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Abstract
Automated methods for detecting fraudulent healthcare providers have the potential to save billions of dollars in healthcare 
costs and improve the overall quality of patient care. This study presents a data-centric approach to improve healthcare 
fraud classification performance and reliability using Medicare claims data. Publicly available data from the Centers for 
Medicare & Medicaid Services (CMS) are used to construct nine large-scale labeled data sets for supervised learning. First, 
we leverage CMS data to curate the 2013–2019 Part B, Part D, and Durable Medical Equipment, Prosthetics, Orthotics, 
and Supplies (DMEPOS) Medicare fraud classification data sets. We provide a review of each data set and data preparation 
techniques to create Medicare data sets for supervised learning and we propose an improved data labeling process. Next, we 
enrich the original Medicare fraud data sets with up to 58 new provider summary features. Finally, we address a common 
model evaluation pitfall and propose an adjusted cross-validation technique that mitigates target leakage to provide reliable 
evaluation results. Each data set is evaluated on the Medicare fraud classification task using extreme gradient boosting and 
random forest learners, multiple complementary performance metrics, and 95% confidence intervals. Results show that the 
new enriched data sets consistently outperform the original Medicare data sets that are currently used in related works. Our 
results encourage the data-centric machine learning workflow and provide a strong foundation for data understanding and 
preparation techniques for machine learning applications in healthcare fraud.
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Introduction

There are many factors that influence the costs of health-
care and health insurance, including fraud, waste, and abuse 
(FWA). The Federal Bureau of Investigation (FBI) estimates 
that fraud accounts for up to 10% of all billings within the 
United States (U.S.) Medicare program [1]. Some examples 
of healthcare fraud include billing for appointments that the 
patient did not keep, billing for services more complex than 
those performed, or billing for services not provided [2]. In 
2022, for example, the Healthcare Fraud Unit established 
by the U.S. Department of Justice began targeting a fraud 

scenario related to COVID-19 out-of-office testing. Referred 
to as “bundling office visit fraud”, this increasingly popular 
fraud scheme entails providers administering COVID-19 
tests in a quick drive-through fashion, while billing Medi-
care for in-office visits and/or complex procedures that were 
not provided [3]. While these fraudulent practices have clear 
financial repercussions, there are also abusive practices that 
place the patient’s well-being at risk. For example, health-
care providers may provide patients with medically unneces-
sary or inappropriate services that increase the risk of patient 
harm.

Through the proliferation of electronic health records 
and advances in data mining and machine learning meth-
ods, there is a great opportunity to automate healthcare 
fraud detection. However, there are several key challenges 
related to machine learning for healthcare fraud detection. 
For example, the healthcare fraud problem is an inher-
ently imbalanced problem with a small number of known 
fraudulent providers and many non-fraudulent provid-
ers. This causes machine learning algorithms to become 
biased towards the majority class, and many times, causes 
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the learner to have low classification performance on the 
fraudulent class. Similarly, healthcare data are characterized 
by big data challenges [4] and have many high-dimensional 
categorical variables that require special handling [5]. As a 
result, most of the related healthcare fraud detection works 
employ advanced modeling techniques to address these chal-
lenges. In general, there is a lack of work that emphasizes 
the importance of data understanding and data preparation.

Figure 1 illustrates the Cross Industry Standard Process 
for Data Mining (CRISP-DM)  [6]. Most related works 
focus heavily on the modeling stage of the process [7–9]. In 
practice, however, 80% of the machine learning workflow 
consists of data understanding and data preparation [10]. 
Furthermore, most would argue that the representation and 
quality of the input data is the most important factor in the 
success of any machine learning application [11]. This shift 
of focus from the modeling stage to the data understand-
ing and preparation stages aligns with recent data-centric 
artificial intelligence (DCAI) initiatives [12]. DCAI encour-
ages us to spend more time iterating on data, and less time 
iterating on models. In addition to traditional data preproc-
essing tasks, DCAI covers topics such as fairness and bias 
in labeled data sets [13], experiment reproducibility [14], 
and improving overall data quality [15]. While these data 
improvements are labor intensive, they have been shown to 
significantly improve classification performance [16–18].

This study presents a data-centric approach to improving 
healthcare fraud classification rates within the U.S. Medicare 
program. The U.S. Medicare program provides affordable 
health insurance to individuals 65 years and older, and other 

select individuals with permanent disabilities [19]. In 2020 
alone, there were more than 62 million Medicare beneficiar-
ies and expenditures exceeded $926 billion [20]. The mas-
sive scale and complexity of the program make it an easy 
target for fraud [21]. In an effort to reduce fraud, the Centers 
for Medicare & Medicaid Services (CMS) makes Medicare 
data sets publicly available for analysis. We provide a com-
prehensive understanding of publicly available Medicare 
data sources and the preprocessing steps required to create 
labeled data sets for supervised learning. Most importantly, 
we present new techniques for data labeling, introduce three 
new feature-rich data sets, and provide insights on fair model 
evaluation. Topics of interest for this special issue include 
data transparency, data profiling, data cleaning, and repro-
ducible data preparation for machine learning and healthcare 
fraud detection.

We first provide a comprehensive review of the publicly 
available Medicare data sources that we use for fraud clas-
sification. These data sets include six Medicare provider and 
claims data sets from the CMS [22], and real-world fraud 
labels from the List of Excluded Individuals and Entities 
(LEIE) [23]. Three different Medicare programs are used 
in this study: (1) Physician and Other Practitioners (Part 
B), (2) Part D Prescriber (Part D), and (3) Durable Medical 
Equipment, Prosthetics, Orthotics, and Supplies (DMEPOS). 
The Part B, Part D, and DMEPOS data sets include the latest 
CMS claims data available at the time of experimentation, 
including claims for years 2013–2019. We leverage the CMS 
methodology documentation, data dictionaries, and explora-
tory data analysis to provide a review of each data set and to 
identify the necessary data preparation steps.

