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Abstract
Automation is the key to enable an efficient, fast, and reliable deployment of applications. Therefore, several deployment 
automation technologies emerged in recent years whereby each technology has its specific field of application: While some 
are bound to cloud providers and offer provider-specific functionalities, others enable multi-cloud deployments but mostly 
do not support provider-specific features. As a consequence, often companies have to use multiple deployment technologies 
in combination to deploy large applications. However, the management capabilities of most deployment technologies are 
limited or even non-existent. This issue becomes even more severe if different parts of a single application are deployed by 
different technologies. To tackle this issue, we present an approach that enables generating automatically executable man-
agement workflows for applications that consist of multiple components deployed by different deployment technologies. 
Our approach builds on top of instance models that are automatically generated based on information retrieved from the 
different deployment technologies involved. Based on the derived instance model, we generate workflows that manipulate 
the running application. We prove the technical feasibility by an open-source prototype and discuss a detailed case study.
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Introduction

Automatically deploying applications is crucial to fully ben-
efit from the dynamic nature of cloud architectures as man-
ual deployment is error-prone and time-consuming [38, 46]. 
Hence, deployment automation technologies1, such as Terra-
form [32], Kubernetes [51], Chef [48], Puppet [49], or Ansi-
ble [50], arose that are capable of automatically installing, 
configuring, and starting software components. However, 
modern applications often consist of multiple different soft-
ware components and running services that are composed 
to provide the application’s functionality—often, these 

components even run on different infrastructures operated by 
different providers, e.g., in Multi-Cloud Applications [47]. 
Hence, because of the resulting immense complexity of 
such applications, companies often need to combine mul-
tiple deployment technologies to instantiate different parts 
of a single application [20, 28]. For example, if a hybrid 
cloud application consists of a public part and a private part, 
the public part may be deployed using AWS Cloud Forma-
tion [1], while the private part might be deployed using Ter-
raform, Chef, or a combination of them: For example, as 
Terraform is dedicated to provision infrastructures, it may be 
used to provision virtual machines in a private cloud, while 
Chef may be used to install middleware and business com-
ponents onto these infrastructure components. As a result, 
each part of an application could be deployed by different 
technologies and a single big picture of the application is 
missing.
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While there are approaches to combine different deploy-
ment technologies for such scenarios, e.g., as presented by 
Wurster et al. [55], the subsequent management of running 
applications is still a major problem: While some deploy-
ment technologies offer management capabilities for sin-
gle components, for example, scaling the number of vir-
tual machines (VMs), performing management tasks that 
are affecting multiple components at once are mostly not 
supported—especially not if the different affected parts 
of a management task are deployed by different technolo-
gies. We refer to such management tasks that affect several 
components at once as holistic management processes. For 
example, a holistic management process is to install security 
updates for all VMs running in multiple clouds or to per-
form a migration of stateful components to another cloud. 
Thus, to enable such holistic management processes, often 
different deployment and management technologies for the 
different environments of the application must be combined, 
e.g., by implementing a script, which is a manual task for 
operations personnel.

To tackle this issue, we previously introduced an approach 
which enables the generation of imperative management 
workflows for holistic management processes before the 
application is deployed, i.e., during design time [31]. The 
approach enables the enrichment of deployment models with 
management processes that have not been modeled manu-
ally. In the conference paper [29] of this journal extension, 
we reused this approach [31] to enable the enrichment of 
holistic management functionalities to already running 
applications by generating management workflows based 
on an automatically generated instance model of an appli-
cation. However, this approach is only applicable if merely 
one deployment technology is used to deploy the entire 
application. Hence, it is still an open challenge to execute 
holistic management processes on running applications that 
are composed of multiple components managed by differ-
ent deployment technologies. Therefore, in this paper, we 
extend our Managing Running Applications by Generating 
Workflows approach [29] by a concept that also supports run-
ning applications that are deployed by multiple deployment 
technologies in combination, which poses additional chal-
lenges: (i) An instance model of the entire application must 
first be derived describing all components of the application. 
Therefore, all employed deployment technologies must be 
queried for runtime information about the application to cre-
ate models for each part of the application which then must 
be merged into one holistic instance model. To solve this, 
we derive a normalized and standardized instance model of 
the running application based on the Topology Orchestration 
Specification for Cloud Applications (TOSCA) [7, 43, 44]. 
(ii) To perform state-changing2 management processes, the 
deployment technologies must be notified about the changes, 

since many technologies monitor the applications and might 
revert performed state changes. Therefore, we enrich the 
components of the running composed application based on 
the derived instance model with additional management fea-
tures while considering the underlying deployment technolo-
gies managing the corresponding components. (iii) Moreo-
ver, the dependencies between the applications’ components 
and their corresponding deployment technologies must be 
maintained to enable their management. Hence, the derived 
instance model must also contain the information about 
which component is managed by which deployment tech-
nology as well as how the deployment technologies can be 
accessed. Therefore, we generate automatically executable 
management workflows to execute the enriched management 
functionalities that are aware of the underlying deployment 
technologies. Thus, in this paper, we are answering the fol-
lowing research question (RQ):

“How can running applications that are composed of 
multiple components deployed by different deployment 
technologies be enriched with additional, holistic man-
agement functionalities which are not supported by the 
employed deployment technologies?”

To prove the practical feasibility of our approach, we intro-
duce a prototypical implementation based on TOSCA and 
the OpenTOSCA ecosystem [12]. This prototype extends 
our previous works [29, 31] to support managing applica-
tions that are deployed by multiple deployment technologies. 
Moreover, we present a detailed case study based on the 
Sock Shop3: A microservice demo application that demon-
strates how different services can work together as one large 
composed application. We first deployed the services using 
three different deployment technologies to demonstrate and 
explain how our presented approach can be applied after 
deployment to manage the running instance by including 
the different deployment technologies in the execution of 
the generated management workflow.

Related Work and Fundamentals

In this section, we introduce fundamentals and outline 
research challenges based on related work.

