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Abstract

Head pose estimation (HPE) is an active and popular area of research. Over the years, many approaches have constantly been
developed, leading to a progressive improvement in accuracy; nevertheless, head pose estimation remains an open research
topic, especially in unconstrained environments. In this paper, we will review the increasing amount of available datasets
and the modern methodologies used to estimate orientation, with a special attention to deep learning techniques. We will
discuss the evolution of the field by proposing a classification of head pose estimation methods, explaining their advantages
and disadvantages, and highlighting the different ways deep learning techniques have been used in the context of HPE. An
in-depth performance comparison and discussion is presented at the end of the work. We also highlight the most promising

research directions for future investigations on the topic.
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Introduction

The capacity to estimate the head pose of another person is a
common human ability that presents a unique challenge for
computer vision systems. People have the ability to quickly
and effortlessly interpret the orientation and movement of a
human head, thereby allowing one to infer the intentions of
nearby people and to comprehend an important non-verbal
form of communication.

In a computer vision context, head pose estimation (HPE)
is the process of inferring the orientation of a human head
from digital imagery. Like other facial vision tasks, an ideal
head pose estimator must demonstrate invariance to a variety
of image-changing factors, such as camera distortion, projec-
tive geometry, multi-source non-Lambertian lighting, as well
as biological appearance, facial expression, and the presence
of accessories like glasses and hats [1].

Head pose is an important cue in computer vision when
using facial information and has a wide variety of uses in
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human-computer interaction, explaining the steadily increas-
ing attention received by the scientific community over the
last 3 decades.

Although many techniques have been developed over the
years to address this issue, head pose estimation remains an
open research topic, particularly in unconstrained environ-
ments [2].

Similarly to other applicative domains, HPE has greatly
benefited in recent years by the exploitation of deep learn-
ing (DL) techniques, and the extensive use of Deep Neural
Networks. In this article, we shall do a review of the topic
from the distinctive perspective of deep learning, discuss-
ing and comparing the many different ways in which Deep
Neural Networks contributed to the development of the field.

Motivation

HPE systems play an important role in the development of
different intelligent environments, so that several computer
vision applications rely on a robust HPE system as a pre-
requisite: for example, applications of gaze estimation [3],
virtual/augmented reality [4], and human computer interac-
tion [5], strongly benefit from knowing the exact position of
the head in 3D space. Some application examples are:

e Human Social Behaviour Analysis: People use the
orientation of their heads to convey rich, inter-personal
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information. For example, there is important meaning in
the movement of the head as a form of gesturing in a con-
versation [6] to indicate when to switch roles and begin
speaking or to indicate who is the intended target subject
[7, 8]. People nod to indicate that they understand what
is being said, and they use additional gestures to indicate
dissent, confusion, consideration, and agreement [9].

In addition to the information that is implied by delib-
erate head gestures, there is much that can be inferred
by observing a person’s head. For instance, quick head
movements may be a sign of surprise or alarm, these
could also trigger reflexive responses from other observ-
ers [10].

Therefore, HPE can be used in smart rooms to monitor
participants in a meeting and to record their activities, in
particular, their attention can be indirectly related to their
head pose [11]. Systems exploiting head pose estimation
to analyse people behaviour and human interaction in
meeting and workplaces have been proposed in [12—14].

There are also studies on systems for automatic pain
monitoring that show how including head pose can
improve the performance for both person-specific and
general classifiers [15].

¢ Driving Safety & Assistance: HPE systems are particu-
larly useful for assisting drivers by providing contextual
alert signals, for example in the case of pedestrians out-
side the driver’s field of view [16].

Moreover, the head pose can give clues about the
intention of the pedestrian e.g. a pedestrian will wait for
a stopped automobile driver to look at him before step-
ping into a crosswalk (this is an example of pattern rec-
ognition), very important also in the case of autonomous
vehicles.

Applications to infer the driver’s pose are very impor-
tant for safety, as they can provide insights about dis-
traction, intention, sleepiness, awareness or detect blind
spots of the driver [17], for this reason, in recent years
many datasets that address this specific scenario have
been published [18-20].

¢ Surveillance and Safety: Head pose estimation in sur-
veillance video images is an important task in computer
vision because it tracks the visual attention and provides
insight on human behavioural intentions [21, 22]. Sys-
tems for direct an automated surveillance network have
been proposed in [23, 24].

e Targeted Advertisement: Methods to track visual
attention in wandering people have been proposed in the
literature [25]. These systems count people looking at
particular outdoor advertisements (targeted advertise-
ment) and can determine what a person is looking at if
movement is unconstrained. Systems like these can be
used for behaviour analysis and cognitive science in real

SN Computer Science
A SPRINGER NATURE journal

Fig. 1 An example of application to driver assistance. Right: Green
box indicates yaw < + 45° and potential awareness of vehicle. Left:
Red box indicates possible inattention (image from [7])

Fig.2 Example of a task strongly linked to head pose estimation:
Despite the eyes are in the same position in both face images, the per-
ception is that the two gazes are differently oriented. Gaze prediction
comes from a combination of both eyes and head pose direction [28]

world applications also in indoor environments, such as
TV viewers behaviour analysis [26].

¢ Interface Design: By perceiving the human attention
when they look at an interface (e.g. the page of web or
software), it is possible to evaluate the property and sig-
nificance of the displayed visual elements and further
guide the design or rearrangement of these elements [27]
(see Fig. 1).

Therefore, head pose estimation can be used to monitor
human social activities, to observe the behaviour of specific
targets, but also to enhance the function of some face-related
tasks, including expression detection, gaze estimation
(Fig. 2), full-body pose estimation and identity recognition.

The intrinsic interaction between head pose and other
face parts is also confirmed in more recent research. Studies
in [29-32] suggest that the mutual relationship between face
parts can be exploited not only for HPE, but also for other
visual tasks such as gender recognition, race classification,
and age estimation making head pose estimation a useful and
important task for many applications.

Contribution and Structure

The main contribution of the article are:
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e acomplete and updated review of all the available data-
bases for the head pose estimation task , with a detailed
comparison of the main characteristics (number of sub-
jects, DoF, acquisition scenario) and the analysis of
which are the most used and useful in the literature;

e a categorization and explanation of the different
approaches used in the literature for head pose estima-
tion, with a specific focus on modern deep learning
approaches;

e report and discussion of modern head pose estimation
methods and their comparative performance on com-
mon datasets, with a deep analysis of different evaluation
pipelines and a clear tabular presentation of data;

The remainder of the article is organized as follows: Sec-
tion “Head Pose Estimation” contains an introduction to the
basic concepts of the head pose estimation field; Section
“Datasets” presents a detailed list of available datasets and
their characteristics; Section “Head Pose Rotations Repre-
sentations” explains the main techniques for representing
rotations used in the HPE field; Section “Methods” describes
prominent deep learning based approaches for head pose
estimation; Section “Evaluation Metrics” reports the most
common evaluation metrics; Section “Evaluation” deline-
ates most used evaluation pipelines; Section “Discussion”
presents a discussion of datasets, evaluation metrics/pipe-
lines and possible research directions; Section “Conclusion”
concludes the paper summarizing the contribution of the
proposed work.

Note: All numerical results reported in the following
tables are borrowed from the original publications.

Head Pose Estimation

In the computer vision context, head pose estimation is most
commonly interpreted as the ability to infer the orientation
of a person’s head relative to the view of a camera. More
rigorously, head pose estimation is the ability to infer the
orientation of a head relative to a global coordinate system,
but this subtle difference requires knowledge of the intrinsic
camera parameters to undo the perceptual bias from perspec-
tive distortion [1].

At the coarsest level, head pose estimation applies to
algorithms that identify a head in one of a few discrete ori-
entations, e.g. a frontal versus left/right profile view. At the
fine (i.e., granular) level, a head pose estimate might be a
continuous angular measurement across multiple Degrees
of Freedom (DoF).

In particular, in the head pose estimation task, it is com-
mon to predict relative orientation with Euler angles—
pitch, yaw and roll. They define the object’s rotation in a
3D environment, if the right prediction about these three

Fig.3 Euler angles in Head Pose Estimation (image source [33])

angles can be made, it can be found in which direction the
human head will be facing (see Fig. 3).

Despite head pose estimation is an old and largely
investigated problem, achieving acceptable quality on it
has become possible only thanks to the recent advances in
deep Learning. Challenging conditions like extreme pose,
bad lighting, occlusions and other faces in the frame make
it difficult for data scientists to detect and estimate head
poses.

Nevertheless, SOTA methods for head pose estimation
satisfy all the following criteria, firstly proposed by Erik
Murphy-Chutorian in [1], on standard datasets:

e Accurate: the system should provide a reasonable esti-
mate of pose with a mean absolute error of 5° or less.

e Monocular: the system should be able to estimate head
pose from a single camera. Although accuracy might be
improved by stereo or multi-view imagery, this should
not be a requirement for the system to operate.

e Autonomous: there should be no expectation of man-
ual initialization, detection, or localization, precluding
the use of pure-tracking approaches that measure the
relative head pose w.r.t. some initial configuration and
shape/geometric approaches that assume facial feature
locations are already known.

e Multi-Person: the system should be able to estimate
the pose of multiple people in one image.

¢ Identity & Lighting Invariant: the system must work
across all identities with the dynamic lighting found in
many environments.

¢ Resolution Independent: the system should apply to
near-field and far-field images with both high and low
resolution.

e Full Range of Head Motion: the methods should be
able to provide a smooth, continuous estimate of pitch,
yaw and roll, even when the face is pointed away from
the camera.

SN Computer Science
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e Real-Time: the system should be able to estimate a
continuous range of head orientation with fast (30fps or
faster) operation.

Datasets

Most of the HPE models are trained and evaluated using
publicly available datasets. These datasets significantly
evolved during the last years, especially in terms of com-
plexity of environmental conditions.

Most datasets provide rotation information by means of
Euler angles, which define the orientation of a rigid body
with respect to a fixed coordinate system; three rotations are
always sufficient to express any target position. These rota-
tion angles can be extrinsic or intrinsic, the former express
the rotations with respect to the xyz axes of an original
motionless coordinate system, the latter express rotations
with respect to axes of a rotating XYZ coordinate system,
rigidly attached to the moving body.

Since various formalisms exist to express a rotation in
three dimensions beyond Euler angles, e.g. rotation matri-
ces, unit quaternions, Rodrigues’ formula, among others,
the datasets contain different forms of representation (many
of these formalisms use more than the minimum number of
three parameters). More details about some of the represen-
tations exploited by the models to solve the HPE task can
be found in Section “Head Pose Rotations Representations”.

Head pose datasets can be categorized by different
aspects, such as imaging characteristics, data diversity,
acquisition scenario, annotation type, and annotation tech-
nique [18]. These aspects play an important role on whether
and how the dataset identifies the challenges of the head
pose estimation task.

e Imaging characteristics: relate to the image resolution,
number of cameras, bit depth, frame rate, modality
(RGB, grayscale, depth, infrared), geometric setup and
field of view.

e Data diversity: incorporates aspects such as the number
of subjects, the distribution of age, gender, ethnicity,
facial expressions, occlusions (e.g. glasses, hands, facial
hair) and head pose angles. Data diversity is essential for
training and evaluating robust estimation models.

e Acquisition scenario: covers the circumstances under
which the acquisition of the head pose takes place. The
most important distinction is between in-laboratory
vs. in-the-wild acquisition. While the former restricts
the data by defining a rather well-defined, static envi-
ronment, the latter offers more variety through being
acquired in unconstrained environments, such as outside,
thus covering many challenging conditions like differing
illumination and variable background. Head movement
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can be staged by following a predefined trajectory or can
be naturalistic by capturing head movement while the
subject performs a different task, such as driving a car.

e Annotation type: describes what meta-information, such
as head pose, comes alongside the image data and how
it is represented. For example, head pose can be defined
by a full 6 degrees of freedom (DoF) transformation from
the camera coordinate system to the head coordinate sys-
tem (covering 3 DoF for translation and 3 DoF in rota-
tion) or only a subset of them can be provided. Annota-
tion types can differ also in their granularity of sampling
the DoF space: there are discrete annotation types that
classify a finite set of head poses, and there are continu-
ous annotation types that offer head pose annotations on
a continuous scale for all the DoFs.

e Annotation technique: there are different methods for
obtaining the head pose annotation (label) accompanying
each image. The annotation technique has a large impact
on data quality (see Table 1, 2 and 3).

