let  S  be the power set  of  Internalnoderoot  , 
i .e . ,  S = 2Internalnoderoot  ,  and i temset  I  ,  with the 
s u b s e t  o f  in ∈ Internalnoderoot  ,  e n d i n g  w i t h 
a ∈ Header_Table_items(Subtreeroot) denoted as I(in) . The 
frequency of each itemset in Subtreeroot with the subset of the 
internal node in , in respect of the data stream Si in the sliding 
window frame W  , is defined below (i.e., B ∈ S).

The frequency of an itemset in a subtree is stable if 
all b ∈ B are stable during the offline sliding window. A 
potential internal node in ∈ Internalnoderoot is stable if all 
potential discriminative itemsets in Subtreeroot with the inter-
nal node in as subset are stable during the offline sliding 
window.

All discriminative itemsets in a Subtreeroot with a sub-
set of a stable in are stable in the sliding window frame W 
compared to the current state in S-DISStream. A potential 
internal node in ∈ Internalnoderoot can be non-potential 
before offline sliding with different data stream lengths in 
the sliding window frame W  , and new discriminative item-
sets may be discovered in the sliding window frame W  ; 
(e.g., by decreasing the length of the target data stream Si 
or increasing the data streams’ length ratio). A Potential(in) 
that satisfies the conditions Max_freqi(root, in, a) ≥ ��nw

i
 

and Max_dis_value(root, in, a) ≥ � with smaller frequency 
in the target data stream Si , or smaller frequency ratio in 

(11)f w
i
(B) =

∑
b∈B

f w
i
(b)

Fig. 7  Updated S-DISStream after processing Stable(Subtree
c
) in con-

ditional FP-Tree for Header-Table item a in Fig. 6
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target data stream Si vs general data stream Sj , compared 
to the last size of sliding window frame W  (i.e., last offline 
window sliding) is not stable.

The potential internal node in ∈ Internalnoderoot in the 
sliding window model is processed differently.

HEURISTIC 2. An internal node in ∈ Internalnoderoot 
is stable denoted as Stable(in) if all potential discriminative 
itemsets in Subtreeroot with the internal node in as subset that 
satisfy the following conditions are stable.

Max_freqi(root, in, a) ≥ ��nw
i

Max_dis_value(root, in, a) ≥ �

where 𝜃 > 1 is the discriminative level threshold, ��(0, 1∕�) 
is the support threshold, nw

i
 is the size of target data stream 

Si in the sliding window frame W  and Max_freqi(root, in, a) 
and Max_dis_value(root, in, a) are stable if any itemset in 
Subtreeroot with the internal node in as subset that satisfies 
the two conditions is stable.

Lemma 2 (Stable internal node) HEURISTIC 2 ensures 
that any discriminative itemset in Subtreeroot with a subset 
of a Stable(in ) is stable in the sliding window model.

Proof The two conditions in HEURISTIC 2 ensure that any 
itemset with the subset of internal node in ∈ Internalnoderoot 
that is frequent in the target data stream Si and has a dis-
criminative value larger than the discriminative level � is 
stable in the sliding window model. This implies that all 
discriminative itemsets with the subset of Stable(in ) exist 
in the sliding window model by processing the Potential(in ) 
in a potential Subtreeroot during a previous offline sliding 
of the window. The itemset combinations with a Stable(in ) 
are tagged as discriminative or non-discriminative in the 
Subtreeroot of S-DISStream, based on the recent data stream 
lengths in the sliding window frame W . This implies that the 
discriminative itemsets are discovered based on the recent 
data stream lengths that have been changed by adding the 
new partition and deleting the oldest partition in the sliding 
window frame W .

For a in ∈ Internalnoderoot , if any of the two conditions 
is updated the internal node is considered as a potential dis-
criminative internal node and the potential discriminative 
itemset combinations with the subset of the internal node 
are generated from the subtree, as it may contain new dis-
criminative itemsets.