2 State-changing processes or operations are not only interacting with 
the component, but are also altering it, e.g., changing its configura-
tion or installing a new version [9].
3 https:// micro servi ces- demo. github. io/.

https://microservices-demo.github.io/


SN Computer Science (2023) 4:370 Page 3 of 16 370

SN Computer Science

Deployment Models and Deployment Automation

The manual deployment of applications is cumbersome, 
error-prone, and time-consuming [46]. In addition, since 
Cloud Computing offers IT resources in the form of on-
demand services, it enables dynamic provisioning and 
decommissioning of applications [37]. Therefore, automat-
ing the deployment of applications became very important 
and many different deployment automation technologies 
arose  [59]. These technologies mostly use deployment 
models to automatically provision and configure the mod-
eled application. Hereby, two types of deployment models 
can be differentiated: imperative deployment models and 
declarative deployment models  [23]. While imperative 
models exactly define how a deployment is performed in 
terms of the activities that need to be executed, i.e., as 
an executable process, declarative models only describe 
what has to be deployed, i.e., the structure of the applica-
tion in the form of its components, their relations, and 
configurations—usually in the form of a graph [59]. Thus, 
to describe an imperative deployment model, the modeler 
must exactly define the tasks that need to be performed, 
e.g., service invocations and script executions, as well as 
the control and data flows by creating an executable script 
or workflow. Although imperative models enable mod-
elers to realize flexible and arbitrary custom processes, 
immense technical expertise is required to create such 
imperative deployment models. Moreover, creating them 
manually is typically a very time-consuming and—due to 
the technical complexity—an error-prone task [13].

On the other hand, declarative deployment models are 
generally easier to create [13] and can even be automati-
cally transformed to imperative models, which has been 
shown by several works, e.g., [9, 10, 13, 31, 35, 53]. As a 
result, declarative deployment technologies have prevailed 
in research and industry: The 13 most used deployment 
automation technologies support them [59]. Thus, we are 
following this trend and also focus on declarative deploy-
ment modeling in this paper.

In general, regardless of the modeling style, i.e., imper-
ative or declarative, two kinds of directed deployment rela-
tions between components can be differentiated, namely 
horizontal relations and vertical relations [58]. Hereby, 
horizontal relations define that a component connects to 
another component. For example, a software component 
needs to retrieve data from a database. Hence, it creates a 
connection to the database which is also referred to as a 
horizontal relation. On the other hand, the software com-
ponent, as well as the database, are hosted on, e.g., a VM 
component. Thus, the relationship between the software 
component and the VM is vertical, since it is running on 
top of the VM.

Application Management

During the whole lifecycle of an application, it passes mul-
tiple management stages in which different operations and 
processes must be performed [18]: In the first stage, the 
application must be provisioned, whereby all its components 
are deployed, i.e., installed and configured. As a result, the 
application is running and can be accessed by its users. How-
ever, during the runtime of the application, it must be man-
aged and maintained, as components of the application may 
crash because of invalid inputs or environmental failures. 
Thus, to ensure that the application operates correctly and to 
avoid data loss, backups and other management tasks must 
be performed. Hence, the application is in the management 
stage. Finally, if the application is not needed anymore, it is 
in the so-called decommission stage in which all its compo-
nents are stopped and uninstalled whereby all resources are 
ultimately freed.

Moreover, two kinds of operations can be differentiated 
during the management of an application’s lifecycle: state-
changing operations and state-preserving operations [9]. 
While sate-changing operations are changing the state or 
configuration of an application component, e.g., opening a 
certain port of a VM, state-preserving operations are only 
interacting with a component and do not change its state 
or configuration. For example, an operation that creates a 
backup of a database in an application is referred to as a 
state-preserving operation as it only accesses the database 
and does not change it or its configuration.

The TOSCA Standard

TOSCA [43, 44] is a language standardized by OASIS to 
describe the deployment and management of cloud appli-
cations. It supports declarative and imperative deployment 
models as it enables the declarative description of an appli-
cation’s components and relations, as well as the specifica-
tion of imperative workflows to deploy and manage them. 
The workflows in TOSCA are called Management Plans 
and can be realized using workflow languages, such as 
BPEL [42] and BPMN [45], or using their own workflow 
definition language [44].

To describe an application in TOSCA, so-called Service 
Templates are used. Within a Service Template, the Topol-
ogy Template defines the structure of the modeled applica-
tion in the from of a directed and weighted graph: The nodes 
of this graph are called Node Templates, representing the 
application’s components, while the edges, and thus their 
relations, are called Relationship Templates. In TOSCA, 
Node Templates and Relationship Templates are semanti-
cally defined by their type, which makes it ontologically 
extensible [3]. Thus, Node Types and Relationship Types are 
used to define Properties, Interfaces, and the corresponding 
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Operations of their instances, i.e., Node Templates and 
Relationship Templates, respectively. To avoid repeatedly 
defining, e.g., common Interfaces or Properties, TOSCA 
introduces inheritance between types. Thus, a Node Type 
defining, e.g., a Ubuntu VM, may inherit from an abstract 
VM Node Type which may already define a “Public-IP” 
address property. Additionally, TOSCA uses the concept 
of namespaces to uniquely identify and group definitions. 
For example, the set of infrastructure Node Types, such as 
VM types like Ubuntu or Windows, can be defined in one 
namespace, while another defines a set of webservers like 
Nginx or Tomcat. Finally, TOSCA defines the Cloud Service 
Archive (CSAR): A package format that contains all required 
TOSCA definitions, i.e., the Service Template and all refer-
enced definitions such as Node Types or Relationship Types, 
as well as all necessary scripts and executables required to 
deploy the modeled application.

Related Work and Research Challenges

Our main goal of this work is to enable executing manage-
ment processes for running applications composed of multi-
ple components which are deployed by different deployment 
technologies. In general, there are several works dealing 
with the management of (cloud) applications ranging from 
basic application provisioning [10, 22, 33, 41, 56, 57, 60] to 
state-changing management functionalities such as updat-
ing the configuration of application components [16, 19, 
29–31]. Moreover, several works exist that are generating 
workflows in languages such as BPEL or BPMN to deploy 
and manage applications  [9–11, 17, 21, 22]. However, 
while workflows ensure reproducibility of the management 
processes, none of the approaches explicitly consider the 
underlying deployment technologies that typically monitor 
the application. Hence, if a management workflow changes 
the application’s state without notifying the used deployment 
technology, the state change may be reverted by its deploy-
ment technologies, as they usually try to keep the application 
in a predefined state. Thus, these approaches only work for 
applications that are deployed manually or by technologies 
that do not monitor the application. However, many deploy-
ment technologies also monitor the application and continu-
ously enforce a certain state of the application. As a result, 
when performing state-changing management processes, 
the underlying deployment technologies must be invoked to 
perform the state change; otherwise, it might be reverted by 
them. Therefore, in our work [29], which is extended by this 
journal, we tackled the research question how state-changing 
management operations can be performed on running appli-
cations without interfering with the underlying deployment 
technology. As we motivated above, modern applications 
are often composed of multiple components that need to be 
deployed by different deployment technologies. However, 

our previous approach is not sufficient to tackle this issue 
as it only supports one single deployment technology that is 
used to deploy and manage the entire application. Thus, we 
are tackling the following research challenge (RC 1):

“How can state-changing management operations be 
performed on running applications that are composed 
of multiple components which are deployed by differ-
ent deployment technologies while avoiding that they 
revert performed changes?”