Available Datasets
There are many available datasets in the literature:

e 300W-LP [53]: The 300W-LP (Large Pose) is a synthetic
extension of the 300W database [71], generated to aug-
ment the number of challenging samples with extreme
poses. It includes 122 450 images with yaw angle in range
+89°.

o AFLW [45]: Annotated Facial Landmark in the Wild
is a challenging dataset which was collected from the
internet, in totally unconstrained conditions. It contains
a collection of 25, 993 faces with head poses ranging
between + 120° for yaw and + 90° for pitch and roll. The
pitch, yaw and roll angles were obtained automatically
from the labelled landmarks using the POSIT algorithm
[72], assuming the structure of a mean 3D face, for this
reason, several annotations errors were found [73].

o AFLW2000-3D [53]: This dataset contains the first 2000
identities of the in-the-wild AFLW [45] dataset which
have been re-annotated with 68 3D landmarks using a
3D model which is fit to each face. Consequently, this
dataset contains accurate fine-grained pose annotations
and is a prime candidate to be used as a test in head pose
estimation task. Yaw varies +120°, while roll and pitch
+90°.

e AFW [47]: Annotated Faces in the Wild represents a
small database (it’s a subset of AFLW [45]), which is
normally used for testing purposes only. AFW has 250
images and inside these images 468 faces in a very chal-
lenging environment are included. The yaw angles vary
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Table 1 Available datasets for

T Database Year People Images Yaw Pitch Roll DB type GT method Pose type
Head Pose Estimation

BU [34] 2000 5 200 v v v C MS C
PIE [35] 2000 68 40.000 v C CA D
IDIAP-HP [36] 2003 16 66.295 v v v C MS C
CAS-PEAL [37] 2004 1.040 99.594 v v C CA D
Pointing’04 [38] 2004 15 2.790 v v C DS D
FacePix [39] 2005 30 5.430 v C CR D
Bosphorus [40] 2008 105 4.652 v v C DS D
ETH [41] 2008 26 10.000 v v C ICP C
BJUT-3D [42] 2009 500 46.500 v v C

Taiwan Rob.Lab [43] 2009 90 6.660 v C CA D
Multi-Pie [44] 2010 337 75.000 v C CA D
AFLW [45] 2011 25.993 v v v W E C
BIWI Kinect [46] 2011 20 15.000 v v v C ICP C
AFW [47] 2012 205 468 v v v w M D
ICT-3DHP [48] 2012 10 1.400 v v v C IS C
BioVid Heat Pain [15] 2013 90 9.000 v v v C ICP C
CAVE [49] 2013 56 5.880 v C CA D
McGill [50] 2013 60 18.000 v \W% M D
Dali3DHP [51] 2014 33 60.000 v v 4 C IN C
MTFL [52] 2014 12.995 v w M D
300W-LP [53] 2015 122450 vV v 4 Hwysy S C
AFLW2000-3D [53] 2015 2.000 v v v W E C
AISL [54] 2015 20 6.480 v v C CRY D
CMU Panoptic® [55] 2015 1.342.018 Vv v v C P C
CCNU [56] 2016 58 4.350 v v C IS C
GI4E-HP [57] 2016 10 36.000 v v v C MS C
Synthetic [58] 2016 37 74.000 v v v S S C
UMDFace [59] 2016 8.277 367.888 VvV v 4 w E C
DriveAHead [20] 2017 20 ~1M v v v w* (0] C
Pandora [60] 2017 22 250.000 Vv v v c* IS C
SASE [61] 2017 50 30.000 v v v C ICP C
SyLaHP [62] 2017 30 ~101K Vv v v S S C
SynHead [63] 2017 10 510960 Vv v v S S C
UbiPose [64] 2018 22 10.400 v v v C ICP C
VGGFace2 [65] 2018 9.131 ~331M V v v w E C
DD-Pose [18] 2019 27 ~330K VvV v v w* (0] C
GOTCHA-I [66] 2019 62 137.826 VvV v v w E D
M2FPA [67] 2019 229 397544 vV v C CA D
AutoPOSE [19] 2020 20 1.018.885 v v v c* (6] C
MDM corpus [68] 2021 59 ~105M VvV 4 v w* ICP C
UET-Headpose [69] 2021 9 12.848 v v v C I C
DAD-3DHeads [70] 2022 44.898 v v v w E C

The most used in the literature are in bold

The legenda fot this table is in Table 2

between = 90° with a step size of 15°. The ground-truth
is manually annotated, so it may contain errors.

e AISL [54]: The Aisl head orientation database is a col-
lection of small scale head images with various back-
grounds of an indoor scene. This dataset contains 6480

images of 20 subjects under 36 yaw angles, 3 pitch angles
and 3 different backgrounds. The orientation is deter-
mined by two categories: yaw angle in 360° with an
interval of 10°, and pitch angle in the range +45° with
an interval of 45°.

SN Computer Science
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Table 2 Legenda for Table 1

Database:
o = Processing operations needed to extract head pose information from original data [7]
DB Type:
C = Constraint, faces of real people taken in a constraint environment (a lab, an office, etc.)
W = In-the-Wild, images of real people captured under any kind of conditions
S = Synthetic, synthetic generated images
H = Hybrid, a mixture of previous types
* = Dataset build for the driving context
Pose Type:
C = Continuous, pose estimate in continuous range
D = Discrete, few discrete orientations are acquired
GT Method: Ground Truth Acquisition Method
CA = Camera array
CR = Camera ring
CRT =1t’s not the camera that rotates around the person, but the seat that rotates on itself
DS = Directional suggestion
E = Estimation with neural networks or other algorithms
ICP = ICP algorithm
IS = Inertial sensor
L = Laser pointer directional suggestion
M = Manual annotation
MS = Magnetic sensor
O = Optical motion capture system
P = Panoptic studio

S = Synthetic images generation

e AutoPOSE [19]: It’s a large-scale dataset that provides e BJUT-3D [42]: The database consists of 46 500 images

1.1 million images taken from a car’s dashboard view.
AutoPOSE’s ground-truth head orientation was acquired
with a sub-millimetre accurate motion capturing system
placed in a car simulator. The rotations are limited to the
range [-90°, + 90°], the average pitch angle is shifted in
the negative values of the rotation angles, this is due to
the placement of the camera in the dashboard.

BioVid Heat Pain [15]: It contains videos and physi-
ological data of 90 persons subjected to well-defined pain
stimuli of 4 intensities, built for the development of auto-
matic pain monitoring systems. It includes information
about head pose of the recorded subjects for all 3 angles
pitch, yaw, roll, all in the range +50°.

BIWI Kinect [46]: It’s gathered in a laboratory setting
by recording RGB-D video of different subjects across
different head poses, using a Kinect v2 device. It contains
roughly 15, 000 frames and the rotations are +75° for
yaw, +60° for pitch and +50° for roll. A 3D model was
fit to each individual’s point cloud and the head rotations
were tracked to produce the pose annotations. This data-
set is commonly used as a benchmark for pose estimation
using depth methods that attests to the precision of its
labels.

SN Computer Science
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collected from the 3D faces of 250 male and 250
female participants. The total number of poses in the
database is 93. The pitch rotation is quantized into 9
angles [—40°, +40°], where the difference between two
consecutive poses is 10°. Similarly, the yaw rotation
is divided into 13 angles [-60°, +60°], with the same
angular step size as for the pitch.

Bosphorus [40]: It contains 5 thousand high resolution
face scans from 105 different subjects. The 3D scans
are obtained by a commercial structured-light based
3D digitizer. It offers 13 discrete head pose annota-
tions (seven yaw angles, four pitch angles, and two roll
angles), with different facial expressions and occlu-
sions.

BU [34]: The Boston University Head Tracking dataset
includes only 200 images and 5 subjects, which is the
main drawback of this database. The acquisition pro-
cess is repeated in two sessions: initially illumination
conditions are uniform; then subject faces are exposed
to rather complex scenarios with changing illumina-
tion. All three rotation angles were recorded thanks to
a magnetic tracker attached to each participant’s head.
Pose variation is mainly less than 30°. Since the pres-
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ence of facial occlusions (e.g., eyeglasses, facial hair,
etc.) is very limited, most methods perform very well.
CAS-PEAL [37]: The CAS-PEAL is a large dataset
having 99594 images, with a total number of 1040
participants, with 595 males and 445 female subjects.
The CAS-PEAL dataset contains a total of 21 poses
combining different yaw and pitch angles: the yaw ori-
entation varies between — 45° and + 45° with an inter-
val of 15° between two consecutive poses; the pitch
orientation has only three poses — 30°, 0°, and + 30°.
Although the dataset has sufficient data for evaluation
and training, its complexity is low, as the number of
poses is quite limited.

CAVE [49]: The Columbia Gaze dataset contains a
total of 5880 images of 56 different subjects (32 male,
24 female) of different ethnic groups and ages. The
dataset is mainly created to solve the gaze estimation
task, but contains also information about head pose of
the participants, therefore it can be used to solve the
discrete head pose estimation task. For each subject a
combination of five horizontal head poses (0°, + 15°, +
30°), seven horizontal gaze directions (0°, + 5°, + 10°,
+ 15°), and three vertical gaze directions (0°, +10°) are
available.

CCNU [56]: All images in CCNU are low-resolution
images collected in a classroom. The database consists
of 58 participants, captured in 75 different poses, for a
total number of 4 350 images. The face images are col-
lected so that illumination conditions and facial expres-
sions are changing, thus adding more complexity to the
images. For obtaining the ground-truth data, SensoMo-
toric Instruments (SMI) eye tracking glasses are used.
The head orientation changes from — 90° to + 90° in the
horizontal direction, while the vertical direction spans in
the range — 45° to + 90°.

CMU Multi-Pie [44]: This is a database collected from
subjects exhibiting multiple expressions under different
illumination conditions in a constraint environment. All
high-resolution images are captured using a system of 15
cameras for a total of 75 thousand images. The only angle
of rotation available is the yaw with an incrementation
step of 15°.

CMU Panoptic Dataset [55]: It’s a large scale data-
set providing 3D pose annotations for multiple people
engaging social activities. It contains 65 videos with
multi-view annotations captured inside a dome from
approximately 30 HD cameras. The panoptic dataset
includes 3D facial landmarks and calibrated camera
extrinsics and intrinsics, but does not include head pose
information. Using landmarks and camera calibrations it
is possible to locate and crop images of subjects’ heads
and compute the corresponding camera-relative Euler
angles.

After processing the dataset to address the head pose
problem [7], it contains 1,342,018 images. The yaw angle
distribution is almost uniform and ranges in +£179°, but
at angles near 90° and — 90° there are fewer images due
to the effect of Gimbal lock. For the two angles pitch and
roll the magnitudes are in the range + 89°.

CMU-PIE [35]: The CMU Pose, Illumination, and
Expression (PIE) dataset contains over 40,000 facial
images of 68 people. Using the CMU 3D Room each
person is imaged across 13 different poses, under 43
different illumination conditions and with 4 different
expressions. The pose ground-truth was obtained with
a 13 cameras array, each positioned to provide a spe-
cific relative pose angle. This consisted of 9 cameras at
approximately 22.5° intervals across yaw, one camera
above the centre, one camera below the centre, and one
in each corner of the room.

