
Vol.:(0123456789)

SN Computer Science (2023) 4:370
https://doi.org/10.1007/s42979-023-01810-4

SN Computer Science

ORIGINAL RESEARCH

An Integrated Management System for Composed Applications
Deployed by Different Deployment Automation Technologies

Lukas Harzenetter1 · Uwe Breitenbücher1 · Tobias Binz2 · Frank Leymann1

Received: 10 January 2023 / Accepted: 20 March 2023 / Published online: 29 April 2023
© The Author(s) 2023

Abstract
Automation is the key to enable an efficient, fast, and reliable deployment of applications. Therefore, several deployment
automation technologies emerged in recent years whereby each technology has its specific field of application: While some
are bound to cloud providers and offer provider-specific functionalities, others enable multi-cloud deployments but mostly
do not support provider-specific features. As a consequence, often companies have to use multiple deployment technologies
in combination to deploy large applications. However, the management capabilities of most deployment technologies are
limited or even non-existent. This issue becomes even more severe if different parts of a single application are deployed by
different technologies. To tackle this issue, we present an approach that enables generating automatically executable man-
agement workflows for applications that consist of multiple components deployed by different deployment technologies.
Our approach builds on top of instance models that are automatically generated based on information retrieved from the
different deployment technologies involved. Based on the derived instance model, we generate workflows that manipulate
the running application. We prove the technical feasibility by an open-source prototype and discuss a detailed case study.

Keywords Application management · Management automation · Workflows · TOSCA · OpenTOSCA

Introduction

Automatically deploying applications is crucial to fully ben-
efit from the dynamic nature of cloud architectures as man-
ual deployment is error-prone and time-consuming [38, 46].
Hence, deployment automation technologies1, such as Terra-
form [32], Kubernetes [51], Chef [48], Puppet [49], or Ansi-
ble [50], arose that are capable of automatically installing,
configuring, and starting software components. However,
modern applications often consist of multiple different soft-
ware components and running services that are composed
to provide the application’s functionality—often, these

components even run on different infrastructures operated by
different providers, e.g., in Multi-Cloud Applications [47].
Hence, because of the resulting immense complexity of
such applications, companies often need to combine mul-
tiple deployment technologies to instantiate different parts
of a single application [20, 28]. For example, if a hybrid
cloud application consists of a public part and a private part,
the public part may be deployed using AWS Cloud Forma-
tion [1], while the private part might be deployed using Ter-
raform, Chef, or a combination of them: For example, as
Terraform is dedicated to provision infrastructures, it may be
used to provision virtual machines in a private cloud, while
Chef may be used to install middleware and business com-
ponents onto these infrastructure components. As a result,
each part of an application could be deployed by different
technologies and a single big picture of the application is
missing.

This article is part of the topical collection “Advances on Cloud
Computing and Services Science” guest edited by Donald F.
Ferguson, Claus Pahl and Maarten van Steen.

 * Lukas Harzenetter
 harzenetter@iaas.uni-stuttgart.de

1 University of Stuttgart, Institute of Architecture
of Application Systems (IAAS), Universitätsstraße 38,
70569 Stuttgart, Germany

2 Robert Bosch GmbH, IoT & Digitalization Architecture,
70442 Stuttgart, Germany

1 In this paper, we refer to all kinds of technologies that can be used
to deploy applications as “deployment automation technologies”—
we use “deployment technologies” as a short form. Thus, this term
also includes configuration management technologies such as Chef or
Puppet, infrastructure management technologies such as Terraform,
and also container orchestration technologies such as Kubernetes.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01810-4&domain=pdf
http://orcid.org/0000-0003-1011-4362

 SN Computer Science (2023) 4:370370 Page 2 of 16

SN Computer Science

While there are approaches to combine different deploy-
ment technologies for such scenarios, e.g., as presented by
Wurster et al. [55], the subsequent management of running
applications is still a major problem: While some deploy-
ment technologies offer management capabilities for sin-
gle components, for example, scaling the number of vir-
tual machines (VMs), performing management tasks that
are affecting multiple components at once are mostly not
supported—especially not if the different affected parts
of a management task are deployed by different technolo-
gies. We refer to such management tasks that affect several
components at once as holistic management processes. For
example, a holistic management process is to install security
updates for all VMs running in multiple clouds or to per-
form a migration of stateful components to another cloud.
Thus, to enable such holistic management processes, often
different deployment and management technologies for the
different environments of the application must be combined,
e.g., by implementing a script, which is a manual task for
operations personnel.

To tackle this issue, we previously introduced an approach
which enables the generation of imperative management
workflows for holistic management processes before the
application is deployed, i.e., during design time [31]. The
approach enables the enrichment of deployment models with
management processes that have not been modeled manu-
ally. In the conference paper [29] of this journal extension,
we reused this approach [31] to enable the enrichment of
holistic management functionalities to already running
applications by generating management workflows based
on an automatically generated instance model of an appli-
cation. However, this approach is only applicable if merely
one deployment technology is used to deploy the entire
application. Hence, it is still an open challenge to execute
holistic management processes on running applications that
are composed of multiple components managed by differ-
ent deployment technologies. Therefore, in this paper, we
extend our Managing Running Applications by Generating
Workflows approach [29] by a concept that also supports run-
ning applications that are deployed by multiple deployment
technologies in combination, which poses additional chal-
lenges: (i) An instance model of the entire application must
first be derived describing all components of the application.
Therefore, all employed deployment technologies must be
queried for runtime information about the application to cre-
ate models for each part of the application which then must
be merged into one holistic instance model. To solve this,
we derive a normalized and standardized instance model of
the running application based on the Topology Orchestration
Specification for Cloud Applications (TOSCA) [7, 43, 44].
(ii) To perform state-changing2 management processes, the
deployment technologies must be notified about the changes,

since many technologies monitor the applications and might
revert performed state changes. Therefore, we enrich the
components of the running composed application based on
the derived instance model with additional management fea-
tures while considering the underlying deployment technolo-
gies managing the corresponding components. (iii) Moreo-
ver, the dependencies between the applications’ components
and their corresponding deployment technologies must be
maintained to enable their management. Hence, the derived
instance model must also contain the information about
which component is managed by which deployment tech-
nology as well as how the deployment technologies can be
accessed. Therefore, we generate automatically executable
management workflows to execute the enriched management
functionalities that are aware of the underlying deployment
technologies. Thus, in this paper, we are answering the fol-
lowing research question (RQ):

“How can running applications that are composed of
multiple components deployed by different deployment
technologies be enriched with additional, holistic man-
agement functionalities which are not supported by the
employed deployment technologies?”

To prove the practical feasibility of our approach, we intro-
duce a prototypical implementation based on TOSCA and
the OpenTOSCA ecosystem [12]. This prototype extends
our previous works [29, 31] to support managing applica-
tions that are deployed by multiple deployment technologies.
Moreover, we present a detailed case study based on the
Sock Shop3: A microservice demo application that demon-
strates how different services can work together as one large
composed application. We first deployed the services using
three different deployment technologies to demonstrate and
explain how our presented approach can be applied after
deployment to manage the running instance by including
the different deployment technologies in the execution of
the generated management workflow.

Related Work and Fundamentals

In this section, we introduce fundamentals and outline
research challenges based on related work.

2 State-changing processes or operations are not only interacting with
the component, but are also altering it, e.g., changing its configura-
tion or installing a new version [9].
3 https:// micro servi ces- demo. github. io/.

https://microservices-demo.github.io/

SN Computer Science (2023) 4:370 Page 3 of 16 370

SN Computer Science

Deployment Models and Deployment Automation

The manual deployment of applications is cumbersome,
error-prone, and time-consuming [46]. In addition, since
Cloud Computing offers IT resources in the form of on-
demand services, it enables dynamic provisioning and
decommissioning of applications [37]. Therefore, automat-
ing the deployment of applications became very important
and many different deployment automation technologies
arose [59]. These technologies mostly use deployment
models to automatically provision and configure the mod-
eled application. Hereby, two types of deployment models
can be differentiated: imperative deployment models and
declarative deployment models [23]. While imperative
models exactly define how a deployment is performed in
terms of the activities that need to be executed, i.e., as
an executable process, declarative models only describe
what has to be deployed, i.e., the structure of the applica-
tion in the form of its components, their relations, and
configurations—usually in the form of a graph [59]. Thus,
to describe an imperative deployment model, the modeler
must exactly define the tasks that need to be performed,
e.g., service invocations and script executions, as well as
the control and data flows by creating an executable script
or workflow. Although imperative models enable mod-
elers to realize flexible and arbitrary custom processes,
immense technical expertise is required to create such
imperative deployment models. Moreover, creating them
manually is typically a very time-consuming and—due to
the technical complexity—an error-prone task [13].