The approach we present in this paper is based on instance 
models which we use to enable the holistic management of 
an application. To retrieve the current state of an application, 
i.e., an instance model of the application, several approaches 
exist that have been developed in different research areas. 
Brogi et al. [14] discover different cloud services that can 
be used afterwards to model applications. Holm et al. [34] 
are scanning the network traffic to identify active compo-
nents of an application. Other approaches, such as Binz 
et al. [6], Farwick et al. [25], Fittkau et al. [26], Machiraju 
et al. [39], and Menzel et al. [40] aim for more details and 
try to identify every component of an application and their 
corresponding configuration. Hereby, these approaches focus 
on retrieving and deriving application components and their 
configurations using dedicated software, such as network 
scanners, crawlers, or dynamic analysis. Moreover, there 
are also approaches that enable generating topology mod-
els from infrastructure as code (IaC) artifacts such as Chef 
cookbooks [24, 52]. However, these approaches require the 
original IaC artifacts to generate the topology models and do 
not consider instance information, which is the basis in our 
approach to manage running applications. Other approaches 
that aim at retrieving the current state of applications and 
represent them in instance models are available in the mod-
els@run.time community [2, 8]. However, many of these 
approaches from the models@run.time community require 
an a-priori-model of the application that is enriched with 
additional details. Thus, runtime inference is still an open 
research area [2]. Especially, if an application is composed 
of components managed by different deployment technolo-
gies, instance information is spread across several tech-
nologies and must be integrated. Hence, the second chal-
lenge (RC 2) we are tackling is:

“How can a single instance model of a running appli-
cation that is composed of multiple components 
deployed by different deployment technologies be 
retrieved and represented in a normalized and stand-
ardized fashion?”

To enable the execution of management functionalities 
during runtime, many approaches require a deployment 
model of the application which also specifies manage-
ment operations and processes. For example, the TOSCA 
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standard [43, 44] supports attaching management operations 
to Node Types that can be used during runtime to execute 
management functionalities on components. Even execut-
able management workflows (Management Plans) can be 
specified and executed during runtime to manage large parts 
of the application consisting of multiple components. Such 
Management Plans typically invoke the management opera-
tions provided by the Node Types to implement a higher 
level management functionality. Similarly, event-driven 
approaches as, for example, presented by Brogi et al. [15] 
have been introduced: In the Manage Applications Run-
ning in Opportunistic fog scenarios (MARIO) approach, the 
authors focus on manually modeling management operations 
declaratively as policies annotated to nodes within a net-
work [15]. Such policies are formulated in PROLOG and are 
periodically evaluated by the proposed framework whether 
a particular management operation, such as undeploy, 
migrate, or replicate, must be executed. However, while 
Brogi et al. also manage running applications, they do not 
derive instance models of applications and rely on “minimal 
monitoring runtime information on the infrastructure” [15] 
from monitoring tools to trigger the management operations 
described in the annotated policies of applications. In con-
trast, in our work, we want to enable the management of 
running composed applications without the need for dedi-
cated monitoring tools. Moreover, since management opera-
tions in TOSCA and in the approach by Brogi et al. [15] 
must be modeled manually, we are automatically searching 
for management operations and make them executable by 
automatically generated management workflows for each 
management feature.

We did a first step towards the goal of managing applica-
tions in a previous work [31] and introduced an approach to 
enable the management of applications that have not been 
deployed yet, i.e., enrich management functionalities at 
design time. Hereby, the components of the modeled appli-
cation are investigated whether there are additional manage-
ment operations available that can be enriched to them. For 
example, if there are test operations available for a Tom-
cat webserver, e.g., an operation that checks if the Tomcat 
replies to HTTP requests on port 80, and a MySQL database, 
e.g., an operation that checks if it can be accessed only from 
within the local network, they can be used to enrich such 
components with the corresponding test functionality. How-
ever, this approach only works for applications that have not 
been deployed yet and, thus, is only applicable during design 
time. Therefore, we extended the approach in the conference 
paper [29], which is the basis for this journal extension, to 
support running applications. However, even the extended 
runtime approach does not support composed applications 
that are deployed using multiple deployment technologies. 
Hence, the third research challenge (RC 3) we tackle is:

“How can management functionalities be executed 
for a running composed application that are not sup-
ported by the employed deployment technologies with-
out the need to implement these operations for each 
application separately?”

An Integrated Management System 
for Composed Applications Deployed 
by Different Deployment Automation 
Technologies

In the following, we present our new concept to enable 
holistic management processes for running and composed 
applications that have been deployed by multiple deploy-
ment technologies. Next, we describe an overview of the 
approach, which is illustrated in Fig. 1, before presenting 
the details in the following subsections.

In the first step, see ➊ in Fig. 1, the so-called Instance 
Information Retriever component is used to retrieve the 
runtime information about a running application from its 
underlying deployment technologies (see “Instance Infor-
mation Retriever”). The retrieved information are passed to 
the Instance Model Normalizer component which is inter-
preting the deployment technology-specific data and gener-
ates a standardized and normalized instance model of the 
application based on the TOSCA standard in the step ➋ (see 
“Instance Model Normalizer”). Afterwards, the model is 
passed to ➌, the Instance Model Completer: A plugin-based 
component which iteratively executes several component-
specific plugins that are able to identify more details about 
the running application, e.g., a MySQL plugin may be able to 
identify a running MySQL database. This is required, since 
the deployment technologies may not hold information about 
all components [29] (see “Instance Model Completer”). In 
step ➍, the model is enriched with management functionali-
ties using the Instance Model Enricher component. Hereby, 
our previous Management Feature Enrichment and Work-
flow Generation approach [31] is extended and adapted to 
support instance models as well as applications that have 
been deployed using multiple deployment technologies (see 
“Instance Model Enricher”). Hence, in step ➎, the enriched 
model is passed to the Management Workflow Generator 
component which generates management workflows for 
each enriched management functionality (see “Management 
Workflow Generator”). Finally, to manage the application, 
the generated workflows can be executed on a corresponding 
Workflow Engine in step ➏ (see “Workflow Engine”).