DAD-3DHeads [70]: This is an in-the-wild database that
contains a variety of extreme poses, facial expressions,
challenging illuminations, and severe occlusions cases.
It consists of 44 thousand images annotated using a 3D
head model, a non-linear optimization algorithm and a
final manual adjustment. To validate head pose annota-
tions the rotation matrices were compared to the ground-
truth matrices from the BIWI dataset [46].

Dali3DHP [51]: This database is an extreme head pose
database collected from a camera mounted on a tread-
mill. The dataset was collected in two different sessions
from 33 individuals. Ground-truth data is collected using
Shimmer sensor 2 which was attached to each person’s
head. The database is large since it contains more than
60,000 depth and colour images. All the three rotation
angles pitch, yaw and roll were defined at the time the
acquisition took place, covering the following head
angles: pitch [~ 65.76°, + 52.60°], roll [—29.85°, +
27.09°], and yaw [—89.29°, + 75.57°].

DD-Pose [18]: It contains 330 thousand measurements
from multiple cameras acquired by an in-car setup dur-
ing naturalistic drives by 27 subjects. Large out-of-plane
head rotations and occlusions are induced by complex
driving scenarios, such as parking and driver-pedestrian
interactions. Precise continuous 6 DoF head pose anno-
tations are obtained by a motion capture sensor and a
novel calibration device. The angles vary in the following
ranges, ignoring outliers with less than 10 measurements
in a 3° neighbourhood: pitch € [- 69°, + 57°], yaw €
[ 138°, + 126°], roll € [- 63°, + 60°].

DriveAHead [20]: It’s another driver head pose dataset,
it contains frame-by-frame head pose labels obtained
from a motion-capture system for 20 subjects (about 1
million of frames). It includes parking manoeuvres, driv-
ing on the highway and through a small town, different
occlusions and illuminations, thus providing distributions
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of head orientation angles and head positions which are
typical for naturalistic drives. Images were collected
with a resolution of 512x424 pixels, 6 DoF, the range of
angles is [— 45°, + 45°] for pitch, [- 40°, + 40°] for roll
and mainly [- 90°, + 90°] for yaw.

ETH [41]: The ETH Face Pose Range Image Dataset
contains more than 10 thousand images of 20 persons (3
of them being female) at a resolution of 640 x 480 pixels.
Each person freely turned her head while the scanner
captured range images at 28 fps. Yaw varies between -90°
to + 90°, pitch between — 45° to +45°, whereas roll is not
considered.

FacePix [39]: The FacePix database is built depicting 30
individuals, for a total number of 5430 images. It is an
imbalanced dataset with 25 males and 5 females. Yaw
rotation varies from — 90° (extreme left profile) to + 90°
(extreme right profile), with a step size of 2°; no other
rotation angles were considered.

GI4E-HP [57]: It contains 36 thousand images from 10
subjects recorded with a web-cam in an in-laboratory
environment. Head pose annotations are given in 6 DoF
using a magnetic reference sensor. All transformations
and camera intrinsics are provided. Head pose annota-
tions are given relative to an initial subjective frontal
pose of the subject.

GOTCHA-I [66]: This dataset is a collection of 682
videos of 62 subjects in 11 different indoor and outdoor
environments to address both security and surveillance
problems. To obtain ground-truth a 3D head model is
reconstructed and elaborated using Blender software.
There are 137, 826 labelled frames with 2223 head pose
per subject in the range of [-40°, + 40°] in yaw, [-30°,
+30°] in pitch and [~ 20°, + 20°] in roll, with a step of
5°.

ICT-3DHP [48]: It’s a large dataset which was collected
in-the-wild, i.e. captured in an unconstrained environ-
ment. All images were acquired through the Polhemus
Fastrack' flock of birds tracker attached to a cap the
participants that contains a magnetic sensor, so that the
dataset contains both RGB and depth data. The database
is evaluated for all three rotation angles including pitch,
yaw and roll. No accurate information about the angle
ranges is provided.

IDIAP Head Pose [36]: It contains 66, 295 head images
stemmed from a 8 video meeting recording, each approx-
imately one minute in duration, of a few people in a
meeting room. In each sequence, two subjects, which
are always visible, were continuously annotated using a
magnetic sensor. Therefore, each image has a complete
annotation of a head pose orientation from pitch (range

[- 60°, + 15°]), yaw (range + 60°) and roll (range + 30°)
angles.

M2FPA [67]: This dataset totally involves 397, 544
images of 229 subjects with 62 poses (including 13 yaw
angles, 6 pitch angles and 44 yaw-pitch angles), 4 attrib-
utes and 7 illuminations. There are 6 classes for pitch in
the range of [- 30°, +45°] with a step increment of 15°
and 13 measurements for yaw in the range +£90° with a
step increment of 15°.

McGill [50]: The database consists of 60 videos of 60
different participants, in total it contains 18, 000 video
frames. The videos were recorded in both indoor and out-
door environments. The participants were free to behave
as they want during the video collection process, there-
fore arbitrary illumination conditions and background
clutter are present, especially outdoor. Only yaw angles
are estimated using a semi-automatic procedure, with
variation in the range [- 90°, + 90°].

MDM corpus [68]: The Multimodal Driver Monitor-
ing database was collected with 59 subjects recorded
while were diving a car and performing various tasks.
To record the head pose the Fi-Cap device was used,
this continuously tracks the head movement of the driver
using fiducial markers, providing frame-based annota-
tions to train head pose algorithms in naturalistic driv-
ing conditions. This set consists of 48.9 h of recordings
(10, 541, 166 frames), it covers a large range of head
poses along all three rotation axes due to the large num-
ber of subjects included, and the variety of primary and
secondary driving activities considered during the data
acquisition. Yaw angles range around the origin spanning
between — 80° to 80°, pitch angles have an asymmetric
range spanning from — 50° to 100°.

MTFL [52]: The Multi-Task Facial Landmark dataset
contains 12, 995 outdoor face images from the web.
These images are from CUHK Face Alignment data-
base and AFLW dataset. Each image is annotated with
a bounding box and five facial landmarks. There are
ground-truth annotations for gender, age, smiling, wear-
ing glasses and head pose. For the latter, the images are
manually categorized in 5 discrete classes: Left-profile,
Left, Frontal, Right, Right-profile.

Pandora [60]: It has been specifically created for head
centre localization, head pose and shoulder pose estima-
tion and is inspired by the automotive context. A frontal
fixed device acquires the upper body part of the sub-
jects, simulating the point of view of the camera placed
inside the dashboard. Subjects also perform driving-like
actions, such as grasping the steering wheel, looking to
the rear-view or lateral mirrors, shifting gears and so on.
Pandora contains more than 250 thousand full resolu-
tion RGB (1920x 1080 pixels) and depth images (512 X

! https://polhemus.com/motion-tracking/all-trackers/fastrak. 424) acquired with a Microsoft Kinect 1 device. Subjects
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perform wide head movements: =+ 70° roll, + 100° pitch
and + 125° yaw. Garments as well as various objects are
worn or used by the subjects to create head occlusions.
The ground-truth annotations have been collected using
a wearable Inertial Measurement Unit (IMU) sensor.
Pointing’04 [38]: It is one of the oldest databases,
released in 2004, which was considered as the classi-
cal benchmark for HPE (in some studies is also called
PRIMA database [74]). Despite its age, it’s still used for
research purposes, due to its challenging nature and a
large variety in consecutive poses [29-32]. A total num-
ber of 15 participants (between 15 and 40 years) were
involved for image acquisitions. Some of them wear
eyeglasses or show facial hairs, thus increasing the task
complexity. Images were collected in an indoor lab envi-
ronment, with very low illumination conditions. Each
participant is asked to look at some markers on the wall,
and two rotation angles (yaw and pitch) are annotated
through a subsequent manual labelling process (thus
introducing some errors). The head orientation var-
ies between + 90° both in the horizontal and vertical
directions, while the difference between two consecutive
poses in horizontal and vertical orientation is kept at 15°
and 30°, respectively.

SASE [61]: This is a 3D database collected through
Kinect 2 camera. It consists of both RGB and depth
images of 32 male and 18 female subjects. The total
number of frames is 30, 000. All subjects have different
ethnicity and hairstyles, with an age range of 7-35 years.
All three rotation angles pitch, yaw, and roll are consid-
ered. All participants have different facial expressions
during image acquisition, so that, along with head pose
estimation, the database may also be used for emotion
recognition. For each person a large sample of head poses
are included, within the bounds of yaw from —45° to 45°,
pitch — 75° to 75° and roll — 45° to 45° of rotation around
each axis.

SyLaHP [62]: The Synthetic dataset for Landmark based
Head Pose estimation was proposed by Werner et al. [62]
along with a benchmark protocol to learn head pose on
top of any landmark detector (called HPFL). It contains
about 101 thousand synthetic images from 30 subjects,
with varying ethnicity, age and gender. The angles are in
the ranges: + 70° for pitch, + 90° for yaw and +55° for
roll.

SynHead [63]: This is a large-scale synthetic dataset for
head pose estimation in videos containing 10 head mod-
els (5 female and 5 male), 70 motion tracks and 510 960
frames. Such synthetic dataset, which considers all Euler
angles, generates 100% reliable ground-truth to compen-
sate for errors existing in manually annotated datasets.
The Euler angles are in the range of [- 100°, +100°].

Synthetic [58]: The Synthetic image database is a large
database of 74, 000 high quality images taken from
head models. A total of 37 sequences have been con-
sidered, where each sequence includes 2000 frames.
The head pose in face images covers + 50° of roll, +
75° for yaw, and + 60° for pitch. The database is quite
challenging as different ages, races, and facial expres-
sions are included.

Taiwan RoboticsLab [43]: It contains 6660 images of
90 subjects. For each subject there are 74 images, where
37 images were taken every 5 degrees from right profile
(defined as + 90°) to left profile (defined as — 90°) in the
yaw rotation using camera array and the remaining 37
images were generated (synthesized) by the existing 37
images using commercial image processing software in
the way of flipping them horizontally.

UbiPose [64]: This dataset relies on videos from the
UBImpressed dataset, which has been captured to study
the performance of students from the hospitality indus-
try at their workplace. The data are recorded using a
Kinect 2 sensor, however the ground-truth head pose is
indirectly inferred from facial landmarks. The validated
inferred head poses are 10.4 thousand, most frames fall
within a [20°, 40°] interval.

UET-Headpose [69]: The UET-Headpose dataset was
created to capture the head pose of annotated people in
many conditions, it includes 12, 848 images obtained
from 9 people. The dataset has a uniform yaw angle dis-
tribution for all directions in the range [- 179°, 179°].
The dataset is obtained by having the annotated people
rotated all yaw directions when collecting the dataset.
Therefore, it is possible to learn all yaw angles within a
360° range.

UMD Faces [59]: This dataset has 367, 888 annotated
faces of 8277 subjects. It contains information about
bounding boxes (verified by humans), twenty-one key-
point locations, Euler angles and the gender of the sub-
ject. These annotations have been generated using the
All-in-one CNN model [75], therefore the dataset may
contain erroneous annotations, especially for the pitch,
yaw and roll angles.