Every itemset in a Stable(in) is stable in the sliding win-
dow model; for example, in Fig. 6, in the left-most subtree 
related to the processing Header-Table item a under root 
node c (i.e., Subtreec ), the internal node b is stable as the 
only subset of items in the subtree that satisfy the condi-
tions in HEURISTIC 2 i.e., made of I

(
b3,2

)
 and I

(
b1,0

)
 as 

b3,2, b1,0 ∈ B and B ∈ S , is stable. The Stable(in) is ignored 
from the new itemset combination generation. The current 
itemset combinations with a subset of Stable(in) in Subtreeroot 
of S-DISStream are traversed using Header-Table links and 
tagged as discriminative or non-discriminative based on the 
recent data stream lengths in the sliding window frame W  ; 

Fig. 8  Expanded conditional FP-Tree of Header-Table item a updated 
by P2 after processing the first subtree

Fig. 9  Updated S-DISStream after processing potential discriminative 
subsets of the left-most subtree in conditional FP-Tree for Header-
Table item a

Fig. 10  Expanded conditional FP-Tree of Header-Table item a 
updated by P2 after processing the second subtree

Fig. 11  Updated S-DISStream after processing potential discrimi-
native subsets of the left-most subtree in conditional FP-Tree for 
Header-Table item a



SN Computer Science           (2023) 4:489  Page 13 of 21   489 

SN Computer Science

(e.g., in Fig. 7 the itemset cba4,2 in Subtreec of S-DISStream 
ending with Header_Table_items(Subtreec) with the subset 
of internal node b , is tagged as discriminative).

Following the running Example 1, the conditional FP-
Tree of Header-Table item a is expanded by sub-branches 
of Subtreec (i.e., bda3,2 , ba1,0 , and a1,5 ) as in Fig. 8. The 
Potential(Subtreeb) and its Potential(in) are not stable and 
S-DISStream is updated by new itemset combinations gen-
erated out of the potential Subtreeb as in Fig. 9. The dis-
criminative itemsets (i.e., bda4,2 and ba8,3 ) are discovered 
in Subtreeb . The potential discriminative itemsets may exist 
in the S-DISStream out of processing the old partitions and 
be overwritten; (e.g., in Fig. 9 the itemset ba5,2 exists in 
S-DISStream out of processing P1 as in Fig. 4 and is over-
written by the new frequencies as ba8,3).

The conditional FP-Tree of Header-Table item a is then 
expanded by sub-branches of Subtreeb (i.e., da6,3 and a2,0 ) as 
in Fig. 10. The Potential(Subtreed) is not stable and S-DIS-
Stream is updated by the discriminative itemset da6,3 as in 
Fig. 10.

The two proposed heuristics significantly decrease search 
space by ignoring the non-potential or potential but stable 
itemset combinations. By limiting the search space which 
accordingly causes smaller tree structures and shorter updat-
ing time, both time and space complexity decrease signifi-
cantly (e.g., in the experiment section) (Fig. 11).

Following the bottom-up order of Desc-Flist, the con-
ditional FP-Tree is then generated for the rest of Header-
Table items respectively (i.e., item e in Example 1 as in 
Table 2). The new discriminative itemsets in each potential 
Subtreeroot are inserted into S-DISStream. The tag of item-
sets in S-DISStream that belongs to the Stable(Subtreeroot) 

and Stable(in) are updated based on the recent data stream 
lengths in the sliding window frame W . The frequencies of 
itemsets in S-DISStream that are not updated (i.e., belong to 
the non-potential Subtreeroot or with a subset of non-potential 
in ∈ Internalnoderoot ) must be adjusted based on their appear-
ances in S-FP-Tree followed by updating the tag of itemsets.

S-DISStream tuning and pruning in the offline sliding 
window

Against the Apriori property and distinguishing the dis-
criminative itemset mining from frequent itemset mining, 
the non-discriminative itemsets appear as a subset of dis-
criminative itemsets; (e.g., the items c and d in Example 1 
are subsets of discriminative itemsets as in Fig. 12, but they 
are not discriminative). The frequencies of non-discrimina-
tive itemsets appearing as a subset of discriminative item-
sets must also be set accordingly using the S-FP-Tree. These 
itemsets may become involved in the online sliding window, 
as explained in “Incremental Offline Sliding Window”.

Lemma 3 (Exact non-discriminative subsets) tuning the fre-
quencies of the non-discriminative itemsets appearing as a 
subset of discriminative itemsets using S-FP-Tree ensures the 
exact frequencies of these itemsets in S-DISStream that may 
become involved in the online window updating.

Proof The S-FP-Tree is the superset of conditional FP-Trees 
and has a full view of all itemsets in the datasets in the sliding 
window frame W . The exact frequencies of the non-discrim-
inative subsets are collected accurately using their appear-
ances in S-FP-Tree by traversing through Header-Table links.