Instance Information Retriever

To derive instance models of running applications, we 
designed a plugin-based Instance Information Retriever 
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component. It retrieves the deployment technology-spe-
cific information about the running application from the 
underlying deployment technologies using their applica-
tion programming interfaces (APIs). In contrast to exist-
ing work, such as network scanning [34], we explicitly use 
the deployment technologies to derive instance models of 
running applications as they are required to perform state-
changing management functionalities. Therefore, to avoid 
their interference after performing changes to the applica-
tion, we annotate the information how each used deployment 
technology can be accessed to the derived instance model.

However, depending on the used deployment technology, 
the granularity level of the information that can be retrieved 
varies: While Terraform and Kubernetes, for example, only 
maintain information about the currently running infrastruc-
ture, such as VMs or containers, Chef and Puppet provide 
more detailed information about the concrete software and 
middleware components as they are specialized in managing 
the lifecycle and configuration of these components [59]. 
Although Terraform can be used to also execute arbitrary 

scripts to install, e.g., a webserver on a VM, it does not hold 
any runtime information about such components. Thus, we 
generate a normalized and standardized instance model of 
the application based on TOSCA, as it is also suitable to 
represent instance models [4]. Nevertheless, the technology-
specific information must first be interpreted and represented 
in a normalized and standardized format for further process-
ing. Hence, we extended the Instance Information Retriever 
in this paper by additional plugins to support the retrieval of 
instance information from Terraform and Kubernetes.

Instance Model Normalizer

After the deployment technology-specific instance infor-
mation about the running application has been retrieved by 
the Instance Information Retriever, the data are passed to 
the Instance Model Normalizer. Because the data retrieved 
from the deployment technologies are technology-specific, 
custom logic is required to interpret it and derive a normal-
ized and standardized instance model. Hence, we designed 

Fig. 1  Overview of our new integrated management system for composed applications method
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a plugin architecture as it i) enables technology-specific 
logic to be encapsulated and separated from others, and ii) 
facilitates the extension of new technologies. Additionally, 
the instance models must contain information about the 
underlying deployment technology, such as how to access 
the technology and technology-specific IDs to uniquely 
identify the components inside the deployment technology. 
Therefore, we designed the Instance Model Normalizer as 
a plugin-based component whereby each plugin represents 
a deployment technology and, thus, must be able to process 
the corresponding instance information from the represented 
deployment technology.

Since the TOSCA standard is a vendor and technology 
independent modeling language, and it is ontologically 
extensible (see “The TOSCA Standard”), we use it to also 
describe instance models. Thus, identified components 
are mapped to Node Templates in a Topology Template, 
while their dependencies are represented as Relationship 
Templates. For example, if an Nginx webserver is found 
to be running on a Ubuntu operating system, the compo-
nents would be mapped to a Node Template that instantiates 
the standardized Nginx Node Type, and it would be con-
nected with another Node Template of type Ubuntu using a 
Relationship Template that is an instance of the hostedOn 
Relationship Type. The normalized types are hereby defined 
in a TOSCA Repository and are used to specify the seman-
tics, i.e., the properties as well as available interfaces of 
the component, in a standardized way. Hence, each plugin 
in the Instance Model Normalizer must be able to process 
the retrieved instance information, i.e., (i) identify deployed 
components, (ii) detect their types and map them to cor-
responding Node Types, as well as (iii) fill the properties 
defined by the Node Type and assign the current values in 
the generated Node Template [29].

To support applications that have been deployed using 
multiple deployment technologies, the Instance Model Nor-
malizer must also be able to merge multiple instance models 
that are generated by the plugins. To achieve this, compo-
nents that occur in two instance models must be identified 
and merged. Thereby, a similarity check is required based on 
the properties of the corresponding Node Template, which 
may differ for various Node Types. For example, to detect 
that two Node Templates in two different models represent 
the same VM instance, their public IP address can be used 
as a unique property. In contrast, to detect, e.g., that two 
deployment technologies establish a connection to the same 
database instance, its type and the location it is running in 
can be used. Hereby, we assume that a component is man-
aged by one deployment technology and others only depend 
on the running instance: If a deployment technology man-
ages a component, it is annotated with an annotation iden-
tifying it to be managed by this technology. Otherwise, it is 
annotated to be identified by the corresponding deployment 

technology. As a result, the Instance Model Normalizer 
outputs a Normalized Instance Model that conforms to the 
TOSCA standard. Thus, we resolved RC 2 as we now are 
able to generate normalized instance models of the applica-
tion that are conforming to the TOSCA standard. Addition-
ally, we created the foundation to solve RC 1, since we added 
the information about how to access the deployment tech-
nologies managing the components. Hence, we extended the 
Instance Model Normalizer in this paper to be able to com-
bine multiple technology-specific instance models into a sin-
gle TOSCA-based instance model of the entire application.

Instance Model Completer

In the third step, the Instance Model Completer component 
interprets the Normalized Instance Model and iteratively 
completes the model with additional information as the 
retrieved models from the deployment technologies may not 
contain all information. For example, the Instance Model 
Completer is able to identify hidden components, refine 
the types of already identified components, and fill missing 
property values, and is able to detect horizontal relations 
between components. This step is required, because the 
deployment technologies may not hold all information that 
are required to manage the application [29]. To achieve this, 
we are reusing the iterative and also plugin-based approach 
presented by Binz et al. [6] to detect, e.g., specific com-
ponent versions, property values, and horizontal relations, 
such as connections to databases or queues [29]. Thereby, 
the plugins are component-specific. For example, while a 
Tomcat plugin may be able to detect the concrete version 
that is installed and on which Port a particular application is 
listening to, a second plugin may be able to detect that a Java 
application is connecting to a database and where this data-
base is located. Hence, the second plugin is able to derive a 
horizontal relation of type connectsTo between a Java appli-
cation and an identified database component. However, since 
the previous approach of the instance retriever plugins by 
Binz et al. [6] did not consider the underlying deployment 
technologies, we extended the approach in the conference 
paper [29] accordingly and execute the plugins until no more 
plugins can be found that are capable of identifying more 
details of the application.