VGGFace2 [65]: This is a very large HPE database
which has been released in 2018. It contains 3.31 mil-
lion images. The total number of participants to create
this content are 9131, whereas the average number of
images per subject is 362. The database is constructed
with images downloaded from Google Image Search and
shows large variations in pose, illumination, age, profes-
sion, and ethnicity. However, pose (pitch, yaw and roll)
is estimated using pre-trained pose classifiers defining
5 classes for angles in ranges [— 100°, — 40°), [- 40°,
—10°), [- 10°, + 10°), [+ 10°, +40°) and [+ 40°, + 100°
).
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Fig.4 Different processes from
the same initial pose to the same
final pose in different rotation
order (image from [77])

Head Pose Rotations Representations

Many possible representations can be used to express rota-
tions of rigid bodies. The widely used in the field of head
pose estimation is that based on Euler angles, but other
methods are exploited in the literature due to some problems
of this specific representation.

Furthermore, it has been shown that any rotation represen-
tation in 3D with less than five dimensions is discontinuous,
making the learning process harder [76]. We will further briefly
review different rotation parametrizations, their pros and cons
to see how they might affect the regression performance.

Euler Angles

The Euler angles were introduced by Leonhard Euler in rigid
body dynamics to describe the orientation of a reference
system attached to a rigid solid in motion. Three parameters
are needed to describe an orientation in a 3 dimensional
Euclidean Space R>.

Thus, the Euler angles are a set of three angular coor-
dinates which specify the orientation of a reference sys-
tem with orthogonal axes, usually mobile, with respect to
another reference with known orthogonal axis called stand-
ard orientation. This standard initial orientation is normally
represented by a motionless (fixed) coordinate system.

Euler angles can represent any rotation by means of three
successive elemental rotations around three independent axes.

[1 0 0
R.(a) =[0 cos(a) —sin(a)

_O sin(a) cos(a)

[ cos(B) 0 sin(p) ]
R,(p) = 0 1 0

| — sin(f) 0 cos(p) |

_cos(y) — sin(y) 0]
R.(y) =|sin(y) cos(y) O].
0 0 1
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These three elemental rotations around distinct axes can be
composed to obtain a single rotation matrix using matrix
multiplication:

R = RRR..

Matrix multiplication is not commutative and the same thing
applies to rotations, therefore the order of application of the
three successive elemental rotation is important.

However, the definition of Euler angles is not unique, in
the literature many different conventions are used, where
varies the sequences of rotations and the axes about which
the rotations are carried out (see Fig. 4).

Following the Trait—-Bryan convention we can define as
x, y and z the original axes and X, Y, and Z the axes after
rotation. The line that represents the intersection between
plane xy and YZ is called the line of nodes N, see Fig. 5.
The Euler angles with this convention are: a the rotation
angle between x and N, covering a range of 2x; § the rota-
tion angle between z and Z, covering a range of x; y the
rotation angle between N and X, covering a range of 2x.

Many datasets have annotations of pitch, yaw and roll
angles, but not all of them explicitly mention the order; the
process of determining it become tedious and error-prone.

The main limitation of the Euler angles remains the
Gimbal lock: when the second elemental rotation reaches
90 (or — 90) degrees, then first and third axes become par-
allel (i.e. linearly dependent), which gives an infinite num-
ber of solutions for the same rotation and the other axis
can not be determined. This is a great limitation when
wide ranges of rotations [- 180°, +180°] are considered
(see Flg. 5).

Rotation Matrix

Each rotation can be uniquely described with a rotation matrix.
The rotation matrix R is a special orthogonal 3 X 3 matrix,
with a determinant equal to one, that represents a rotation in
Euclidean space.
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Fig.5 Euler angles, image from Wikipedia [78]
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Rotations can be composed using multiplication, and the
resulting matrix will remain a rotation matrix. A rotation is
represented using nine parameters.

To regress the parameters with back-propagation an orthog-
onality constraint must be enforced, otherwise something dif-
ferent from rotation matrix will be obtained during inference
[79].

A complaint of rotation matrices is that they’re less intui-
tive. In general, it’s not easy to understand what the matrix
is doing by simply looking at the matrix. This is why Euler
angles sometimes are more favourable.

Let be the column vector v, the position of each point in the
standard initial orientation and R the rotation matrix. Then, a
rotated vector u is obtained by multiplying the rotation matrix
with the vector.

u=R-v

The ease by which vectors can be rotated using a rotation
matrix, as well as the ease of combining successive rota-
tions, make the rotation matrix a useful and popular way to
represent rotations, even though it is less concise than other
representations [28].

Quaternions

Quaternions are a compact way to represent rotations, they
have four parameters, which can be interpreted as a scalar
component plus a three-dimensional vector component:

qg = (sO,V) = (so,vl,vz,v3).

Quaternions are quite popular because are more compact
than matrix representation and it’s simple to combine two
individual rotations represented as quaternions using qua-
ternion product.

Unlike Euler angles, quaternions are free from the Gim-
bal lock problem, but still they have an ambiguity caused
by their anti-podal symmetry: g and —g correspond to the
same rotation.

Furthermore, it has been recently demonstrated that for
3D rotations, all representations are discontinuous in the real
Euclidean spaces of four or fewer dimensions and empirical
results suggest that continuous representation outperform
discontinuous ones [76]. This means that Euler angles and
quaternions representations might not be well suited for
regression task.

Methods

The approaches used in the literature to solve the task of
head pose estimation are quite different between them: they
have different degrees of automation, different prerequisites
and are based on different assumptions.

We try to arrange each system by the approach that under-
lies its implementation (taking as reference classifications
proposed in previous works [1, 28]), by giving a descrip-
tion and evaluating advantages and disadvantages of each
approach. Our taxonomy is briefly summarized in Fig. 6.

Since head pose estimation has been investigated for a
long time, many methods have emerged during this period;
however, starting from 2015, methods based on convolu-
tional neural networks have been used more and more, high-
lighting a shift in methodology, from traditional machine
learning (ML) methods towards deep learning (DL)
approaches.

In the following sections, we first shortly review “clas-
sical methods” (Section “Classical Methods”), including
all approaches that are little, or no longer, considered in
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Fig.6 Our taxonomy of deep
learning approaches for head
pose estimation problem
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the most recent research, then shifting the focus on deep
learning based models:

e Segmentation based models (Section “Segmentation
Based Models”):
compute head pose using probability maps produced
by a face segmentation algorithm [29-32, 80];
e Model based methods (Section “Model Based Meth-
ods™):
exploit facial keypoints, either for regressing head
pose [62, 81-83] or for reconstructing 3DMM and
learn its rotation parameters [84—-87].
e Non-linear regression methods (Section “Non-linear
Regression Methods”):
use deep convolutional neural network to develop
a mapping from the image to the head pose measure-
ments [7, 8, 60, 63, 76, 88-91];
e Multi-task methods (Section “Multi-task methods”):
jointly solve head pose with other correlated tasks
(e.g. face detection or face alignment) to improve the
overall performance [75, 92—-103];

Additional details about classical methods can be found in
[1, 104]. More recent surveys are [2, 28]; with respect to
them, we will cover the parts relating to the state-of-the-
art models in more detail, with a special focus on multi-
task learning, 3DMM based and CNN based models.

Classical Methods

Here we briefly recall a short list of methods that played
an important role for HPE but have been either outdated
by most recent techniques, or are difficult to integrate with
deep learning technology, that is the main focus of this
survey:
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e Appearance template methods: compare a face image to
a set of exemplars template to find the most similar view
[105, 106];

e Detector array: use a series of head detectors, each
trained for a specific pose and assign the pose relative to
the detector with the greatest support [107-109];

e Manifold embedding: embed an image into low-dimen-
sional manifolds that model the continuous variation in
head pose and use these for pose regression [110-119];

e Tracking methods: use temporal constraint to recover
the pose from observed movements in video frames [51,
120-124];

e Hybrid classical approaches: combine one or more of the
afromentioned methods in a single model [1, 104];

Segmentation Based Methods

These methods address the problem of head pose estimation
by exploiting the strong relationship between the head pose
and the position of various face parts. The idea is that the
performance of the face pose predictor can be improved if
a prior efficiently parsed image, having information about
various facial features, is provided as input [29-32].

The first step is to perform semantic segmentation over
the input image either by training a single segmentation
model or multiple (discrete) pose specific models. Each
model parses the face into different parts (e.g. nose, mouth,
eyes, hair) and produces probability maps. Given a new
image, the probabilities associated to face parts by the sin-
gle model or the different pose-specific models are used as
the only information for estimating the head pose by using
specifically designed algorithms or by training a classifier
(e.g. Random Forest, SVMs, etc...).

Huang et al. [125] were the first to exploit the rela-
tion between face segmentation and head pose estima-
tion. In their method, initially, the face is segmented into
three face parts (skin, hair, background) using traditional
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Fig.7 Segmentation based method: perform face segmentation and
from probability maps infer head pose (image from [29])

textural-based techniques, and then in a second stage, they
estimate basic discrete head poses using a simple regressor:
“frontal”, “right-profile” and “left-profile”.

More modern works address segmentation by means of
Deep Neural Networks, that typically allow to consider a
larger number of segmentation classes, and discrete poses
(e.g. 13 poses [29, 31] or 93 poses [30, 32, 80]).

Khan et al. [29] proposed a simple algorithm to exploit
probabilities associated to face parts to predict head pose:
first, they run segmentation models for all different poses,
obtaining probability maps; then, they consider the maxi-
mum of such probabilities to assign a pose to each pixel;
finally, they count the total number of pixels associated to
each discrete pose and assign to the face image that with the
highest number. A similar approach was taken in [30], but
relying on the concept of super-pixel, i.e. small meaningful
patches belonging to the same object.

The estimation of the head pose after performing seg-
mentation can be done by many traditional ML techniques,
comprising multi-class linear SVM [31], Random Forest
[32] and Soft-Max classifiers [80].

The main advantage of these methods is that are able
to exploit the strong relationship between head pose and
position of various face parts, which is useful for accurate
pose estimation. Moreover, these methods do not require any
landmark detection process or face alignment step. Finally,
these systems are typically multi-task, they combine HPE,
facial expression detection, gender recognition and age clas-
sification in a single framework (see Fig. 7).

A drawback of this technique is that manually segmented
face images are needed for training, and creating supervised
segmentation datasets is a notoriously onerous operation.
On the other side, face segmentation has a lot of different
applications, e.g. for editing [126, 127], so we may expect a
steady improvement on this aspect of the task.

Surprisingly, only the coarse head pose classification task
has been addressed so far. Testing these techniques on the more
challenging continuous regression problem is an open issue,
that could definitely help to assess the quality of the technique.

Model Based Methods

Model based methods require either a 3D head model or the
localization of facial keypoints (landmarks), such as eyes,
eyebrows, nose, lips, etc. (or both of them in some cases)
and from these estimate the head pose. It is proven that these
factors, such as the location of the face in relation to the
contour of the head, strongly influence the human perception
of the head [1]. For this reason, model based methods are
particularly interesting, they can directly exploit properties
which are known to influence human head pose estimation.
Moreover, in recent years, with the development of deep
learning and due to high availability of data, methods which
directly extract facial landmarks have improved enormously
their performance and have become the dominant approach
in facial analysis tasks [8].

A by-product of face alignment is the ability to recover
the 3D pose of the head in two different ways: (I) the Land-
mark-to-Pose approach and (II) by exploiting deformable
methods.

In the landmark-to-pose approach the keypoints are given
as input to a ML, or DL, algorithm that regress the head
rotation angles.

Werner et al. [62] proposed a benchmark protocol to
learn pose estimator on top of any landmark detector, called
HPFL, that trains a Support Vector Regression (SVR) model
using landmarks as features. To exploit the power of Deep
Neural Networks not only to compute landmarks but also
to obtain Euler angles Gupta et al. [81] proposed to use a
deep learning architecture to regress head-pose giving as
input uncertainty maps computed from 5 facial keypoints.
Even Xia et al. [82] used a CNN, but they give as input a
heatmap of 68 landmarks stacked with a transformed version
of the input image, so that the neural network can focus on
the area around facial landmarks while extracting features
from the image, reducing interference from wild environ-
ment. Dapogny et al. [83] proposed an attentional cascade
model that iteratively refines head pose and landmark esti-
mates. The advantage is that using head pose information to
refine landmark alignment provides more precise landmark
estimates (as also stated in [128]), which in turn helps refine
the head pose prediction, further advocating for an entwined
landmark alignment and head pose prediction scheme. The
disadvantage is that the network is bigger and requires a
longer training time.