On the other hand, declarative deployment models are
generally easier to create [13] and can even be automati-
cally transformed to imperative models, which has been
shown by several works, e.g., [9, 10, 13, 31, 35, 53]. As a
result, declarative deployment technologies have prevailed
in research and industry: The 13 most used deployment
automation technologies support them [59]. Thus, we are
following this trend and also focus on declarative deploy-
ment modeling in this paper.

In general, regardless of the modeling style, i.e., imper-
ative or declarative, two kinds of directed deployment rela-
tions between components can be differentiated, namely
horizontal relations and vertical relations [58]. Hereby,
horizontal relations define that a component connects to
another component. For example, a software component
needs to retrieve data from a database. Hence, it creates a
connection to the database which is also referred to as a
horizontal relation. On the other hand, the software com-
ponent, as well as the database, are hosted on, e.g., a VM
component. Thus, the relationship between the software
component and the VM is vertical, since it is running on
top of the VM.

Application Management

During the whole lifecycle of an application, it passes mul-
tiple management stages in which different operations and
processes must be performed [18]: In the first stage, the
application must be provisioned, whereby all its components
are deployed, i.e., installed and configured. As a result, the
application is running and can be accessed by its users. How-
ever, during the runtime of the application, it must be man-
aged and maintained, as components of the application may
crash because of invalid inputs or environmental failures.
Thus, to ensure that the application operates correctly and to
avoid data loss, backups and other management tasks must
be performed. Hence, the application is in the management
stage. Finally, if the application is not needed anymore, it is
in the so-called decommission stage in which all its compo-
nents are stopped and uninstalled whereby all resources are
ultimately freed.

Moreover, two kinds of operations can be differentiated
during the management of an application’s lifecycle: state-
changing operations and state-preserving operations [9].
While sate-changing operations are changing the state or
configuration of an application component, e.g., opening a
certain port of a VM, state-preserving operations are only
interacting with a component and do not change its state
or configuration. For example, an operation that creates a
backup of a database in an application is referred to as a
state-preserving operation as it only accesses the database
and does not change it or its configuration.

The TOSCA Standard

TOSCA [43, 44] is a language standardized by OASIS to
describe the deployment and management of cloud appli-
cations. It supports declarative and imperative deployment
models as it enables the declarative description of an appli-
cation’s components and relations, as well as the specifica-
tion of imperative workflows to deploy and manage them.
The workflows in TOSCA are called Management Plans
and can be realized using workflow languages, such as
BPEL [42] and BPMN [45], or using their own workflow
definition language [44].

To describe an application in TOSCA, so-called Service
Templates are used. Within a Service Template, the Topol-
ogy Template defines the structure of the modeled applica-
tion in the from of a directed and weighted graph: The nodes
of this graph are called Node Templates, representing the
application’s components, while the edges, and thus their
relations, are called Relationship Templates. In TOSCA,
Node Templates and Relationship Templates are semanti-
cally defined by their type, which makes it ontologically
extensible [3]. Thus, Node Types and Relationship Types are
used to define Properties, Interfaces, and the corresponding

 SN Computer Science (2023) 4:370370 Page 4 of 16

SN Computer Science

Operations of their instances, i.e., Node Templates and
Relationship Templates, respectively. To avoid repeatedly
defining, e.g., common Interfaces or Properties, TOSCA
introduces inheritance between types. Thus, a Node Type
defining, e.g., a Ubuntu VM, may inherit from an abstract
VM Node Type which may already define a “Public-IP”
address property. Additionally, TOSCA uses the concept
of namespaces to uniquely identify and group definitions.
For example, the set of infrastructure Node Types, such as
VM types like Ubuntu or Windows, can be defined in one
namespace, while another defines a set of webservers like
Nginx or Tomcat. Finally, TOSCA defines the Cloud Service
Archive (CSAR): A package format that contains all required
TOSCA definitions, i.e., the Service Template and all refer-
enced definitions such as Node Types or Relationship Types,
as well as all necessary scripts and executables required to
deploy the modeled application.

Related Work and Research Challenges

Our main goal of this work is to enable executing manage-
ment processes for running applications composed of multi-
ple components which are deployed by different deployment
technologies. In general, there are several works dealing
with the management of (cloud) applications ranging from
basic application provisioning [10, 22, 33, 41, 56, 57, 60] to
state-changing management functionalities such as updat-
ing the configuration of application components [16, 19,
29–31]. Moreover, several works exist that are generating
workflows in languages such as BPEL or BPMN to deploy
and manage applications [9–11, 17, 21, 22]. However,
while workflows ensure reproducibility of the management
processes, none of the approaches explicitly consider the
underlying deployment technologies that typically monitor
the application. Hence, if a management workflow changes
the application’s state without notifying the used deployment
technology, the state change may be reverted by its deploy-
ment technologies, as they usually try to keep the application
in a predefined state. Thus, these approaches only work for
applications that are deployed manually or by technologies
that do not monitor the application. However, many deploy-
ment technologies also monitor the application and continu-
ously enforce a certain state of the application. As a result,
when performing state-changing management processes,
the underlying deployment technologies must be invoked to
perform the state change; otherwise, it might be reverted by
them. Therefore, in our work [29], which is extended by this
journal, we tackled the research question how state-changing
management operations can be performed on running appli-
cations without interfering with the underlying deployment
technology. As we motivated above, modern applications
are often composed of multiple components that need to be
deployed by different deployment technologies. However,

our previous approach is not sufficient to tackle this issue
as it only supports one single deployment technology that is
used to deploy and manage the entire application. Thus, we
are tackling the following research challenge (RC 1):

“How can state-changing management operations be
performed on running applications that are composed
of multiple components which are deployed by differ-
ent deployment technologies while avoiding that they
revert performed changes?”

The approach we present in this paper is based on instance
models which we use to enable the holistic management of
an application. To retrieve the current state of an application,
i.e., an instance model of the application, several approaches
exist that have been developed in different research areas.
Brogi et al. [14] discover different cloud services that can
be used afterwards to model applications. Holm et al. [34]
are scanning the network traffic to identify active compo-
nents of an application. Other approaches, such as Binz
et al. [6], Farwick et al. [25], Fittkau et al. [26], Machiraju
et al. [39], and Menzel et al. [40] aim for more details and
try to identify every component of an application and their
corresponding configuration. Hereby, these approaches focus
on retrieving and deriving application components and their
configurations using dedicated software, such as network
scanners, crawlers, or dynamic analysis. Moreover, there
are also approaches that enable generating topology mod-
els from infrastructure as code (IaC) artifacts such as Chef
cookbooks [24, 52]. However, these approaches require the
original IaC artifacts to generate the topology models and do
not consider instance information, which is the basis in our
approach to manage running applications. Other approaches
that aim at retrieving the current state of applications and
represent them in instance models are available in the mod-
els@run.time community [2, 8]. However, many of these
approaches from the models@run.time community require
an a-priori-model of the application that is enriched with
additional details. Thus, runtime inference is still an open
research area [2]. Especially, if an application is composed
of components managed by different deployment technolo-
gies, instance information is spread across several tech-
nologies and must be integrated. Hence, the second chal-
lenge (RC 2) we are tackling is:

“How can a single instance model of a running appli-
cation that is composed of multiple components
deployed by different deployment technologies be
retrieved and represented in a normalized and stand-
ardized fashion?”

To enable the execution of management functionalities
during runtime, many approaches require a deployment
model of the application which also specifies manage-
ment operations and processes. For example, the TOSCA

SN Computer Science (2023) 4:370 Page 5 of 16 370

SN Computer Science

standard [43, 44] supports attaching management operations
to Node Types that can be used during runtime to execute
management functionalities on components. Even execut-
able management workflows (Management Plans) can be
specified and executed during runtime to manage large parts
of the application consisting of multiple components. Such
Management Plans typically invoke the management opera-
tions provided by the Node Types to implement a higher
level management functionality. Similarly, event-driven
approaches as, for example, presented by Brogi et al. [15]
have been introduced: In the Manage Applications Run-
ning in Opportunistic fog scenarios (MARIO) approach, the
authors focus on manually modeling management operations
declaratively as policies annotated to nodes within a net-
work [15]. Such policies are formulated in PROLOG and are
periodically evaluated by the proposed framework whether
a particular management operation, such as undeploy,
migrate, or replicate, must be executed. However, while
Brogi et al. also manage running applications, they do not
derive instance models of applications and rely on “minimal
monitoring runtime information on the infrastructure” [15]
from monitoring tools to trigger the management operations
described in the annotated policies of applications. In con-
trast, in our work, we want to enable the management of
running composed applications without the need for dedi-
cated monitoring tools. Moreover, since management opera-
tions in TOSCA and in the approach by Brogi et al. [15]
must be modeled manually, we are automatically searching
for management operations and make them executable by
automatically generated management workflows for each
management feature.