Next, we describe the data preparation techniques that 
we have used to prepare the CMS Medicare data sets for 
supervised learning. These include imputing missing val-
ues, transforming features, normalizing columns, encoding 
categorical variables, feature selection, mitigating redun-
dancy, and data labeling. In addition to these common pre-
processing techniques, data aggregation is used to compress 
the size and dimensionality of the data sets significantly, 
while simultaneously introducing new features that better 
capture provider billing patterns. Next, we introduce three 
new Medicare Summary by Provider fraud classification 
data sets, i.e., one for each Medicare program, that have not 
been used previously in related works. Finally, we leverage 
the new Summary by Provider data to enrich the existing 
Medicare data sets with up to 58 new features that include 
provider-level, claims-level, and beneficiary-level statis-
tics. These are referred to as the aggregated, summary by 
provider, and aggregated-enriched data sets throughout this 
study.

The quality of the nine resulting Medicare data sets is 
evaluated on the fraud classification task using the extreme 
gradient boosting (XGB)  [24] and random forest (RF) Fig. 1   Phases of the CRISP-DM process for data modeling [6]
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learners [25]. Despite not having any personally identifi-
able information (PII) in our modeling feature set, prelimi-
nary results showed that large models are capable of de-
anonymizing and memorizing providers from rich feature 
sets. This led to overly optimistic performance results that 
would not generalize to real-world applications. To provide 
a fair evaluation that is representative of real-world fraud 
detection systems, we introduce the k-fold-by-npi cross-vali-
dation technique which ensures that providers in the training 
folds do not exist in the test folds. Notably, the k-fold-by-
npi technique proposed in this study can be generalized to 
other problem domains that may suffer from target leakage. 
Performance is reported over six runs of cross-validation 
using the area under the receiver-operating characteristic 
curve (AUC), true-positive rate (TPR), true-negative rate 
(TNR), and geometric mean (G-Mean). This combination 
of threshold-agnostic and complementary performance met-
rics provides a holistic view of overall performance. Across 
all metrics and Medicare programs, we find that the newly 
introduced aggregated-enriched data sets significantly out-
perform the original Aggregated data sets. Finally, we report 
feature contribution scores to illustrate the importance of 
the newly introduced features. Through this data-centric 
exercise, we have significantly increased the performance 
of the CMS Medicare fraud classification task with public 
data sources, reproducible data preparation, and a fair evalu-
ation strategy.

The remainder of this paper is outlined as follows. The 
next section related works on data preprocessing for machine 
learning and healthcare fraud classification. Following sec-
tion thoroughly reviews the CMS data sets used in this study 
and provides a detailed explanation of all data preparation 
steps. The next section outlines the experiment design and 
evaluation strategy used in this study. Following section 
highlights the importance of our proposed evaluation strat-
egy and presents the fraud classification results obtained 
using the aggregated and aggregated-enriched data sets. 
Finally, the last section concludes with a summary of our 
findings and recommendations for future works.

Related Works

Data preparation techniques are thoroughly covered in 
academic textbooks for general purpose data mining and 
machine learning [25, 26]. Topics covered include data 
ingestion, encoding numeric and categorical variables, 
feature standardization and normalization, handling miss-
ing values, addressing class imbalance, and handling data 
with incorrect values. Related works survey these topics and 
summarize opportunities and challenges related to data pre-
processing [11, 27, 28]. Domain-specific preprocessing tech-
niques are also of importance, e.g., computer vision (CV), 

natural language processing (NLP), and other deep learning 
applications [29–31]. For example, NLP applications require 
a separate pipeline of feature transformations to convert free 
text to numeric values for machine learning, i.e., tokeniza-
tion, stop-word removal, stemming, case folding, and token 
embedding [32, 33]. In CV, image transformation pipelines 
include resizing, cropping, and padding images to achieve 
a fixed size, as well as per-channel pixel normalization and 
image augmentation techniques [34]. Therefore, the set of 
data preparations techniques depend heavily on the problem 
domain, the data understanding stage, and the model selec-
tion stage. In this study, we focus on traditional preprocess-
ing techniques for structured tabular data. The remainder of 
this section discusses the preprocessing steps employed by 
related works in the area of healthcare fraud detection.

Many of the related works provide extensive details on 
modeling methodologies. Ko et al. [9] model Medicare pay-
ments for Urologists as a function of the total number of 
patient visits using a linear regression model and the 2012 
CMS Medicare Part B data. Actual payments are compared 
to estimated payments to identify areas of over-utilization 
and potential savings. In a previous study [35], we evaluate 
deep neural networks and various techniques for address-
ing class imbalance using the Part B data set. Data-level 
techniques for addressing class imbalance during the pre-
processing stage are covered thoroughly. Bauder and Khosh-
goftaar [36] compare supervised and unsupervised methods 
for detecting fraud within 2015 CMS Part B data and find 
that supervised learners perform significantly better. The 
authors filter the data to exclude prescription drug claims 
and apply manual feature selection to select a subset of fea-
tures that characterize provider claims. Branting et al. [8] 
extract features from graph structures using 2012–2014 Part 
B and 2013 Part D claims data from the CMS and fraud 
labels from the LEIE. Behavioral similarity and geospatial 
co-location features are extracted from the graph and mod-
eled with decision tree learners to classify fraud. Chandola 
et al. [7] explore three different approaches for detecting 
fraud within Medicaid and Medicare claims data: using 
provider-diagnosis matrices to model hidden topics, mod-
eling provider relations with graph networks, and temporal 
analysis for identifying fraudulent providers. While these 
related works advance the state of healthcare fraud detection 
through machine learning, and touch on several specific pre-
processing steps, we believe that they are lacking sufficient 
details to reliably reproduce their results.

Ekin et al. [37] provide relatively comprehensive preproc-
essing steps for their Medicare fraud classification study that 
uses a subset of the 2014 CMS Part B data. They use feature 
engineering to create two new predictors: provider aggres-
siveness and the mean provider aggressiveness for each pro-
vider type–procedure pair. The provider aggressiveness is 
an interaction term that is taken as the ratio of the average 
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submitted charge and the average payment amount. Miss-
ing values are imputed using the multivariate imputation 
by chained equations technique [38], and class imbalance is 
addressed using the synthetic minority over-sampling tech-
nique (SMOTE) [39]. The authors also enrich the Part B 
data set with locality features that capture patterns related to 
geographical variations in payments. Capelleveen et al. [21] 
explore fraud detection through a variety of outlier detec-
tion methods using 11 months of Medicaid dental claims. 
Records containing null values, zero-dollar payments, and 
future service dates are removed from the data set. Addi-
tional preprocessing steps include validating the number 
of rows and the schemas against supporting metadata, and 
removing duplicate records.