For this reason, recently, other researchers have tried to
define methods that do not need training for estimating head
pose once facial landmarks are detected. Abate et al. [129]
used a quad-tree, i.e. a particular kind of unbalanced tree,
that divides the image into smaller and smaller quadrants,
to measure the distance between the representation of the
input face with a reference model. Barra et al. [130] (2020)
exploit a spider-web shaped model that uses the landmark
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Fig.8 An example of deformable model: A personalized 3D face is reconstructed from the input head image using a CNN, then keypoints

matching is used to obtain the pose [85]

locations to build a feature vector, which in turn is compared
to a set of prototypical vectors to determine the closest one
and establish the pose. Unfortunately with these two meth-
ods only discrete pose can be obtained (with 5° of angular
step), they are computationally efficient but less effective
than other methods.

Deformable methods, instead, use a non-rigid face model
and fit it to the image such that it conforms to the facial
structure of each individual and estimate the head poses
from the correspondence between feature points on a 2D
face image and those on a 3D facial model.

The 3D pose information of the head can be inferred
by solving the Perspective-n-Point (PnP) problem, i.e. the
problem of estimating the pose of an object by finding the
rotation matrix R and the translation vector ¢ given intrinsic
camera parameters, known locations of # 3D points and their
corresponding 2D projection in the image. Indeed, by look-
ing for the projection relation between a 3D facial model and
a 2D face image, head pose angles can be calculated from
the elements in the rotation matrix directly.

The most simple and commonly used pipeline involves
a number of steps [8]: (1) face alignment; (2) definition of
3D human mean face model; (3) approximation of camera
intrinsic parameters; (4) solving 2D-3D correspondence
problem using one of the available PnP algorithms, such as
POSIT [72] or DLS [131]. In their basic form, these methods
do not need to include and train a pose estimation model;
moreover, any method for face alignment can be used, such
as DIib [132] or FAN [133] (see [134] for a survey on face
alignment methods). The drawback of PnP approach is
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that typically camera parameters are not known so they are
approximated leading to errors in the final prediction.

Modern deformable approaches rely on a 3D face mor-
phable model and learn to deform it to adapt to the person’s
head, then solve the 2D-3D correspondence more effectively.

Wau et al. [84] assumed to have a 3D deformable facial
model and followed a cascade iterative procedure that
iteratively updates the facial landmark locations, the head
pose angles and non-rigid deformations. There is no learn-
ing involved for head pose that is estimated from the 3D
deformable model by minimizing the projection error for
all landmark points. Liu et al. [85] trained a CNN to recon-
struct a personalized 3D face model from the input head
image and through an iterative 3D-2D keypoints matching
algorithm estimate head pose under constraint perspective
transformation (see Fig. 8). Diaz Barros et al. [135] pro-
posed a hybrid method that incorporates two strategies:
(1) a temporal tracking scheme, which uses optical flow to
compute the correspondences of a set of keypoints in every
pair of frames; (2) a head pose estimation scheme which
estimates pose independently in each frame by aligning
2D facial landmarks to every image; the head pose in each
scheme is estimated by minimizing the reprojection error
from the 3D-2D correspondences.

Unfortunately, these methods use deep learning only for
face alignment and use some projection method to com-
pute head pose, not exploiting its full potential. Instead,
the state-of-the-art networks for head pose estimation fol-
low a different approach, also based on 3DMM. In this
case, the focus is on the 3DMM-based 3D dense alignment
3D dense reconstruction task. The network can be directly
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Fig.9 In SynergyNet a backbone network learns to regress 3DMM parameters (pose, shape, expression) [86]

used for pose estimation, indeed, 3DMM regression con-
tains pose, shape and expression parameters. There is no
keypoints matching involved.

Zhu et al. [53] proposed an alignment framework
termed 3D Dense Face Alignment (3DDFA), which
directly fits a 3D face model to RGB images via convolu-
tional neural networks. The primary task of 3DDFA is to
align facial landmarks, even for the occluded ones, using
a dense 3D model. As a result of their 3D fitting process,
the 3D head pose is produced. SynergyNet [86] is a novel
network designed to predict complete 3D facial geometry,
including 3D alignment, face orientation and 3D face
modelling. The network defines a synergy process that
utilizes the relation between 3D landmarks and 3DMM
parameters to improve the overall performance. Despite
the large amount of work on 3DMM-based 3D dense align-
ment and the fact that many of the proposed approaches
directly estimate rotation matrices, Wu et al. were the first
to propose a discussion on the head pose estimation task,
previous works only focus on the evaluation of landmarks
and 3D faces. The authors, as well as evaluate Synergy-
Net, conducted extensive and detailed benchmarking on
other 3DMM-based methods, such as 3DDFA-TAPAMI
[136], 2DASL [137] and 3DDFA-V2 [138], highlighting
the better performance of the proposed network due to the
innovative synergy process introduced (see Fig. 9).

SADRNet is another network proposed very recently by
Ruan et al. [87] that is one of the state-of-the-art models on
AFLW?2000 [53] dataset. This is an encoder-decoder-based
architecture that regresses the deformation D and infers the
pose parameters f, R and ¢ to reconstruct the 3D face geome-
try from a single 2D face image. The most important novelty
introduced in the network is the attention mechanism used
to enhance the visible facial information and estimate the
transformation matrix only with visible landmarks, giving
robustness to occlusions and large pose variations.

Finally, with the development of consumer-level depth-
image sensors, many studies have tried to exploit 3D-face
model-based approaches using RGB-D data. These studies
have developed in parallel with the others presented before
and mainly use optimization techniques, such as the ICP
algorithm [139], which aim to minimize the discrepancy
between depth data and a parametrized 3D model. Mar-
tin et al. [140] proposed a real-time head pose estimation
method that first creates a point-cloud based 3D head model
from the input depth image and then registers the 3D head
model with the iterative closest point (ICP) algorithm [139]
for head pose estimation. Mayer et al. [141] proposed esti-
mating head poses by registering a 3D morphable model
(3DMM) to the input depth data through a combination of
particle swarm optimization (PSO) and the ICP algorithm
[139]. Higher pose estimation accuracy is achieved at the
expense of a much higher computational cost. A 3D mor-
phable model and online 3D reconstruction are used by
Yu et al. [64] for full head pose estimation, thus also han-
dling extreme poses. Although estimating the head poses
on the depth image can avoid suffering from the cluttered
background and illumination changes, that are common in
RGB images, the main disadvantage is that depth image
sensors are not available in most of the current real-world
applications.

Summing up, we saw that there is a huge literature of
approaches based on the facial keypoints, that are used as
key elements of deformable methods, or given as input to
neural networks (so used as features), or even are the only
information needed in the PnP approach. It is evident that
there is a close relationship between head pose and the dis-
tribution of the landmarks, so these are a valuable informa-
tion to estimate head pose [82]. Moreover, there is a growing
number of landmark detectors/trackers that can be used for
research purposes for free and there is a rapid progress in
improving the landmark quality, including unconstrained
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Fig. 10 Hopenet architecture
[8]: ResNet50 with combined
Mean Squared Error and Cross
Entropy Losses (image from
https://indatalabs.com/blog/
head-pose-estimation-with-cv)

.

ResNet50

scenarios with difficult lighting, out-of-plane head poses,
and occlusions [62].

PnP approach is one of the most used in the literature,
but has a disadvantage: many parameters (such as camera
pose) typically are approximated and this can lead to inac-
curacies in the results. Moreover, when a mean face model
is used, even with perfect registration, the images of two
different people will not line up exactly, since the location
of facial features varies between people, leading to errors
in the final result [82]. For this reason, recently developed
approaches rely on face reconstruction as previous step to
2D-3D keypoints matching [85]. These methods typically
require high-resolution images and the position of landmarks
must be initialized before the pose estimation.

Recent research has been focused on landmark-to-pose
approaches that regress the head pose from landmark
configuration using deep networks, and on 3DMM based
approaches that reconstruct and align a 3D dense face model
with the images. Less research has been devoted to the lat-
ter case, but this seems a very promising direction, able to
achieve remarkable results, even if the head pose is only
obtained as a by-product. The main drawbacks of 3DDFA
approaches are that the networks are quite complex, and
their training depend on costly face mesh annotations. Nev-
ertheless, SADRNet [87] reconstructs the 3D model of the
face (starting from a cropped image) in 13.5 ms. However,
it is is not clear how these results could generalize in low
resolution far-field imagery due to the difficulty in achiev-
ing good fitting and precise image feature location in those
conditions.

Non-linear regression methods

The non-linear regression methods do not require keypoints
detection, but directly predict the head pose angles through
images. A model is trained in a supervised manner and
learns a functional mapping from the image space to dis-
crete/continuous pose directions. The main challenge is to
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train a model in a way to ensure that the regression tool will
learn a proper mapping.

Early approaches used classical machine learning models
such as Support Vector Regressor (SVR) [105], Localized
Gradient Histograms (LCH) [142] or Random Forest (RF)
[46, 56].

In the last decades, there was a drastical shift towards the
deep learning paradigm, with an increasing use of convo-
lutional neural networks to estimate the three-dimensional
head pose with higher accuracy.

First attempts with deep models exploited simple archi-
tectures [143, 144] and common networks [73], such as
AlexNet [145], VGG [146], ResNet [147]. Patacchiola et al.
[148] improved the results by introducing dropout and adap-
tive gradient methods during the training of the network, and
by training a different specialized network for each rotation
angle (pitch, yaw, roll), that permits fine-tuning for a spe-
cific degree of freedom without loosing predictive power on
another one. Work from Gu et al. [63] uses a recurrent neural
network to regress the head pose Euler angles by exploiting
the time dimension in video sequences. RNN has the ability
to learn motion information implicitly, gaining robustness
to large head pose variations and occlusions.

Ruiz et al. [8] proposed to use a three-branch convolu-
tional neural network structure, that they called Hopenet,
where each branch is responsible for one of the Euler angles.
All branches share a backbone network that can be of arbi-
trary structure, e.g. ResNet50 [147], AlexNet [145], VGG
[146]. This backbone network is augmented with a branch-
specific fully-connected layer that predicts a specific angle.
By having three cross-entropy losses, one for each Euler
angle, three signals are backpropagated into the network,
which improves learning (see Fig. 10).

The overall framework of Hopenet is adopted also by
Zhou et al. [7] for their network WHENet. WHENet adopted
a lighter backbone w.r.t. previous work, EfficientNet-B0O
[149] was used (it incorporates Inverted Residual Blocks,
from MobileNetV2, to reduce the number of parameters
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Fig. 11 POSEidon architecture
[60]: depth images are provided
to a head localization CNN, .
then the head region is given in I‘

input to the POSEidon network ! @ ‘

to obtain pitch, yaw and roll : ‘

estimations (image from [60])
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while adding skip connections). This network is optimized
for the full range Euler angles (360°), not only for narrow
range as the previous works (180°). This is achieved by care-
ful choice of the wrapped loss function as well as by devel-
oping an automated labelling method for the CMU Panoptic
dataset [55], that is used during the training of the network.

