
Vol.:(0123456789)

SN Computer Science (2023) 4:425 
https://doi.org/10.1007/s42979-023-01828-8

SN Computer Science

SURVEY ARTICLE

Data Preparation: A Technological Perspective and Review

Alvaro A. A. Fernandes1 · Martin Koehler1 · Nikolaos Konstantinou1 · Pavel Pankin1 · Norman W. Paton1   · 
Rizos Sakellariou1

Received: 16 May 2022 / Accepted: 10 April 2023 / Published online: 2 June 2023 
© The Author(s) 2023

Abstract
Data analysis often uses data sets that were collected for different purposes. Indeed, new insights are often obtained by com-
bining data sets that were produced independently of each other, for example by combining data from outside an organization 
with internal data resources. As a result, there is a need to discover, clean, integrate and restructure data into a form that is 
suitable for an intended analysis. Data preparation, also known as data wrangling, is the process by which data are transformed 
from its existing representation into a form that is suitable for analysis. In this paper, we review the state-of-the-art in data 
preparation, by: (i) describing functionalities that are central to data preparation pipelines, specifically profiling, matching, 
mapping, format transformation and data repair; and (ii) presenting how these capabilities surface in different approaches 
to data preparation, that involve programming, writing workflows, interacting with individual data sets as tables, and auto-
mating aspects of the process. These functionalities and approaches are illustrated with reference to a running example that 
combines open government data with web extracted real estate data.

Keywords  Data preparation · Data engineering · Data wrangling · Data analysis

Introduction

Data preparation, the multi-faceted process by which the 
data required by an application are identified, extracted, 
cleaned and integrated, is often cumbersome and labor inten-
sive [33, 50]. Indeed, surveys show that data scientists may 
spend up to 80% of their time on the process of extracting, 
collating and cleaning data that is a precursor to its use for 
analysis.1

Data preparation has been used in different settings for 
decades, for example for populating enterprise data ware-
houses, but the emergence of big data [27], and the move-
ment towards data democratization [60], has encouraged the 
emergence of self-service data preparation tools that support 
exploratory data analysis [45]. In the context of self-service 
approaches, and sometimes more widely, data preparation 
is often referred to as data wrangling.

Data preparation is a prominent challenge facing data sci-
entists and engineers. This is reflected in a large and growing 
market for commercial offerings. For example, Grand View 
Research predict that the data preparation tools market will 
be $8.47 Billion by 2025, growing at a Compound Annual 
Growth Rate (CAGR) of 25.1%.2

 *	 Norman W. Paton 
	 npaton@manchester.ac.uk

	 Alvaro A. A. Fernandes 
	 fernandesaaa@gmail.com

	 Martin Koehler 
	 koehler.martin@gmail.com

	 Nikolaos Konstantinou 
	 nikolaos.konstantinou@manchester.ac.uk

	 Pavel Pankin 
	 pankinpd@gmail.com

	 Rizos Sakellariou 
	 rizos@manchester.ac.uk

1	 Department of Computer Science, University of Manchester, 
Manchester M13 9PL, UK

1  https://​www.​forbes.​com/​sites/​gilpr​ess/​2016/​03/​23/​data-​prepa​ration-​
most-​time-​consu​ming-​least-​enjoy​able-​data-​scien​ce-​task-​survey-​says/?​
sh=​7187f​386f6​37.

2  https://​www.​grand​viewr​esear​ch.​com/​press-​relea​se/​global-​data-​
prepa​ration-​tools-​market.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01828-8&domain=pdf
http://orcid.org/0000-0003-2008-6617
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=7187f386f637
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=7187f386f637
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=7187f386f637
https://www.grandviewresearch.com/press-release/global-data-preparation-tools-market
https://www.grandviewresearch.com/press-release/global-data-preparation-tools-market


	 SN Computer Science (2023) 4:425425  Page 2 of 20

SN Computer Science

Despite the significance of this area, we know of no 
previous review article that has attempted to characterize 
the main approaches to data preparation, explain the differ-
ences between the approaches, and illustrate how solutions 
are developed by different types of product. Surveys have 
been produced that address individual approaches (such as 
Extract–Transform–Load systems [3, 79] and visual inter-
faces for data transformation  [50]) and individual steps 
within data preparation (such as entity resolution [26, 36] 
and data repair [30, 47]); in addition, there is a review of 
the functionalities offered by commercial data preparation 
systems [41]. Here, we seek to complement these earlier 
reviews by considering a variety of approaches that support 
comprehensive data preparation processes. Specifically, we 
introduce common steps within the data preparation pro-
cess, and explore how they surface in different types of data 
preparation systems.

Data preparation has been carried out in different settings 
and with different emphases over a considerable period. For 
example, data preparation has been prominent in the crea-
tion of data warehouses for decades [79], but an emerging 
emphasis on more opportunistic analyses of diverse data 
sets is leading to the development of toolsets that can be 
deployed more widely within organizations [45]. In this 
paper, we consider approaches to data preparation as fitting 
into the following categories:

•	 Program based: In such approaches, data preparation is 
considered to be a software development task, and the 
data scientist develops applications using libraries to sup-
port different functionalities (e.g., [52, 54]).

•	 Workflow based: In such systems, which include Infor-
matica,3 Talend [6], CloverDX [81] and Pentaho [16], the 
user uses a visual editor to write a workflow that brings 
together data preparation components, for example for 
accessing data sources, combining, cleaning or aggregat-
ing data sets, and for providing the results to databases or 
analysis tools.

•	 Dataset based: In such systems, which include Wran-
gler [51] and OpenRefine [80], the user principally inter-
acts with a representation of a single data set, which is 
presented in a way that is similar to a table in a spread-
sheet. Then, operations can be carried out on columns, 
e.g., by changing the formatting or splitting the values in 
one column over several.

•	 Automation based: In such systems, which include Auto-
Pipeline [83], Tamr [75] and VADA [56], steps within the 
data preparation process are automated, typically build-
ing on some form of training data about the intended 
result of the preparation process. Automation may apply 

to individual steps within the data preparation process, 
or to complete wrangling pipelines.

Data preparation tools can also be supplied in platforms 
that combine preparation with other capabilities, such as 
data catalogs (e.g., as in Qlik4) or analytics tools (e.g., as in 
Tableau5). In terms of scope, in this paper we focus specifi-
cally on data preparation functionalities, and in terms of a 
series of steps, we start after data extraction [31], and stop 
before techniques that target specific types of analysis [7, 
43]. These are technical areas in their own rights, with exist-
ing surveys.

To provide a consistent frame of reference, data wran-
gling steps and approaches are illustrated with reference to 
a running application relating to real estate data. Figure 1 
contains some tables and sample tuples that are assumed to 
come from different data publishers, and that provide infor-
mation about property sales and related open government 
data. The data preparation problem is to populate the table 
called Target, using data from the other tables. The three 
Agency tables contain data about properties that are for sale; 
each contains the properties that are available from a single 
real estate agency. The other tables, DeprStats (for Dep-
rivation Statistics), Postcodes and Schools hold additional 
information that can be used to supplement the data in the 
estate agency sites.

The data sources manifest various inconsistencies that 
need to be taken into account during data preparation. For 
example, there is some missing data, the names of columns 
representing the same data are not necessarily the same, 
the values within the street columns have different levels of 
detail in the different agency sources, etc.

In seeking to clarify the features of each of these 
approaches, in Section “Data Preparation Functionalities” 
we outline the individual steps within a data preparation 
process, focusing in particular on data profiling, matching, 
mapping, format transformation and data repair. There-
after, based on implementations of the running example 
using representative approaches to each of the categories 
listed above, in Section “Data Preparation Approaches”, we 
describe how the different approaches support the different 
functionalities. In the light of this, conclusions are drawn in 
Section. “Conclusions”.

3  http://​www.​infor​matica.​com.

4  https://​www.​qlik.​com/​us/.
5  https://​www.​table​au.​com/.

http://www.informatica.com
https://www.qlik.com/us/
https://www.tableau.com/


SN Computer Science (2023) 4:425	 Page 3 of 20  425

SN Computer Science

Data Preparation Functionalities

Data preparation involves a series of processing steps, that 
may start with some form of data set discovery, proceed 
through a number of integration and transformation tasks, 
and complete with the storage of the result. There is no uni-
versally accepted collection of data preparation steps, but 
certain functionalities are widely supported, and can be con-
sidered as representative of data preparation. Here, we focus 
on several processing and transformation tasks, in particular 
data profiling, schema matching, schema mapping, format 
transformation and data repair. Data preparation systems 
differ in exactly which tasks they support, but there tend to 
be significant overlaps in the functionalities provided, and 
thus different categories of system are more easily distin-
guished by how such tasks are specified and composed than 
by precisely what capabilities are provided.

The specific steps covered in this paper may be pre-
ceded by steps that, for example, discover relevant data sets 
through search mechanisms [18] or extract structured data 
from file formats or spreadsheets [15]. Furthermore, there 
may be application-specific post-processing steps, for exam-
ple that seek to select or structure the data in ways that are 
particularly suitable for machine learning [72].

In this section, we introduce representative processing 
and transformation tasks with reference to the running exam-
ple. We will primarily use relational database terminology, 
for example referring to tables, tuples, keys and attributes, 
even though actual data preparation systems may assume 
different data models. Furthermore, we do not consider 
domain-specific data preparation, for example for spatial 
data [14] or medical imaging [22], for which specialized 
techniques are required to complement those described here.

Fig. 1   Running example from the real estate domain



	 SN Computer Science (2023) 4:425425  Page 4 of 20

SN Computer Science

Data Profiling

Data preparation builds on knowledge of the data to be 
prepared. As data preparation may bring together data 
from diverse data sources, the amount and nature of the 
descriptive information that comes with sources varies. For 
example, among others, data preparation may be applied 
to comma separated value (csv) files with or without head-
ers, to semi-structured data sets described using JSON or 
XML, or to relational databases. Thus, there may be dif-
ferent amounts of information provided with a data source 
about the names of attributes, their types, and the relation-
ships between data items. As a result, it is often useful to 
refine structural descriptions of individual sources, and also 
to derive additional information that can inform different 
data preparation steps.

Data Profiling is the name given to the process of deriv-
ing properties of data sets and the relationships between data 
sets, that can inform processing decisions, whether these are 
manual or automated [1]. It transpires that much the same 
profiling data is useful for all the different approaches to 
data preparation described in Section “Data Preparation 
Approaches”.

In data preparation, different preparation tasks may be 
informed by different types of profiling data. For example, 
functional dependencies can be used to identify potential 
anomalies in a data set [47], and inclusion dependencies 
can be used to identify potential join paths between data 
sets [21]. There are many different data profiling tasks [1]. 
Here we provide some examples, illustrate them with respect 
to the real estate example, and indicate how they may be 
relevant to data preparation.