Our study is most closely related to the Medicare fraud 
classification work from Herland et al. [40]. The authors 
construct labeled fraud data sets from the 2012–2015 CMS 
Part B, Part D, and DMEPOS data sets using real-world 
fraud labels from the LEIE. Compared to related works, 
the authors provide one of the most comprehensive data 
understanding sections. Column normalization is used to 
match columns across each year of data and remove any 
columns that are not common across all years. Rows miss-
ing the provider NPI, procedure code, or prescription drug 
name are filtered from the data sets. Provider-level features 
that are not associated with fraud detection are removed. 
Data aggregation is used as a feature engineering method to 
increase the total number of numeric claims-level features 
by a factor of six. We build on this work from Herland et al. 
by expanding their methodologies to the latest 2019 CMS 
Medicare data that are available. We provide a detailed sec-
tion on data understanding, review all data preprocessing 
steps required to curate the Part B, Part D, and DMEPOS 
data sets for classification, and propose an improved method 
for assigning fraud labels. Most importantly, we introduce 
three new enriched data sets with 47–58 new features, and 
show how this data enrichment process enables significantly 
better classification results.

Medicare Data Preparation

Fraud classification data sets are created from publicly avail-
able CMS data sources. This section describes these data 
sources and the various preprocessing techniques employed 
to enable supervised learning. Topics covered include nor-
malizing data inconsistencies, imputing missing values, 
fraud labeling, and data aggregation. We begin with the 
Summary by Provider and Service data sets that are used in 
related works. Next, we introduce a new Summary by Pro-
vider data source. Finally, we leverage this new data source 
to enrich the existing data sets from related works.

Medicare Summary Data by Provider and Service

Each CMS Summary by Provider and Service source 
summarizes the utilization and payments for procedures, 
services, products, and prescription drugs that have been 
provided to Medicare fee-for-service beneficiaries by health-
care professionals. A new summary is released by the CMS 
each year, and public use files are currently available for 
2013–2019. In this section, we introduce the Part B [41], 
Part D [42], and DMEPOS [43] Summary by Provider and 
Service data sets and discuss the data preprocessing steps 
used to prepare them for classification.

The Summary by Provider and Service data sets include 
provider-level and claims-level statistics for the Part B, Part 
D, and DMEPOS Medicare programs. The CMS website 
provides both a user interface and an application program-
ming interface to explore these data sets and perform basic 
search and filter queries. For our purposes, the Medicare 
data sets were downloaded in a comma-delimited format 
for further processing. For data understanding, the CMS 
provides methodology documentation outlining their data 
collection and processing procedures, along with data dic-
tionaries that define all available attributes.

The 2013–2019 Medicare Part B Summary by Provider 
and Service set contains approximately 67 million records 
and 29 columns. Provider-level attributes include the pro-
vider’s national provider identifier (NPI), provider specialty 
type, gender, first and last name, credentials, and geographic 
details. The CMS aggregates the claims each year on: (1) 
national provider identifier (NPI), (2) Healthcare Common 
Procedure Coding System (HCPCS)  [44] code, and (3) 
the place of service. As such, the remaining claims-level 
attributes summarize the provider’s billing activity relative 
to a specific HCPCS code and place of service. The place 
of service attribute distinguishes between services that are 
provided within an office (O) or a facility (F). The HCPCS 
code attribute includes 7738 procedure codes that identify 
specific procedures performed by a provider. For example: 
G9964 identifies a child wellness visit, V5008 identifies a 
hearing screening, and M1003 identifies a Tuberculosis test. 
Examples of claims-level attributes include the number of 
services performed, the number of beneficiaries seen, and 
the average amount charged to Medicare. A preview of this 
data is listed in Table 1 using a subset of columns.

The 2013–2019 Part D Summary by Provider and pre-
scription drug describes a provider’s prescription drug activ-
ity within the Medicare program over a given year and con-
tains specific details about the drugs being prescribed. The 
Part D data set has approximately 172 million records and 
22 columns, making it more than two times larger than the 
Part B data set. Many of the Part D provider-level attributes 
are the same as those in the Part B data set, e.g., NPI, gender, 
and provider type, but it does not include a place of service 
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column. Since the place of service is not applicable, the 
CMS has aggregated these data each year by: (1) provider 
NPI, and (2) prescription drug name. In other words, each 
record describes a provider’s prescription drug activity for 
a given year and drug name. The drug brand name attrib-
ute is a categorical attribute with 3907 unique values, and 
it defines the brand name of the drug being prescribed to 
patients by a provider. Examples of claims-level attributes 
include the number of beneficiaries receiving the drug, the 
total number of prescriptions written, and the associated 
costs. A sample of the Part D data is provided in Table 2 
with a subset of columns.

The 2013–2019 DMEPOS Summary by Provider and 
Service data include aggregated data for referring provid-
ers ordering DMEPOS products and services for Medicare 
beneficiaries. With just over 10 million records and 34 col-
umns, it is the smallest of the three Medicare programs. 
Provider-level attributes are relatively consistent with the 
other two data sets and include the provider’s specialty type, 

gender, etc. The products and services ordered by providers 
are encoded using the HCPCS system, similar to the Part 
B services. The CMS aggregates the data each year by: (1) 
provider NPI, (2) HCPCS procedure code, and (3) rental 
indicator. The rental indicator is a Boolean flag that identi-
fies whether the DMEPOS product or service submitted on 
the claim is a rental or not. Therefore, the remaining claims-
level attributes summarize the supplier’s billing activity with 
respect to each HCPCS code and rental indicator. Examples 
of claims-level attributes include the number of suppliers 
rendering products for the referring provider, the total num-
ber of claims submitted by the supplier, the total number of 
services rendered by the supplier, and the associated costs. 
A sample of the DMEPOS data is provided in Table 3 with 
a subset of columns.

Data Preparation

Data cleaning and preprocessing steps are applied to the Part 
B, Part D, and DMEPOS summary by provider and service 
data sets. These steps include merging years of data, nor-
malizing columns, imputing missing values, transforming 
values, reconciling inconsistencies, feature selection, and 
removing duplicate entries.