The tail pruning in S-DISStream is applied for space 
saving. The itemset in S-DISStream in the sliding window 
model is pruned if it is non-discriminative and stays as a 
leaf node. The tail pruning ensures that S-DISStream only 
maintains the discriminative itemsets and the non-discrim-
inative subsets in the sliding window frame W  . The final 
S-DISStream after offline sliding by P2 as in Table 3 and tail 
pruning is presented in Fig. 12 with the eight listed discrimi-
native itemsets. The tail pruning is applied in the S-FP-Tree 
following the same process for deleting the old transactions 
that are out of the sliding window frame W  with zero fre-
quencies in data streams.Fig. 12  Final S-DISStream after offline sliding based on P2

Fig. 13  Transaction-List made 
of partitions fit in the online 
sliding window frame W
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Online Sliding Window

Transaction-List: This is a queue structure for keeping track 
of the transactions in the online sliding window as in Fig. 13. 
For each transaction that fits in the online sliding window frame 
W , it holds the partition number; data stream identifier, and a 
link to the transaction in the S-FP-Tree node. The Transaction-
List contains only the recent transactions that fit in the defined 
online sliding window frame W . The rest of the transactions are 
deleted when the window frame W slides as in Fig. 13.

The online sliding window is happening within two offline 
sliding of the window model limited to the itemsets in S-DIS-
Stream (i.e., the online sliding window frame W ). The itemsets 
in the S-DISStream are the potential itemsets to change their 
tags during the online sliding window. The frequency and tag 
of the itemsets existing in S-DISStream are updated during 
online sliding and no new itemset is generated. Each transac-
tion updates the S-FP-Tree and is linked by Transaction-List for 
online sliding. During online sliding, every new transaction in 
the recent partition (i.e., Pnew as in Fig. 1) in the window frame 
W is checked for having a subset in the S-DISStream by travers-
ing through Header-Table links. Subsets of a new transaction 
that exist in S-DISStream, called online itemsets, are used for 
online sliding by increasing the itemset frequencies and updat-
ing the tags in the S-DISStream; (e.g., a discriminative itemset 
may become non-discriminative).

By each new incoming transaction, the oldest transac-
tion in the Transaction-List is deleted by its online itemsets 
out of the sliding window frame W  if it belongs to the old-
est partition (i.e., Pold as in Fig. 1). Online itemsets of the 
old transaction (i.e., subsets exist in S-DISStream) are used 
for online sliding by decreasing the itemset frequencies and 
updating the tags in the S-DISStream. The online sliding 
continues for every new transaction until the end of the new 
partition. The itemsets in the S-DISStream that are updated 
during online sliding are tagged as online. The online item-
sets in the S-DISStream hold the exact frequencies in the 
sliding window frame W , however, they must be tagged after 
offline sliding based on the recent data stream lengths during 
S-DISStream tuning and pruning.

The HEURISTIC 1 and HEURISTIC 2 are modified 
based on the relaxation of � for holding the sub-discrimi-
native itemsets in the sliding window frame W  . The sub-
discriminative itemsets are the potential discriminative item-
sets and are saved in the sliding window model following 
Definition 2 and based on the relaxation of �.

Property 1. By modifying HEURISTIC 1 and HEURISTIC 
2 based on the relaxation of � the sub-discriminative item-
sets will be obtained.

This property says that a set of non-discriminative item-
sets are discovered as the sub-discriminative itemsets by 
choosing the relaxation of �.

Property 2. By setting a smaller relaxation of � , the dis-
criminative itemsets in the online sliding window will be 
discovered with a better approximation.

This property says by choosing the smaller relaxation of � , 
more sub-discriminative itemsets are discovered. More num-
bers of sub-discriminative itemsets in the online sliding win-
dow i.e., S-DISStream structure, lead to a greater number of 
discovered discriminative itemsets in the online sliding window 
model.

Corollary 1. By modifying the HEURISTIC 1 and HEU-
RISTIC 2 based on the relaxation of � , a refined approxi-
mate bound in discriminative itemsets in the online sliding 
window is obtained.where � is the relaxation threshold for 
sub-discriminative itemsets and HEURISTIC 1 and HEU-
RISTIC 2 are defined for potential discriminative itemset 
combination generation during the offline sliding window.