This first group of tasks provides information about a 
single data set. We omit the discussion of some more rudi-
mentary profiling activities, such as counting the numbers of 
rows, the numbers of null values, and the number of distinct 
values within a column, but note that such information can 
be useful for informing decisions relating to activities such 
as the ordering of data preparation tasks or the selection of 
data sets.

Candidate key discovery: A candidate key is a column 
or collection of columns, the values of which can uniquely 
identify a tuple within a data set. A profiling algorithm may 
infer several candidate keys for a table. In the example in 
Fig. 1, both postcode and crimerank may be inferred as can-
didate keys for DeprStats, though in this case the postcode 
would be the better choice for a designer, as the crimerank 
is likely to change over time. Furthermore, postcode could 
perhaps be inferred to be a candidate key for Agency1, even 
though in practice there may be several properties with the 
same postcode. This reflects the fact that data profiling tech-
niques derive information about the available data, and are 

thus subject to drawing conclusions that hold for a snap-
shot or a sample, but may not be correct in general. In data 
preparation, candidate key discovery is potentially useful for 
identifying ways of joining data sets [71].

Value distributions: An attribute contains a collection of 
values, the distribution of which may be useful for users 
seeking to understand the way the column is being used, 
or which may be useful for algorithms in making estimates 
such as the size of the result of a join. For example, a his-
togram [48] on an attribute provides a distribution D of the 
form {(r1, c1), ..., (rn, cn)} , where each ri represents a range, 
and the corresponding ci captures the number of values 
within the range. For example, in the Schools table in Fig. 1, 
if the values for effectiveness contained outliers, this might 
suggest that there were errors in the data. In data prepara-
tion, value distributions can be useful for source selection, 
and for obtaining insights into dataset quality.

Inclusion dependency discovery: An inclusion depend-
ency is a relationship of the form Tu.Av ⊂level Tq.Ar , where 
eah Ti is a table, each Aj is an attribute, and level is the 
fraction of the values in Tu.Av that are contained in Tq.Ar . 
Where the level = 1 , there is a full inclusion dependency, and 
where the level < 1 there is a partial inclusion dependency. 
For example, in Fig. 1, Agency1.postcode might be expected 
to be fully included in DeprStats.postcode. In data prepara-
tion, full or partial inclusion dependencies can be used to 
identify candidate joins between tables, in particular where 
one of the participating attributes is a candidate key [71].

Matching

Data preparation depends on the ability to discover rela-
tionships between different data sets, and also to reconcile 
semantic heterogeneity [53] between otherwise compatible 
datasets. By semantic heterogeneity we mean differences 
in the way a conceptualization is concretely represented. 
For example, in Fig. 1, the concept of deprivation is repre-
sented in both the DeprStats and the Target tables, but with 
different names, viz., crimedecile in the former and crime 
in the latter. This is an example of a semantic heterogene-
ity referred to as different names for equivalent attributes 
(DNEA). For another example, the different concepts of for-
sale price and for-rent price are everywhere represented by 
an attribute named price. It is the for-sale price in Agency1, 
Agency2 and in the target, and the for-rent price in Agency3. 
This is an instance of a semantic heterogeneity referred to 
as same name for different attributes (SNDA).

Matching is the process whereby conceptual equivalence 
is postulated between a construct S.x in one schema S and a 
construct S′.y in another schema S′ [8, 68]. These are often 
referred to as correspondences, or matches, and we say that 
S.x and S′.y match, or are a match. For example, in Fig. 1, the 
attributes with name postcode in various tables represent the 



SN Computer Science (2023) 4:425	 Page 5 of 20  425

SN Computer Science

same concept, and matching would postulate that all pairs 
formed by them are matches (e.g., Agency1.postcode and 
Agency2.postcode, and so on). Likewise matching may also 
postulate that pairs that manifest the DNEA semantic het-
erogeneity (such as DeprStats.crimedecile and Target.crime) 
are matches.

Matching is a hard problem insofar as there is an inher-
ent difficulty in detecting whether two schematic constructs 
are conceptually equivalent or not. The difficulty stems, on 
the one hand, from the problem of inferring equivalence 
from data and metadata alone, and, on the other hand, from 
the many forms of conflict that arise from representational 
choices [39, 53]. For example, pairs that define an instance 
of the SNDA semantic heterogeneity (e.g., Agency3.price 
and Target.price) may be difficult to detect automatically.

There are many approaches to matching and the tax-
onomy introduced in [68] is still valid. According to it, 
matching is carried out by algorithms (or systems) called 
matchers. Matching can be based on the results of a single 
matcher or on combining different matchers, either into a 
hybrid matcher that outputs one decision (e.g., [5]) or as a 
composite of individual matchers whose independent deci-
sions are then combined, say, by some aggregation function, 
into a single output decision (e.g., [23]).

Individual matchers are the building blocks for hybrid 
and composite matchers. They can be classified according 
to the sources of information they use in reaching a decision. 
Matchers can make use of schema-level information only 
or of instance-level information too. Schema-level informa-
tion can be syntactic (e.g., string similarity between attribute 
names) or semantic (e.g., type similarity). As for instance-
level information, the majority of matchers use syntactic 
similarity over, say, attribute values as the basis upon which 
to decide that the extents (or a representative sample thereof) 
provide evidence of conceptual equivalence (e.g., a matcher 
might use the overlap of the range of values in DeprStats.
crimedecile and in Target.crime in addition to the shared 
substring ‘crime’ in the attribute names as mutually reinforc-
ing evidence of a DNEA conflict and, hence, postulate that 
the two attributes match).

Broadly speaking, a matcher (which could be a person or 
an algorithm) can be seen as performing, or comprising, the 
following major tasks:

Eliciting evidence of similarity: This typically involves 
the use of techniques for measuring string similarity (e.g., 
Levenshtein distance, q-grams, etc.) to yield a similarity 
score. So, in Fig. 1, on the basis of one or more string com-
parison algorithms, one would expect the pair street and city 
to have a very low similarity score; the pair crimedecile in 
DeprStats and crime in Target to have mid-scale similarity 
scores, and the pair price in Agency3 and price in Target to 
have the maximal similarity score.

Combining evidence: This involves deciding how to com-
bine, say, the fact that the pair price in Agency3 and price in 
Target are identical attribute names with the fact that from 
instance-level evidence, they have non-overlapping extents 
with value intervals that are separated by two orders of mag-
nitude. There are various weighting schemes and aggrega-
tion functions that can be used to combine individual quan-
tifications of evidence into a single figure (see, e.g., [5, 34]).

Postulating equivalence: This involves projecting either 
individual scores or an aggregated one onto a decision axis 
such that, given one or more scores, the projection returns 
a decision as to whether a pair of constructs are, or are not, 
a match. The simplest way of defining such a decision axis 
is to use a threshold, such that a score above the threshold 
implies that the pair is a match, otherwise they are not. Find-
ing a robust universal threshold is difficult in general and 
mitigation approaches exist (see, again, [5]).

Proposing semantic correspondences: Once it is decided 
which pairs are matches, a decision needs to be made as 
to which matches are used. For example, one construct in 
a source may match more than one construct in the target 
schema. An example would arise in Fig. 1 if Agency2.agency 
and Agency2.agency_PC were both postulated matches to 
Target.agency). Thus, the general case is not for there to be 
a 1:1 alignment but an n:m one, in which there is a question 
whether the matcher derives a 1:1 alignment from an n:m 
one (e.g., by somehow picking the strongest matches, pos-
sibly globally over all pairs rather than locally over the pairs 
in a particular source and a particular target table).

Mapping

In the context of data preparation (and, in particular, data 
integration [24]), a mapping is an expression that, when 
evaluated over source datasets, returns a result that is suit-
able for populating a target dataset. As such, a mapping 
allows existing, autonomously designed, populated and 
maintained datasets to be integrated into a target dataset that 
defines the structure required for the task at hand.

In the example in Fig.  1, the source datasets (i.e., 
Agency1, Agency2, and Agency3) were autonomously 
designed and populated. As has been pointed out, there are 
semantic heterogeneity conflicts between them, taken as 
potential sources, and the Target table. For example, while 
Agency1 and Agency2 are likely to record properties for sale, 
it is possible that Agency3 records properties for rent. If so, 
and if the target is meant to be about properties for sale only, 
a suitable mapping might be centered on taking the union 
(of appropriate attributes from) Agency1 and Agency2 and 
excluding Agency3. Likewise, the mapping might include a 
join on the postcode columns of agency data and deprivation 
data in order to obtain the values with which to populate the 
crime column in the target.



	 SN Computer Science (2023) 4:425425  Page 6 of 20

SN Computer Science

Research on mappings has been significant and extends 
over a long period (for useful background, see [29, 40, 63]). 
The motivation for research on mappings has come from two 
important real-world problems, viz., data integration [24] 
and data exchange [4]. In data integration, mappings tend 
to be seen as views that define a virtual, integrated resource 
over a collection of autonomous, heterogeneous, typically 
distributed resources. These views may be subject to rewrit-
ing prior to evaluation [40], or may be generated taking into 
account properties of the sources and the target [29]. In data 
exchange [28], mappings tend to be seen as transformation 
scripts whose evaluation has the purpose of converting an 
instance IS of a source schema S into an instance IT of a 
target schema T, with minimal redundancy in IT.

Broadly speaking, a mapper (again, a person or an algo-
rithm) can be seen as performing, or comprising, the fol-
lowing major tasks:

Detecting merge opportunities: This involves detecting, 
given the semantic correspondences identified by matching 
and profiling data such as inclusion dependencies, whether, 
e.g., one might usefully union two source tables and join 
the result of the union with another source table. As such, 
both manual and automatic mapping generation tend to fol-
low and be informed by both data profiling and matching. 
For example, in Fig. 1, assume that matching has postulated 
that the attributes with name street, city, postcode, price and 
agency in both the Agency1 and Agency2 source datasets 
match with (i.e., semantically correspond to) the identically 
named attributes in the Target. If so, the union of the projec-
tions of these attributes over Agency1 and Agency2, call it U, 
seems a useful merge opportunity. If we further assume the 
attributes named postcode in U and Postcodes semantically 
correspond and that it is known that postcode is a candidate 
key in Postcodes and that U.postcode ⊆ Postcodes.postcode, 
then taking the natural join of U and Postcodes is another 
useful merge opportunity under the assumption that Post-
codes.ward and Target.ward were deemed by matching to 
semantically correspond.

Constructing/selecting the mappings: This involves 
exploring the space of possible mappings given the detected 
merge opportunities to, broadly speaking, decide on the 
quality of each such mapping. Note that, often, merge 
opportunities come at the cost of introducing null values 
not already in the sources. In this light, one might wish to 
rank merge opportunities on whether they might lead to the 
introduction of more, or fewer, null values not already in the 
sources. Another goal, often paramount in data exchange, 
is to minimize the size of the materialized target instance. 
Different strategies can be used, e.g., preferentially follow-
ing join opportunities (e.g., [29]), possibly also relying on a 
subsequent verification/optimization phase (e.g., [59]). Yet 
another important concern is that the mapping evaluates to 

instances that conform to key and referential constraints that 
may exist when the target schema comprises many tables.