The public use files are exported by the CMS portal in 
a comma-delimited format with one file per year. There-
fore, the first step is to combine all years of data for each of 
the Part B, Part D, and DMEPOS data sets. When merging 
files, we maintain a year column that we will require during 
the fraud labeling process in “Fraud labeling”. During the 
merging process, we find that some column names do not 
match for the DMEPOS data set. For example, the DME-
POS uses the column names HCPCS_CD and Rfrg_Crdntls 
in several years, but changes the name to HCPCS_Cd and 
Rfrg_Prvdr_Crdntls in other years. These are corrected by 

Table 1   Sample of Part B data set

NPI Provider 
type

HCPCS 
code

Number 
of ser-
vices

Avg. 
submitted 
charge

.

1003000142 Anesthesiol-
ogy

20611 15 137.20 .

1003000142 Anesthesiol-
ogy

62311 88 145.00 .

1003000142 Anesthesiol-
ogy

99205 11 305.00 .

1003000142 Anesthesiol-
ogy

99213 65 109.00 .

1003000142 Anesthesiol-
ogy

77003 95 48.00 .

Table 2   Sample of Part D data 
set

NPI Provider type Drug name Bene count Claim count .

1003000126 Internal medicine Levofloxacin 26 26 .
1003000126 Internal medicine Lisinopril 17 19 .
1003000126 Internal medicine Metoprolol tartrate 28 30 .
1003000126 Internal medicine Prednisone 14 14 .

Table 3   Sample of DMEPOS 
data set

NPI Provider type HCPCS code # of claims Avg. submitted 
charge

.

1003000126 Internal medicine E0431 23 52.82 .
1003000126 Internal medicine E1390 27 344.29 .
1003000407 Family practice E0570 23 32.53 .
1003000407 Family practice G0333 11 57.00 .
1003000407 Family practice J7613 12 0.31 .
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case folding column names and making manual corrections 
where necessary.

Missing values are identified and imputed for each data 
set using the data dictionary files from the CMS as a guide 
for determining missing values. Missing provider genders 
are imputed with a third gender, U for unknown, across all 
three data sets. The Part D and DMEPOS data sets contain 
missing values for the Tot_Benes and Tot_Suplr_Benes col-
umns, respectively. The CMS methodology states that these 
fields are left blank for all records with a value less than 10. 
Therefore, we impute these missing entries with the median 
value of 5. The remainder of the columns with missing val-
ues are ignored, e.g., provider name and geographic details, 
because we treat them as PII and do not include them in 
modeling.

Most of the values within the Medicare data sets are con-
sistently typed, match the expected schema, and require lit-
tle intervention. For the Part D data set, however, several 
dollar-amount columns are a mix of numeric values and 
strings representing dollar amounts. For example, the total 
drug costs column included string values like “$1,500.20". 
These are cleaned of non-numeric characters and cast to 
floating point numbers.

The provider type attribute is a categorical variable 
that describes the provider or supplier’s medical specialty, 
e.g., Internal Medicine, Family Medicine, Cardiology, etc. 
Through EDA, we observe that these values are inconsist-
ent across multiple years of data and in some cases con-
tain typos. For example, some years of data include the 
provider type of “Allergy/ Immunology", while other years 
use “Allergy/Immunology". An example of a less obvious 
collision is the specialty of “Certified Registered Nurse 
Anesthetist" that is abbreviated as “CRNA" in other years. 
We manually correct 26 of these inconsistencies to reduce 
the overall cardinality of the provider type variable, which 
in turn enables us to reduce the dimensionality of the final 
encoded data set. The Part B provider type cardinality is 
reduced from 127 to 102, the Part D provider type cardinal-
ity is reduced from 269 to 249, and the DMEPOS provider 
type cardinality is reduced from 218 to 204. We leave auto-
mated techniques for merging similar provider types as an 
opportunity for future work.

Provider-level attributes that can be used to identify a spe-
cific provider are excluded from the modeling stage. These 
include the provider name, address, geographic details, and 
any other PII data. These attributes describe providers, not 
fraudulent behavior, and including them would only increase 
model complexity. The resulting set of features selected for 
modeling are outlined in Table 4. We retain the provider NPI 
and year attributes, so that we can correctly map fraudulent 
class labels to the data set, but these are removed for training 
and inference.

For the modeling stage, the Part B and Part D data sets 
each have 5 numeric predictors and the DMEPOS data set 
has 6 numeric predictors. The Part B data set has 3 cat-
egorical variables, the DMEPOS data set has 2 categorical 
variables, and the Part D data set has only one categorical 
variable. The provider type is the only common categori-
cal variable that all three data sets share. Categorical vari-
ables are one-hot encoded during the modeling stage. We 
do not perform any normalization or standardization for the 
numeric attributes, as the XGB and RF learner are not sen-
sitive to scaling [45]. In related works that employ learners 
which benefit from normalization, e.g., gradient-descent 
methods, we have had success using min-max scaling to 
bound numeric variables to a range between 0 and 1 [35].

Feature Engineering with Data Aggregation

The three Medicare fraud data sets are large-scale data sets 
with 12–172 million rows each. This magnitude of data 
increases compute and storage requirements and compounds 
the class imbalance problem [4]. We address this by creat-
ing compressed representations of each data set with data 
aggregation. The primary motivation for this approach is 
to drastically reduce the size and dimensionality of each 
data set. While there is some risk of information loss that is 
caused by removing the service codes, i.e., the HCPCS code 
and drug name, we make up for this by introducing up to 36 

Table 4   Common medicare by provider and service features

Feature Type Part B Part D DMEPOS

NPI Categorical ✓ ✓ ✓

Year Categorical ✓ ✓ ✓

Gender Categorical ✓ ✓

Provider_type Categorical ✓ ✓ ✓

Place_of_service Categorical ✓

Line_srvc_cnt Numeric ✓

Bene_unique_cnt Numeric ✓ ✓ ✓

Bene_day_srvc_cnt Numeric ✓

Average_submitted_chrg_
amt

Numeric ✓ ✓

Average_medicare_pay-
ment_amt

Numeric ✓ ✓

Total_claim_count Numeric ✓

Total_30_day_fill_count Numeric ✓

Total_day_supply Numeric ✓

Total_drug_cost Numeric ✓

Number_of_suppliers Numeric ✓

Number_of_supplier_
claims

Numeric ✓

Number_of_supplier_ser-
vices

Numeric ✓
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new predictors that explain each provider’s overall activity 
over a given year.