We did a first step towards the goal of managing applica-
tions in a previous work [31] and introduced an approach to
enable the management of applications that have not been
deployed yet, i.e., enrich management functionalities at
design time. Hereby, the components of the modeled appli-
cation are investigated whether there are additional manage-
ment operations available that can be enriched to them. For
example, if there are test operations available for a Tom-
cat webserver, e.g., an operation that checks if the Tomcat
replies to HTTP requests on port 80, and a MySQL database,
e.g., an operation that checks if it can be accessed only from
within the local network, they can be used to enrich such
components with the corresponding test functionality. How-
ever, this approach only works for applications that have not
been deployed yet and, thus, is only applicable during design
time. Therefore, we extended the approach in the conference
paper [29], which is the basis for this journal extension, to
support running applications. However, even the extended
runtime approach does not support composed applications
that are deployed using multiple deployment technologies.
Hence, the third research challenge (RC 3) we tackle is:

“How can management functionalities be executed
for a running composed application that are not sup-
ported by the employed deployment technologies with-
out the need to implement these operations for each
application separately?”

An Integrated Management System
for Composed Applications Deployed
by Different Deployment Automation
Technologies

In the following, we present our new concept to enable
holistic management processes for running and composed
applications that have been deployed by multiple deploy-
ment technologies. Next, we describe an overview of the
approach, which is illustrated in Fig. 1, before presenting
the details in the following subsections.

In the first step, see ➊ in Fig. 1, the so-called Instance
Information Retriever component is used to retrieve the
runtime information about a running application from its
underlying deployment technologies (see “Instance Infor-
mation Retriever”). The retrieved information are passed to
the Instance Model Normalizer component which is inter-
preting the deployment technology-specific data and gener-
ates a standardized and normalized instance model of the
application based on the TOSCA standard in the step ➋ (see
“Instance Model Normalizer”). Afterwards, the model is
passed to ➌, the Instance Model Completer: A plugin-based
component which iteratively executes several component-
specific plugins that are able to identify more details about
the running application, e.g., a MySQL plugin may be able to
identify a running MySQL database. This is required, since
the deployment technologies may not hold information about
all components [29] (see “Instance Model Completer”). In
step ➍, the model is enriched with management functionali-
ties using the Instance Model Enricher component. Hereby,
our previous Management Feature Enrichment and Work-
flow Generation approach [31] is extended and adapted to
support instance models as well as applications that have
been deployed using multiple deployment technologies (see
“Instance Model Enricher”). Hence, in step ➎, the enriched
model is passed to the Management Workflow Generator
component which generates management workflows for
each enriched management functionality (see “Management
Workflow Generator”). Finally, to manage the application,
the generated workflows can be executed on a corresponding
Workflow Engine in step ➏ (see “Workflow Engine”).

Instance Information Retriever

To derive instance models of running applications, we
designed a plugin-based Instance Information Retriever

 SN Computer Science (2023) 4:370370 Page 6 of 16

SN Computer Science

component. It retrieves the deployment technology-spe-
cific information about the running application from the
underlying deployment technologies using their applica-
tion programming interfaces (APIs). In contrast to exist-
ing work, such as network scanning [34], we explicitly use
the deployment technologies to derive instance models of
running applications as they are required to perform state-
changing management functionalities. Therefore, to avoid
their interference after performing changes to the applica-
tion, we annotate the information how each used deployment
technology can be accessed to the derived instance model.

However, depending on the used deployment technology,
the granularity level of the information that can be retrieved
varies: While Terraform and Kubernetes, for example, only
maintain information about the currently running infrastruc-
ture, such as VMs or containers, Chef and Puppet provide
more detailed information about the concrete software and
middleware components as they are specialized in managing
the lifecycle and configuration of these components [59].
Although Terraform can be used to also execute arbitrary

scripts to install, e.g., a webserver on a VM, it does not hold
any runtime information about such components. Thus, we
generate a normalized and standardized instance model of
the application based on TOSCA, as it is also suitable to
represent instance models [4]. Nevertheless, the technology-
specific information must first be interpreted and represented
in a normalized and standardized format for further process-
ing. Hence, we extended the Instance Information Retriever
in this paper by additional plugins to support the retrieval of
instance information from Terraform and Kubernetes.

Instance Model Normalizer

After the deployment technology-specific instance infor-
mation about the running application has been retrieved by
the Instance Information Retriever, the data are passed to
the Instance Model Normalizer. Because the data retrieved
from the deployment technologies are technology-specific,
custom logic is required to interpret it and derive a normal-
ized and standardized instance model. Hence, we designed

Fig. 1 Overview of our new integrated management system for composed applications method

SN Computer Science (2023) 4:370 Page 7 of 16 370

SN Computer Science

a plugin architecture as it i) enables technology-specific
logic to be encapsulated and separated from others, and ii)
facilitates the extension of new technologies. Additionally,
the instance models must contain information about the
underlying deployment technology, such as how to access
the technology and technology-specific IDs to uniquely
identify the components inside the deployment technology.
Therefore, we designed the Instance Model Normalizer as
a plugin-based component whereby each plugin represents
a deployment technology and, thus, must be able to process
the corresponding instance information from the represented
deployment technology.

Since the TOSCA standard is a vendor and technology
independent modeling language, and it is ontologically
extensible (see “The TOSCA Standard”), we use it to also
describe instance models. Thus, identified components
are mapped to Node Templates in a Topology Template,
while their dependencies are represented as Relationship
Templates. For example, if an Nginx webserver is found
to be running on a Ubuntu operating system, the compo-
nents would be mapped to a Node Template that instantiates
the standardized Nginx Node Type, and it would be con-
nected with another Node Template of type Ubuntu using a
Relationship Template that is an instance of the hostedOn
Relationship Type. The normalized types are hereby defined
in a TOSCA Repository and are used to specify the seman-
tics, i.e., the properties as well as available interfaces of
the component, in a standardized way. Hence, each plugin
in the Instance Model Normalizer must be able to process
the retrieved instance information, i.e., (i) identify deployed
components, (ii) detect their types and map them to cor-
responding Node Types, as well as (iii) fill the properties
defined by the Node Type and assign the current values in
the generated Node Template [29].

To support applications that have been deployed using
multiple deployment technologies, the Instance Model Nor-
malizer must also be able to merge multiple instance models
that are generated by the plugins. To achieve this, compo-
nents that occur in two instance models must be identified
and merged. Thereby, a similarity check is required based on
the properties of the corresponding Node Template, which
may differ for various Node Types. For example, to detect
that two Node Templates in two different models represent
the same VM instance, their public IP address can be used
as a unique property. In contrast, to detect, e.g., that two
deployment technologies establish a connection to the same
database instance, its type and the location it is running in
can be used. Hereby, we assume that a component is man-
aged by one deployment technology and others only depend
on the running instance: If a deployment technology man-
ages a component, it is annotated with an annotation iden-
tifying it to be managed by this technology. Otherwise, it is
annotated to be identified by the corresponding deployment

technology. As a result, the Instance Model Normalizer
outputs a Normalized Instance Model that conforms to the
TOSCA standard. Thus, we resolved RC 2 as we now are
able to generate normalized instance models of the applica-
tion that are conforming to the TOSCA standard. Addition-
ally, we created the foundation to solve RC 1, since we added
the information about how to access the deployment tech-
nologies managing the components. Hence, we extended the
Instance Model Normalizer in this paper to be able to com-
bine multiple technology-specific instance models into a sin-
gle TOSCA-based instance model of the entire application.

Instance Model Completer

In the third step, the Instance Model Completer component
interprets the Normalized Instance Model and iteratively
completes the model with additional information as the
retrieved models from the deployment technologies may not
contain all information. For example, the Instance Model
Completer is able to identify hidden components, refine
the types of already identified components, and fill missing
property values, and is able to detect horizontal relations
between components. This step is required, because the
deployment technologies may not hold all information that
are required to manage the application [29]. To achieve this,
we are reusing the iterative and also plugin-based approach
presented by Binz et al. [6] to detect, e.g., specific com-
ponent versions, property values, and horizontal relations,
such as connections to databases or queues [29]. Thereby,
the plugins are component-specific. For example, while a
Tomcat plugin may be able to detect the concrete version
that is installed and on which Port a particular application is
listening to, a second plugin may be able to detect that a Java
application is connecting to a database and where this data-
base is located. Hence, the second plugin is able to derive a
horizontal relation of type connectsTo between a Java appli-
cation and an identified database component. However, since
the previous approach of the instance retriever plugins by
Binz et al. [6] did not consider the underlying deployment
technologies, we extended the approach in the conference
paper [29] accordingly and execute the plugins until no more
plugins can be found that are capable of identifying more
details of the application.