It has to be considered there is a limit to improving the 
approximation in the online sliding window. This approxi-
mation is highly related to the concept drift that exists in 
data streams. This means that we can only improve the 
approximation at a specific level as we will see this in the 
experiments.

Rational 1. (the highest refined approximate bound in 
discriminative itemsets in the online sliding window) Cor-
ollary 1 ensures that the approximation in discriminative 
itemsets in the online sliding window may be improved by 
holding the sub-discriminative itemsets in the S-DISStream 
structure in an online sliding window.

Proof. The sub-discriminative itemsets improve the 
approximate bound in discriminative itemsets by increasing 
the number of potential discriminative itemsets under the 
relaxation of � . We call this the highest refined approximate 
bound in discriminative itemsets in the online sliding win-
dow. Corollary 1 is more efficient when the discriminative 
itemsets are stable in the neighbor partitions with fewer con-
cept drifts present in the datasets. Based on this, we do not 
have any false-positive answers as all the reported discrimi-
native itemsets in the online sliding window are discrimina-
tive. However, there may be a large number of false nega-
tive answers as they are not involved in the online sliding 
window. These false negatives will be corrected accurately 
in the offline sliding window.
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S‑DISSparse Method

The S-FP-Tree is updated by adding the transactions from 
the recent batch of transactions Bn (i.e., the most current 
batch of transactions) fits in partition Pnew without pruning 
infrequent items and by making the Transaction-List. The 
first partition is processed using the DISSparse algorithm 
proposed in [6, 7], and the S-DISStream is generated from 
discriminative itemsets and non-discriminative subsets in 
transactions fitting in partition P1 . With every new transac-
tion in Pnew , the Transaction-List is updated. The online slid-
ing window is updated by online itemsets in S-DISStream 
(i.e., increasing frequency of online itemsets in Pnew and 
decreasing frequency of online itemsets in Pold ). The online 
itemsets in the S-DISStream are tagged as discriminative 
or non-discriminative based on their updated frequencies 
and data stream lengths. By the end of the online sliding of 

Pnew the Pold is checked for online sliding of the remaining 
transactions (i.e., when Pold has a larger number of transac-
tions than Pnew).

During offline sliding, the S-DISStream is updated by the 
discriminative itemsets in each Potential(Subtreeroot) and 
its Potential(in) in an offline state. The tags in Subtreeroot 
in S-DISStream are updated by checking the itemsets in 
Stable(Subtreeroot) Stable(in) in S-DISStream based on the 
recent data stream lengths. By the end of offline sliding of Pnew 
the exact frequencies of the non-discriminative subsets not 
updated in S-DISStream are tuned based on their appearance 
in the S-FP-Tree and tail pruning is applied in S-DISStream 
and S-FP-Tree structures. The online itemsets in S-DISStream 
are also tagged based on the recent data stream lengths and 
the process continues by the next partition. The discriminative 
itemsets are reported in offline time intervals DIW

ij
.
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In the S-DISSparse algorithm, the significant part attract-
ing considerable complexity is related to generating the 
potential discriminative itemsets and updating the tag of 
stable itemsets in the S-DISStream structure. Tuning the fre-
quencies of non-discriminative subsets in the S-DISStream 
and applying the tail pruning in S-DISStream and S-FP-Tree 
have less complexity by considering the sparse discrimi-
native itemsets. The online sliding in lines 5 to line 12 is 
based on a quick search method on S-DISStream structure. 
The offline sliding is based on the potential subtrees and the 
potential internal nodes i.e., updated itemsets. The stable 
itemsets in S-DISStream structure are also checked based 
on a quick search method and tagged as discriminative or 
non-discriminative.

Theorem 1 (Completeness and correctness of S-DISSparse): 
Based on [6, 7], the DISSparse method discovers the exact 
set of discriminative itemsets in offline sliding states. Based 
on Lemma 1 and Lemma 2, the updated potential discrimi-
native itemsets in each potential Subtreeroot in conditional 
FP-Tree and its Internalnoderoot are generated completely 
in S-DISStream, and all stable discriminative itemsets are 
tagged in S-DISStream correctly based on the recent data 
stream lengths. Based on Rational 1, the frequencies of 
non-discriminative itemsets that appear as a subset of dis-
criminative itemsets are collected accurately. These prove 
the completeness and correctness of the S-DISSparse method 
by discovering all the discriminative itemsets and their non-
discriminative subsets in the offline sliding window.