The aggregated data sets consolidate all records for a 
given provider and year by dropping the high-dimensional 
service variables and converting numeric attributes to a 
series of summary statistics. As an example, let us consider 
the subset of Part B records listed in Table 1 that contains 
all five records from the provider with NPI 1003000142. In 
the Part B data set, we aggregate over the NPI, year, provider 
type, and gender attributes, and then drop the HCPCS attrib-
ute. When we combine all rows for this provider, we convert 
each numeric attribute to six summary statistics: minimum, 
maximum, median, mean, sum, and standard deviation. The 
aggregation removes the HCPCS column, and transforms the 
line_srv_count attribute to line_srv_count_min, line_srv_
count_max, line_srv_count_median, line_srv_count_mean, 
line_srv_count_sum, and line_srv_count_std values. This 
transformation is applied to all numeric attributes, and when 
there exists only one row for a given provider, then the stand-
ard deviation is imputed with 0. These summary statistics 
describe the provider’s overall billing activity relative to all 
HCPCS procedure codes claimed that year. For the Part B 
data set, this increases the total number of numeric attributes 
from 5 to 30.

The same procedure is applied equally to the Part D and 
DMEPOS data sets. For the Part D data set, we aggregate 
over the NPI, year, and provider type attributes, remove the 
drug name attribute, and convert the remaining numeric 
attributes to their summary statistics. In the DMEPOS data 
set, we aggregate over the NPI, year, gender, and provider 
type attributes, remove the HCPCS attribute, and compute 
summary statistics for remaining numeric attributes. For 
both data sets, this aggregation removes the high-dimen-
sional categorical attributes of HCPCS code and drug name. 
The total number of numeric attributes in the Part D and 
DMEPOS data sets is increased to 30 and 36, respectively. 
This feature engineering step effectively reduces the size of 
each data set by an order of magnitude, and introduces new 
features that capture each provider’s overall billing behav-
iors. For example, the Part D data set is reduced from 173 
million rows and 7 features to 6 million rows and 31 features, 
and reduces its memory footprint by more than 80%.

Enriching Medicare Data Sets

We introduce three new data sets by leveraging the CMS 
Medicare Summary by Provider data sets for the Part B [46], 
Part D [47], and DMEPOS [48] Medicare programs. Similar 
to the Summary by Provider and Service data, the CMS 
makes the Summary by Provider data publicly available on 
their website for years 2013–2019. These data sets do not 
include statistics at the procedure (HCPCS) or drug level. 
Instead, they include summary data that describes all of a 

provider’s services and beneficiaries over a given year. As 
such, it is similar to our Aggregated data sets that we have 
manually derived, i.e., with one record for each NPI and year 
combination. We use the CMS Summary by Provider data 
sets to enrich our Aggregated data sets with new features and 
create the Aggregated-Enriched Medicare data sets.

The Part B Summary by Provider data enables us to 
enrich our Part B Aggregated data sets with 47 new features 
for analysis and modeling. The Summary by Provider data 
includes 7 features which describe the provider’s overall bill-
ing activity across all procedure codes. These include totals 
for the number of HCPCS codes billed, the number of ben-
eficiaries seen, the number of services performed, the dollar 
amount submitted to Medicare for reimbursement, the Medi-
care allowed amount, the Medicare payment amount, and a 
standardized total Medicare payment amount. The standard-
ized total Medicare payment amount is calculated by remov-
ing the differences in payments based on geographic region 
to make prices more comparable across regions. In addition 
to these 7 features, the CMS provides another 14 features 
by breaking these service statistics down into medical and 
drug-related services. The totals within the drug category 
capture the statistics related to a subset of drug services 
that are covered within the Medicare Part B program. Next, 
the Part B Summary by Provider data introduces features 
related to the beneficiaries that are receiving the services. 
The total number of beneficiaries seen are broken down into 
four categories: less than 65, 65–74, 75–84, and greater than 
84. These features, plus their average, account for 5 new 
features. The total number of male and female beneficiaries 
and the racial frequency of beneficiaries account for 8 new 
features. The total number of beneficiaries covered by both 
Medicare and Medicaid, and the total number of beneficiar-
ies covered by Medicare only provide 2 new features. The 
next 18 features are defined as the percentage of patients 
with a particular chronic condition (CC). Some examples 
of chronic conditions included Alzheimer’s, asthma, cancer, 
and kidney disease. Finally, the CMS provides an average 
beneficiary risk score using a risk-adjustment model based 
on hierarchical condition categories (HCC). According to 
the CMS methodology, beneficiaries with above-average 
risk scores (> 1.08) are estimated to have above-average 
Medicare spending. We exclude the beneficiary-race sta-
tistics, as the majority of the records have missing values, 
yielding a total of 47 new numeric predictors.

The Part D Summary by Provider data introduces 51 new 
features to our Part D Aggregated data set. Similar to the 
Part B Summary by Provider data, the first 10 features cap-
ture various beneficiary summary statistics. These include 
the total number of beneficiaries prescribed for, broken down 
by their age group, gender, and Medicare/Medicaid member-
ship. The average HCC risk score is also included for each 
provider. The Part D Summary by Provider data does not 
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include the chronic condition statistics that are included in 
the Part B Summary by Provider data, but it does provide 
more features describing claims subtotals within categories. 
Claims data are summarized for each provider using the 
total number of claims, total number of 30-day prescription 
orders, total drug cost, total day’s supply dispensed, and the 
total number of beneficiaries seen. These summary statistics 
are then broken down to provide subtotals within the catego-
ries: Medicare advantage prescription drug plan (MAPD) 
coverage, Medicare prescription drug plan (PDP) coverage, 
and low income subsidy (LIS). The statistics are also bro-
ken down by several drug categories: opiate drug claims, 
long-acting opiate drug claims, antibiotic drug claims, and 
anti-psychotic drug claims.

Similar to the other Summary by Provider data sets, the 
DMEPOS Summary by Provider data include beneficiary 
demographics data, Medicare versus Medicaid coverage of 
beneficiaries, and the average beneficiary HCC risk score. 
The DMEPOS also includes 16 CC features, similar to the 
Part B Summary by Provider data, denoting the percentage 
of beneficiaries treated that have been diagnosed with the 
CC. The 8 claims data statistics include totals for the number 
of suppliers, number of HCPCS codes, number of benefi-
ciaries, number of claims, number of services, dollar amount 
submitted to Medicare, dollar amount paid by Medicare, and 
the allowed Medicare payment. The claims totals are then 
broken down into categories to provide a more granular 
view: durable medical equipment (DME), prosthetic and 
orthotic specific (POS), and drug-related services. In total, 
the DMEPOS Summary by Provider data introduces 58 new 
numeric features that we can use to enrich the DMEPOS 
Aggregated data set.