To identify plugins that are able to detect more details
about the application, we re-implemented the concepts pre-
sented by Binz et al. [6] and extended them with a sub-graph
matching mechanism. Thus, each plugin may define multiple
Detectors, i.e., graphs defining the component constellations
they can refine, to add more details to the application, such
as missing properties or refining types. As a result, plugins
that define matching detectors are run in a loop until no more
plugins can be applied to the instance model to gain more
details about the running application. For example, a Tomcat

 SN Computer Science (2023) 4:370370 Page 8 of 16

SN Computer Science

plugin may be able to (i) refine an abstract Webserver Node
Type [44] to a concrete Tomcat Node Type, (ii) identify the
concrete version of a Tomcat webserver, and (iii) detect the
context path and port of a web application that is running
on it. Therefore, the plugin would specify three detectors
whereby (i) one simply contains a Node Template of type
Webserver, (ii) a second defines a Node Template of type
Tomcat without any version identifier, while (iii) the last one
would define an abstract Web Application Node Template
that is hosted on a Tomcat webserver. As a result, after no
more plugin can be found that defines a detector matching
any sub-graphs in the current instance model, the Completed
Instance Model contains all necessary information to enrich
and perform management tasks. In this paper, we added
additional plugins for the Instance Model Completer to iden-
tify, e.g., properties of MongoDBs and Docker Containers.

Instance Model Enricher

To enrich the Completed Instance Model with additional
management features, the Instance Model Enricher is used
in the fourth step (see Fig. 1). We hereby extended our previ-
ously introduced approach [31] in the conference paper [29]
to (i) consider the annotated deployment technologies and
(ii) differentiate between state-changing and state-pre-
serving management operations. While-state-preserving
operations can be enriched to all supported components,
state-preserving operations must consider the underlying
deployment technology to avoid its interference. For exam-
ple, a state-preserving functionality is the execution of tests
whether the components run as expected. Thus, operations
implementing such functionality can always be enriched to a
component, no matter how it was deployed, since the opera-
tion only interacts with the component and does not change
its state. On the other hand, performing, e.g., an update of
a component, changes its state. The underlying deployment
technology may detect this change and revert it during its
next actions. Therefore, the corresponding implementations
must communicate with the deployment technology to notify
it about the performed changes. This is achieved by perform-
ing calls to the APIs of the deployment technologies when
executing a state-changing operation.

To realize the feature enrichment of instance models
that have been deployed using multiple deployment mod-
els, the selection of so-called Feature Node Types requires
a refinement. In general, the enrichment of additional man-
agement features to a model of an application exploits the
inheritance concept of Node Types [31]. This is illustrated
in Fig. 2 which illustrates the contents of a Management
Features Repository. Hereby, Feature Node Types are inher-
iting from Normalized Node Types, such as a MySQL Node
Type or a Ubuntu Node Type (see Fig. 2), which are anno-
tated to represent a particular management feature for their

parent type. For example, in this case, there are two available
features for the MySQL Node Type implemented by three
Feature Node Types. Additionally, while there is only one
implementation to back up a corresponding MySQL data-
base component, there are two different implementations
to test the communication with such a database: one has
an additional requirement as it requires that the database
is running on a Ubuntu VM, while the second represents a
more generic implementation. However, since the backup
and test functionalities are state-preserving operations, the
Feature Node Types do not have any further annotations as
shown in Fig. 2. In contrast, in this repository, there are two
Feature Node Types available for the Ubuntu Node Type,
offering the capability to also test its availability and to per-
form an update of the operating system. Hence, by executing
the update feature, the state of the application is changed,
i.e., it is a state-changing operation, and requires to notify
the underlying deployment technology. As depicted on the
left side of the Update Ubuntu Feature Node Type in Fig. 2,
the update feature can only be selected if the Ubuntu VM is
managed by an underlying Terraform instance as its imple-
mentation only uses the Terraform API to notify it about the
state change. Therefore, we extended the Instance Model
Enricher to support selecting only features that are able to
notify the deployment technology managing a correspond-
ing component. The Feature Node Types, however, may also
support multiple deployment technologies and, hence, can
be selected if any of these technologies matches the compo-
nent’s deployment technology. As a result, we got one step
closer to solve RC 1 and RC 3: We are able to enrich any
kind of state-preserving and state-changing functionalities to
the running application while ensuring that the implementa-
tions are aware of the underlying deployment technologies.

Management Workflow Generator

To execute the enriched management features on running
applications, we previously introduced the Management
Workflow Generator component which generates workflows

F

Normalized
Node Types

Req: Ubuntu

Testable
MySQL

F

Testable
MySQL

F

Update
Ubuntu

Req: Ubuntu

Backup
MySQL

F

MySQL Ubuntu

Update Feature
Node Types

Backup Feature
Node Types

Test Feature
Node Types

Fig. 2 The TOSCA-based management feature types

SN Computer Science (2023) 4:370 Page 9 of 16 370

SN Computer Science

for each feature [31]. Thus, they can be executed indepen-
dently and repeatedly. In general, workflows can be gen-
erated from declarative, i.e., graph-based [59], instance
models [10]. Hereby, the models are interpreted and, based
on the relations between the application’s components, the
required order in which the operations must be executed can
be derived [10]. For example, while backups of indepen-
dently running databases can be executed in parallel, testing
components in one stack, i.e., components on the top depend
on components underneath them, should start from the bot-
tom up: If a VM is not reachable, a component running on
it will also not be accessible. Therefore, each plugin in the
Management Workflow Generator is able to derive the nec-
essary steps and the correct order in which the correspond-
ing feature operations must be performed. Hence, the order
in which the tests are run is important to help developers
identify the issues.

Similar to the derived instance models, we rely on stand-
ardized workflow languages to ensure a complete, stand-
ards-based approach. Thus, the workflows can be realized in
languages, such as BPEL [42] or BPMN [45]. As a result of
this step in our method, we are able to resolve RC 1 and RC
3, since it is now possible to generate executable workflows
that perform any kind of management functionalities.

Workflow Engine

Finally, the generated management workflows must be
deployed and executed. This is realized by a standards-based
Workflow Engine that is capable of running the workflows.
Depending on the selected language, an appropriate Work-
flow Engine has to be selected on which the workflows can
be deployed. As a result, a user is able to invoke any of the
management features by simply triggering the corresponding
workflow. Additionally, the workflows can be integrated into
other automated management tasks. For example, by sched-
uling a regular task triggering a backup workflow.

Architecture and Prototypical Realization
of the Integrated Management System

In the following, our prototype realizing the Integrated man-
agement System for Composed Applications is described.
The system is implemented as an extension to the Open-
TOSCA Ecosystem4 [12] and a new component which we
introduce in this paper called the TOSCA Instance Model
Retriever (TOSCin).5 Both are available open-source on

GitHub. The overall system architecture of our prototype is
depicted in Fig. 3.

The new Java-based TOSCin Framework realizes the first
two components of our approach as a command line interface
(CLI): The Instance Model Retriever as well as the Instance
Model Normalizer (see Fig. 3). Therefore, TOSCin is capa-
ble of retrieving instance information from the employed
deployment technologies and deriving a TOSCA-based
instance model. As illustrated in Fig. 3, TOSCin implements
plugins for Kubernetes, Terraform, and Puppet to derive a
TOSCA-based instance model using a repository that con-
tains normalized TOSCA types. Such normalized types are,
for example, already defined in the TOSCA standard defini-
tion [44] and are available open-source in a repository we
maintain on GitHub4. The TOSCA Repository is included
in our prototype in the modeling tool Eclipse Winery [36].
Therefore, TOSCin uses Winery’s API to retrieve TOSCA
Types from the Repository, as shown in Fig. 3. Hereby, as
we already implemented a Puppet plugin in the conference
paper [29], we now extended TOSCin to also support Kuber-
netes and Terraform. The biggest extension, however, is the
merging of all instance models retrieved from all employed
deployment technologies into one single instance model.
This is realized in the Instance Model Normalizer compo-
nent as its output is a single TOSCA-based instance model.
Therefore, it implements multiple similarity checks to detect
whether two identified components returned by two differ-
ent deployment technologies are referring to the same real
component. For example, if multiple components are con-
necting to the same database instance, the corresponding
database must occur only once in the instance model which
is achieved, e.g., by checking whether the type and location
match.