Experimental Results

We implemented the algorithms in C +  + and ran all the 
experiments on a desktop computer with an Intel Core (TM) 
Duo E2640 2.8 GHz CPU and 8 GB main memory running 
64-bit Microsoft Windows 7 Enterprise. The data streams 
made of different numbers of transactions were generated 
using the IBM synthetic data generator [30]. The synthetic 
datasets are represented by the format T$ ∶ I$ ∶ D$ . Here, T  
is referred to as the average transaction length, I referred to 

as the average length of the large itemsets, and D is referred 
to as the number of transactions. Considering both data 
streams from the same domain, we used the same T  for S1 
and S2 . we generated the S1 and S2 with different I . The rea-
son is that there are more maximal potentially large itemsets 
in S2 as it is made of several smaller datasets. Moreover, 
this setting will ensure there is a large enough number of 
discriminative itemsets in S1 against S2 . The first dataset 
called D1 , is generated with S1 as T25 ∶ I10 ∶ D60K  and 
S2 as T25 ∶ I15 ∶ D300K limited to 10K unique items. To 
show the unsynchronized behaviour of the data streams in 
the online sliding window, we made a simple code to mix the 
two data streams based on their ratio size. The data streams 
in D1 are modelled as 30 continuous batches in the same 
sizes (i.e., for the sake of clarity) with T25 ∶ I10 ∶ D2K and 
T25 ∶ I15 ∶ D10K belonging to the S1 and S2 , respectively. 
The ratio between the size of S1 and S2 in D1 is the same for 
all 30 batches (i.e., n2∕n1 = 5).

Time and Space Efficiency

In this section, during all experiments, the discriminative 
level � = 25 and support threshold � = 0.002% . In the 

Fig. 14  Time complexity for D1 (window frame W = 25)

Fig. 15  Space use in offline sliding for D1 ( W = 25)

Fig. 16  Time and space use for D2 ( W = 10)
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experiments with D1 , the 25 recent partitions are fitted in 
the sliding window frame W  (i.e., W = 25).

The time complexity of the S-DISSparse method in the 
offline updating sliding windows by each partition in D1 , is 
presented in Fig. 14. The sliding window frame W  is initial-
ized by the first 20 partitions in D1 , for the sake of clarity. 
This is recommended as there may be a large number of 
discriminative itemsets discovered by processing the initial 
partitions with small data stream lengths. The sliding win-
dow model is then updated in an offline state by every new 
partition that is fitted in the window frame W . To the best of 
our knowledge, the DISSparse [6, 7] and H-DISSparse [8] 
are the only research works presented for mining discrimina-
tive itemsets. The H-DISSparse is an approximate method 
working based on the tilted-time window model and has sub-
stantial differences from our proposed S-DISSparse method. 
However, DISSparse is an efficient and exact method of 
working on a single batch of a static dataset. This can be 
applied as the baseline by processing the whole data stream 
sizes, as a single static batch of datasets, fitted in the win-
dow frame W  . The scalability of the S-DISSparse algorithm 
is compared with DISSparse algorithm [6, 7] for mining 
discriminative itemsets in a batch of transactions. The DIS-
Sparse algorithm is used as a benchmark by processing the 
full-size window frame W  after each offline sliding.

The efficiency of S-DISSparse is generally better in com-
parison to the efficiency of DISSparse in the offline sliding 
window. The time complexity of the offline window sliding 
using S-DISSparse by partition P23 shows the most efficiency 
(i.e., 450 sec in DISSparse vs 100 sec in S-DISSparse). In 
this partition, there is concept drift in the data streams 

showing insensitivity of the S-DISSparse to the concept 
drifts. There are some partitions with the least efficiency as 
compared with DISSparse; (e.g., the offline window sliding 
by partitions P26 and P30 shows similar time use in both algo-
rithms). The S-DISSparse, in these points, scales the same as 
DISSparse as most of the transactions in the sliding window 
model are updated during offline sliding by these partitions.

The space use of the S-DISStream and S-FP-Tree is 
reported during offline sliding as the largest datasets used 
in S-DISSparse algorithm in Fig. 15.