Minimal preprocessing is required for the Summary by 
Provider data sets. Like the Summary by Provider and Ser-
vice data sets, several dollar-amount columns are cleaned of 
non-numeric characters and cast to floating point numbers. 
Missing values are imputed with 0 and rows missing NPI 
values are removed. The beneficiary-race statistics and the 
suppression flag features are not included in the final data 
sets, because they are missing values for more than 50% 
of the records. All attributes introduced by the supplemen-
tary data sources are numeric and did not require feature 
normalization.

We perform an inner join on the NPI and year attributes 
for the Aggregated data sets and the processed Summary by 
Provider data sets for each Medicare program. This feature 
engineering step more than doubles the total number of fea-
tures in each data set. The Part B and DMEPOS data sets 
provided clean joins with no data loss, but the Part D data 
set lost approximately 1 million records during this join, 
because the Summary by Provider data set did not include 
data for all providers and years. We refer to these new Medi-
care data sets as the aggregated-enriched data sets. To the 

best of our knowledge, this is the first time that these addi-
tional data sets have been used to enrich Medicare claims 
data for fraud detection. We run classification experiments 
with the Aggregated and Aggregated-Enriched data sets 
to determine if the new predictors are able to significantly 
improve fraud detection rates.

Fraud Labeling

The Medicare data sets from the CMS do not include fraudu-
lent or non-fraudulent labels. Instead, we identify real-world 
fraudulent providers using the publicly available LEIE data 
set [23] and use these to label the CMS data. The LEIE 
is maintained by the Office of Inspector General (OIG) in 
accordance with Sections 1128 and 1156 of the Social Secu-
rity Act [49] and is updated on a monthly basis. The OIG 
has the authority to exclude providers from Federally funded 
health care programs for a variety of reasons. Excluded 
individuals are unable to receive payment from Federal 
healthcare programs for any services, and must apply for 
reinstatement once their exclusion period has been satis-
fied. The current LEIE data format contains 18 attributes 
that describe the provider and the reason for their exclusion. 
Table 5 provides a sample of the LEIE data set. Some addi-
tional attributes not listed include first and last name, date of 
birth, address, and the provider’s reinstation date.

The LEIE exclusion type attribute is a categorical value 
that describes the offense and its severity. Following the 
work by Bauder and Khoshgoftaar [50], a subset of exclu-
sion rules that are indicative of fraud are selected for labeling 
Medicare providers. Table 6 lists the exclusion rules used in 
this study. We use the NPI numbers of excluded individuals 

Table 5   Sample of LEIE data

Specialty NPI Excltype Excldate

Podiatry practice 1598041998 1128a1 20190320
Pharmacy 1275750374 1128a1 20190320
Internal medicine 1477537496 1128b4 20140520

Table 6   Fraud-related LEIE rules [49]

Social security act Description

1128(a)(1) Conviction of program-related crimes
1128(a)(2) Conviction relating to patient abuse or neglect
1128(a)(3) Felony conviction relating to health care fraud
1128(b)(4) License revocation, suspension, or surrender
1128(b)(7) Fraud, kickbacks, and other prohibited activities
1128(c)(3)(g)(i) Conviction of second mandatory exclusion 

offenses
1128(c)(3)(g)(ii) Conviction of third mandatory exclusion offenses
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that have been convicted under one of these rules to identify 
fraudulent providers within each of the Medicare data sets. 
For each excluded provider, we compute their last exclu-
sion year to be the exclusion year plus the minimum exclu-
sion period, rounded to the nearest year. For the providers 
within the Medicare data sets whose NPI number matches 
those of the LEIE data set, claims that are dated prior to 
the provider’s last exclusion year are labeled as fraudulent. 
This works under the assumption that the claims made prior 
to the exclusion data, or during the exclusion period, are 
representative of fraudulent claims activity.

Previous works have always used the latest LEIE data set 
to obtain a list of fraudulent providers. This risks introducing 
false negatives, however, because the LEIE database only 
contains exclusions that are currently in effect. If a provider 
was fraudulent in previous years and then reinstated, this 
approach would label the provider’s claims as non-fraudu-
lent. This adds noise to the non-fraudulent class and reduces 
the total number of fraudulent providers. As such, we expect 
this shortcoming to hurt classification performance. We refer 
to this fraud labeling approach as the Active Exclusion List, 
and propose a new approach for labeling that mitigates this 
class label noise and increases the total number of fraudulent 
providers.

We leverage an Internet Archive tool [51] to obtain the 
active LEIE data set for each year of Medicare data and 
create a Cumulative Exclusion List. More specifically, we 
obtain the active LEIE exclusion lists for the first month 
of each year 2013–2019. We then concatenate each year of 
provider exclusions and use the exclusion end year from the 
most recent record to identify fraudulent labels within the 
Medicare data. This increases the total number of known 
fraudulent providers from 4355 to 5046, i.e., a 15% increase, 
and improves data quality by reducing the mislabeled 
instances.

Table 7 and Table 8 provide a summary of the Aggre-
gated and Aggregated-Enriched data sets. All data sets are 

characterized by high levels of class imbalance, with an 
overwhelming number of non-fraudulent samples and a rare 
fraudulent class sizes ranging from 0.0456 to 0.0880%. The 
Aggregated data sets have between 31 and 38 features, and 
the Aggregated-Enriched data sets have between 80 and 96 
features.

Experiment Design

All data exploration, preparation, and experiments are 
executed using the Python data science stack [52] on high-
performance compute machines with sufficient memory and 
CPU to avoid the complexities of distributed systems. Data 
sets are evaluated on the fraud classification task using the 
RF and XGB learners. The RF algorithm is trained using the 
scikit-learn package [53] and the XGB algorithm is trained 
using its Python implementation [54]. Hyperparameters are 
identified for each learner during preliminary experiments. 
A maximum depth of 4 and 16 is used for the XGB and RF 
learners, respectively, and all remaining hyperparameters are 
left as their default values.