Format Transformation

The role of format transformation is to resolve representa-
tional inconsistencies in attribute values. A format trans-
formation rule is an expression in which the antecedent is a 
syntactic pattern to be matched over values in one or more 
source columns of an input dataset, such that the result of 
the rule is a different representation for the information in 
one or more columns of the output dataset.

In the example in Fig. 1, the values in the Target.street 
column do not contain the number of the property (as in the 
case with those in Agency2.street). If this formatting is a 
requirement, when data from Agency2.street is used, through 
a mapping, to populate Target.street, it will be seen to vio-
late it (unlike data coming from Agency1.street). To meet 
the requirement, one could apply the following (admittedly 
simplistic) format transformation rule to the column of inter-
est (viz., Target.street)

Target.street: “[0-9]+” → “”

where the antecedent consists of a regular expression (viz., 
“[0–9]+”) that matches integers, and the consequent 
consists of a replacement string (viz. “”). In this example, 
therefore, the effect is to remove any number appearing 
in prefix position in a street value in the target, so that 20 
South Drive becomes South Drive.

Broadly speaking, a format transformer (still, a person or 
an algorithm) can be seen as performing, or comprising, the 
following major tasks:

Deciding on the correct format: This involves either 
choosing (among those occurring) or imposing (in case it 
does not occur) a format for the data that is deemed correct 
for the task in hand. For example, in Fig. 1, as we have seen, 
there seems to have been a decision that the correct format 
for Target.street is one in which a prefixed number is absent.

Detecting format inconsistencies: This involves the rec-
ognition of patterns that do not match the correct one. For 
example, one in which the street is prefixed by a number.

Defining the required format transformation: This 
involves the provision of a format transformation rule that 
given an incorrectly formatted value transforms it into a cor-
rectly formatted one. The expressiveness of the language 
in which format transformation rules are formulated may 
vary (see, e.g., [51]). Impressive work exists on inducing 
format transformation rules using programming-by-example 
techniques (see, e.g., [37, 38, 49, 73, 82]). If examples are 
provided by humans (as is the case with most proposals), 
the risk of unrepresentative samples could be high due to 
human factors relating to tiredness, inattention, etc. The 



SN Computer Science (2023) 4:425	 Page 7 of 20  425

SN Computer Science

work reported in [12] addresses this by inducing transfor-
mation examples.

Validating the transformation: Transformation compo-
nents often provide immediate feedback by showing the 
results of transformations. When format transformation 
rules are induced from examples, there is the risk that the 
sample used is not representative, leading, therefore, to erro-
neous applications. In [12], in which examples themselves 
are induced, k-fold cross validation is used to identify rules 
that give rise to invalid transformations.

Format transformation can take place at different points 
in a data preparation pipeline. Early application of format 
transformations, e.g., before matching, can be beneficial 
because then matching steps stand to benefit from more con-
sistent representations, and join operations stand to benefit 
from consistent representations for join attributes. However, 
format transformations may be carried out to increase con-
sistency between integrated sources, and these inconsisten-
cies may only become evident after the data has been inte-
grated by mappings.

Data Repair

Data preparation must contend with different aspects of data 
quality. In the previous section, format transformation tech-
niques sought to address the situation in which the data was 
correct, but was represented in inconsistent ways. In this 
section, we consider the situation in which there are incon-
sistencies in the data that can be detected using integrity 
constraints [30, 47].

Languages such as functional dependencies and condi-
tional functional dependencies [30], can be used to express 
properties that should be exhibited by a data set, and the 
integrity constraints that capture these properties are some-
times written manually and sometimes inferred. In this 
section, we will consider functional dependencies, as a 
straightforward example of a language for expressing integ-
rity constraints. A functional dependency � is of the form 
X → Y  , where X and Y are sets of one or more attributes 
from a table. A table satisfies a functional dependency if 
every pair of tuples that have the same values for the attrib-
utes in X have the same values for the attributes in Y.

For example, in Fig. 1, we could have the functional 
dependency postcode → city, associated with each of the 
Agency sources. This represents the semantics of the appli-
cation, as every postcode should be associated with exactly 
one city.

Integrity constraints can be used either to impose proper-
ties on a data set or to detect inconsistencies. For example, in 
relational databases, integrity constraints can be expressed, 
and the database management system will reject any trans-
action that seeks to violate any of the constraints. However, 

in data preparation there is often little control of the data 
sources being used, and thus it is of more interest to detect 
and repair violations of constraints.

Detecting violations: Detecting violations typically 
involves running a query over the data set, and thus is 
straightforward. In the case of a functional dependency of 
the form X → Y , a query to detect violations groups the table 
by the attributes in X, and counts the number of distinct Y 
values; where there is more than one Y value for a group, 
this is a violation of the constraint. Returning to the example 
in Fig. 1, and the functional dependency postcode → city , 
Agency3 is consistent with this constraint, but Agency2 is 
inconsistent with the constraint for postcode E14 6JW.

Repairing violations: Where a constraint is violated, there 
is then the question as to how to repair the violation, with a 
view to reducing the number of inconsistencies with the con-
straints. One option is to delete all the tuples that violate the 
constraint, but this is likely to have the side-effect of discarding 
valuable data. Alternatively, for functional dependencies, an 
option is to change the left or right-hand side of the violating 
tuples, in such a way as to remove the inconsistency. In the 
case of Agency2 and the postcode E14 6JW, a suitable repair 
would likely be to replace Greater London with London for 
the property at 2 Canton Street. In practice, automating data 
repair is not straightforward. Where a functional dependency 
is violated, several different actions may be able to repair it: 
changing the left-hand side (i.e., changing the postcode in our 
example), changing the right-hand side (i.e., changing the city 
in our example), or changing the constraint. In addition, fixing 
one constraint may violate another. As a result, there has been 
significant work on data repair algorithms that seek to reduce 
the number of inconsistencies with the integrity constraints, 
while satisfying some other objective, such as minimizing the 
number of changes to the original database. For functional 
dependencies, several proposals have been made, some of 
which also support changes to constraints (e.g., [10, 19]), and 
reviews report techniques for other languages [30, 47]. There 
have also been proposals for techniques and systems that bring 
together a variety of data repair techniques [35, 70].

Data repair may be able to be applied to individual 
sources, but typically the integrity of the end data product 
is a priority, and thus data repair tends to take place quite 
late in the data preparation process.

Data Preparation Approaches

This section describes how the functionalities from Sec-
tion “Data Preparation Functionalities” surface in differ-
ent approaches to data preparation, specifically program 
based, workflow based, dataset based and automation 
based. An overview of how the functionalities are sup-
ported is provided in Table 1, and the details follow below.



	 SN Computer Science (2023) 4:425425  Page 8 of 20

SN Computer Science

Program Based

In program-based approaches, the data preparation task 
is manually encoded by a software developer, using the 
functionalities and libraries of a programming language. 
As a result, the way in which a task is encoded can be sig-
nificantly influenced by the available libraries, skills and 
time for developing a solution, though in general software 
developers take fine-grained control over the data prepara-
tion process. In this section, Python is used to illustrate 
how some of the pivotal tasks in the example real estate 
domain could be implemented. Where suitable, we adopt 
practices proposed in [52, 62]. However, in the code snip-
pets we present we have aimed for clarity of understanding 
and purpose, not for performance or scalability.

Data Profiling

Given data sets to be wrangled, such as those in Fig. 1, the 
developer will be interested in achieving a better understand-
ing of the properties of the (potentially numerous) data sets. 
For example, as it may be necessary to combine different 
data sets, it is likely to be useful to answer questions such as:

•	 How many tuples are there in the different tables contain-
ing agency data?

•	 Which attributes contain high numbers of nulls, as such 
missing data may need to be filled in, or may reduce the 
suitability of specific data sets?

•	 Which inclusion dependencies exist on postcodes, as 
these provide potential ways of joining data sets?

•	 Which inclusion dependencies exist between the agency 
tables, as these may help us to establish if there are sig-
nificant overlaps between the tables?

Answers to such questions could be obtained by profiling the 
available data sets. In the program-based approach, compre-
hensive data profiling could make use of a third party tool, 
such as Metanome [66]. However, within Python itself, the 
pandas [62] library provides descriptive statistics (includ-
ing histograms) as well as some time series operations. The 
snippet of Python code in Fig. 2 illustrates how null-value 
information can be computed using pandas. Here, we 
assume that the first row in the CSV file associates an attrib-
ute name to each column and the second row associates a 
type with each attribute.

Fo r  t he  example  i n  F ig .   1 ,  a  c a l l  t o 
get_null_info(Agency1) would return the informa-
tion that price is the only attribute with null values: it has 
one null in four tuples, and therefore a null ratio of 0.25.

The above code snippet shows that it is a relatively simple 
task to code solutions to the first two questions posed above 

(i.e., those relating to value distributions). However, the last 
two questions (i.e., those centered on inclusion dependen-
cies) would be much harder to code solutions for, as the 
required algorithms are significantly more complex.

Matching

Understanding the matches between attributes is essential for 
several tasks. For example, matches between source and tar-
get attributes (e.g., DeprStats.crimedecile and Target.crime) 
can be used when selecting data from sources to populate the 
target. As for data profiling, sophisticated third party tools, 
such as COMA++ [5], could be used to identify candidate 
matches, though here we consider inferring matches directly 
in Python.

To illustrate this, consider the snippet of Python code 
in Fig. 3. It uses Jellyfish,6 a library for approximate 
and phonetic matching of strings, to illustrate how string 
similarity, as captured by distance metrics, can underpin the 
matching of attribute names. In the snippet, assume x and y 
to be attribute names, and similarity to lie in the [0,1]-inter-
val, with 0 denoting identity. For one example in Fig. 1, the 
similarity score for crimedecile and crime is 0.2787.

This code snippet performs, somewhat simplistically, the 
tasks of eliciting and combining evidence of similarity. A 
more comprehensive approach would also analyze the simi-
larity between attribute values or properties. Furthermore, 
for the task of proposing semantic correspondence, one 
needs to decide which pairs of matches to select for each 
given target column, for example, by adopting selection heu-
ristics from the literature [5].

Mapping

The main tasks that comprise the mapping stage of a data 
preparation process are the detection of merge opportunities 
between source tables, and the construction and selection of 
mapping expressions.