After the Instance Model Normalizer in TOSCin gener-
ated a Normalized Instance Model of the application, which
is a model conforming to the TOSCA standard, it is passed
to Eclipse Winery which implements the Instance Model
Completer as well as the Instance Model Enricher as Java-
based components. The Instance Model Completer can be
hereby easily extended with technology-specific plugins
that are capable of identifying additional details about the
application components and relations—such as detecting
additional components or configuration details. Winery
is a graphical modeling tool for TOSCA applications and
is part of the OpenTOSCA ecosystem [12]. Hence, in the
graph-based user interface (UI), a web application that is
implemented in Angular,6 the user can always see the cur-
rent changes to the instance model: During the completion
of the model using the technology-specific plugins, a user

4 https:// github. com/ OpenT OSCA.
5 Currently part of https:// github. com/ UST- EDMM/ edmm. 6 https:// angul ar. io/.

https://github.com/OpenTOSCA
https://github.com/UST-EDMM/edmm
https://angular.io/

 SN Computer Science (2023) 4:370370 Page 10 of 16

SN Computer Science

can select a plugin from all applicable plugins, i.e., plugins
which define a detector that can be found as a sub-graph in
the current model (see “Instance Model Completer”) in an
iterative fashion and directly see the changes if, for exam-
ple, a new component was detected. Similarly, to enrich
the model with additional management features, a user can
select the desired management features for each component
that are currently available in the TOSCA repository for the
Node Types of the component currently used in the model.
While the general concept of the Instance Model Completer
was already presented in the conference paper of this jour-
nal extension [29], we extended it to also support different
deployment technologies in one instance model. Addition-
ally, we already introduced the Instance Model Enricher in
a previous work [31], extended it to support deployment
technology-specific management features in the conference
paper [29], and added support for multiple technologies dur-
ing the work for this paper.

As a result, Winery outputs a completed and enriched
instance model of the running application which is imported
to the Java-based OpenTOSCA Orchestrator [5] to generate
the BPEL-based management workflows. In the Manage-
ment Workflow Generator, which we presented in the previ-
ous work [31], we also use plugins to derive workflows for

different kinds of management functionalities. The imple-
mentation hereby generates BPEL workflows that can be
deployed and executed in an Apache ODE7 instance, as
shown in Fig. 3.

Case Study

To prove the practicable feasibility of the approach, we dem-
onstrate how the approach works using a modified version
of the Sock Shop3 application. The Sock Shop is a demo
application to demonstrate how applications can be designed
and deployed as microservices. It consists of a front-end
component in the form of a NodeJS8 web application where
users can buy socks. Therefore, the front end retrieves its
catalog data from a Go9 service which stores its data in a
MySQL10 database. Similarly, the users are managed by a
Go application persisting the users’ information in a Mon-
goDB11 database, while items that are currently in a user’s

TOSCin
(TOSCA Instance Model Retriever)

Eclipse Winery
(TOSCA Modelling Tool)

Instance
Model

Enricher
(Java)

OpenTOSCA
(TOSCA Deployment System)

Management
Workflow
Generator

(Java)

Backup

Availability
Tests

…

Workflow
Engine

(Apache ODE,
WS-BPEL)

Terraform

Terraform API

Puppet

Puppet API

Instance
Informa�on

Retriever
(Java)

…

Instance
Model

Normalizer
(Java)

…

Instance
Model

Completer
(Java)

…
… …

$> multitransform retrieve \
-dt kubernetes \

-config ./kube.conf \
-dt terraform \

-state ./tf.tfstate \
-dt puppet \

-server-ip 23.84.65.2

IA Filter

TOSCA Types Repository

W
in

er
yA

PI

Op
en

TO
SC

A
AP

I

Fig. 3 Prototype architecture based on the TOSCin Framework and the OpenTOSCA ecosystem [12]

7 https:// ode. apache. org/.
8 https:// nodejs. org/ en/.
9 https:// golang. org/.
10 https:// www. mysql. com/.
11 https:// www. mongo db. com/.

https://ode.apache.org/
https://nodejs.org/en/
https://golang.org/
https://www.mysql.com/
https://www.mongodb.com/

SN Computer Science (2023) 4:370 Page 11 of 16 370

SN Computer Science

cart are stored by a Java service which also uses a MongoDB
database to save the data. Additionally, the Sock Shop con-
sists of an ordering service, a payment service, as well as a
shipping service that places the orders in a RabbitMQ12 mes-
saging service. However, for simplicity, the last four services
and their associated databases are omitted in Fig. 4 and the
following explanations.

The application was deployed using Terraform, Puppet,
and Kubernetes: While the front-end component as well as
the users service and the carts service, alongside with their
associated databases, are deployed in the form of Docker
Containers13 using Kubernetes, the catalog service and its
database are deployed using Puppet on a VM provisioned
by Terraform. Based on this setup, we used our prototype to
enrich and execute additional management functionalities
for the Sock Shop.

To enable holistic management processes for the running
Sock Shop application composed of multiple parts that are
deployed with three different deployment technologies, first,
an instance model must be derived. Therefore, TOSCin is
invoked with the endpoints and credentials for the deploy-
ment technologies used to deploy the application. In this
case, the endpoints and credentials for the Kubernetes clus-
ter, the Terraform state file, as well as the Puppet’s primary

server that we used to deploy the Sock Shop are passed
as input to TOSCin. Using this information, the Instance
Information Retriever component invokes the corresponding
technology-specific plugins to retrieve runtime information
about the running application. In the next step, the data are
interpreted by the Instance Model Normalizer plugins which
derive a TOSCA-based instance model of the application.
Hereby, the technology-specific types are mapped to normal-
ized TOSCA Node Types, while the detected components
are represented as Node Templates that have the identified
Node Types assigned. Moreover, as the technology-specific
types may define different properties than the identified nor-
malized Node Types, they must also be mapped. For exam-
ple, while a technology-specific type may define a whole
URL, a corresponding Node Type may define the hostname
and port separately. Thus, the property must be split into the
corresponding parts to be mapped correctly to the normal-
ized type using, e.g., regular expressions, as we presented in
detail in more detail in the previous work [29]. Additionally,
to support multiple deployment automation technologies
in one instance model, all components are annotated with
an identified by annotation to indicate that the component
was identified by a corresponding deployment technology.
Because some deployment technologies are able to identify
components that are not managed by them, an additional
managed by annotation is used to map the components to
their managing deployment technology. For example, as
shown in Fig. 4, all containers and the underlying Docker

Context: /

frontend
(NodeJS App)

(NodeJS 10)

IP: 35.2.8.1

(Alpine
Container)

users
(So�ware

Component)

IP: 35.2.8.2

(Alpine
Container)

catalog
(So�ware

Component)

IP: 10.12.45.2

(Ubuntu 20.04)

Password:

(MySQL 5.7)

DB-Name: catalog

catalog-db
(MySQL DB 5.7)

(MongoDB)

DB-Name: users

users-db
(MongoDB
Schema)

IP: 35.2.8.3

(Alpine
Container)

(MongoDB)

dbName: carts

carts-db
(MongoDB
Schema)

IP: 35.2.8.5

(Alpine
Container)

(Java 8)

Port: 80

carts
(Java 8 App)

IP: 35.2.8.4

(Alpine
Container)

Host: 35.2.2.0

(Docker Engine)

Legend

Managed by […]

Property: Value

name
(Node Type)

hostedOn

connectsTo

Iden�fied/Refined by […]

Manually Plugin

Kubernetes Puppet

Terraform

Fig. 4 The instance model derived from an adapted instance of the Sock Shop3 using our framework: It was deployed without the order service
using Kubernetes and using Terraform and Puppet to deploy and configure the catalog service and its database

12 https:// www. rabbi tmq. com/.
13 https:// www. docker. com/.

https://www.rabbitmq.com/
https://www.docker.com/

 SN Computer Science (2023) 4:370370 Page 12 of 16

SN Computer Science

Engine that is used in this case to run the containers are
annotated with an identified by Kubernetes annotation. In
contrast, only the containers are tagged with the managed
by Kubernetes annotation as the Docker Engine is only used
by Kubernetes.

In the next step, all Topology Templates generated by
the Instance Information Retriever plugins containing the
identified and managed components of a single deployment
technology are merged into a single Topology Template to
represent all parts of the application in one model. Thereby,
if a component has been identified by multiple deployment
technologies, the component is merged and tagged with
all identified by annotations. For example, the Ubuntu VM
shown in Fig. 4 was detected by Terraform and Puppet as
Terraform manages the VM and Puppet connects to it to
install and configure the components it manages.