FSA-Net [88] introduced a feature aggregation method
to improve pose estimation. QuatNet [89] proposed a Qua-
ternion-based face pose regression framework which claims
to be more effective than Euler angle-based methods. The
quaternion representation is used also by Zeng et al. in their
SRNet [150] where a specific Structural Relation-aware
module is introduced, this module improved the prediction
quality because discriminative pose features are learned
from a global perspective (by capturing the valuable facial
structure information) rather than low-level local details.
TriNet [76] used a three vector-based representation that
replaces Euler-based and Quaternion-based representations
for increasing efficacy. RankPose [90] is another CNN that
explored Siamese architecture and ranking loss to distin-
guish pose-related from a mixture of pose-related and irrel-
evant features, such as age, lighting and identity. Hempel
et al. for 6DRepNet [151] efficiently regress a compressed
6D form of the rotation matrix. This representation has
been reported to introduce smaller errors for direct regres-
sion then vector-based one and made 6DRepNet one of the
SOTA models on popular datasets.

Given the fact that the bounding box significantly affects
the quality of the trained NN for the HPE problem [152,
153], Sheka et al. [91] (2021) proposed to average the results
of predictions of the same neural network, but with various
bbox offsets, in what they call offset ensemble.

Not only bounding box affect the final result but also
illumination and occlusion, for this reason Wang et al. in
their FSEN [154] included low light enhancement, strong
light suppression and face occlusion detection modules. This
united with a four-branch CNN, in which three branches are
used to extract three independent discriminative features of
pose angles, and one branch is used to extract composite
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features corresponding to multiple pose angles, improved
the results on benchmark datasets.

Recently, some attempts to propose lightweight net-
works that obtain good results at lower costs have been
made, Berral-Soler et al. [155] and Dhingra [156] proposed
respectively RealHePoNet and LwPosr networks. However,
the results are less accurate than those obtained with more
complex models.

Other researchers, to overcome the limitations of publicly
available datasets, that are limited in size, resolution, anno-
tation accuracy and diversity, used synthetic generated data
from high-quality 3D facial models to train their networks
[58, 63]. Wang et al. [157] proposed a coarse-to-fine network
to predict head pose trained on synthetically rendered faces.
However, they noticed that the difference (domain gap)
between rendered (source domain) and real-world (target
domain) images negatively affects the performance. For this
reason in [158, 159] Domain Adaptation (DA) techniques
are applied to reduce the influence of domain differences.

Recently, Liu et al. propose ARHPE model [160], a novel
asymmetric relation-aware network albe to learn the dis-
criminative representations of adjacent head pose images.
Different weights are assigned to the yaw and pitch direc-
tions by introducing the half at half maximum of the Lorentz
distribution. This has proven effective in extracting more
discriminative features, even if it has been tested only with
two DoF (see Fig. 11).

Finally, some researches leveraged depth data [46, 60,
161]. Among them the best performing is POSEidon [60],
which is a network composed of three independent convolu-
tional nets followed by a fusion layer, specially conceived for
understanding the pose by depth. This is the state-of-the-art
model on the BIWI database [46] (see Table 4).

The main advantage of head pose estimation derived from
CNNss is the strong learning ability, especially for image
processing, which make it possible to achieve the desired
effects. These algorithms work properly with high and low
resolution images, and they have demonstrated their repre-
sentational ability in tolerating some errors in the training
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set data. They are not dependent on the head model chosen,
the landmark detection method, the subset of points used
for alignment of the head model or the optimization method
used for aligning 2D to 3D points. Moreover, they can be
computationally efficient, straightforward to implement and
easily updated with the addition of new data (data-driven
approach, the upper limit is high).

However, the performance of these methods drops drasti-
cally if the labelled face images are not properly annotated.
There can be difficulties in obtaining sufficient data with
head annotations for head pose estimation training, espe-
cially data with changes in appearance (such as sex, age
group, and race attribute) or environmental interference
(such as lighting conditions, shooting angle). Many data-
sets don’t have a uniform distribution of data (many images
contain frontal or near-frontal faces) causing difficulties in
learning large pose variations. Moreover, powerful CNNs
are complex, and can require a long training time. It is also
worth to stress that all these methods rely on a face detec-
tion step, prior to pose estimation, that can heavily influence
the result.

Multi-task Methods

The idea behind multi-task methods is to relate head pose
estimation to other face image analysis problems, such as
gender recognition, landmark detection, face expression rec-
ognition, race classification, etc. because it is proven that
jointly solving multiple tasks can lead to better performance
[52, 75, 92-96, 162-164].

The multi-task learning (MLT) paradigm encompasses a
set of learning techniques that provide effective mechanisms
for sharing information among multiple tasks. It enables the
use of larger and more diverse datasets, improving the sta-
bility of training and the generalization of the final model.

Among multi-task methods adopting traditional machine
learning frameworks there are [162, 163]. The former adopts
the graph guided FEGA-MTL framework for head pose
classification of mobile targets based on multi-view image
source. The physical space is divided into a discrete number
of planar regions and the model try to learn the pose appear-
ance relationship in each region. The latter tried to do the
same, but evaluating the SVM-MTL framework.

Multi-task methods have become particularly popular
with the advent of deep learning because of the unique
ability of neural networks to transfer and share knowledge
among various tasks. MTL has been widely used to simul-
taneously learn related tasks, such as: face detection + head
pose estimation [97, 102, 103, 165, 166], face alignment +
head pose estimation [93, 94, 98—100], face detection + face
alignment + head pose estimation [95, 96, 101], face detec-
tion + face alignment + head pose estimation + gender rec-
ognition [92, 167], or also in combination with other tasks
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such as face recognition and appearance attributes estima-
tion (age, smile, etc.) [52, 75] and finally there is head pose
estimation + gaze estimation [168].

Zhang et al. [52] were the first to investigate the possibil-
ity of optimizing multiple tasks using a Task-Constrained
Deep Convolutional Neural Network (TCDCN) to jointly
optimize facial landmark detection with a set of related
tasks, such as head pose estimation. The proposed network
learns a shared feature space that is optimized to solve all the
tasks at the same time. The network does not perform face
detection, therefore it requires an image of a face as input
or an additional preprocessing step. A similar network was
proposed also by Ahn et al. [165], but their focus was on
real-time driving face detection and head pose estimation.

Ranjan et al. [92] proposed a new model called Hyperface
that performs face detection, face alignment, pose estimation
and gender recognition. The network is designed to exploit
the fact that information contained in features is hierarchi-
cally distributed throughout the network, therefore lower lay-
ers respond to edges and corners, and hence contain better
localization properties (are more suitable for face alignment
and pose estimation tasks); on the other hand, higher layers
are class-specific and suitable for learning complex tasks
such as face detection and gender recognition. They make
use of all intermediate layer features (called hyperfeatures)
through a technique named feature fusion, which allows to
transform features to a common subspace where these can
be combined linearly or non-linearly. They show that fusing
intermediate layers improves the performance for structure
dependent tasks of pose estimation and landmarks localiza-
tion, as the features become invariant to geometry in deeper
layers of CNN.

Then, Ranjan et al. [75] proposed another model called
All-in-One. It differs from Hyperface because (I) simultane-
ously performs a higher number of tasks and (II) domain-
based regularization is adopted by training on multiple data-
sets, each one specific to a subset of the tasks.

Xu et al. [93] have brought into the field a new type of
network, i.e. a cascaded architecture that is designed in a
hierarchical way based on coarse-to-fine principles, which
refines the shape and pose sequentially. Other cascaded
architectures have been presented in the literature, the main
difference among them is the number of stages, the type
and the number of tasks addressed in each stage [96, 97]
(see Fig. 12).

Kumar et al. [94] transformed the cascaded regression for-
mulation into an iterative scheme, by proposing the KEPLER
model. In each iteration, a regressor predicts visibility, pose
and the corrections for the next stage, and a rendering mod-
ule uses these corrections to prepare new rendered data
employed in the next iteration. The network is trained on
three tasks namely, pose, visibilities and the bounded error
using ground-truth annotations. The joint training is helpful
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since it models the inherent relationship between the vis-
ible number of points, the pose and the amount of correction
needed for a keypoint in a particular pose.

Many other researchers focused on improving the time
needed for the network to resolve the tasks, indeed this is the
main drawback of some of the presented models (e.g. Hyper-
face [92] or All-in-One [75]) that limits real-world appli-
cations. Cheng et al. [95] proposed a model that exploits
single-shot object detection module (SSD) to perform multi-
scale face detection, face alignment and head pose estima-
tion at the same time at much higher speed. ASMNet [100]
is a lightweight CNN assisted by an Active Shape Model
(ASM) [169], used to guide the network towards learning,
that achieves an acceptable performance for face alignment
and pose estimation while having a significantly smaller
number of parameters and floating point-operations. ATPN
[99] and MOS [101] focused on defining a network struc-
ture with an even smaller number of parameters to augment
efficiency. Other architectures, such as Multitask-net [102]
and TRFH [103], leveraged the feature pyramid network to
detect faces on different scales (see Fig. 13).

Valle et al. [98] proposed another type of architecture,
an encoder-decoder CNN (see Fig. 13). They locate the
head pose estimation task at the end of the encoder net-
work, in this way the network bottleneck acts as embedding

representing face pose. Instead, visibility and face alignment
tasks are located at the end of the decoder, since they require
information about the spatial location of landmarks in the
image. This is the only paper to propose an encoder-decoder
architecture. The presented model, called MNN, achieves
results comparable to the state-of-the-art methods for the
head pose estimation task; this is due to the network archi-
tecture and to a new training strategy that uses reannotated
datasets.

Recently, Malakshan et al. [170] presented a completely
different novel approach that jointly solves Face Super-
Resolution (FSR) and HPE problems. To this end, a Multi-
Stage Generative Adversarial Network (MSGAN) has been
proposed: it benefits from the pose-aware adversarial loss
and the head pose estimation feedback to generate super-
resolved images that are properly aligned for HPE. Even if
the network has not improved the results of SOTA methods
on standard datasets, it significantly increased the pose esti-
mation accuracy for the low resolution face images, obtain-
ing at the same time very accurate results for original high-
resolution images (on BIWI dataset MAE =4.11).

The main advantage of the multi-task approach is that
many tasks can be solved with a single model. Furthermore,
all these tasks are strictly related, therefore the overall per-
formance is improved due to the network’s ability to learn
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correlations between data from different distributions in an
effective way, so more discriminative features are learned.
Also, some methods perform face detection with head pose
estimation, reducing the time needed to perform preprocess-
ing of the image. Another advantage is that multiple datasets
can be used for training, increasing the amount of available
data.

The main disadvantage of multi-task approach is the lack
of public benchmark datasets with all the annotations for all
the tasks. It’s difficult to compare multi-task models among
them and to other head pose estimation methods because
they use a different combination of datasets for training and
testing, therefore the better performance of a model could
be due mainly to the training strategy rather than to the
architecture of the proposed network. Moreover, some of
the older models were not suited for real-world usage, e.g.
Hyperface and All-in-One architectures took 3.5 s to process
a single image [75]. Although newer models have managed
to limit this problem, making it possible to obtain real-time
systems.

Evaluation Metrics

A common informative metric used for evaluating HPE
frameworks is the Mean Absolute Error (MAE) for all the
three angles, i.e., pitch, yaw, and roll. MAE is quite popular
(most of the papers discussed in this paper use it as main
evaluation metric) since it provides a single statistics that
gives a quick insight into the performance, for both fine or
coarse pose estimations.

n

1 "
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However, in scenarios with large-range pose variations
(360°), this evaluation method will not be reasonable. For
example, when the actual angle is 170° and the predicted
angle is — 170°, then the two angles are only 20° apart, but
the MAE value calculated is 340°, making it bigger than its
actual value [69].