Six runs of fivefold cross-validation are performed to pro-
duce a total of 30 results for each learner and data set combi-
nation. We use an adjusted k-fold cross-validation technique 
to provide a fair and realistic performance evaluation. We 
refer to this as k-fold-by-npi cross-validation, because it 
ensures that providers do not co-exist in both the train and 
test folds. We find this necessary, because learners can over-
fit to specific providers and memorize specific characteristics 
of providers, instead of learning a general fraud distribution.

We report performance using the AUC, AUPRC, TPR, 
and TNR metrics over 30 repetitions. The AUC metric sum-
marizes the trade-off between the TPR and the false-positive 
rate (FPR), and it is a popular metric for class-imbalanced 
problems that is often used in related works [55]. When 
reporting TPR and TNR scores, we use the prior probability 
of the positive class as a decision threshold to assign class 
labels to model output probabilities [56, 57]. Finally, we 
analyze feature contributions using the average of the abso-
lute Shapley additive explanations (SHAP) values for each 
feature. The SHAP values measure the marginal contribution 
that each feature makes towards the model’s output [58]. We 
use SHAP values, instead of each learner’s built-in feature 
importance metrics, because they directly quantify the con-
tribution of each feature [59].

Experiment Results

We evaluate the aggregated, summary by provider, and 
aggregated-enriched data sets on the Medicare fraud clas-
sification task. This section begins with a discussion on fair 

Table 7   Aggregated medicare data summary

Dataset Records Positive count Positive ratio Feature count

Part B 8,669,497 3954 0.0456% 33
Part D 6,262,115 4064 0.0649% 31
DMEPOS 2,056,075 1809 0.0880% 38

Table 8   Aggregated-enriched medicare data summary

Dataset Records Positive count Positive ratio Feature count

Part B 8,669,497 3954 0.0456% 80
Part D 5,344,106 3700 0.0692% 82
DMEPOS 2,056,075 1809 0.0880% 96
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model evaluation. Next, we review the performance of each 
data set using the XGB and RF learners. Finally, we analyze 
the feature contributions of each data source using SHAP 
values.

Fair Evaluation with K‑Fold‑by‑NPI Cross‑validation

During preliminary experiments, we explored the max-depth 
hyperparameter of the XGB learner to maximize classifi-
cation performance. These results show that increasing the 
max-depth of the XGB learner’s decision trees provides 
consistently better AUC scores. After evaluating the XGB 
learner with an unlimited tree depth and obtaining near-
perfect AUC > 0.99, we decided to reconsider the Medicare 
data and evaluation strategy.

Recall that the Aggregated Medicare data sets contain 
one or more rows for each provider. If a provider has sub-
mitted claims for years 2013–2017, and they were flagged 
as fraudulent in 2017 or later, then the data set will include 
five records for this provider, i.e., one record for each year. 
Using the standard k-fold cross-validation, or train-test split, 
as has been done in related works, it is possible for a pro-
vider to exist in both the training and evaluation data sets. 
Furthermore, intuition suggests a provider is likely to have 
somewhat similar billing patterns over these years, e.g., the 
same provider type, similar billing frequencies, and similar 
beneficiary populations. Given the rich feature set that we 
have introduced in this study, it is possible that we are not 
modeling general claims fraud, but instead are modeling spe-
cific providers through de-anonymization. We acknowledge 
that this is an unfair evaluation, and most importantly, it is 
not appropriate for real-world applications that need to make 
inferences on new providers that were not observed during 
model training. We address this using a k-fold-by-npi cross-
validation technique that selects random providers for the 
training and evaluation folds. This ensures that for a given 
iteration of cross-validation, a provider will not exist in both 
the train and evaluation folds.

The AUC scores obtained using both k-fold evalu-
ation techniques are compared in Fig. 2 using the Part B 

Aggregated-Enriched data set. These results show that a 
maximum depth of 8 is all that is required to fit the entire 
training set. The traditional k-fold cross-validation obtains 
the minimum validation AUC at a maximum depth of 2 and 
the maximum AUC of approximately 0.99 at a maximum 
depth of 32. In other words, the AUC performance increases 
monotonically with the maximum tree depth parameter 
when using the traditional k-fold cross-validation.

When we apply the k-fold-by-npi evaluation technique, 
we obtain a maximum AUC of 0.9536 using a maximum tree 
depth of 4. Unlike the traditional k-fold cross-validation, the 
k-fold-by-npi validation performance decreases consistently 
as the tree depths increase past 4. The k-fold-by-npi exhib-
its the expected bias-variance trade-off, where increasing 
the capacity of the learner beyond some threshold leads to 
overfitting and degrading validation performance. Therefore, 
we can conclude that the traditional k-fold cross-validation 
provides unreliable, optimistic classification performance on 
the validation set. We use the k-fold-by-npi throughout the 
remainder of our work and recommend that this technique 
be adopted by future works as it provides a fair evaluation 
that reflects fraud detection systems in practice.

The problem of over-optimistic cross-validation that we 
observe in this study is not unique to healthcare fraud detec-
tion. Fortunately, the k-fold-by-npi can easily be extended to 
other problem domains. In the more general sense, we refer 
to this as the k-fold-by-entity cross-validation technique, and 
its purpose is to ensure that entities do not co-exist within 
the training and validation folds.

Data Set Performance

Table 9 compares the performance of the newly curated 
summary by provider (SbP) data, the original aggregated (A) 
data that is used in related works, and the new aggregated-
enriched (AE) data set. The aggregated-enriched data set 
is the result of joining the new summary by provider fea-
tures with the original Aggregated data set on the provider 
NPI. The average AUC and 95% confidence intervals (C.I.) 
are reported and the confidence intervals listed in bold font 

Fig. 2   Comparing cross-validation techniques
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indicate performance that is significantly better according to 
non-overlapping intervals.

Across all Medicare programs and learners, the Summary 
by Provider data set obtains significantly lower AUC scores 
than the original Aggregated data set that is used in related 
works. For example, the average Summary by Provider AUC 
score for the XGB learner is 0.8080, while the Aggregated 
data set obtains an average AUC score of 0.9387. Similarly 
for the RF learner, the Summary by Provider data obtains an 
average AUC of 0.7589 that is significantly lower than the 
Aggregated data set’s average AUC of 0.7972. Despite the 
larger feature space of the Summary by Provider data set, 
it is clear that it does not contain sufficient information to 
perform competitively with existing data sets on the fraud 
detection task.