Up to this point, the derived instance model shown in
Fig. 4 only contains those components that are annotated
with an identified by annotation which contain deployment
technology icons. All other components that are solely
annotated with an identified by a Plugin annotation, i.e., a
circle with a magnifier in its center, are not identified yet.
These components are added to the model by iteratively run-
ning the component-specific plugins of the Instance Model
Completer which is implemented in Winery. During each
iteration, all registered plugins are first checked for their
applicability, i.e., whether they could contribute additional
information to the instance model. All applicable plugins
are collected in a list, whereby each plugin specifies the list
of components it can refine. Then, a user selects a particular
plugin and a corresponding set of components the plugin
should refine. During the plugin’s execution, it may identify
additional components, properties, and relations, or refine
the types of components from abstract ones to more concrete
ones. For example, a NodeJS plugin is able to identify that
a NodeJS application is running on a NodeJS webserver on
the front-end container. Another plugin identifies the con-
tainers’ operating systems, while a third detects additional
properties, such as the port a Java application is listening
to for requests. Additionally, each plugin adds an identified
by annotation with its ID to the component to document
how the component was detected. This repeats until no more
plugins can be found applicable, or the user stops the com-
pletion phase. Finally, a model, such as the one illustrated in
Fig. 4, is derived. However, as shown in Fig. 4, the type of
the users component as well as the catalog component are
instances of the Node Type Software Component instead of
Go Application. The reason for this is that Go applications
are compiled to binaries. Therefore, we are able to iden-
tify that components have been deployed on the containers
but cannot identify a concrete type. Similarly, the horizon-
tal relations between most services are annotated with an
identified manually annotation, as only the relation between

the Java component, i.e., the carts service, and its database
could be identified automatically. In future work, we plan to
implement additional plugins that are using network scan-
ning approaches, such as presented in [34], to detect more
horizontal relations.

The completed instance model can then be interpreted
by the Instance Model Enricher that is also implemented in
Winery. It is based on the Management Feature Enricher
from previous work [31] and was extended to support state-
changing and state-preserving operations [29]. Additionally,
different kinds of implementations for state-changing opera-
tions must be supported and chosen correctly. Therefore, the
Instance Model Enricher uses the managed by annotation
at the components to filter applicable feature implementa-
tions. For example, since the Ubuntu VM is managed by
Terraform, state-changing management features must notify
Terraform about the change and, thus, a management fea-
ture can be enriched to the application if a corresponding
implementation is available. To achieve this, we extended
our repository in this work to contain implementations
to back up the MongoDB and MySQL databases, several
test operations, as well as an update implementation of the
Ubuntu VM that is able to communicate the state change to
Terraform.

In the last step, the enriched instance model is inter-
preted by the OpenTOSCA Runtime which generates the
different management workflows and deploys them on an
Apache ODE workflow engine [31]. As a result, to perform
a particular management feature, a user can invoke the cor-
responding management workflow. However, because prop-
erties, such as credentials and passwords, cannot be auto-
matically retrieved, the user may have to pass them to the
workflows as input.

Threats to Validity

In this section, the threats to validity regarding the presented
case study are discussed, following the structure defined by
Wohlin et al. [54]. As the goal of this paper is to enable the
automated management of running applications that have
been deployed using multiple deployment technologies, the
threats to validity mainly affect the quality of the derived
instance model.

In the Internal Validity, threats to the relationship
between the treatment and the experiment’s result are dis-
cussed [54]. However, since applications in our scenarios are
deployed using different deployment technologies, a holistic
instance model of the application that combines all compo-
nents maintained by the different deployment technologies
does not exist without explicit efforts. Therefore, we need
an approach and prototype as ours to generate this holistic
model. Thus, we have evidence that only our approach and

SN Computer Science (2023) 4:370 Page 13 of 16 370

SN Computer Science

prototype caused the existence of the holistic model, which
is then used for management. Moreover, there are no other
causes that influenced the derived model or the subsequent
management of the application. Thus, there are no threats
to the internal validity.

The External Validity discusses limitations of the gener-
alizations derived from the experiment [54]. The discussed
case study was chosen because of its modern design and
represents a state-of-the-art microservice application. In
practice, however, legacy applications may not be deployed
using state-of-the-art deployment technologies and, thus,
the chosen case study may not represent them. However,
it is also possible to run the approach without deployment
technologies. In this case, a user can provide an entry point,
such as a VM, together with credentials and a location in a
manually created instance model. Thus, it is possible to start
the approach with the Instance Model Completion phase
whereby an instance model of the application is created
only by executing different completion plugins. Moreover,
since the management enrichment, management workflow
generation, and execution of management features are not
bound to any deployment technology, these steps can also be
executed if not all components are deployed using deploy-
ment technologies.

The Construct Validity concerns the generalization of
the experiment’s results to the theory behind [54]. Since
the main building block of our approach is the generation
of a holistic instance model of a running application to
enable its automated management, our case study repre-
sents exactly these aspects. However, as we only described
a single case study, this may pose a threat to the construct
validity. Thereby, the case study was designed as a modern
architecture that contains the typical components of today’s
applications. Additionally, we used three of the most used
deployment technologies that prevailed in practice and are
commonly used in today’s application deployments [59].
Therefore, we have shown that our approach supports a huge
variety of components and deployment technologies.

The Conclusion Validity refers to threats that influence
the ability to draw conclusions from an experiment [54]. In
the presented case study, the extracted instance model poses
a threat to the conclusion validity regarding the complete-
ness of the generated instance model. Although we were
able to identify all components of the described case study,
running the prototype against other applications may not
yield a complete instance model of the application, since
not all deployment technologies and components used in
practice are integrated in our prototype yet. However, in our
case study, we used different components that are typical for
modern deployments. Moreover, the three selected deploy-
ment technologies all implement the declarative deployment
modeling approach, which is also followed by the 13 most
used deployment technologies in practice [59]. Therefore,

the deployment technologies and components used in our
case study are very similar to the ones we do not yet support
in our prototype. As a result, there is only a low risk that our
approach cannot incorporate other technologies in a way that
the derived instance model is incomplete.

Discussion and Current Limitations

Our presented approach aims at enabling the automated
management of composed applications deployed using mul-
tiple deployment automation technologies. This is achieved
by retrieving instance models of running applications that
have been deployed by multiple deployment technolo-
gies and enrich these models with additional management
functionalities to enable an automated management of the
application. Thereby, our assumption is that a component
is managed by exactly one deployment technology. How-
ever, there might be situations in which this is not the case.
For example, if one deployment technology is managing the
physical infrastructure properties of a component, such as
number of CPUs, RAM, and network capabilities, another
might be managing the component’s lifecycle and configura-
tion. However, because this example might not be the only
case in which multiple deployment technologies are working
together at one component, we plan to evaluate how deploy-
ment technologies are working together in future work.

The instance information that can be retrieved from the
deployment technologies differ significantly in their expres-
siveness and level of detail. For example, while Terraform
and Kubernetes mostly provide information about infrastruc-
tural components, such as VMs and containers, Chef and
Puppet provide more information about software compo-
nents and their configurations. Hence, we added the Instance
Model Completion step (see “Instance Model Completer”)
that reuses and extends an existing approach to identify as
many components of the application as possible. Because
the Instance Model Completer builds on a plugin system
to identify or refine additional components, properties, or
(horizontal) relations between components, a large amount
of plugins is required to identify and refine various compo-
nents and technologies. As an additional option, it is always
possible to adapt the models manually of course to enhance
their expressiveness.

Because the approach relies on many plugins and man-
agement operations that must be implemented for the
approach to work properly, a large effort is required to sup-
port the wide variety of commonly available technologies.
However, once the plugins and management operations are
implemented, they can be reused to improve the retrieved
instance model and the number of compatible management
operations rises. Hence, the more plugins and management

 SN Computer Science (2023) 4:370370 Page 14 of 16

SN Computer Science

operations are available, the more applications can be auto-
matically enriched with management features.

Identifying horizontal relations, e.g., that an application
is connecting to a database, is extremely difficult if no single
deployment model of the entire application is available that
describes all dependencies. Even if a large amount of plugins
to complete the instance models are available, identifying
horizontal relations remains difficult. The reason for this is
that the configuration of each component can be realized in
countless ways that are not always visible or accessible from
the outside. For example, a common configuration option
is to use environment variables as they can be set from the
outside to configure an application’s component. However,
neither the component to which an environment variable
belongs cannot be determined generically, nor are the names
and values of the variables standardized. Thus, while scan-
ning for common parts in the variable names or configura-
tion flags may yield information that can be used to derive
horizontal relations, there is no guarantee that they can be
identified automatically by analyzing information retrieved
from the deployment technologies and the running instance.
However, there are other possibilities to implement plugins:
a network scan and monitoring can find the packages that
are sent from one component to another and, thus, detecting
horizontal relations. Other possibilities are code scans, as
shown by Genfer and Zdun [27]. Therefore, various possi-
bilities exist that can be used to detect horizontal relations,
although many of them are not trivial. On the other hand,
once they are implemented, they can be reused directly in the
future to identify the communication of arbitrary application
components. Of course, adding horizontal relations manu-
ally is always possible.