For the example in Fig. 1, from the data profiling and 
matching stages, one will have gathered the various value 
distributions and the postulated semantic correspondences. 
The semantic correspondences may suggest that projecting 
out street, city, postcode, price and agency from Agency1 
and Agency2 and taking their union is a good mapping for 
populating the corresponding attributes in the target. Moreo-
ver, the value distributions may suggest that relevant refer-
ential constraints hold (e.g., with Postcodes.postcode as a 
primary key referenced by a foreign key, e.g., Deprivation 

6  https://​www.​github.​com/​james​turk/​jelly​fish.

https://www.github.com/jamesturk/jellyfish


SN Computer Science (2023) 4:425	 Page 9 of 20  425

SN Computer Science

Statistics.postcode). Indeed, populating the attributes Target.
crime and Target.ward will require the use of joins.

Assume that a decision has been reached to use the fol-
lowing mapping (expressed in relational algebra, and, for 
conciseness, using abbreviated names for relations and 
attributes):

In relational algebra, �a1,...,an (T) retains the attributes a1, ..., an 
from the table T, ∪ unions its operands, and ⋈ joins the 
tuples from its operand tables when they have equal values 
for attributes with the same names. Then, the Python code 
snippet in Fig. 4 shows how pandas functionality can be 
used to implement (simplistic) versions of the relational-
algebraic operators required (viz., rename, project, union 
and join). Then, using the matches to pick columns to project 
with renaming, the mapping can be written as an operator 
tree with eleven nodes (N1–N11, in Fig. 4).

Evaluating the code in Fig. 4 over the sources when the 
instances are as shown in Fig. 1 would populate the target 
with a single tuple, as illustrated in Table 2.

If developers wanted, they could code various mappings 
in the way exemplified above and select the most appropriate 
for the data preparation task in hand.

Format Transformation

In the program based approach, format transformations are 
handcrafted. As with mapping, ideally one would like to 
generate format transformation rules automatically from 
examples. However, in the absence of a tool for doing so, a 
Python developer has to provide the appropriate rules.

Assume that a transformation rule (t-rule, for short) is a 
pair, whose left-hand side (LHS) is a regular expression and 
whose right-hand side (RHS) is a replacement string. In the 
context of Figs. 1,  5 gives examples of t-rules that, resp., 
delete a class of substrings (e.g., a prefix number in street 
values), abbreviate certain terms (e.g., the word Avenue in 
street values) and remove punctuation (e.g., in price values). 
Given a set of t-rules for a given table and a given attribute, 
the apply_t_rules function formats the values of the 
attribute in the table so that they comply to the t-rules.

The example t-rules in Fig. 5 on street values could be 
used to make the ones in Agency1 and in Agency2 consistent 
with the implicit expectations for them in the Target.

Data Repair

In the program-based approach, repairs are, again, hand-
crafted. Assume the following (admittedly blunt) repair strat-
egy. Let A → B be a postulated functional dependency, such 

�st,ci,po,pr,ag(A1) ∪ �st,ci,po,pr,ag(A2)) ⋈

(�po,wa(P) ⋈ �po,cr(D)).

as might be obtained by data profiling. Then, assume that 
an FD is checked on a data set and violations are detected. 
For example, it is observed that for an element in the domain 
(i.e., values in the extent of A) one may find more than one 
element in B. Then, if there is a sufficiently predominant 
value, we assume it is the correct value and we propagate it 
to all tuples. By predominant, we might mean the most fre-
quently occurring value of B occurs with a frequency above 
a certain threshold (say, 0.5). The snippet in Fig. 6 codes this 
strategy in Python.

With respect to Fig. 1, there seems to be a functional 
dependency agency_PC → agency in the Agency2 table. If 
so, the repair strategy in the code snippet above could be 
used to repair a faulty value for agency. Note, for example, 
that the value for agency in the tuple whose street value is 10 
Canton Street might be repaired using this strategy.

Workflow Based

In workflow-based approaches, programs are also manually 
crafted, but typically using a visual programming language 
in which different components are connected together on a 
canvas that describes how the data flows through the pro-
gram. This is a well-established approach among commer-
cial data preparation tools, which are often referred to as 
Extract-Transform-Load (ETL) systems [79]. Commercial 
products tend to be supplied with large libraries of compo-
nents that support access to different types of data source, 
provide a wide range of data manipulation and storage capa-
bilities, and in some cases carry out a variety of analyses. 
Examples of commercial ETL vendors include Talend,7 
KNIME,8 Infogix,9 Informatica,10 CloverETL,11 Alteryx12 
and Matillion.13 Typically, in workflow-based tools, a palette 
of data processing components is made available to the user. 
Users can typically drag and drop components onto a canvas, 
to handcraft a data processing pipeline.

Typically, the user interface comprises:

•	 A set of data sources. These data sources can contain 
static files or API calls that return data in real time.

•	 A palette of data processing components. Data inputs 
and outputs to these components are typically data 
flows, allowing the user to create a specified target data 
set from a set of initial sources.

7  www.​talend.​com.
8  www.​knime.​com.
9  www.​infog​ix.​com.
10  www.​infor​matica.​com.
11  www.​clove​rdx.​com.
12  www.​alter​yx.​com.
13  www.​matil​lion.​com.

http://www.talend.com
http://www.knime.com
http://www.infogix.com
http://www.informatica.com
http://www.cloverdx.com
http://www.alteryx.com
http://www.matillion.com


	 SN Computer Science (2023) 4:425425  Page 10 of 20

SN Computer Science

•	 A canvas on which the user can handcraft the workflow. 
This is done in practice by adding data sources and pro-
cessing components, and offers a visual representation 
of the flow, as shown in Fig. 7.

Configuring and running a workflow becomes essentially 
a visual programming task, requiring technical skill and 
familiarity with the data. While dragging and dropping 
components on a canvas seems intuitive and straightfor-
ward, individual components may be both powerful and 
complex. This complexity is illustrated in Fig. 8, in which 
the user manually specifies a mapping. Automation in 
component configuration is sometimes present, aiming at 
simplifying the process. As an example, the Auto map! 
link in Fig. 8 will match attributes with the same name.

In this section, we illustrate how the different data prep-
aration functionalities are supported in a representative 
ETL system, namely Talend Open Studio for Data Integra-
tion. Figure 7 illustrates part of the canvas of a data flow 
in Talend Open Studio, in which the user makes use of a 
component to merge the contents of two sources into one. 
Specifically, the tUnite component unions the contents of 

deprivation data for Oxford and Manchester into a file con-
taining deprivation data for both regions.

Data Profiling

Data profiling can provide users with information about data 
sources and intermediate results that may inform their use in 
practice, and thus their place within a data preparation job. 
When authoring ETL flows, users take fine-grained control 
over which components are used, how they are configured 
and how they are connected, so profiling mostly provides 
information about the available data and associated relation-
ships to inform decision-making.

Talend Open Data Studio offers statistics about the 
sources. Furthermore, to derive profiling data, among 
the plethora of available components, users can design 
workflows to, e.g., extract unique values from a column, 
or even create bar charts and graphs to illustrate the value 
distributions.

Table 1   Support for the functionalities within each paradigm

 Functionality  Approach  Description

Profiling Program Profiling informs the coding of data preparation steps. Languages such as Python have extensive profiling librar-
ies for their internal data structures

Workflow Profiling informs the connecting of data sets and configuration of some components. Systems may provide profil-
ing in catalogs, or within individual components

Dataset Profiling makes explicit the properties of data sets and identifies data that may require attention, and can inform 
the expression of proposed actions

Automation Profiling data provides evidence for automated components, and may be central to explaining why specific 
actions have been taken

Matching Program There is no explicit target; target attributes are created as an output from the preparation process
Workflow There is no explicit target, but components for merging data sources may use matches to inform data derivation
Dataset There is often no explicit target, but where there is, matches can be derived to align source attributes to the target
Automation Matches are often central, aligning sources with the target; other automated steps build on these matches

Mapping Program Mappings are handcrafted, either expressed directly in the code, or using query libraries
Workflow Mappings are expressed using components that combine data sets, and dependencies are expressed as workflow 

edges
Dataset Most manipulations involve individual data sets, but systems may support merge operations or links to workflows
Automation Mappings can be generated based upon metadata or profiling data

Transformation Program Transformations are manually coded, typically using pattern matching libraries
Workflow Transformations are manually encoded, using specialized languages or through programming language interfaces
Dataset Transformations are usually expressed using custom languages, informed by profiling, sometimes with sugges-

tions
Automation Transformations are synthesized from examples

Repair Program Repairs are handcrafted, typically detecting conditions and carrying out actions
Workflow Repairs are handcrafted, often using components that support custom condition-action rule languages
Dataset Repairs may be supported by rule languages, for detecting and/or responding to detected conditions
Automation Certain repairs can be automated with reference to dependable data sets, such as master data



SN Computer Science (2023) 4:425	 Page 11 of 20  425

SN Computer Science

Matching

Data matching identifies relationships between the attrib-
utes of data collections, in particular identifying pairs of 
attributes that may be related. When writing ETL flows, the 
relationships between tables can indicate alternative sources 
for the same type of data. However, when writing data prep-
aration flows, there is typically no explicit target up front, 
so identifying tables that may be relevant to a future flow 
may involve search or discovery tasks over a data catalog. 
However, within the Map Editor component in Fig. 8, rela-
tionships between input and output attributes are specified, 
with automated matching based upon names.

Mapping

Mapping is the process whereby data sets are combined to 
create new data sets, for example in the case study through 
joining property data with associated crime rankings. Fur-
thermore, data sets may be unioned to bring together differ-
ent sources to provide a more complete picture. In ETL sys-
tems, users make explicit which join and union operations 
are applied to which data sets, moving incrementally from 
the sources towards the intended target.

In Talend Open Data Studio, a tJoin component can be 
used to perform an inner or outer join between the main data 
flow and a lookup flow. Similarly, a tUnite component, as 
illustrated in Fig. 7 can be used to union source contents. A 
graphical interface for configuring mappings is also avail-
able in the tMap component, offering the user the capability 
to manually configure mappings from the sources.

Format Transformation

Format transformation is the process whereby the repre-
sentation of attribute values is revised to make them more 
consistent. In ETL systems, such transformations are hand-
crafted, and components are provided that allow the con-
struction of expressions that reformat data values and derive 
new values from existing ones (e.g., by adding the local tax 
rate to a net price). These expressions may be written in cus-
tom transformation languages, or using expressions written 
directly in an underlying programming language.

Talend Open Data Studio offers a custom transformation 
language. Using an Expression Builder, the user can modify 
data flows by applying transformation functions. Consider 
for instance the following expression, applied to a column 
bedroom_number:

The result of applying the expression to the column will be 
replacing non-numeric values in column bedroom_number 
of the Main data flow with the empty string, thus keeping 
only numeric values for bedrooms. This means that the input 
value “2 bedroom(s)” will be transformed to “2”. A 
variety of system functions allow the user to express trans-
formations on a column, or on a combination of columns.

Data Repair

Data repair is the process of changing or completing data 
sets, based on supplementary evidence. In some ETL sys-
tems there are specialized components for enforcing busi-
ness rules, or they may build on generic data transformation 
components.