To identify plugins that are able to detect more details 
about the application, we re-implemented the concepts pre-
sented by Binz et al. [6] and extended them with a sub-graph 
matching mechanism. Thus, each plugin may define multiple 
Detectors, i.e., graphs defining the component constellations 
they can refine, to add more details to the application, such 
as missing properties or refining types. As a result, plugins 
that define matching detectors are run in a loop until no more 
plugins can be applied to the instance model to gain more 
details about the running application. For example, a Tomcat 
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plugin may be able to (i) refine an abstract Webserver Node 
Type [44] to a concrete Tomcat Node Type, (ii) identify the 
concrete version of a Tomcat webserver, and (iii) detect the 
context path and port of a web application that is running 
on it. Therefore, the plugin would specify three detectors 
whereby (i) one simply contains a Node Template of type 
Webserver, (ii) a second defines a Node Template of type 
Tomcat without any version identifier, while (iii) the last one 
would define an abstract Web Application Node Template 
that is hosted on a Tomcat webserver. As a result, after no 
more plugin can be found that defines a detector matching 
any sub-graphs in the current instance model, the Completed 
Instance Model contains all necessary information to enrich 
and perform management tasks. In this paper, we added 
additional plugins for the Instance Model Completer to iden-
tify, e.g., properties of MongoDBs and Docker Containers.

Instance Model Enricher

To enrich the Completed Instance Model with additional 
management features, the Instance Model Enricher is used 
in the fourth step (see Fig. 1). We hereby extended our previ-
ously introduced approach [31] in the conference paper [29] 
to (i) consider the annotated deployment technologies and 
(ii)  differentiate between state-changing and state-pre-
serving management operations. While-state-preserving 
operations can be enriched to all supported components, 
state-preserving operations must consider the underlying 
deployment technology to avoid its interference. For exam-
ple, a state-preserving functionality is the execution of tests 
whether the components run as expected. Thus, operations 
implementing such functionality can always be enriched to a 
component, no matter how it was deployed, since the opera-
tion only interacts with the component and does not change 
its state. On the other hand, performing, e.g., an update of 
a component, changes its state. The underlying deployment 
technology may detect this change and revert it during its 
next actions. Therefore, the corresponding implementations 
must communicate with the deployment technology to notify 
it about the performed changes. This is achieved by perform-
ing calls to the APIs of the deployment technologies when 
executing a state-changing operation.

To realize the feature enrichment of instance models 
that have been deployed using multiple deployment mod-
els, the selection of so-called Feature Node Types requires 
a refinement. In general, the enrichment of additional man-
agement features to a model of an application exploits the 
inheritance concept of Node Types [31]. This is illustrated 
in Fig. 2 which illustrates the contents of a Management 
Features Repository. Hereby, Feature Node Types are inher-
iting from Normalized Node Types, such as a MySQL Node 
Type or a Ubuntu Node Type (see Fig. 2), which are anno-
tated to represent a particular management feature for their 

parent type. For example, in this case, there are two available 
features for the MySQL Node Type implemented by three 
Feature Node Types. Additionally, while there is only one 
implementation to back up a corresponding MySQL data-
base component, there are two different implementations 
to test the communication with such a database: one has 
an additional requirement as it requires that the database 
is running on a Ubuntu VM, while the second represents a 
more generic implementation. However, since the backup 
and test functionalities are state-preserving operations, the 
Feature Node Types do not have any further annotations as 
shown in Fig. 2. In contrast, in this repository, there are two 
Feature Node Types available for the Ubuntu Node Type, 
offering the capability to also test its availability and to per-
form an update of the operating system. Hence, by executing 
the update feature, the state of the application is changed, 
i.e., it is a state-changing operation, and requires to notify 
the underlying deployment technology. As depicted on the 
left side of the Update Ubuntu Feature Node Type in Fig. 2, 
the update feature can only be selected if the Ubuntu VM is 
managed by an underlying Terraform instance as its imple-
mentation only uses the Terraform API to notify it about the 
state change. Therefore, we extended the Instance Model 
Enricher to support selecting only features that are able to 
notify the deployment technology managing a correspond-
ing component. The Feature Node Types, however, may also 
support multiple deployment technologies and, hence, can 
be selected if any of these technologies matches the compo-
nent’s deployment technology. As a result, we got one step 
closer to solve RC 1 and RC 3: We are able to enrich any 
kind of state-preserving and state-changing functionalities to 
the running application while ensuring that the implementa-
tions are aware of the underlying deployment technologies.

Management Workflow Generator

To execute the enriched management features on running 
applications, we previously introduced the Management 
Workflow Generator component which generates workflows 
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Fig. 2  The TOSCA-based management feature types
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for each feature [31]. Thus, they can be executed indepen-
dently and repeatedly. In general, workflows can be gen-
erated from declarative, i.e., graph-based [59], instance 
models [10]. Hereby, the models are interpreted and, based 
on the relations between the application’s components, the 
required order in which the operations must be executed can 
be derived [10]. For example, while backups of indepen-
dently running databases can be executed in parallel, testing 
components in one stack, i.e., components on the top depend 
on components underneath them, should start from the bot-
tom up: If a VM is not reachable, a component running on 
it will also not be accessible. Therefore, each plugin in the 
Management Workflow Generator is able to derive the nec-
essary steps and the correct order in which the correspond-
ing feature operations must be performed. Hence, the order 
in which the tests are run is important to help developers 
identify the issues.

Similar to the derived instance models, we rely on stand-
ardized workflow languages to ensure a complete, stand-
ards-based approach. Thus, the workflows can be realized in 
languages, such as BPEL [42] or BPMN [45]. As a result of 
this step in our method, we are able to resolve RC 1 and RC 
3, since it is now possible to generate executable workflows 
that perform any kind of management functionalities.

Workflow Engine

Finally, the generated management workflows must be 
deployed and executed. This is realized by a standards-based 
Workflow Engine that is capable of running the workflows. 
Depending on the selected language, an appropriate Work-
flow Engine has to be selected on which the workflows can 
be deployed. As a result, a user is able to invoke any of the 
management features by simply triggering the corresponding 
workflow. Additionally, the workflows can be integrated into 
other automated management tasks. For example, by sched-
uling a regular task triggering a backup workflow.

Architecture and Prototypical Realization 
of the Integrated Management System

In the following, our prototype realizing the Integrated man-
agement System for Composed Applications is described. 
The system is implemented as an extension to the Open-
TOSCA Ecosystem4 [12] and a new component which we 
introduce in this paper called the TOSCA Instance Model 
Retriever (TOSCin).5 Both are available open-source on 

GitHub. The overall system architecture of our prototype is 
depicted in Fig. 3.