For this reason, another measure has been proposed in the
literature, called Mean Absolute Wrapped Error (MAWE)
[7, 69]. The difference is clear by its definition:

n
MAWE = ’11 i;min(ly,» = V| 360 —|y; = ¥i|)-

Another measure, mainly used for coarse head pose esti-
mation, is the so-called Pose Estimation Accuracy (PEA).
Being an accuracy measure, this metric depends on the num-
ber of poses, and therefore gives little information about the
actual system performance. No recent work use it.
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In recent studies on head pose estimation in the driv-
ing context, new evaluation metrics have been proposed
[18-20]; however, no work on general head pose estimation
use them.

The first metric is the Balanced Mean Angular Error,
introduced to address the problem of the higher number of
frontal pose images during evaluation, which leads to an
unbalanced amount of different head orientations. The idea
is to split the dataset in bins based on the angular difference
from the frontal pose and average the MAE of each of the
bins [18]

d .
BMAE = o Z biiva i€ANN[0,K],

where ¢, ;, , is the MAE of all hypotheses, the angular differ-
ence between the ground-truth and frontal pose is between
iand i+d, d is the bin size and k is the maximum angle
degree considered.

Other two metrics employed are the Standard Deviation
(Std), that provides insights to the error distribution around
the ground-truth, and finally the Root Mean Squared
Error, to weight larger errors higher.

RMSE =

RMSE takes the squared difference of the predicted value
and the ground-truth value, weighing larger errors higher.
Thus, high variation in predictions of an algorithm results in
a higher overall error compared to the mean without squar-
ing the values [19].

Evaluation

Comparing different methods is a complex and delicate
problem, due to large number of different datasets that can
be used for training and testing, and the different features
that can be exploited by the models, such as depth informa-
tion. The community is pushing for the adoption of well
defined evaluation pipelines, discussed in the following
section, that allows for a fair comparison between models;
results relative to this group are given in Table 4 (no depth)
and Table 5 (depth). In Table 6 we report figures relative to
evaluation on the AFLW dataset [45], although the precise
pipeline may be different or unknown. Finally, many sys-
tems uses ad-hoc datasets either for training, testing, or both
tasks, as it is for instance the case for thematic scenarios
like driving or video surveillance. Results relative this latter
groups are provided in Tables 7 and 8, splitted in two parts
for typographical reasons.
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Evaluation Pipelines

Currently, in the state-of-the-art works [7, 8, 76, 82, 86, 87,

90, 91, 166, 187], there are two primary datasets for training:

300W-LP [53] and BIWI [46], corresponding two main data-

sets for testing AFLW2000-3D [53] and a part of BIWI [46].
The two most used evaluation protocols are [88]:

e PJ: Training performed on a single dataset (300W-LP
[53]), while BIWI [46] and AFLW2000-3D [53] are used
as test sets. Only images with head rotation angles in
range [— 99°, + 99°] are typically considered (in the case
of AFLW2000 31 images are discarded);

e P2: Training and test sets are derived from the BIWI
dataset [46], in some cases random split is applied (typi-
cally, 80% and 20% images), in others split by subject
(18 and 2 subjects), recently the most common is the
split by sequence (16-8 sequences for training and test
respectively), but also n-fold cross-validation and leave-
one-out cross-validation are used in the literature.

However, a major drawback of the considered evaluation
pipelines is that the head pose angles (including pitch, yaw
and roll) are all in the range [- 99°, + 99°], limiting the pre-
diction of the models to a “narrow range” that makes them
less effective on large-angle data, such as those acquired
from security cameras [69].

For this reason, researchers frequently use additional head
pose datasets. Zhou et al. for training the WHENet model
[7] use the CMU Panoptic dataset [55] both to increase the
amount of data and to get comprehensive yaw angles in
range [- 179°, + 179°]. This is necessary to obtain a model
optimized for the full range (360°) of face orientations, out-
performing on such a task models exclusively trained with
300W-LP [53]. Albiero et al. [166] instead annotated the
WIDER face database [189] using a deep learning regressor,
and used it during training to increase the robustness of the
model. Recently, Viet et al. [69] released the UET-Headpose
dataset, also with uniform yaw angle in the range +179°,
that can be used as a new benchmark dataset for full range
models.

Moreover, the semi-automatic pipeline used to label
300W-LP [53] and AFLW?2000-3D [53] has been criticised
for not producing accurate annotations for extreme poses
and occluded faces [133]. Valle et al. [98] re-annotated
AFLW2000-3D with poses estimated from the correct land-
marks; this led to an improvement in model performance.

Other researchers employ synthetic datasets for training
and tested on real ones [58, 63, 157-159]. Kuhnke et al.
[158] propose novel benchmark datasets that are derived
from BIWI [46] and SynHead [63], namely Biwi+, Syn-
Biwi+, SynHead++. They propose these new datasets
because SynHead was rendered using the Euler angles

provided by BIWI, but with a different sequence of rota-
tion axes. This rotation order, dissimilar to the BIWI one,
causes that several SynHead images and BIWI images with
the same label show different head rotations. For this rea-
son, the reannotated SynHead+ contains SynHead images
with correct angles. For every image in the BIWI dataset,
SynBiwi+ has 10 corresponding images containing the 10
synthetic head models of SynHead. SynHead++ is the union
of SynHead+ and SynBiwi+. To further improve the repro-
ducibility manually collected bboxes for BIWI are provided
in Biwi+ dataset.

Another dataset often used in the literature both for train-
ing and testing is the AFLW [45], however, there isn’t a com-
mon evaluation protocol used in the many studies published.
The most common is:

e P3: Train and test set are defined by a random split,
23.386 images are used for training the model (of which
typically 2.000 are employed as validation set) and 1.000
images for testing. More details about other evaluation
pipelines for AFLW are in Table 6.

Discussion

Head pose estimation is an active research field of computer
vision. It remains a challenging task due to several intrinsic
and extrinsic problems, and the growing number of special-
ized contexts of application [2]. We organize this discussion
in for parts: datasets, methodologies, open problems, and
research directions.

Datasets

New databases are released every year because deep learning
models require a huge quantity of data for training, but espe-
cially to overcome limitations of previous released datasets,
such as limited head rotation angle ranges, non uniform dis-
tribution of angles, data captured in constraint environment,
limited quality of ground-truth annotations, etc. (see Flg. 14)

Almost all most recent databases have annotations for all
three rotation angles (pitch, yaw and roll), mainly acquired
using depth cameras or optical motion capture systems. This
is a major improvement with respect to earlier datasets that
were acquired using direct suggestion or camera array meth-
ods, resulting in a discrete number of poses and annotations
limited to one or two DoF.

The complexity of images has grown from simple faces
on a flat background, to more complex scenarios with
images acquired in-the-wild. However, a major drawback
of the latter type is that pose is typically annotated manually
or estimated with neural networks trained on other datasets,
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Table 3 Head pose estimation publications most cited in recent literature

Year Paper Approach DoF Dataset

2011 Fanelli et al. [46] Random Forest 3 BIWI

2012 Baltrusaitis et al. [48] CLM-Z Model based 3 BIWI, BU, ICT-3DHP

2014 Ahnetal. [143] DCNN 3 BIWI

2014 Martin et al. [140] Model based 3 BIWI

2014 Pengetal. [117] Manifold embedding 3 Multi-Pie

2014 Tulyakov et al. [51] ML + Tracking 2 Dali3DHP

2014 Zhang et al. [52] Multi-task DCNN 3 AFLW¢4, AFWacd

2015 Drouard et al. [171] Gaussian locally-linear mapping 3 BIWI, Pointing’04

2015 Meyeretal. [141] 3DMM Model based 3 BIWI, ETH

2015 Papazov et al. [172] 3DMM Model based 3 BIWI, Synthetic data

2015 Saeed et al. [161] ML: HoG + SVR 3 BIWI, ICT-3DHP

2015 Sundararajan et al. [115] Manifold embedding 3 AFLW, AFW, McGill

2016 Guetal. [63] RNN 3 BIWI, ETH, SynHead

2016 Liuetal. [58] DCNN 3 BIWI, Synthetic

2016 Xingyu et al. [144] DCNN (VGG) 3 IDIAP-HP

2017 Amador et al. [73] DCNN 3 300W, AFLW, AFW

2017 Barros et al. [173] PnP Model based 3 BU

2017 Borghi et al. [60] DCNN 3 BIWI, ICT-3DHP, Pandora

2017 Bulatet al. [133] PnP Model based 3 300-VW*®, 300W-LP¢, AFLW2000°, Menpo®

2017 Diaz-Chito et al. [118] Manifold embedding 3 CAS-PEAL, CMU-Pie, DrivFace, Pointing’04, Taiwan
RoboticsLab

2017 Gaoetal. [174] Deep label distribution learning 3 AFLW, BJUT-3D, Pointing’04

2017 Gouetal. [175] Model based 3 300W°, BU?*

2017 Khan et al. [29] Segmentation based 2 Pointing’ 04

2017 Kumar et al. [94] Multi-task DCNN 3 AFLW®¢, AFW&¢

2017 Lathuliere et al. [152] DCNN 3 BIWI

2017 Patacchiola et al. [148] DCNN 3 AFLW, AFW, Pointing’04

2017 Ranjan et al. [92] Multi-task DCNN 3 AFLW2P, AFW2b<¢ CelebA¢, FDDB®, LFWA¢Y, Pascal®

2017 Ranjan et al. [75] Multi-task DCNN 3 Adiencef, AFLW*P< AFW2P CASIA®, Chalern
LAP2015f, CelebA¢, FDDB®, FG-NET', IJB-A®,
Morphf, Pascal®

2017 Wuet al. [84] Model based 3 BU4D-FE¢, BU?, COFW¢, Multi-Pie*¢

2017 Xu et al. [93] Multi-task DCNN 3 300Wa<

2017 Yuetal. [176] Model based 3 BIWI, UbiPose

2018 Ahnetal. [165] Multi-task DCNN 3 AFLW*", BIWI*®, RCVFace*", NDS®

2018 Barros et al. [135] Model based + Tracking 3 BU

2018 Cai et al. [96] Multi-task DCNN 3 300Wabe

2018 Chen et al. [95] Multi-task DCNN 3 AFLW*b¢ AFW3¢, FDDBP, Pascal®, WIDER®

2018 Gupta et al. [81] Model based MLP 3 AFLW, BIWI

2018 Hong et al. [164] Multi-task Multi-view + Manifold learning 3 BIWI, Pointing’04

2018 Ruiz et al. [8] DCNN 3 300W-LP, AFLW, AFLW2000, BIWI

2018 Yuetal. [64] Model based 3DMM 3 BIWI, UbiPose

2018 Zhangetal. [177] Multi-task DCNN 3 AFLW?¢

2019 Abate et al. [129] Model based Quad Tree 3 AFLW, BIWI

2019 Benini et al. [31] Segmentation based SVM 2 Pointing’ 04

2019 Derkach et al. [119] Manifold embedding 3 BIWI, SASE

2019 Hsuetal. [89] DCNN 3 300W-LP, AFLW, AFLW2000, AFW, BIWI

2019 Khan et al. [30] Segmentation based 3 AFLW, BU, ICT-3DHP, Pointing’04

2019 Khan et al. [32] Segmentation based Random Forest 3 AFLW, BU, ICT-3DHP, Pointing’04

2019 Kuhnke et al. [158] DCNN 3 Biwi+, SynBIWI+, SynHead++

SN Computer Science

A SPRINGER NATURE journal



SN Computer Science (2023) 4:349

Page230f41 349

Table 3 (continued)