In Talend Open Data Studio, filling in missing val-
ues can be done using the tMap component. Consider for 
instance applying the following expression to row13.
street_address_raw, while assuming that row13 is 
the main data flow and row14 is the lookup data flow in a 
tMap component that uses a postcode column as a key:

= ��������������.������

(����
.������
_�	
���, }}[̂� − �]��, }}��).

Fig. 2   Using Python to derive profiling data on nulls

Fig. 3   Using Python to compute similarity scores for matching



	 SN Computer Science (2023) 4:425425  Page 12 of 20

SN Computer Science

StringHandling.LEN(row14.street_name)> 
0

               ? row14.street_name
               : row13.street_address_raw
As a result of applying this expression, values of the main 

data flow will be replaced with the values of the lookup flow, 
if they exist in the latter, or they will otherwise be left intact.

Dataset Based

The dataset-based approach to processing data, using a 
spreadsheet-like interface, is one of the most well-estab-
lished ways to interact with data, and spreadsheet software 
remains ubiquitous among data users [74]. Dataset based 
data preparation capabilities are designed to resemble these 
ubiquitous solutions. Many data preparation platforms, such 
as Altair Monarch,14 Trifacta Wrangler,15 OpenRefine16 
and Tableau Prep,17 include dataset-based interactions. It 
is frequently the case that a dataset based interface is part 
of a wider software ecosystem, allowing different types of 
interaction with the data. In this section, the focus is on the 
spreadsheet-like interface capabilities, not the wider ecosys-
tem that may embed these capabilities.

In the dataset-based approach to data preparation, the user 
has a full overview of the dataset columns and their prop-
erties. As a result, obtaining basic statistics, and applying 
simple statistical functions tends to be straightforward. Per-
forming actions on the data, however, may be more complex, 
as the user is usually expected to write formulas and apply 
functions to process the data.

To highlight the properties of a column, it is common 
for dataset based interfaces to display a histogram of value 
distributions and to identify patterns in the data values in 
the form of regular expressions, with a view to identifying 
where data cleaning or transformations may be required [42, 
69, 76]. Detection of patterns and regularities in the data 
also eases feature engineering in data science projects.

In Fig. 9, an example of a dataset-based interface is 
shown, as available in Trifacta Wrangler. The interface, 
initially based on Potter’s Wheel [69], has since evolved 
to enable more direct manipulation interactions, as well as 
predictive interactions [46]. While users can have a clear 
focus on processing specific columns from a source, they 
can still union or join columns that originate from different 
sources, or assign a data target, to help automation in Tri-
facta. We note that it is becoming increasingly common for 
dataset-based tools to offer the ability to specify workflows, 

and vice-versa, thus combining the capabilities of the two 
categories.

Data Profiling

Information about value distributions is useful in order to 
detect patterns, or detect missing values, outliers or anoma-
lies in the data. In Trifacta, illustrations of value distribu-
tions are provided with every column, which is helpful for 
coming to terms with the data at hand, considering one col-
umn at a time. Trifacta Wrangler incorporates visual profiles 
of the available data, which are, in essence, automatically 
generated summary visualizations of the data. These are 
primarily aimed at increasing human understanding of the 
available data sources, but they also trigger transformation 
suggestions, as illustrated in Fig. 9.

Fig. 4   An approach to expressing mappings in Python

14  www.​altair.​com.
15  www.​trifa​cta.​com.
16  https://​www.​openr​efine.​org.
17  www.​table​au.​com.

http://www.altair.com
http://www.trifacta.com
https://www.openrefine.org
http://www.tableau.com


SN Computer Science (2023) 4:425	 Page 13 of 20  425

SN Computer Science

Matching

Matching is important when the task at hand involves popu-
lating a target with data from several sources. The task of 
discovering relationships between attributes belonging to 
different sources is not generally central to dataset-based 
interfaces, that focus primarily on one table at a time. 

However, Trifacta Wrangler allows data engineers to define 
a target schema to populate. Targets can then be attached to 
sources. This provides automated guidance for how diverse 
data sources may be structured, formatted and renamed in 
order to match to the target. Moreover, it provides the ability 
for users to manually define matches, based on suggestions 
that take into account either the column name alone (column 
name match), or the instance data as well (fuzzy match). 
As shown in Fig. 10, the interface can help the user when 
processing data to populate a target; columns postcode and 
price are identified as potential matches to the target, based 
on their column names.

Mapping

Joins and Unions between sources can be manually defined 
in recipes, which are essentially scripts that contain 
sequences of actions. For example, from a data set view, 
it is possible to select a union operation that can be used 
to add rows from another source to the current one. Having 
identified the data sets to be unioned, the principal interac-
tion involves aligning columns across the two data sets.

Format Transformation

A wide range of transformation functions is provided in 
Trifacta. Besides the transformations that users can author, 
Trifacta can detect patterns in the data and recommend 
plausible transformations.

As shown in the right-hand side of Fig. 9, the software 
can suggest meaningful actions to take on the data. These 
suggestions are based on the observation that for a range 
of simple interactions (e.g., selecting a column or text), 
only a few transformations make sense [46]. This led to 
the predictive interaction approach adopted in Trifacta 

Table 2   Example target Target

Street City Postcode Price Agency Crime Ward
Biscayne avenue London E1W 1AD A1 Branch2 3 St Katharines

Fig. 5   Format transformation in Python

Fig. 6   An approach to data repair in Python

Fig. 7   Visual programming interface to a workflow-based system



	 SN Computer Science (2023) 4:425425  Page 14 of 20

SN Computer Science

Wrangler, which can be considered to be an analogous to 
auto-completion.

However, software suggestions will not always 
include what the user has in mind, so the software 
allows definition of custom calculation formulae. In 
Fig. 11, a simple case conversion is defined. The formula 
SUBSTITUTE(PROPER(town_raw), ’,’, ”) in 
Fig. 11 can be saved as a macro and executed on other 
columns as well, as converting to title case and removing 
commas may be generally helpful in the data wrangling 
task at hand.

The creation of reusable scripts is a common feature in 
dataset-based tools. For instance, in OpenRefine, while 
simple transformations such as changing the text case, and 
trimming trailing spaces, are straightforward to perform, 
an expression language allows for more complex transfor-
mations. In OpenRefine, the expression value.toTi-
tlecase().replace(’,’, ”) will have the same 
effect as the Trifacta formula in Fig. 11.

Data Repair

In a way similar to transforming data, custom formulas can 
also be used to repair data in Trifacta, e.g., by expressing 
logic that fills in empty values with the values from another 
column. For instance, the following single-row formula will 
fill in missing values from column12 with the values from 
column3: IF(ISMISSING([column12]),column3
,column12).

Therefore, data can be repaired using formulas such as 
the above, which are essentially conditional data transforma-
tions. These formulas add the ability to repair data, however 

not as a first class citizen. Simple repairs, related to missing 
or mismatching data, are easier to define in Trifacta, as it is 
easy to replace problematic values with, e.g., the last valid 
value, the rolling average, etc.

In terms of helping ensure data quality, Trifacta also sup-
ports dataset-specific rules that allow the user to apply tests 
to the data and assess data quality with respect to these rules. 
For instance, the following simple rule will test whether the 
column Price contains positive numbers: Price> 0. These 
rules, however, are merely there to help to the user assess 
data quality, and do not trigger actions on the data.

Automation Based

As handcrafting of the data preparation steps from Sec-
tion “Data Preparation Functionalities” is labor-intensive, 
there has been growing interest in the use of automation to 
support data preparation.18 Automation tends to mean that, 
given a problem description and some evidence, software 
takes responsibility for carrying out the task that would 
normally be hand-coded. Automation has been applied to 
individual data preparation steps and to more complete data 
preparation processes.

Note that automated systems are rarely black boxes; it 
is not realistic to expect users to trust an automated data 
preparation component or system without evidence that the 
trust is justified. Thus, automated systems tend to show users 
the results of the automated steps, and often also show how 
the automation was carried out, thereby maintaining prov-
enance. In the light of such information, changes can be 
made that affect how automation is carried out. For example, 
this may mean changing the evidence (such as training data) 
used to inform the automation of a step or process.

In the research community, most of the focus has been on 
individual steps. Some data preparation steps are typically 
carried out automatically; for example, it is less than obvi-
ous why there would be manual involvement in data profil-
ing [1], and candidate matches have long been produced 
using schema and instance evidence [68]. For example, 
in the well-established COMA++ schema matching sys-
tems [5], there are several primitive matchers that compare 
intensional data (e.g., column names) and extensional data 
(e.g., column values), and similarity scores from the primi-
tive matchers are then aggregated by composite matchers to 
identify candidate matches. However, other tasks are often 
carried out manually, even though techniques have been 

Fig. 8   Map Editor component in Talend Open Studio for Data Inte-
gration

18  There has been work to model the cost of data preparation  [58], 
but the true cost of specific tasks, and the most suitable metrics with 
which to characterize a data preparation problem could likely benefit 
from further investigation.



SN Computer Science (2023) 4:425	 Page 15 of 20  425

SN Computer Science

developed for automating the generation of format transfor-
mations [38], schema mappings [29] and data repair [30].

In commercial products, there are also examples of auto-
mation or semi-automation of individual steps; for example, 
format transformations are synthesized from examples in 
Excel using FlashFill [38] and in MagicFill from Talend,19 
and automatic extraction of tables from reports is supported 
by AutoDefine from Altair Monarch.20

There are fewer examples of more end-to-end automation. 
In Tamr [75], sources are aligned with a target represen-
tation, and duplicates are identified, informed by evidence 
collected from users familiar with the application domain. 
The associated commercial offering is used to consolidate 
different data sets inside enterprises relating to customers, 
suppliers, clinical trials, etc.21 In Auto-Pipeline [83], given 
a description of a target result, a search is made for Python 
code fragments that can populate the target from a given 
starting point.

Here, we describe automation in data preparation using 
Data Preparer, a descendant of VADA [57]. In Data Pre-
parer, the problem description is: given a target, some 
sources and some optional instances that are related to the 
target, populate the target with data from the sources. Sev-
eral steps within Data Preparer use evidence in the form of 
instances that are associated with attributes in the target, 
which is referred to as the data context [55].

For the real estate scenario, the target takes the form of a 
table definition, as illustrated in Fig. 1, and the data context 
consists of reference data on addresses, associated with the 
street, city and postcode attributes in the target. Given the 
sources and the data context, as illustrated in Fig. 1, Data 
Preparer has enough information to directly populate the 
target from the sources, as discussed for the different data 
preparation steps below.

Data Profiling

Data profiling is used in Data Preparer to provide evi-
dence to inform other steps, in particular mapping and 
data repair. Specifically, for each source, candidate keys 
are inferred, and between the sources inclusion dependen-
cies are derived, as described in Section “Data Profiling”. 
For the example, in Fig. 1, postcode is a candidate key for 
DeprStats, and the values in the postcode attributes in the 
Agency tables are fully included in postcode on DeprStats.