The new Java-based TOSCin Framework realizes the first 
two components of our approach as a command line interface 
(CLI): The Instance Model Retriever as well as the Instance 
Model Normalizer (see Fig. 3). Therefore, TOSCin is capa-
ble of retrieving instance information from the employed 
deployment technologies and deriving a TOSCA-based 
instance model. As illustrated in Fig. 3, TOSCin implements 
plugins for Kubernetes, Terraform, and Puppet to derive a 
TOSCA-based instance model using a repository that con-
tains normalized TOSCA types. Such normalized types are, 
for example, already defined in the TOSCA standard defini-
tion [44] and are available open-source in a repository we 
maintain on  GitHub4. The TOSCA Repository is included 
in our prototype in the modeling tool Eclipse Winery [36]. 
Therefore, TOSCin uses Winery’s API to retrieve TOSCA 
Types from the Repository, as shown in Fig. 3. Hereby, as 
we already implemented a Puppet plugin in the conference 
paper [29], we now extended TOSCin to also support Kuber-
netes and Terraform. The biggest extension, however, is the 
merging of all instance models retrieved from all employed 
deployment technologies into one single instance model. 
This is realized in the Instance Model Normalizer compo-
nent as its output is a single TOSCA-based instance model. 
Therefore, it implements multiple similarity checks to detect 
whether two identified components returned by two differ-
ent deployment technologies are referring to the same real 
component. For example, if multiple components are con-
necting to the same database instance, the corresponding 
database must occur only once in the instance model which 
is achieved, e.g., by checking whether the type and location 
match.

After the Instance Model Normalizer in TOSCin gener-
ated a Normalized Instance Model of the application, which 
is a model conforming to the TOSCA standard, it is passed 
to Eclipse Winery which implements the Instance Model 
Completer as well as the Instance Model Enricher as Java-
based components. The Instance Model Completer can be 
hereby easily extended with technology-specific plugins 
that are capable of identifying additional details about the 
application components and relations—such as detecting 
additional components or configuration details. Winery 
is a graphical modeling tool for TOSCA applications and 
is part of the OpenTOSCA ecosystem [12]. Hence, in the 
graph-based user interface (UI), a web application that is 
implemented in Angular,6 the user can always see the cur-
rent changes to the instance model: During the completion 
of the model using the technology-specific plugins, a user 

4 https:// github. com/ OpenT OSCA.
5 Currently part of https:// github. com/ UST- EDMM/ edmm. 6 https:// angul ar. io/.

https://github.com/OpenTOSCA
https://github.com/UST-EDMM/edmm
https://angular.io/


 SN Computer Science (2023) 4:370370 Page 10 of 16

SN Computer Science

can select a plugin from all applicable plugins, i.e., plugins 
which define a detector that can be found as a sub-graph in 
the current model (see “Instance Model Completer”) in an 
iterative fashion and directly see the changes if, for exam-
ple, a new component was detected. Similarly, to enrich 
the model with additional management features, a user can 
select the desired management features for each component 
that are currently available in the TOSCA repository for the 
Node Types of the component currently used in the model. 
While the general concept of the Instance Model Completer 
was already presented in the conference paper of this jour-
nal extension [29], we extended it to also support different 
deployment technologies in one instance model. Addition-
ally, we already introduced the Instance Model Enricher in 
a previous work [31], extended it to support deployment 
technology-specific management features in the conference 
paper [29], and added support for multiple technologies dur-
ing the work for this paper.

As a result, Winery outputs a completed and enriched 
instance model of the running application which is imported 
to the Java-based OpenTOSCA Orchestrator [5] to generate 
the BPEL-based management workflows. In the Manage-
ment Workflow Generator, which we presented in the previ-
ous work [31], we also use plugins to derive workflows for 

different kinds of management functionalities. The imple-
mentation hereby generates BPEL workflows that can be 
deployed and executed in an Apache ODE7 instance, as 
shown in Fig. 3.

Case Study

To prove the practicable feasibility of the approach, we dem-
onstrate how the approach works using a modified version 
of the Sock  Shop3 application. The Sock Shop is a demo 
application to demonstrate how applications can be designed 
and deployed as microservices. It consists of a front-end 
component in the form of a NodeJS8 web application where 
users can buy socks. Therefore, the front end retrieves its 
catalog data from a Go9 service which stores its data in a 
MySQL10 database. Similarly, the users are managed by a 
Go application persisting the users’ information in a Mon-
goDB11 database, while items that are currently in a user’s 
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7 https:// ode. apache. org/.
8 https:// nodejs. org/ en/.
9 https:// golang. org/.
10 https:// www. mysql. com/.
11 https:// www. mongo db. com/.

https://ode.apache.org/
https://nodejs.org/en/
https://golang.org/
https://www.mysql.com/
https://www.mongodb.com/
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cart are stored by a Java service which also uses a MongoDB 
database to save the data. Additionally, the Sock Shop con-
sists of an ordering service, a payment service, as well as a 
shipping service that places the orders in a RabbitMQ12 mes-
saging service. However, for simplicity, the last four services 
and their associated databases are omitted in Fig. 4 and the 
following explanations.

The application was deployed using Terraform, Puppet, 
and Kubernetes: While the front-end component as well as 
the users service and the carts service, alongside with their 
associated databases, are deployed in the form of Docker 
Containers13 using Kubernetes, the catalog service and its 
database are deployed using Puppet on a VM provisioned 
by Terraform. Based on this setup, we used our prototype to 
enrich and execute additional management functionalities 
for the Sock Shop.

To enable holistic management processes for the running 
Sock Shop application composed of multiple parts that are 
deployed with three different deployment technologies, first, 
an instance model must be derived. Therefore, TOSCin is 
invoked with the endpoints and credentials for the deploy-
ment technologies used to deploy the application. In this 
case, the endpoints and credentials for the Kubernetes clus-
ter, the Terraform state file, as well as the Puppet’s primary 

server that we used to deploy the Sock Shop are passed 
as input to TOSCin. Using this information, the Instance 
Information Retriever component invokes the corresponding 
technology-specific plugins to retrieve runtime information 
about the running application. In the next step, the data are 
interpreted by the Instance Model Normalizer plugins which 
derive a TOSCA-based instance model of the application. 
Hereby, the technology-specific types are mapped to normal-
ized TOSCA Node Types, while the detected components 
are represented as Node Templates that have the identified 
Node Types assigned. Moreover, as the technology-specific 
types may define different properties than the identified nor-
malized Node Types, they must also be mapped. For exam-
ple, while a technology-specific type may define a whole 
URL, a corresponding Node Type may define the hostname 
and port separately. Thus, the property must be split into the 
corresponding parts to be mapped correctly to the normal-
ized type using, e.g., regular expressions, as we presented in 
detail in more detail in the previous work [29]. Additionally, 
to support multiple deployment automation technologies 
in one instance model, all components are annotated with 
an identified by annotation to indicate that the component 
was identified by a corresponding deployment technology. 
Because some deployment technologies are able to identify 
components that are not managed by them, an additional 
managed by annotation is used to map the components to 
their managing deployment technology. For example, as 
shown in Fig. 4, all containers and the underlying Docker 
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Engine that is used in this case to run the containers are 
annotated with an identified by Kubernetes annotation. In 
contrast, only the containers are tagged with the managed 
by Kubernetes annotation as the Docker Engine is only used 
by Kubernetes.