To implement state-changing functionalities, a notifica-
tion of the underlying deployment technology about the
performed change must be realized. Otherwise, the changes
may be reverted. Hence, for each state-changing functional-
ity, different implementations for each supported deploy-
ment technology may be necessary. For example, to man-
age containers that are deployed using Kubernetes, so-called
Kubernetes Operations can be used to implement custom
management functionalities, while the management of com-
ponents managed by Puppet may require the implementation
to be in Puppets’ domain specific language (DSL). Hence,
the resulting implementations may become quite complex
and operations engineers need to use the corresponding
deployment technologies’ API to realize the desired man-
agement feature as an operation that can be automatically
enriched to a running application. However, similar to the
plugins, once implemented, the operations can be reused in
other applications that use a similar combination of deploy-
ment technology and component type.

Moreover, the management of container-based parts of
an application poses additional challenges as a container is

usually composed of multiple components that cannot be
seen from the outside. However, similar to VMs, contain-
ers are also accessible, e.g., via interactive shells such as
SSH. This can be exploited in the Instance Model Completer
plugins to identify additional components that have not been
detected yet. As a result, also hidden components, no matter
if they are deployed in VMs or containers, can be identified
and enriched with management functionalities.

Conclusion and Future Work

In this paper, we demonstrated a how running applications
that are composed of multiple components deployed by dif-
ferent deployment automation technologies can be enriched
with holistic management capabilities in retrospective.
However, there are still manual steps required to enable
the management of applications beforehand. For example,
implementations for each management feature are required
which, in the case of state-changing functionality, must be
even realized in multiple versions, i.e., for each deployment
technology. Nevertheless, if they are implemented once, they
can be reused in any other application in contrast to custom
implementations that are specialized for a specific applica-
tion. Moreover, by generating management workflows for
each functionality separately, we enable repeatable execu-
tions of the management operations.

In future work, we plan to implement more use cases and
therefore more plugins and different management function-
alities while also considering using code analysis tools as
presented by Genfer and Zedun [27]. Additionally, we are
investigating how it can be possible to retrieve also deploy-
ment artifacts to enable the deployment of the application
based on the derived model.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was partially funded by the Federal Ministry for
Economic Affairs and Climate Action of Germany (BMWK) project
PlanQK (01MK20005N) and the German Research Foundation (DFG)
IaC2 (314720630).

Data availability The prototype’s components and use case are all
publicly available on GitHub. All corresponding links are provided
in the footnotes.

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes

SN Computer Science (2023) 4:370 Page 15 of 16 370

SN Computer Science

were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Amazon: AWS CloudFormation 2023. https:// aws. amazon. com/
de/ cloud forma tion/.

 2. Bencomo N, Götz S, Song H. Models@run.time: a guided tour
of the state of the art and research challenges. Softw Syst Model.
2019;18(5):3049–82.

 3. Bergmayr A, Breitenbücher U, Ferry N, Rossini A, Solberg
A, Wimmer M, Kappel G, Leymann F. A Systematic Review
of Cloud Modeling Languages. ACM Comput Surv (CSUR).
2018;51(1):1–38.

 4. Binz T. Crawling von Enterprise Topologien zur automatisierten
Migration von Anwendungen: eine Cloud-Perspektive. Disserta-
tion, Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik 2015.

 5. Binz T, Breitenbücher U, Haupt F, Kopp O, Leymann F, Nowak
A, Wagner S. OpenTOSCA—a Runtime for TOSCA-based
Cloud Applications. In: Proceedings of the 11th International
Conference on Service-Oriented Computing (ICSOC 2013),
LNCS, 2013; vol. 8274, pp. 692–695. Springer.

 6. Binz T, Breitenbücher U, Kopp O, Leymann F. Automated
discovery and maintenance of enterprise topology graphs. In:
Proceedings of the 6th IEEE international conference on service
oriented computing and applications (SOCA 2013). 2013; pp.
126–134. IEEE.

 7. Binz T, Breiter G, Leymann F, Spatzier T. Portable Cloud ser-
vices using TOSCA. IEEE Internet Comput. 2012;16(03):80–5.

 8. Blair G, Bencomo N, France RB. Models@run.time. Computer.
2009;42(10):22–7. https:// doi. org/ 10. 1109/ MC. 2009. 326.

 9. Breitenbücher U. Eine musterbasierte Methode zur Automa-
tisierung des Anwendungsmanagements. Dissertation, Uni-
versity of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology 2016.

 10. Breitenbücher U, Binz T, Képes K, Kopp O, Leymann F, Wet-
tinger J. Combining declarative and imperative cloud applica-
tion provisioning based on TOSCA. In: International conference
on cloud engineering (IC2E 2014). 2014; pp. 87–96. IEEE.

 11. Breitenbücher U, Binz T, Kopp O, Leymann F. Pattern-based
runtime management of composite cloud applications. In: Pro-
ceedings of the 3rd international conference on cloud comput-
ing and services science (CLOSER 2013). 2013; pp. 475–482.
SciTePress.

 12. Breitenbücher U, Endres C, Képes K, Kopp O, Leymann F, Wag-
ner S, Wettinger J, Zimmermann M. The OpenTOSCA Ecosys-
tem—Concepts & Tools. European space project on smart sys-
tems, big data, future internet–towards serving the grand societal
challenges—Volume 1: EPS Rome 2016 2016; pp. 112–130.

 13. Breitenbücher U, Képes K, Leymann F, Wurster M. Declarative
vs. imperative: how to model the automated deployment of IoT
Applications? In: Proceedings of the 11th advanced summer
school on service oriented computing. 2017; pp. 18–27. IBM
Research Division.

 14. Brogi A, Cifariello P, Soldani J. DrACO: discovering available
cloud offerings. Comput Sci Res Dev. 2017;32(3–4):269–79.

 15. Brogi A, Forti S, Guerrero C, Lera I. Towards declarative decen-
tralised application management in the fog. In: 2020 IEEE interna-
tional symposium on software reliability engineering workshops
(ISSREW). 2020; pp. 223–230.

 16. Brown A, Keller A. A best practice approach for automating IT
management processes. In: Proceedings of the 10th IEEE/IFIP
network operations and management symposium (NOMS 2006).
2006; pp. 33–44. IEEE.

 17. Calcaterra D, Cartelli V, Modica GD, Tomarchio O. Combining
TOSCA and BPMN to enable automated cloud service provision-
ing. In: Proceedings of the 7th international conference on cloud
computing and services science—Vol. 1: CLOSER. 2017; pp.
187–196. SciTePress.

 18. Chappell D, et al. What is application lifecycle management.
Westbury: Chappell & Associates; 2008.

 19. Chardet M, Coullon H, Robillard S. Toward safe and efficient
reconfiguration with Concerto. Sci Comput Program. 2021;203:
102582.

 20. Di Nitto E, Matthews P, Petcu D, Solberg A. Model-driven devel-
opment and operation of multi-cloud applications: the MODA-
Clouds approach. New York: Springer Nature; 2017.

 21. Eilam T, Elder M, Konstantinou AV, Snible E. Pattern-based
Composite Application Deployment. In: Proceedings of the 12th
IFIP/IEEE international symposium on integrated network man-
agement (IM 2011) 2011; pp. 217–224. IEEE.

 22. El Maghraoui K, Meghranjani A, Eilam T, Kalantar M, Konstan-
tinou A. Model driven provisioning: bridging the gap between
declarative object models and procedural provisioning tools. In:
Proceedings of the 7th international middleware conference (mid-
dleware 2006). 2006; pp. 404–423. Springer.

 23. Endres C, Breitenbücher U, Falkenthal M, Kopp O, Leymann F,
Wettinger J. Declarative vs. imperative: two modeling patterns
for the automated deployment of applications. In: Proceedings of
the 9th international conference on pervasive patterns and appli-
cations (PATTERNS 2017). 2017; pp. 22–27. Xpert Publishing
Services.

 24. Endres C, Breitenbücher U, Leymann F, Wettinger J. Anything
to Topology—a method and system architecture to topologize
technology-specific application deployment artifacts. In: Pro-
ceedings of the 7th international conference on cloud computing
and services science (CLOSER 2017), Porto, Portugal. 2017; pp.
180–190. SciTePress.

 25. Farwick M, Agreiter B, Breu R, Ryll S, Voges K, Hanschke I.
Automation processes for enterprise architecture management.
In: 2011 IEEE 15th International Enterprise Distributed Object
Computing Conference Workshops. 2011; pp. 340–9.

 26. Fittkau F, Roth S, Hasselbring W. ExplorViz: visual runtime
behavior analysis of enterprise application landscapes. In: ECIS
2015. AIS 2015.

 27. Genfer P, Zdun U. Identifying domain-based cyclic dependen-
cies in microservice apis using source code detectors. In: Biffl S,
Navarro E, Löwe W, Sirjani M, Mirandola R, Weyns D, editors.
Software architecture. New York: Springer International Publish-
ing; 2021. p. 207–22.