Matching

Matching is used in Data Preparer to identify which source 
attributes are candidates to populate which target attrib-
utes; a match between a source and a target attribute means 
that the source attribute is a candidate to populate the tar-
get attribute. Specifically, two attributes are compared 
considering the string similarity of their names and the 
level of overlap between the values in their extents.

For example, Fig. 12 illustrates some of the matches 
detected by Data Preparer in the real estate case study. For 
example, we can see that agent.postcode, agent.price and 
agent.street_address_raw have been matched with post-
code, price and street_name, respectively, in the target. 
The confidence in the match is lowest for the match of 
agent.street_address_raw with street_name, as the attrib-
ute names are somewhat different, and the values in agent.
street_address_raw are not identical to those in the data 
context for street_name.

Mapping

In Data Preparer, mappings are queries that describe how the 
target can be populated with data from one or more sources. 
Mappings are generated; given the results of matching (that 
indicate which source attributes can be used to populate 
which target attributes) and the results of data profiling (that 
indicate how tables can be joined), Data Preparer searches 
through a space of candidate mappings, preferring those that 
promise to populate as many target attributes as possible, 
without introducing lots of null values [61].

Specifically, a dynamic programming algorithm starts 
by considering which pairs of sources may be candidates 
for combining using union or join, to give a collection 
of candidate mappings of size 2 (i.e., that combine two 
sources). These mappings of size 2 are then combined with 
other sources, to give mappings of size 3, and with each 
other to give mappings of size 4. Technical challenges to be 
addressed include: (i) the derivation of profiling data for the 
mappings from the profiling data of their operands; and (ii) 

Fig. 9   A dataset-based system front-end

19  https://​www.​talend.​com.
20  https://​www.​altair.​com/​monar​ch/.
21  https://​www.​tamr.​com.

https://www.talend.com
https://www.altair.com/monarch/
https://www.tamr.com


	 SN Computer Science (2023) 4:425425  Page 16 of 20

SN Computer Science

pruning the search space, so that only promising mappings 
are retained [61].

Figure 13 shows how an agency table has been combined 
with a deprivation table by joining on postcode to populate 
the target. This is a valid join that has been correctly iden-
tified. However, in the scenario, some inappropriate joins 
were identified, for example joining identifier columns from 
agencies with columns in deprivation tables on the deciles of 
different areas. The id columns in agencies were identified 
by profiling as candidate keys, and the decile columns had 
inclusion dependencies with the id columns, causing Data 
Preparer to conclude that the tables could be joined. How-
ever, semantically such a join makes no sense. This shows 
the importance of automated systems allowing the user to 
observe the decisions made by the automated system, and 
the provision of ways to influence or override inappropriate 
decisions. In this case, in Data Preparer, it is possible to 
exclude selected inclusion dependencies from consideration 
in mapping generation.

Format Transformation

The role of format transformation in Data Preparer is to 
encourage consistent representation of attribute values 
that are included in the result. Whenever a source attrib-
ute matches a target attribute for which data context data 
are available, Data Preparer will search for transformations 
that can make the representation of the source more consist-
ent with that in the target. This search for transformations 
involves looking for data examples where the source attrib-
ute values contain tokens that are similar to those in target 
attribute values [12], and then trying to generate transforma-
tion programs that can translate source values to the format 
in the target.

The automated generation of format transformation pro-
grams tends to build on programming by example [38]. For 
example, given the examples Alvaro A.A. Fernandes → A. 

Fernandes and Martin Koehler → M. Koehler, we might 
hope to be able to learn a program that produces shortened 
variants of people’s names. In Data Preparer, an approach 
called SynthEdit is used that seeks to provide near state-of-
the-art program synthesis while also scaling for use with 
substantial training sets that are discovered rather than pro-
vided manually [11]. Specifically, SynthEdit provides an 
approach based on edit distance, in which program synthesis 
searches for the smallest number of edit operation that can 
translate a source string pattern into a target string pattern.

In the example scenario, one of the web data extracted 
agency sources has a town_raw attribute containing values 
such as Ordsall Lane, Salford, M5 4TD; as such, the town 
attribute contains not only the name of the town (Salford) 
but also the name of the street and the postcode. However, by 
considering instance matching, this attribute can match with 
the city attribute in the target, and it is then possible to infer a 
transformation that extracts the town name from the address.

The automatic inference of such transformations depends 
on the provision of suitable training examples (in this case 
extracted from the data context) and fairly regular represen-
tations from which to transform the data.

Fig. 10   Matching a source to a target in Trifacta Fig. 11   Defining a custom transformation formula in Trifacta Wran-
gler

Fig. 12   Example matches for the real estate scenario in Data Preparer



SN Computer Science (2023) 4:425	 Page 17 of 20  425

SN Computer Science

Data Repair

In general, data repair may implement business rules or take 
steps to make source data more consistent with established 
data sets, such as master data. In Data Preparer, repairs are 
based on functional dependencies detected within the data 
context. In the example scenario, data profiling infers that 
the postcode functionally determines the street (i.e., every 
property with the same postcode is on the same street). As 
a result of this, in any sources with a missing street name, if 
their postcode is contained in the data context, the associated 
street can be used.

Conclusions

There are ever more data to analyze, within organizations, 
available on the web and streaming from sensors. However, 
the ability to obtain value from data faces challenges with 
practicalities: discovering suitable data, extracting the data 
from its original sources, identifying connections between 
data sets and resolving representational inconsistencies. All 
this before identifying the most suitable analysis technique 
or learning algorithm, and configuring it to the problem. As 
a result, data preparation is a big deal.

In this paper, we have presented key functionalities 
within data preparation, and described how they surface 
in different products. As summarized in Table 1, the key 
functionalities covered (profiling, matching, mapping, 
format transformation and data repair) are relevant to all 
the prominent data preparation paradigms reviewed (pro-
gram based, workflow based, dataset based and automation 
based), but the ways in which they surface differ signifi-
cantly from paradigm to paradigm.

If there are trends in data preparation, they are perhaps 
towards convergence and automation. In relation to con-
vergence, increasingly software platforms bring together 
broader capabilities; for example, this is represented by 
several systems supporting both workflow and dataset-
based interfaces, the former for bringing together different 

data sets and the latter for manipulating individual data 
sets. In relation to automation, increasingly automated 
components are becoming available in workflow systems, 
and dataset-based systems provide suggestions to inform 
user actions. Data preparation techniques are also increas-
ingly being integrated with functionalities for data extrac-
tion, data governance, and data analysis, to produce plat-
forms that are highly capable, but often complex.

Reflecting the multi-faceted nature of data preparation, 
there is ongoing research of relevance to data preparation 
across a wide front. In data lakes, there is research on dis-
covering, grouping, selecting and inter-relating data sets at 
scale [13, 64, 65, 77], thus identifying promising areas of 
focus for data preparation. In data transformation, there is 
research on synthesizing and discovering transformations 
at the structure [32, 49, 84] and value levels [2, 44, 49]. 
In data repair, there are developments that accommodate 
a variety of constraint languages [35] and on using differ-
ent types of evidence to inform repair [20]. Of relevance 
to human-in-the-loop data preparation, there is research 
on synthesizing readable programs [25], explainability [9] 
and active learning [67]. There is also ongoing work to 
bring innovations in other areas into data preparation, such 
as deep learning [78] and embeddings [17]. As a result, 
although data preparation is a well-established component 
in business intelligence and data science architectures, 
building on a significant body of work, cost-effectiveness 
remains a challenge, and there is much to do.

Acknowledgements  We are pleased to acknowledge the support of the 
UK Engineering and Physical Sciences Research Council, through the 
VADA Programme Grant (EP/M025268/1), and the H2020 I-BiDaaS 
project (grant agreement No. 780787).

Data availability  No datasets were generated or analysed during the 
current study.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Fig. 13   An example mapping for the real estate scenario in Data Pre-
parer. The interface shows the query plan, and how attribute values in 
the target are populated from the sources

http://creativecommons.org/licenses/by/4.0/


	 SN Computer Science (2023) 4:425425  Page 18 of 20

SN Computer Science

References

	 1.	 Abedjan Z, Golab L, Naumann F. Profiling relational data: a 
survey. VLDB J. 2015;24(4):557–81.

	 2.	 Abedjan Z, Morcos J, Ilyas IF, et al. Dataxformer: a robust 
transformation discovery system. In: 32nd IEEE International 
Conference on Data Engineering, ICDE, 2016; pp. 1134–1145, 
https://​doi.​org/​10.​1109/​ICDE.​2016.​74983​19

	 3.	 Ali SMF, Wrembel R. From conceptual design to performance 
optimization of ETL workflows: current state of research and 
open problems. VLDB J. 2017;26(6):777–801. https://​doi.​org/​
10.​1007/​s00778-​017-​0477-2.

	 4.	 Arenas M, Barceló P, Libkin L, et  al. Foundations of data 
exchange. Cambridge: Cambridge University Press; 2014.

	 5.	 Aumueller D, Do HH, Massmann S, et al. Schema and Ontol-
ogy Matching with COMA++. In: Proceedins of 2005 ACM 
SIGMOD International Conference on Management of Data. 
ACM, 2005; 906–8. https://​doi.​org/​10.​1145/​10661​57.​10662​83

	 6.	 Azarmi B. Talend for Big Data. Packt Publishing 2014.
	 7.	 Bahri M, Salutari F, Putina A, et al. AutoML: state of the art 

with a focus on anomaly detection, challenges, and research 
directions. Int J Data Sci Anal. 2022. https://​doi.​org/​10.​1007/​
s41060-​022-​00309-0

	 8.	 Bellahsene Z, Bonifati A, Rahm E. Schema Matching and Map-
ping. 2011. https://​doi.​org/​10.​1007/​978-3-​642-​16518-4.

	 9.	 Bertossi LE, Geerts F. Data quality and explainable AI. ACM 
J Data Inf Qual 2020;12(2):11:1–11:9. https://​doi.​org/​10.​1145/​
33866​87

	10.	 Beskales G, Ilyas IF, Golab L, et  al. On the relative trust 
between inconsistent data and inaccurate constraints. In: 29th 
IEEE International Conference on Data Engineering, ICDE, 
2013; pp. 541–552.

	11.	 Bogatu A, Fernandes AAA, Paton NW, et al. Synthedit: For-
mat transformations by example using edit operations. In: 22nd 
International Conference on Extending Database Technology. 
OpenProceedings.org, 2019a:714–717. https://​doi.​org/​10.​5441/​
002/​edbt.​2019.​94

	12.	 Bogatu A, Paton NW, Fernandes AAA, et al. Towards automatic 
data format transformations: data wrangling at scale. Comput J. 
2019;62(7):1044–60. https://​doi.​org/​10.​1093/​comjnl/​bxy118.