Following the compact prefix tree structure and by apply-
ing the tail pruning, the S-DISStream size stays small as 
the in-memory data structure. The number of discrimina-
tive itemsets discovered in the sliding window frame W  in 
the designed experiments is between 2.5 and 3 million (i.e., 
as in Fig. 21) by considering the different distributions of 
transactions during the sliding window model.

To show the effects of the different window sizes W  , we 
run the S-DISSparse algorithm with the second dataset D2 
which has bigger size partitions. The second dataset called 
D2 is generated with S1 as T25 ∶ I10 ∶ D90K  and S2 as 
T25 ∶ I15 ∶ D450K limited to 10K unique items. The data 
streams in D2 are modelled as 18 continuous batches in the 
same sizes with T25 ∶ I10 ∶ D5K  and T25 ∶ I15 ∶ D25K 
belonging to the S1 and S2 , respectively. The size of the slid-
ing window frame W  is set to the same number of transac-
tions as in the first experiment (i.e., W = 10 ). The sliding 
window frame W  is initialized by the first 8 partitions in D2 . 
The time and space complexity of the S-DISSparse method 
in the offline updating sliding window by each partition in 
D2 is presented in Fig. 16.

Fig. 17  Time use in online and offline sliding for D1 ( W = 25)

Fig. 18  Time use for online and offline sliding for D1 ( W = 25 ) with 
different relaxation of �

Fig. 19  S-DISStream size for D1 ( W = 25 ) by different relaxation of �

Fig. 20  Number of itemsets that their tag is changed for D1 ( W = 25 ) 
by different relaxation of �
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The greater number of transactions in the sliding win-
dow frame W  is updated by the bigger size partitions. This 
has to be considered for adjusting a proper sliding win-
dow frame size based on the application domains and data 
stream characteristics. The sliding window frame should 
be set much bigger in comparison to the average size of a 
single partition.

The time complexity of the S-DISSparse method by 
offline and online processing in the dataset D1 is presented 

in Fig. 17. The non-discriminative subsets (of discriminative 
itemsets) in S-DISStream are updated during online sliding, 
causing decreasing the time complexity of the S-DISSparse 
algorithm during tuning the frequencies of the non-discrim-
inative subsets in S-DISStream.

To improve the approximation of the discriminative item-
sets in the online updating sliding window, we set the relaxa-
tion of � = 0.9 and � = 0.75 , respectively. The S-DISSparse 
time complexity during offline sliding, online sliding with 
� = 1 (i.e., no sub-discriminative itemsets), and online slid-
ing with � = 0.9 and � = 0.75 , are represented in Fig. 18. 
The S-DISSparse time complexity with � = 0.75 is more 
sensitive to the concept drifts.

The space use of the S-DISStream is presented during 
offline sliding by � = 1 , � = 0.9 , and � = 0.75 in the S-DIS-
Sparse algorithm in Fig. 19.

Fig. 21  Number of discriminative and sub-discriminative itemsets for 
D1 ( W = 25 ) by different relaxation of �

Fig. 22  Time use for Susy dataset (window frame W = 20)

Fig. 23  Space use in offline sliding for Susy dataset ( W = 20)

Fig. 24  Time use in online and offline sliding for Susy dataset 
( W = 20)

Fig. 25  S-DISStream size for Susy dataset ( W = 20 ) by different 
relaxation of �

Fig. 26  Number of itemsets that their tag is changed for Susy dataset 
( W = 20 ) by different relaxation of �

Fig. 27  Number of discriminative and sub-discriminative itemsets for 
Susy dataset ( W = 20 ) by different relaxation of �
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The number of itemsets in which their tag is changed dur-
ing online sliding (e.g., discriminative to non-discriminative 
itemsets or non-discriminative to discriminative itemsets) is 
presented in Fig. 20.

The exact number of discriminative itemsets after each 
offline sliding window is represented in Fig. 21. The num-
ber of sub-discriminative itemsets is also represented by 
different relaxation of � (i.e., � = 0.9 and � = 0.75 ). This 
shows that choosing smaller relaxation of � may not always 
improve the approximation in discriminative itemsets in the 
online sliding window.