Next, we consider the effect of enriching the Aggregated 
data set with the Summary by Provider features. On average, 
the Aggregated-Enriched data sets obtain an AUC interval 
of 0.9485–0.9571 using the XGB learner and an AUC inter-
val of 0.8250–0.8493 using the RF learner. These average 
Aggregated-Enriched AUC results are significantly greater 
than the AUC results of the original Aggregated data set. 
While the summary by provider data sets did not perform 
well independently, these results show that they are very 
effective when used to enrich existing data sources. We can 
conclude that the newly introduced provider-level, claims-
level, and beneficiary-level features consistently improve the 
AUC performance across three Medicare programs and two 
machine learning algorithms.

Table 10 lists the XGB classification performance of 
the aggregated-enriched data set using the TPR, TNR, and 
G-Mean performance metrics. The percentages listed in 
parenthesis include the performance lift compared to the 
original Aggregated data from related works. We focus 
specifically on the XGB learner, because it consistently 

outperforms the RF learner according to AUC results. Due 
to the high class imbalance, the prior probability of the 
positive class is used as the decision threshold for assign-
ing class predictions to model probability estimates based 
on related works [60].

In all cases, the Aggregated-Enriched data sets per-
form better than the Aggregated data sets according to 
the TPR, TNR, and G-Mean scores. The Part D data set 
sees the greatest increases to classification performance, 
with a 4.69% and 2.77% increase to the TPR and TNR 
scores, respectively. The DMEPOS data set sees the small-
est increase to classification performance, with less than a 
1% increase to the TPR and TNR scores. When comparing 
class-wise performance, the TPR performance is improved 
more than the TNR performance when using the enriched 
data sets. Overall, we can conclude that enriching the 
Medicare fraud data sets with new provider-level, claims-
level, and beneficiary-level predictors provides meaning-
ful improvements to all classification metrics reported in 
this study.

Feature Contributions

To better understand which features contribute to the XGB 
performance, we illustrate the average SHAP value for 
the top 20 features of the combined Aggregated-Enriched 
data set in Fig. 3. Both the original Aggregated and the 
new Summary by Provider data set contribute 9 features 
to the top 20 most important features. The remaining two 
features are common across both data sets, i.e., single 
attributes from the gender and provider type one-hot vec-
tors. Key predictors of Medicare fraud, with SHAP val-
ues ≥ 0.1 , include the total number of beneficiary services 
per day, the total number of services provided over the 
year, the average Medicare payment amount, and the total 
Medicare payment amount. Other interesting predictors 
that are introduced by the new Summary by Provider data 
set include beneficiary age and chronic condition statistics. 
These results show that the new Summary By Provider 
features make an approximately equal contribution to the 
model outputs and positively influence prediction results.

Table 9   AUC performance results

Data set XGB learner RF learner

Mean 95% C.I Mean 95% C.I

Part B SbP 0.8310 (0.8256, 0.8365) 0.7943 (0.7895, 0.7991)
Part B A 0.9392 (0.9345, 0.9439) 0.8245 (0.8196, 0.8295)
Part B AE 0.9536 (0.9497, 0.9575) 0.8717 (0.8660, 0.8774)
Part D SbP 0.8086 (0.8043, 0.8129) 0.7488 (0.7433, 0.7544)
Part D A 0.9376 (0.9343, 0.9409) 0.7548 (0.7383, 0.7532)
Part D AE 0.9580 (0.9533, 0.9627) 0.8022 (0.7949, 0.8096)
DMEPOS SbP 0.7856 (0.7799, 0.7892) 0.7435 (0.7373, 0.7497)
DMEPOS A 0.9400 (0.9341, 0.9447) 0.8213 (0.8130, 0.8296)
DMEPOS AE 0.9495 (0.9447, 0.9547) 0.8376 (0.8306, 0.8446)
Average SbP 0.8080 (0.7997, 0.8164) 0.7589 (0.7496, 0.7681)
Average A 0.9387 (0.9345, 0.9428) 0.7972 (0.7824, 0.8120)
Average AE 0.9528 (0.9485, 0.9571) 0.8372 (0.8250, 0.8493)

Table 10   Aggregated-enriched classification improvements with 
XGB learner

TPR TNR G-mean

Part B 0.8484 (+2.23%) 0.9572 (+1.48%) 0.9011 (+1.88%)
Part D 0.8619 (+4.69%) 0.9678 (+2.77%) 0.9132 (+3.73%)
DMEPOS 0.8551 (+0.75%) 0.9687 (+0.60%) 0.9099 (+0.68%)
Average 0.8551 (+2.56%) 0.9646 (+1.63%) 0.9081 (+2.09%)
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Conclusion

This study presents a data-centric approach to improve 
healthcare fraud classification results using publicly avail-
able claims data from the CMS. We utilize publicly available 
data from the CMS to introduce six new labeled Medicare 
data sets, i.e., the Summary by Provider and the Aggregated-
Enriched data sets for each Medicare program. These data 
sets include new provider-level, claims-level, and benefi-
ciary-level statistics for each provider participating in the 
Medicare program. We begin with a comprehensive review 
of existing data sources and data preparation techniques, 
e.g., data preprocessing, aggregation, enrichment, and labe-
ling. Next, we leverage Internet archives to obtain histori-
cal lists of fraudulent Medicare providers through the LEIE 
website and construct cumulative exclusion lists of providers 
that increase the size of the fraudulent class by 15%. We 
demonstrate how these new feature-rich data sets can yield 
misleading classification results, and correct for this using 
an improved cross-validation technique that better reflects 
real-world fraud detection systems.

Multiple performance metrics and 95% confidence 
intervals show that the newly proposed Summary by Pro-
vider features are good indicators of healthcare fraud, 
especially when they are used to enrich existing data 
sets. AUC, TPR, TNR, and G-mean results show that the 
Aggregated-Enriched data set performs significantly bet-
ter than the Aggregated data set used frequently in related 
works. Feature contribution measures are used to sup-
port these findings, indicating that the new Summary by 
Provider feature set contributes to 9 of the top 20 most 

important features in the Aggregated-Enriched data set. In 
future works, we plan to explore additional feature engi-
neering techniques for the provider summary data set, e.g., 
feature interactions. A comprehensive analysis of feature 
importance is also recommended for future works, as 
model interpretability is a critical component of health-
care fraud detection.
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