In the next step, all Topology Templates generated by 
the Instance Information Retriever plugins containing the 
identified and managed components of a single deployment 
technology are merged into a single Topology Template to 
represent all parts of the application in one model. Thereby, 
if a component has been identified by multiple deployment 
technologies, the component is merged and tagged with 
all identified by annotations. For example, the Ubuntu VM 
shown in Fig. 4 was detected by Terraform and Puppet as 
Terraform manages the VM and Puppet connects to it to 
install and configure the components it manages.

Up to this point, the derived instance model shown in 
Fig. 4 only contains those components that are annotated 
with an identified by annotation which contain deployment 
technology icons. All other components that are solely 
annotated with an identified by a Plugin annotation, i.e., a 
circle with a magnifier in its center, are not identified yet. 
These components are added to the model by iteratively run-
ning the component-specific plugins of the Instance Model 
Completer which is implemented in Winery. During each 
iteration, all registered plugins are first checked for their 
applicability, i.e., whether they could contribute additional 
information to the instance model. All applicable plugins 
are collected in a list, whereby each plugin specifies the list 
of components it can refine. Then, a user selects a particular 
plugin and a corresponding set of components the plugin 
should refine. During the plugin’s execution, it may identify 
additional components, properties, and relations, or refine 
the types of components from abstract ones to more concrete 
ones. For example, a NodeJS plugin is able to identify that 
a NodeJS application is running on a NodeJS webserver on 
the front-end container. Another plugin identifies the con-
tainers’ operating systems, while a third detects additional 
properties, such as the port a Java application is listening 
to for requests. Additionally, each plugin adds an identified 
by annotation with its ID to the component to document 
how the component was detected. This repeats until no more 
plugins can be found applicable, or the user stops the com-
pletion phase. Finally, a model, such as the one illustrated in 
Fig. 4, is derived. However, as shown in Fig. 4, the type of 
the users component as well as the catalog component are 
instances of the Node Type Software Component instead of 
Go Application. The reason for this is that Go applications 
are compiled to binaries. Therefore, we are able to iden-
tify that components have been deployed on the containers 
but cannot identify a concrete type. Similarly, the horizon-
tal relations between most services are annotated with an 
identified manually annotation, as only the relation between 

the Java component, i.e., the carts service, and its database 
could be identified automatically. In future work, we plan to 
implement additional plugins that are using network scan-
ning approaches, such as presented in [34], to detect more 
horizontal relations.

The completed instance model can then be interpreted 
by the Instance Model Enricher that is also implemented in 
Winery. It is based on the Management Feature Enricher 
from previous work [31] and was extended to support state-
changing and state-preserving operations [29]. Additionally, 
different kinds of implementations for state-changing opera-
tions must be supported and chosen correctly. Therefore, the 
Instance Model Enricher uses the managed by annotation 
at the components to filter applicable feature implementa-
tions. For example, since the Ubuntu VM is managed by 
Terraform, state-changing management features must notify 
Terraform about the change and, thus, a management fea-
ture can be enriched to the application if a corresponding 
implementation is available. To achieve this, we extended 
our repository in this work to contain implementations 
to back up the MongoDB and MySQL databases, several 
test operations, as well as an update implementation of the 
Ubuntu VM that is able to communicate the state change to 
Terraform.

In the last step, the enriched instance model is inter-
preted by the OpenTOSCA Runtime which generates the 
different management workflows and deploys them on an 
Apache ODE workflow engine [31]. As a result, to perform 
a particular management feature, a user can invoke the cor-
responding management workflow. However, because prop-
erties, such as credentials and passwords, cannot be auto-
matically retrieved, the user may have to pass them to the 
workflows as input.

Threats to Validity

In this section, the threats to validity regarding the presented 
case study are discussed, following the structure defined by 
Wohlin et al. [54]. As the goal of this paper is to enable the 
automated management of running applications that have 
been deployed using multiple deployment technologies, the 
threats to validity mainly affect the quality of the derived 
instance model.

In the Internal Validity, threats to the relationship 
between the treatment and the experiment’s result are dis-
cussed [54]. However, since applications in our scenarios are 
deployed using different deployment technologies, a holistic 
instance model of the application that combines all compo-
nents maintained by the different deployment technologies 
does not exist without explicit efforts. Therefore, we need 
an approach and prototype as ours to generate this holistic 
model. Thus, we have evidence that only our approach and 
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prototype caused the existence of the holistic model, which 
is then used for management. Moreover, there are no other 
causes that influenced the derived model or the subsequent 
management of the application. Thus, there are no threats 
to the internal validity.

The External Validity discusses limitations of the gener-
alizations derived from the experiment [54]. The discussed 
case study was chosen because of its modern design and 
represents a state-of-the-art microservice application. In 
practice, however, legacy applications may not be deployed 
using state-of-the-art deployment technologies and, thus, 
the chosen case study may not represent them. However, 
it is also possible to run the approach without deployment 
technologies. In this case, a user can provide an entry point, 
such as a VM, together with credentials and a location in a 
manually created instance model. Thus, it is possible to start 
the approach with the Instance Model Completion phase 
whereby an instance model of the application is created 
only by executing different completion plugins. Moreover, 
since the management enrichment, management workflow 
generation, and execution of management features are not 
bound to any deployment technology, these steps can also be 
executed if not all components are deployed using deploy-
ment technologies.

The Construct Validity concerns the generalization of 
the experiment’s results to the theory behind [54]. Since 
the main building block of our approach is the generation 
of a holistic instance model of a running application to 
enable its automated management, our case study repre-
sents exactly these aspects. However, as we only described 
a single case study, this may pose a threat to the construct 
validity. Thereby, the case study was designed as a modern 
architecture that contains the typical components of today’s 
applications. Additionally, we used three of the most used 
deployment technologies that prevailed in practice and are 
commonly used in today’s application deployments [59]. 
Therefore, we have shown that our approach supports a huge 
variety of components and deployment technologies.