	13.	 Bogatu A, Fernandes AAA, Paton NW, et al. Dataset discovery 
in data lakes. In: 36th IEEE International Conference on Data 
Engineering, ICDE. IEEE, 2020:709–720. https://​doi.​org/​10.​
1109/​ICDE4​8307.​2020.​00067

	14.	 Bogorny V, Engel PM, Alvares LO. A reuse-based spatial data 
preparation framework for data mining. In: Proceedings of the 
17th International Conference on Software Engineering and 
Knowledge Engineering (SEKE’2005), Taipei, Taiwan, Repub-
lic of China, July 14–16, 2005;649–652.

	15.	 Bonfitto S, Casiraghi E, Mesiti M. Table understanding 
approaches for extracting knowledge from heterogeneous tables. 
WIREs Data Mining Knowl Discov 2021;11(4) https://​doi.​org/​
10.​1002/​widm.​1407.

	16.	 Bouman R, van Dongen J. Pentaho Solutions: Business Intel-
ligence and Data Warehousing with Pentaho and MySQL. Wiley 
Publishing. 2009.

	17.	 Cappuzzo R, Papotti P, Thirumuruganathan S. Creating embed-
dings of heterogeneous relational datasets for data integration 
tasks. In: Proc. 2020 International Conference on Management 
of Data, SIGMOD. ACM, 2020:1335–49. https://​doi.​org/​10.​
1145/​33184​64.​33897​42.

	18.	 Chapman A, Simperl E, Koesten L, et al. Dataset search: a 
survey. VLDB J. 2020;29(1):251–72. https://​doi.​org/​10.​1007/​
s00778-​019-​00564-x.

	19.	 Chiang F, Miller RJ. A unified model for data and constraint 
repair. In: Proceedings of the 27th International Conference on 
Data Engineering, ICDE, 2011;446–457.

	20.	 Chu X, Morcos J, Ilyas IF, et al. KATARA: A data cleaning sys-
tem powered by knowledge bases and crowdsourcing. In: Proc. 
2015 ACM SIGMOD International Conference on Management 
of Data. ACM, 2015;1247–61. https://​doi.​org/​10.​1145/​27233​72.​
27494​31.

	21.	 Deng D, Fernandez RC, Abedjan Z, et al. The data civilizer 
system. In: CIDR 2017, 8th Biennial Conference on Innovative 
Data Systems Research 2017.

	22.	 Diaz O, Kushibar K, Osuala R, et al. Data preparation for artifi-
cial intelligence in medical imaging: A comprehensive guide to 
open-access platforms and tools. Physica Med. 2021;83:25–37. 
https://​doi.​org/​10.​1016/j.​ejmp.​2021.​02.​007. https://​www.​scien​
cedir​ect.​com/​scien​ce/​artic​le/​pii/​S1120​17972​10009​58

	23.	 Doan A, Domingos PM, Halevy AY. Reconciling schemas of 
disparate data sources: A machine-learning approach. In: Proc. 
ACM SIGMOD international conference on Management of 
data, 2001:509–520. https://​doi.​org/​10.​1145/​375663.​375731

	24.	 Doan A, Halevy AY, Ives ZG. Principles of Data Integration. 
Morgan Kaufmann, 2012. http://​resea​rch.​cs.​wisc.​edu/​dibook/

	25.	 Drosos I, Barik T, Guo PJ, et al. Wrex: A unified programming-
by-example interaction for synthesizing readable code for data 
scientists. In: CHI ’20: CHI Conference on Human Factors in 
Computing Systems. ACM, 2020:1–12. https://​doi.​org/​10.​1145/​
33138​31.​33764​42.

	26.	 Elmagarmid AK, Ipeirotis PG, Verykios VS. Duplicate record 
detection: a survey. IEEE Trans Knowl Data Eng. 2007;19(1):1–
16. https://​doi.​org/​10.​1109/​TKDE.​2007.​250581.

	27.	 Emani CK, Cullot N, Nicolle C. Understandable big data: a sur-
vey. Comput Sci Rev. 2015;17:70–81. https://​doi.​org/​10.​1016/j.​
cosrev.​2015.​05.​002.

	28.	 Fagin R, Kolaitis PG, Miller RJ, et al. Data exchange: semantics 
and query answering. TCS. 2005;336(1):89–124.

	29.	 Fagin R, Haas LM, Hernández M, et al. Clio: Schema mapping 
creation and data exchange. In: Conceptual Modeling: Foun-
dations and Applications, LNCS, vol. 5600. Berlin: Springer; 
2009. p. 198–236.

	30.	 Fan W, Geerts F. Foundations of Data Quality Management. 
Morgan & Claypool 2012.

	31.	 Ferrara E, Meo PD, Fiumara G, et al. Web data extraction, 
applications and techniques: a survey. Knowl Based Syst. 
2014;70:301–23. https://​doi.​org/​10.​1016/j.​knosys.​2014.​07.​007.

	32.	 Fink M, Meilicke C, Stuckenschmidt H. Explaining differences 
between unaligned table snapshots. In: Proc. 23rd International 
Conference on Extending Database Technology, EDBT. Open-
Proceedings.org, 2020:133–144. https://​doi.​org/​10.​5441/​002/​
edbt.​2020.​13

	33.	 Furche T, Gottlob G, Libkin L, et al. Data wrangling for big 
data: Challenges and opportunities. In: EDBT, 2016:473–478. 
https://​doi.​org/​10.​5441/​002/​edbt.​2016.​44

	34.	 Gal A. Uncertain Schema Matching. Morgan & Claypool 2011.
	35.	 Geerts F, Mecca G, Papotti P, et al. Cleaning data with llu-

natic. VLDB J. 2020;29(4):867–92. https://​doi.​org/​10.​1007/​
s00778-​019-​00586-5.

	36.	 van Gennip Y, Hunter B, Ma A, et al. Unsupervised record 
matching with noisy and incomplete data. Int J Data Sci Anal. 
2018;6(2):109–29. https://​doi.​org/​10.​1007/​s41060-​018-​0129-7.

	37.	 Gulwani S. Automating string processing in spreadsheets using 
input-output examples. In: Proc. 38th ACM SIGPLAN-SIGACT 
Symposium on Principles of Programming Languages, POPL, 
2011:317–330

	38.	 Gulwani S, Harris WR, Singh R. Spreadsheet data manipulation 
using examples. Commun ACM. 2012;55(8):97–105.

https://doi.org/10.1109/ICDE.2016.7498319
https://doi.org/10.1007/s00778-017-0477-2
https://doi.org/10.1007/s00778-017-0477-2
https://doi.org/10.1145/1066157.1066283
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/978-3-642-16518-4
https://doi.org/10.1145/3386687
https://doi.org/10.1145/3386687
https://doi.org/10.5441/002/edbt.2019.94
https://doi.org/10.5441/002/edbt.2019.94
https://doi.org/10.1093/comjnl/bxy118
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1002/widm.1407
https://doi.org/10.1002/widm.1407
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1145/2723372.2749431
https://doi.org/10.1145/2723372.2749431
https://doi.org/10.1016/j.ejmp.2021.02.007
https://www.sciencedirect.com/science/article/pii/S1120179721000958
https://www.sciencedirect.com/science/article/pii/S1120179721000958
https://doi.org/10.1145/375663.375731
http://research.cs.wisc.edu/dibook/
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1109/TKDE.2007.250581
https://doi.org/10.1016/j.cosrev.2015.05.002
https://doi.org/10.1016/j.cosrev.2015.05.002
https://doi.org/10.1016/j.knosys.2014.07.007
https://doi.org/10.5441/002/edbt.2020.13
https://doi.org/10.5441/002/edbt.2020.13
https://doi.org/10.5441/002/edbt.2016.44
https://doi.org/10.1007/s00778-019-00586-5
https://doi.org/10.1007/s00778-019-00586-5
https://doi.org/10.1007/s41060-018-0129-7


SN Computer Science (2023) 4:425	 Page 19 of 20  425

SN Computer Science

	39.	 Guo C, Hedeler C, Paton NW, et al. Matchbench: Benchmark-
ing schema matching algorithms for schematic correspondences. 
In: 29th British National Conference on Databases, BNCOD, 
2013:92–106. https://​doi.​org/​10.​1007/​978-3-​642-​39467-6_​11

	40.	 Halevy AY. Answering queries using views: a survey. VLDBJ. 
2001;10(4):270–94. https://​doi.​org/​10.​1007/​s0077​80100​054.

	41.	 Hameed M, Naumann F. Data preparation: a survey of commercial 
tools. SIGMOD Rec. 2020;49(3):18–29.

	42.	 He J, Veltri E, Santoro D, et al. Interactive and deterministic data 
cleaning: A tossed stone raises a thousand ripples. Proc ACM 
SIGMOD International Conference on Management of Data 
26-June-20 2016:893–907. https://​doi.​org/​10.​1145/​28829​03.​
29152​42.

	43.	 He X, Zhao K, Chu X. Automl: a survey of the state-of-the-art. 
CoRR abs/1908.00709. 2019 arXiv:​1908.​00709

	44.	 He Y, Jin Z, Chaudhuri S. Auto-transform: learning-to-transform 
by patterns. Proc VLDB Endow. 2020;13(11):2368–2381. http://​
www.​vldb.​org/​pvldb/​vol13/​p2368-​he.​pdf

	45.	 Hellerstein JM, Heer J, Kandel S. Self-service data preparation: 
Research to practice. IEEE Data Eng Bull 2018a;41(2):23–34. 
http://​sites.​compu​ter.​org/​debull/​A18ju​ne/​p23.​pdf

	46.	 Hellerstein JM, Heer J, Kandel S. Self-Service Data Preparation: 
Research to Practice. Bulletin of the IEEE Computer Society 
Technical Committee on Data Engineering 2018b:23–34

	47.	 Ilyas IF, Chu X. Trends in cleaning relational data: consistency 
and deduplication. Found Trends Datab. 2015;5(4):281–393. 
https://​doi.​org/​10.​1561/​19000​00045.

	48.	 Ioannidis YE. The history of histograms (abridged). In: VLDB. 
Morgan Kaufmann, 2003:19–30

	49.	 Jin Z, Anderson MR, Cafarella MJ, et al. Foofah: Transforming 
data by example. In: Proc. of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD. ACM, 2017:683–698, 
https://​doi.​org/​10.​1145/​30359​18.​30640​34

	50.	 Kandel S, Heer J, Plaisant C, et al. Research directions in data 
wrangling: Visualizations and transformations for usable and 
credible data. Inf Vis. 2011;10(4):271–88.

	51.	 Kandel S, Paepcke A, Hellerstein J, et al. Wrangler: Interac-
tive visual specification of data transformation scripts. In: CHI, 
2011b:3363–3372

	52.	 Kazil J, Jarmul K. Data Wrangling with Python: Tips and Tools 
to Make Your Life Easier, 1st edn. O’Reilly Media, Inc. 2016.