 28. Guerriero M, Garriga M, Tamburri DA, Palomba F. Adoption,
support, and challenges of infrastructure-as-code: insights from
industry. In: 2019 IEEE international conference on software
maintenance and evolution (ICSME). 2019; pp. 580–589. IEEE.

 29. Harzenetter L, Binz T, Breitenbücher U, Leymann F, Wurster
M. Automated generation of management workflows for run-
ning applications by deriving and enriching instance models. In:
Proceedings of the 11th international conference on cloud com-
puting and services science (CLOSER 2021). 2021; pp. 99–110.
SciTePress.

 30. Harzenetter L, Breitenbücher U, Képes K, Leymann F. Freezing
and defrosting cloud applications: automated saving and restoring

http://creativecommons.org/licenses/by/4.0/
https://aws.amazon.com/de/cloudformation/
https://aws.amazon.com/de/cloudformation/
https://doi.org/10.1109/MC.2009.326

 SN Computer Science (2023) 4:370370 Page 16 of 16

SN Computer Science

of running applications. Softw Intensive Cyber-Phys Syst (SICS).
2019;35:101–14.

 31. Harzenetter L, Breitenbücher U, Leymann F, Saatkamp K, Weder
B, Wurster M. Automated generation of management workflows
for applications based on deployment models. In: 2019 IEEE 23rd
international enterprise distributed object computing conference
(EDOC 2019). 2019; pp. 216–225. IEEE.

 32. HashiCorp: Terraform.io 2023. https:// www. terra form. io/
 33. Herden S, Zwanziger A, Robinson P. Declarative application

deployment and change management. In: Proceedings of the
2010 international conference on network and service manage-
ment (CNSM 2010). 2010; pp. 126–133. IEEE.

 34. Holm H, Buschle M, Lagerström R, Ekstedt M. Automatic data
collection for enterprise architecture models. Softw Syst Model.
2014;13(2):825–41.

 35. Képes K, Leymann F, Weder B, Wild K. SiDD: the situation-
aware distributed deployment system. In: Service-oriented com-
puting—ICSOC 2020 workshops, pp. 72–76. Springer Interna-
tional Publishing 2021.

 36. Kopp O, Binz T, Breitenbücher U, Leymann F. Winery—a mod-
eling tool for tosca-based cloud applications. In: Proceedings of
the 11th international conference on service-oriented computing
(ICSOC 2013). 2013; pp. 700–704. Springer.

 37. Leymann F. Cloud computing: the next revolution in IT. In: Pro-
ceedings of the 52th photogrammetric week. 2009; pp. 3–12.
Wichmann Verlag.

 38. Leymann F, Fehling C, Wagner S, Wettinger J. Native cloud appli-
cations: why virtual machines, images and containers miss the
point! In: Proceedings of the 6th international conference on cloud
computing and service science (CLOSER 2016). 2016; pp. 7–15.
SciTePress, Rome.

 39. Machiraju V, Dekhil M, Wurster K, Garg PK, Griss ML, Holland
J. Towards generic application auto-discovery. In: Proceedings of
the 7th IEEE/IFIP network operations and management sympo-
sium (NOMS 2000). 2000; pp. 75–87. IEEE.

 40. Menzel M, Klems M, Le HA, Tai S. A configuration crawler for
virtual appliances in compute clouds. In: 2013 IEEE international
conference on cloud engineering (IC2E). 2013; pp. 201–209.
IEEE.

 41. Mietzner R, Unger T, Leymann F. Cafe: A generic configurable
customizable composite cloud application framework. In: On the
move to meaningful internet systems: OTM 2009 (CoopIS 2009),
2009; pp. 357–364. Springer.

 42. OASIS: Web Services Business Process Execution Language
(WS-BPEL) Version 2.0. Organization for the Advancement of
Structured Information Standards (OASIS) 2007.

 43. OASIS: Topology and Orchestration Specification for Cloud
Applications (TOSCA) Version 1.0. Organization for the
Advancement of Structured Information Standards (OASIS) 2013.

 44. OASIS: TOSCA Simple Profile in YAML Version 1.3. Organiza-
tion for the Advancement of Structured Information Standards
(OASIS) 2020.

 45. OMG: Business Process Model and Notation (BPMN) Version
2.0. Object Management Group (OMG) 2011.

 46. Oppenheimer D. The importance of understanding distributed
system configuration. In: Proceedings of the 2003 conference on
human factors in computer systems workshop (CHI 2003). ACM
2003.

 47. Petcu D. Consuming resources and services from multiple clouds.
J Grid Comput. 2014;12(2):321–45.

 48. Progress Software Corporation: Chef Infrastructure Management
2023. https:// www. chef. io/ produ cts/ chef- infra struc ture- manag
ement.

 49. Puppet: Puppet 2023. https:// puppet. com/.
 50. Red Hat Inc. Ansible Official Site 2023. https:// www. ansib le. com/.
 51. The Linux Foundation: kubernetes.io 2023. https:// kuber netes. io/.
 52. Weller M, Breitenbücher U, Speth S, Becker S. The deployment

model abstraction framework. In: Enterprise design, operations,
and computing. EDOC 2022 Workshops. 2023; pp. 319–325.
Springer.

 53. Wild K, Breitenbücher U, Képes K, Leymann F, Weder B. Decen-
tralized cross-organizational application deployment automation:
an approach for generating deployment choreographies based on
declarative deployment models. In: Proceedings of the 32nd con-
ference on advanced information systems engineering (CAiSE
2020), Lecture notes in computer science, vol. 12127, pp. 20–35.
Springer International Publishing 2020.

 54. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén
A. Experimentation in software engineering. Berlin: Springer;
2012. https:// doi. org/ 10. 1007/ 978-3- 642- 29044-2.

 55. Wurster M, Breitenbücher U, Brogi A, Diez F, Leymann F, Sol-
dani J, Wild K. Automating the deployment of distributed appli-
cations by combining multiple deployment technologies. In: Pro-
ceedings of the 11th international conference on cloud computing
and services science (CLOSER 2021), pp. 178–189. SciTePress
2021.

 56. Wurster M, Breitenbücher U, Brogi A, Harzenetter L, Leymann F,
Soldani J. Technology-agnostic declarative deployment automa-
tion of cloud applications. In: Service-oriented and cloud comput-
ing. ESOCC 2020. Lecture notes in computer science, Vol. 12054,
pp. 97–112. Springer 2020.

 57. Wurster M, Breitenbücher U, Brogi A, Harzenetter L, Leymann F,
Soldani J. Technology-agnostic declarative deployment automa-
tion of cloud applications. In: Proceedings of the 8th European
conference on service-oriented and cloud computing (ESOCC
2020), pp. 97–112. Springer International Publishing 2020.

 58. Wurster M, Breitenbücher U, Brogi A, Leymann F, Soldani J.
Cloud-native Deploy-ability: an analysis of required features of
deployment technologies to deploy arbitrary cloud-native appli-
cations. In: Proceedings of the 10th international conference
on cloud computing and services science (CLOSER 2020), pp.
171–180. SciTePress 2020.

 59. Wurster M, Breitenbücher U, Falkenthal M, Krieger C, Leymann
F, Saatkamp K, Soldani J. The essential deployment metamodel:
a systematic review of deployment automation technologies. SICS
Softw Intensive Cyber-Phys Syst. 2019;35:63–75.

 60. Wurster M, Breitenbücher U, Harzenetter L, Leymann F, Sol-
dani J, Yussupov V. TOSCA Light: bridging the gap between the
TOSCA specification and production-ready deployment technolo-
gies. In: Proceedings of the 10th international conference on cloud
computing and services science (CLOSER 2020), pp. 216–226.
SciTePress 2020.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.terraform.io/
https://www.chef.io/products/chef-infrastructure-management
https://www.chef.io/products/chef-infrastructure-management
https://puppet.com/
https://www.ansible.com/
https://kubernetes.io/
https://doi.org/10.1007/978-3-642-29044-2

	An Integrated Management System for Composed Applications Deployed by Different Deployment Automation Technologies
	Abstract
	Introduction
	Related Work and Fundamentals
	Deployment Models and Deployment Automation
	Application Management
	The TOSCA Standard
	Related Work and Research Challenges

	An Integrated Management System for Composed Applications Deployed by Different Deployment Automation Technologies
	Instance Information Retriever
	Instance Model Normalizer
	Instance Model Completer
	Instance Model Enricher
	Management Workflow Generator
	Workflow Engine

	Architecture and Prototypical Realization of the Integrated Management System
	Case Study
	Threats to Validity
	Discussion and Current Limitations
	Conclusion and Future Work
	References