Evaluation of Real Datasets

As a real dataset, we used part of the Susy dataset from the 
UCI repository provided in [31]. The Susy is a dense dataset 
(i.e., there are no missing values and transactions have val-
ues for each attribute), and it has no sparsity characteristics 
compared to the synthetic datasets. The original dataset is 
made of five million instances with the first column being 
the class label followed by eighteen features. Each transac-
tion is made of 190 unique items. We selected the 25 batches 
each made of twenty thousand instances.

In this section, during all experiments, the discriminative 
level � = 2.5 and support threshold � = 1% . In the experi-
ments with Susy dataset, the 20 recent partitions are fitted 
in the sliding window frame W  (i.e., W = 20 ). The sliding 
window frame W  is initialized by the first 15 partitions in 
the Susy dataset for the sake of clarity. The time complexity 
of the S-DISSparse method in the offline updating sliding 
window by each partition in the Susy dataset is presented 
in Fig. 22.

In the Susy dataset, the efficiency of S-DISSparse is not 
better compared to DISSparse. Susy has a small number of 
unique items i.e., 190 items. The sparsity characteristic of 
the dataset is limited and the subsets are updated by every 
batch coming in or going out of the sliding window model.

The space use of the S-DISStream and S-FP-Tree is 
reported during offline sliding in Fig. 23.

The online sliding does not add high time complexity 
to the S-DISSparse algorithm as in Fig. 24.

The space use of the S-DISStream is presented during 
offline sliding by � = 1 and � = 0.9 as in Fig. 25.

The number of itemsets in which their tag is changed 
during online sliding (e.g., discriminative to non-discrim-
inative or vice versa) is presented in Fig. 26.

The exact number of discriminative itemsets after each 
offline sliding window is represented in Fig. 27. The num-
ber of sub-discriminative itemsets is also represented by 
different relaxation of � (i.e., � = 0.9).

Moreover, with the highly parallelized big data technolo-
gies in distributed computing, we may achieve a more effi-
cient solution. Our algorithm, on large datasets, would be 

more scalable such as the proposed work in [32]. This will 
make the expansion of the algorithm for data stream mining 
more efficient.

Practical Applications

There are more application scenarios in biomedical image 
analysis, such as X-ray image analysis [33], Histopathology 
image analysis [34], Cell image analysis [35], Microorgan-
ism image analysis [36], Caner image analysis [37], etc.

The X-ray image analysis [33] has been discovered as a 
fast and more sensitive alternative screening method with 
visual indicators for COVID-19 viral infection early diagno-
sis. Based on the studies, patients affected with COVID-19 
present deformities in chest radiographs, and the imaging 
tool is considered a fast identification of suspected patients 
in the epidemic area. The computer-aided diagnostic (CAD) 
can help track COVID-19 infection more efficiently and 
accurately. Histopathology image analysis [34] enables the 
automatic global detection of gastric cancer images and 
demonstrates high global detection performance. Cell image 
analysis [35] by cervical cytopathology image classifica-
tion is an important effective method based on deep learning 
to diagnose cervical cancer. Microorganism image analysis 
[36] is for the Environmental Microorganism (EM) image 
segmentation task to assist microbiologists in detecting and 
identifying EMs more effectively. Cancer image analysis 
[37] is a widely performed screening technique for the early 
detection of cervical cancer. It uses various deep learning 
models to capture more potential information to enhance 
classification performance. Mining discriminative (contrast) 
patterns in computer-aided diagnostic (CAD) can enhance 
the performance of the above methods regarding the chal-
lenges of low-contrast images and insufficient annotated 
datasets.

Conclusion and Future Works

In this paper, we proposed an efficient single-pass algorithm 
for mining discriminative itemsets over data streams using 
the sliding window model. The algorithm uses two in-mem-
ory data structures called S-FP-Tree and S-DISStream. The 
offline sliding uses two heuristics based on the S-FP-Tree 
nodes status (i.e., stable or updated during window model 
sliding) within efficient time and space use. The online 
sliding is happening between two offline slidings. Empiri-
cal analysis shows the efficiency of offline sliding with the 
accuracy of online sliding. Setting a small size partition 
compared to the sliding window frame can improve the 
efficiency in periodic offline sliding. The online sliding by 
new transactions does not add to the time complexity. The 
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number of discriminative itemsets generated is significantly 
less in comparison to frequent itemsets making them more 
useful for discrimination. In the future, we plan to develop 
methods of discovering discriminative rules using discrimi-
native itemsets and propose a classifier focusing on distin-
guishing features of data streams.
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