	53.	 Kim W, Choi I, Gala SK, et al. On resolving schematic hetero-
geneity in multidatabase systems. Distributed and Parallel Data-
bases. 1993;1(3):251–79. https://​doi.​org/​10.​1007/​BF012​63333.

	54.	 Kluyver T, et al. Jupyter notebooks - a publishing format for 
reproducible computational workflows. In: Loizides F, Schmidt B 
(eds) 20th International Conference on Electronic Publishing. IOS 
Press, 2016:87–90, https://​doi.​org/​10.​3233/​978-1-​61499-​649-1-​87

	55.	 Koehler M, Abel E, Bogatu A, et al. Incorporating data context to 
cost-effectively automate end-to-end data wrangling. IEEE Trans 
Big Data. 2021;7(1):169–86. https://​doi.​org/​10.​1109/​TBDATA.​
2019.​29075​88.

	56.	 Konstantinou N, Koehler M, Abel E, et al. The VADA architecture 
for cost-effective data wrangling. In: Proc. ACM international 
conference on management of data, SIGMOD; 2017. p. 1599–602.

	57.	 Konstantinou N, Abel E, Bellomarini L, et al. VADA: an architec-
ture for end user informed data preparation. J Big Data. 2019;6:74. 
https://​doi.​org/​10.​1186/​s40537-​019-​0237-9.

	58.	 Kruse S, Papotti P, Naumann F. Estimating data integration and 
cleaning effort. In: Proceedings of the 18th International Confer-
ence on Extending Database Technology, EDBT 2015, Brussels, 

Belgium, March 23-27, 2015:61–72, https://​doi.​org/​10.​5441/​002/​
edbt.​2015.​07, https://​doi.​org/​10.​5441/​002/​edbt.​2015.​07

	59.	 Marnette B, Mecca G, Papotti P, et al. ++spicy: an opensource 
tool for second-generation schema mapping and data exchange. 
PVLDB. 2011;4(12):1438–41.

	60.	 Maynard-Atem L. The data series - data democratisation. Impact. 
2019;2019(1):10–1. https://​doi.​org/​10.​1080/​20588​02X.​2019.​
15948​71.

	61.	 Mazilu L, Paton NW, Fernandes AAA, et al. Schema mapping 
generation in the wild. Inf Syst. 2022;104(101):904. https://​doi.​
org/​10.​1016/j.​is.​2021.​101904.

	62.	 McKinney W. Python for Data Analysis, 2nd edn. O’Reilly Media, 
Inc. 2018.

	63.	 Mecca G, Papotti P, Santoro D. A short history of schema map-
ping systems. In: Twentieth Italian Symposium on Advanced 
Database Systems, SEBD 2012, 2012:99–106, http://​sebd2​012.​
dei.​unipd.​it/​docum​ents/​188475/​efd4d​e94-​b0b6-​4979-​8f60-​3628f​
30d6f​03

	64.	 Nargesian F, Zhu E, Miller RJ, et al. Data lake management: Chal-
lenges and opportunities. Proc VLDB Endow 2019;12(12):1986–
1989. https://​doi.​org/​10.​14778/​33520​63.​33521​16

	65.	 Nargesian F, Pu KQ, Zhu E, et al. Organizing data lakes for navi-
gation. In: Proceedings of the 2020 International Conference on 
Management of Data, SIGMOD. ACM, 2020; 1939–1950, https://​
doi.​org/​10.​1145/​33184​64.​33806​05

	66.	 Papenbrock T, Bergmann T, Finke M, et al. Data profiling with 
metanome. Proc VLDB Endow 2015;8(12):1860–1863. https://​
doi.​org/​10.​14778/​28240​32.​28240​86

	67.	 Qian K, Popa L, Sen P. Active learning for large-scale entity reso-
lution. In: Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, CIKM. ACM, 2017:1379–
1388, https://​doi.​org/​10.​1145/​31328​47.​31329​49

	68.	 Rahm E, Bernstein PA. A survey of approaches to automatic 
schema matching. VLDBJ. 2001;10(4):334–50. https://​doi.​org/​
10.​1007/​s0077​80100​057.

	69.	 Raman V, Hellerstein JM. Potter’s wheel: An interactive data 
cleaning system. VLDB 2001 - Proceedings of 27th International 
Conference on Very Large Data Bases 2001:381–390

	70.	 Rekatsinas T, Chu X, Ilyas IF, et al. Holoclean: Holistic data 
repairs with probabilistic inference. Proc VLDB Endow 
2017;10(11):1190–1201. https://​doi.​org/​10.​14778/​31376​28.​31376​
31

	71.	 Rostin A, Albrecht O, Bauckmann J, et al. A machine learning 
approach to foreign key discovery. In: 12th International Work-
shop on the Web and Databases, WebDB 2009.

	72.	 Santu SKK, Hassan MM, Smith MJ, et al. Automl to date and 
beyond: Challenges and opportunities. ACM Comput Surv 
2022;54(8):175:1–175:36. https://​doi.​org/​10.​1145/​34709​18,

	73.	 Singh R. Blinkfill: Semi-supervised programming by example for 
syntactic string transformations. PVLDB. 2016;9(10):816–27.

	74.	 Stodder D. Improving Data Preparation for Business Analytics. 
Tech. rep., 2016. https://​info.​talend.​com/​rs/​talend/​images/​WP_​
EN_​DP_​Impro​ving_​DataP​rep_​Busin​essAn​alyti​cs.​pdf

	75.	 Stonebraker M, Bruckner D, Ilyas IF, et al. Data curation at scale: 
The data tamer system. In: CIDR 2013, Sixth Biennial Conference 
on Innovative Data Systems Research 2013.

	76.	 Sukhobok D, Nikolov N, Roman D. Tabular Data Anomaly Pat-
terns. Proceedings - 2017 International Conference on Big Data 
Innovations and Applications, Innovate-Data 2017 2018-Janu-
ary:25–34. 2018. https://​doi.​org/​10.​1109/​Innov​ate-​Data.​2017.​10

https://doi.org/10.1007/978-3-642-39467-6_11
https://doi.org/10.1007/s007780100054
https://doi.org/10.1145/2882903.2915242
https://doi.org/10.1145/2882903.2915242
http://arxiv.org/abs/1908.00709
http://www.vldb.org/pvldb/vol13/p2368-he.pdf
http://www.vldb.org/pvldb/vol13/p2368-he.pdf
http://sites.computer.org/debull/A18june/p23.pdf
https://doi.org/10.1561/1900000045
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1007/BF01263333
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/TBDATA.2019.2907588
https://doi.org/10.1109/TBDATA.2019.2907588
https://doi.org/10.1186/s40537-019-0237-9
https://doi.org/10.5441/002/edbt.2015.07
https://doi.org/10.5441/002/edbt.2015.07
https://doi.org/10.5441/002/edbt.2015.07
https://doi.org/10.1080/2058802X.2019.1594871
https://doi.org/10.1080/2058802X.2019.1594871
https://doi.org/10.1016/j.is.2021.101904
https://doi.org/10.1016/j.is.2021.101904
http://sebd2012.dei.unipd.it/documents/188475/efd4de94-b0b6-4979-8f60-3628f30d6f03
http://sebd2012.dei.unipd.it/documents/188475/efd4de94-b0b6-4979-8f60-3628f30d6f03
http://sebd2012.dei.unipd.it/documents/188475/efd4de94-b0b6-4979-8f60-3628f30d6f03
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.1145/3318464.3380605
https://doi.org/10.1145/3318464.3380605
https://doi.org/10.14778/2824032.2824086
https://doi.org/10.14778/2824032.2824086
https://doi.org/10.1145/3132847.3132949
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.1145/3470918
https://info.talend.com/rs/talend/images/WP_EN_DP_Improving_DataPrep_BusinessAnalytics.pdf
https://info.talend.com/rs/talend/images/WP_EN_DP_Improving_DataPrep_BusinessAnalytics.pdf
https://doi.org/10.1109/Innovate-Data.2017.10


	 SN Computer Science (2023) 4:425425  Page 20 of 20

SN Computer Science

	77.	 Terrizzano I, Schwarz PM, Roth M, et al. Data wrangling: The 
challenging journey from the wild to the lake. In: CIDR 2015.

	78.	 Thirumuruganathan S, Tang N, Ouzzani M, et al. Data curation 
with deep learning. In: Proceedings of the 23rd International Con-
ference on Extending Database Technology, EDBT 2020. Open-
Proceedings.org, 2020:277–286, https://​doi.​org/​10.​5441/​002/​edbt.​
2020.​25

	79.	 Vassiliadis P. A survey of extract-transform-load technology 
IJDWM. 2011;5(3):1–27.

	80.	 Verborgh R, Wilde MD. Using OpenRefine, 1st edn. Packt Pub-
lishing 2013.

	81.	 Waller T, Korbel J, Stys M. Cloveretl designer: User’s guide. Jav-
lin: Tech. rep; 2018.

	82.	 Wu B, Knoblock CA. An iterative approach to synthesize data 
transformation programs. In: Proceedings of the Twenty-Fourth 
International Joint Conference on Artificial Intelligence, IJCAI 

2015, Buenos Aires, Argentina, July 25-31, 2015:1726–1732, 
http://​ijcai.​org/​Abstr​act/​15/​246

	83.	 Yang J, He Y, Chaudhuri S. Auto-pipeline: Synthesize data pipe-
lines by-target using reinforcement learning and search. Proc 
VLDB Endow 2021;14(11):2563–2575. http://​www.​vldb.​org/​
pvldb/​vol14/​p2563-​he.​pdf

	84.	 Zhu E, He Y, Chaudhuri S. Auto-join: Joining tables by leverag-
ing transformations. Proc VLDB Endow 2017;10(10):1034–1045. 
https://​doi.​org/​10.​14778/​31154​04.​31154​09

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5441/002/edbt.2020.25
https://doi.org/10.5441/002/edbt.2020.25
http://ijcai.org/Abstract/15/246
http://www.vldb.org/pvldb/vol14/p2563-he.pdf
http://www.vldb.org/pvldb/vol14/p2563-he.pdf
https://doi.org/10.14778/3115404.3115409

	Data Preparation: A Technological Perspective and Review
	Abstract
	Introduction
	Data Preparation Functionalities
	Data Profiling
	Matching
	Mapping
	Format Transformation
	Data Repair

	Data Preparation Approaches
	Program Based
	Data Profiling
	Matching
	Mapping
	Format Transformation
	Data Repair

	Workflow Based
	Data Profiling
	Matching
	Mapping
	Format Transformation
	Data Repair

	Dataset Based
	Data Profiling
	Matching
	Mapping
	Format Transformation
	Data Repair

	Automation Based
	Data Profiling
	Matching
	Mapping
	Format Transformation
	Data Repair


	Conclusions
	Acknowledgements 
	References