The Conclusion Validity refers to threats that influence 
the ability to draw conclusions from an experiment [54]. In 
the presented case study, the extracted instance model poses 
a threat to the conclusion validity regarding the complete-
ness of the generated instance model. Although we were 
able to identify all components of the described case study, 
running the prototype against other applications may not 
yield a complete instance model of the application, since 
not all deployment technologies and components used in 
practice are integrated in our prototype yet. However, in our 
case study, we used different components that are typical for 
modern deployments. Moreover, the three selected deploy-
ment technologies all implement the declarative deployment 
modeling approach, which is also followed by the 13 most 
used deployment technologies in practice [59]. Therefore, 

the deployment technologies and components used in our 
case study are very similar to the ones we do not yet support 
in our prototype. As a result, there is only a low risk that our 
approach cannot incorporate other technologies in a way that 
the derived instance model is incomplete.

Discussion and Current Limitations

Our presented approach aims at enabling the automated 
management of composed applications deployed using mul-
tiple deployment automation technologies. This is achieved 
by retrieving instance models of running applications that 
have been deployed by multiple deployment technolo-
gies and enrich these models with additional management 
functionalities to enable an automated management of the 
application. Thereby, our assumption is that a component 
is managed by exactly one deployment technology. How-
ever, there might be situations in which this is not the case. 
For example, if one deployment technology is managing the 
physical infrastructure properties of a component, such as 
number of CPUs, RAM, and network capabilities, another 
might be managing the component’s lifecycle and configura-
tion. However, because this example might not be the only 
case in which multiple deployment technologies are working 
together at one component, we plan to evaluate how deploy-
ment technologies are working together in future work.

The instance information that can be retrieved from the 
deployment technologies differ significantly in their expres-
siveness and level of detail. For example, while Terraform 
and Kubernetes mostly provide information about infrastruc-
tural components, such as VMs and containers, Chef and 
Puppet provide more information about software compo-
nents and their configurations. Hence, we added the Instance 
Model Completion step (see “Instance Model Completer”) 
that reuses and extends an existing approach to identify as 
many components of the application as possible. Because 
the Instance Model Completer builds on a plugin system 
to identify or refine additional components, properties, or 
(horizontal) relations between components, a large amount 
of plugins is required to identify and refine various compo-
nents and technologies. As an additional option, it is always 
possible to adapt the models manually of course to enhance 
their expressiveness.

Because the approach relies on many plugins and man-
agement operations that must be implemented for the 
approach to work properly, a large effort is required to sup-
port the wide variety of commonly available technologies. 
However, once the plugins and management operations are 
implemented, they can be reused to improve the retrieved 
instance model and the number of compatible management 
operations rises. Hence, the more plugins and management 
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operations are available, the more applications can be auto-
matically enriched with management features.

Identifying horizontal relations, e.g., that an application 
is connecting to a database, is extremely difficult if no single 
deployment model of the entire application is available that 
describes all dependencies. Even if a large amount of plugins 
to complete the instance models are available, identifying 
horizontal relations remains difficult. The reason for this is 
that the configuration of each component can be realized in 
countless ways that are not always visible or accessible from 
the outside. For example, a common configuration option 
is to use environment variables as they can be set from the 
outside to configure an application’s component. However, 
neither the component to which an environment variable 
belongs cannot be determined generically, nor are the names 
and values of the variables standardized. Thus, while scan-
ning for common parts in the variable names or configura-
tion flags may yield information that can be used to derive 
horizontal relations, there is no guarantee that they can be 
identified automatically by analyzing information retrieved 
from the deployment technologies and the running instance. 
However, there are other possibilities to implement plugins: 
a network scan and monitoring can find the packages that 
are sent from one component to another and, thus, detecting 
horizontal relations. Other possibilities are code scans, as 
shown by Genfer and Zdun [27]. Therefore, various possi-
bilities exist that can be used to detect horizontal relations, 
although many of them are not trivial. On the other hand, 
once they are implemented, they can be reused directly in the 
future to identify the communication of arbitrary application 
components. Of course, adding horizontal relations manu-
ally is always possible.

To implement state-changing functionalities, a notifica-
tion of the underlying deployment technology about the 
performed change must be realized. Otherwise, the changes 
may be reverted. Hence, for each state-changing functional-
ity, different implementations for each supported deploy-
ment technology may be necessary. For example, to man-
age containers that are deployed using Kubernetes, so-called 
Kubernetes Operations can be used to implement custom 
management functionalities, while the management of com-
ponents managed by Puppet may require the implementation 
to be in Puppets’ domain specific language (DSL). Hence, 
the resulting implementations may become quite complex 
and operations engineers need to use the corresponding 
deployment technologies’ API to realize the desired man-
agement feature as an operation that can be automatically 
enriched to a running application. However, similar to the 
plugins, once implemented, the operations can be reused in 
other applications that use a similar combination of deploy-
ment technology and component type.

Moreover, the management of container-based parts of 
an application poses additional challenges as a container is 

usually composed of multiple components that cannot be 
seen from the outside. However, similar to VMs, contain-
ers are also accessible, e.g., via interactive shells such as 
SSH. This can be exploited in the Instance Model Completer 
plugins to identify additional components that have not been 
detected yet. As a result, also hidden components, no matter 
if they are deployed in VMs or containers, can be identified 
and enriched with management functionalities.

Conclusion and Future Work

In this paper, we demonstrated a how running applications 
that are composed of multiple components deployed by dif-
ferent deployment automation technologies can be enriched 
with holistic management capabilities in retrospective. 
However, there are still manual steps required to enable 
the management of applications beforehand. For example, 
implementations for each management feature are required 
which, in the case of state-changing functionality, must be 
even realized in multiple versions, i.e., for each deployment 
technology. Nevertheless, if they are implemented once, they 
can be reused in any other application in contrast to custom 
implementations that are specialized for a specific applica-
tion. Moreover, by generating management workflows for 
each functionality separately, we enable repeatable execu-
tions of the management operations.

In future work, we plan to implement more use cases and 
therefore more plugins and different management function-
alities while also considering using code analysis tools as 
presented by Genfer and Zedun [27]. Additionally, we are 
investigating how it can be possible to retrieve also deploy-
ment artifacts to enable the deployment of the application 
based on the derived model.
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