Year Paper Approach DoF Dataset

2019 Liuetal. [178] DCNN 3 300W-LP, AFLW, AFLW2000, AFW, BIWI

2019 Shao et al. [179] DCNN 3 300W-LP, AFLW2000, BIWI

2019 Wanget al. [157] DCNN 3 BIWI, BU, Pointing’04, Synthetic data

2019 Wang et al. [180] DCNN 3 300W-LP, AFLW, AFLW2000, BIWI

2019 Xuetal. [181] DCNN 3 CAS-PEAL, Multi-Pie, Pointing’04

2019 Xiaetal. [82] Model based DCNN 3 300W-LP, AFLW2000, BIWI, CAS-PEAL, DriveFace

2019 Yang et al. [88] DCNN 3 300W-LP, AFLW2000, BIWI

2020 Barraet al. [130] Model based 3 AFLW, BIWI, Pointing’04

2020 Cao et al. [76] DCNN 3 300W-LP, AFLW2000, BIWI

2020 Dai et al. [90] DCNN 3 300W-LP, AFLW2000, BIWI

2020 Dapongy et al. [83] Model based 3 300W, 300W-LP, AFLW2000, CelebA, WFLW

2020 Ewaisha et al. [168] Multi-task DCNN 3 CAVE

2020 Valle et al. [98] Multi-task DCNN 3 300W-LP*¢, AFLW*¢, AFLW2000?, BIWI*, COFW¢,
WEFLW#¢

2020 Wang et al. [182]
2020 Zhang et al. [183]
2020 Zhangetal. [167]
2020 Zhou et al. [7]

2021 Albiero et al. [166]
2021 Basak et al. [159]
2021 Bergetal. [184]

2021 Berral-Soler et al. [155]
2021 Fard et al. [100]

2021 Huetal. [185]

2021 Khan et al. [80]

2021 Liuet al. [85]

2021 Naina Dhingra [186]
2021 Ruan et al. [87]

2021 Shekaet al. [91]

2021 Vietetal. [102]

2021 Vietetal. [69]

2021 Xiaetal. [99]

2021 Xinetal. [187]

2021 Wuet al. [86]

2022 Cantarini et al. [188]
2022 Hempel et al. [151]
2022 Liuet al. [160]

2022 Martyniuk et al. [154]
2022 Naina Dhingra [156]
2022 Wang et al. [154]
2022 Zengetal. [150]
2023 Malakshan et al. [170]

PnP Model based

DCNN

Multi-task DCNN

DCNN

Multi-task DCNN

DCNN

DCNN

DCNN

Multi-task DCNN + ASM
DCNN

Segmentation based Soft-max classifier

Multi-task DCNN

DCNN

Model based 3DMM + DCNN
DCNN

Multi-task DCNN

DCNN

Multi-task DCNN

Model based Graph CNN
Model based 3DMM + DCNN
Model based DCNN

DCNN

DCNN

Model based DCNN

DCNN

DCNN

DCNN

Multi-task GAN

300W, AFLW2000

300W-LP, AFLW2000, BIWI

AFLW?2b<

300W-LP, AFLW2000, BIWI, CMU Panoptic
300W-LP*, AFLW2000*, BIWI*, WIDER*"
BIWI, SASE, Synthetic data

BIWI

AFLW, Pointing’04

300W°, WFLWP

300W-LP, AFLW2000, BIWI

AFLW, BU, ICT-3DHP, Pointing’04

AFLW*®, AFLW2000%, WIDER*

300W-LP, AFLW2000, BIWI

300W-LP*¢, AFLW2000°°*, Florence®
300W-LP, AFLW, AFLW2000, BIWI
300W-LP*, BIWI*?, CMU Panoptic"‘*b
300W-LP, AFLW2000, CMU Panoptic, UET-Headpose
300W-LP*, 300VW*, WFLW*®, WIDER"
300W-LP, AFLW2000, BIWI

300W-LP*>¢, 300VWe, AFLW®, AFLW2000*¢, Florence?
300W-LP, AFLW2000, BIWI

300W-LP, AFLW2000, BIWI

AFLW?2000, Pointing’04, HRIHP

300W-LP, AFLW2000, BIWI

300W-LP, AFLW2000, BIWI

300W-LP, AFLW2000, BIWI

300W-LP, AFLW2000, BIWI

300W-LP, AFLW2000, BIWI, CelebA, WIDER

W W W W W N W W W W W W W W W W W W W W W W W W W W W W

For multi-task models we annotated the specific tasks for which each dataset is used as follows: *head pose estimation, bface detection, “face
alignment, dgcnder classification, “face recognition, fage estimation, &face reconstruction

leading to inaccuracies in the ground-truth annotations (see

for example Fig. 15).

Another drawback of almost all the datasets is the data
imbalance issue: the distribution between easy frontal faces

and more challenging orientations is heavily unbalanced.
Techniques to increase the number of hard faces [195] or to
enhance the contribution of hard examples (such as HEM
[150]) can be used to alter the data distribution space and
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Data Full range Pre-process. step

data

MB  Param 10° Extra training

Eval pipeline P2

Eval pipeline P/ test on

AFLW2000

Pitch Yaw Roll MAE Pitch Yaw Roll MAE Pitch Yaw Roll MAE Split

Type Eval pipeline P/ test on
BIWI

Table 4 (continued)

Name

SN Computer Science
A SPRINGER NATURE journal

Direct

RGB

3.8

3.42 255 3.352

4.09

MB

SynergyNet

[86]
Xia et al. [82]

FANK

RGB

2.52 283 286 3.74 S5FCV

205 0.63 1.70 1.46'

MB

For the evaluation protocol P2 many variants are reported in the literature: Random split, Split by subject (18 and 2 subjects), Split by sequence (16 and 8 sequences), n-fold cross-validation and

Leave-one-out cross-validation, the splitting method is reported here when available. Model type: (D) deep learning regressor; (MB) Model based; (ME) Manifold embedding; (ML) Machine

learning regressor; (MT) Multi-task; (RNN) Recurrent neural network. Narrow range models are optimized for +£99°, full range for +180°, v means +120°. Extra training data used are CMU

Panoptic [55], UET-Headpose [69], UMDFace [59] and WIDER [189] (* head pose are annotate with a deep learning regressor). In pre-processing fd means face detector, kd means keypoints

(landmarks) detector. VJ is Viola-Jones face detector implemented in openCV [109]; FR is Faster-RCNN [190]; JCFDA [191]; openPose [192]; Yolo [193]; Dlib [132]; FTF is finding tiny faces

detector [194]. Other training/testing strategies used for BIWI dataset are presented in Table 7

overcome this issue, making trained models more robust and
with better a generalization capability (Fig. 14).

Among all the databases, Boston University [34] is still
used to evaluate head pose estimation methods even if it is
one of the oldest; some model-based and segmentation based
methods obtain very accurate performance on it, as can be
seen in Table 7. Also Pointing’04 [38] is still employed for
research purposes, even if it was introduced back in 2004,
due to its challenging nature and high image diversity.

BIWI Kinect [46] has become the de-facto benchmark
dataset with a high number of publications that evaluate their
models on it. However, this dataset has two main disadvan-
tages: it’s a narrow range dataset, head rotation angles go
from — 75° to + 75°, making it not suitable to evaluate mod-
els optimized for full range (360°) head rotations; further-
more, it’s a dataset with images acquired in a constraint envi-
ronment, therefore less challenging than other captured with
different lighting conditions, backgrounds or occlusions.

Nowadays synthetic databases [58, 62, 63] enable more
precise evaluation and comparison of HPE methods because
they contain nearly perfect ground-truth data. However,
training solely on synthetic data can cause poor performance
when testing on real-world data due to mismatch or shift of
underlying data distribution (domain gap). For this reason,
training on a combination of synthetic data and real ones can
lead to an improvement of the final result, see for example
FSA-Net [88] model tested on BIWI dataset [46] in Table 7.

Recently, the most active sub-field seems to be “driver
head pose estimation”, in the last five years five public data-
sets that address this specific scenario have been released,
each with thousands or millions of images. This is mainly
due to the increasing interest in driving assistance systems
that aim to monitor the driver attention, behaviour and inten-
tion, and the fact that head pose is a key element to obtain
accurate results [18, 19].

Methodologies

In parallel with the growing number and quality of avail-
able datasets, the number of head pose publications has
constantly increased in the past few years. More and more
people are interested in this area, leading to the development
of many different and innovative approaches. Nowadays,
deep learning and methods based on convolutional neural
networks are the most pervasive: these are used to estimate
head pose from monocular images, from a set of detected
facial landmarks, from a combination of both in a multi-task
approach, or even are used to perform 3D dense face align-
ment/reconstruction, from which the head pose information
is obtained as by-product.

Segmentation based methods are the only recently devel-
oped methods that mainly rely on classical machine learning
models. They proved the existence of a strong correlation
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Table 5 Evaluation results of head pose estimation on AFLW2000 [53] and BIWI [46] for methods exploiting depth data

Name Type  Eval pipeline P2 MB  Param  Extra Data Full Pre-process.

- - 10° training range  step

Pitch  Yaw Roll MAE  Split data

Fanelli et al. [46] ML 8.50  7.90 890 843 Sbj Depth N Vi
Baltrusaitis et al. [48] MB 5.10 11.30 630 7.60 Sbj RGB+D N AR
Saeed et al. [161] ML 500 430 390 440 Sbj RGB+D N \ALD
LMK [119] ME 380  3.60 520 420 L10 Depth N
DESC [119] ME 340 330 330 333 L10 Depth N
Papazov et al. [172] MB 250  3.80 3.00 320 Depth N AL
Martin et al. [140] MB 250  2.60 3.60 290 Depth YY Videmo/
Meyer et al. [141] MB 2.40 2.10 2.10  2.20 Depth N Custom/?
Yu et al. [176] MB 153 249 218 2073 RGB+D Y Dlib/kd
HeadFusion [64] MB 1.45 2.54 2.10  2.032 RGB+D Y Dlib/4*d
POSEidon [60] D 1.60 1.70 180 1.70' 3.4 Depth Y CustomNN#

Evaluation protocols are typically based on variants of P2. Model type: (D) Deep learning regressor; (MB) Model based; (ME) Manifold embed-
ding; (ML) Machine learning regressor; (MT) Multi-task. In pre-processing fd means face detector, kd means keypoints (landmarks) detector. VJ
is Viola-Jones face detector implemented in openCV [109]; Dlib [132]. Other training/testing strategies used for BIWI dataset are presented in

Table 7

between face segments and the corresponding pose, and that
a precise face segmentation may lead to very accurate pose
estimations [30]. However, a severe drop in performance
is often registered when segmentation is applied in uncon-
strained environments [32], that hence remains a challenge
for future research.

What emerges most from the literature is the strong cor-
relation between face alignment and head pose estimation.
This correlation is exploited in different ways in the litera-
ture. Among the best performing methods there are:

e Xia et al. [82] perform face alignment and then create a
landmark heatmap that is given as input (along with the
facial image) to a CNN. They obtain the best result on
AFLW2000 dataset [53] because the heatmap generator
improves the generalization ability by making the CNN
focus on the area around facial landmarks and reducing
the interference from background significantly. However,
this method does not remarkably improve the perfor-
mance on datasets taken under controllable conditions,
such as BIWI [46].

e Valle et al. [98] combine face alignment and head pose
estimation in a multi-task model improving the overall
performance, obtaining the best result on AFLW dataset
[45].

e Xin et al. [187] construct a landmark-connection graph
to model the complex non-linear mapping between graph
topologies and head pose angles. Their model has the

lowest MAE when trained and tested on BIWI dataset
[46] among the models that use only RGB data.

e Wauetal. [86] exploit facial landmarks to guide 3D facial
geometry learning. Pose in this case is a by-product that
a backbone network learns during 3DMM parameter
regression. SynergyNet outperform all deep learning
regressors on AFLW?2000 dataset [53].

A different class of models that look particularly promising
are those based on 3DMM. They focus on face reconstruc-
tion and incorporate occlusion aware mechanisms very use-
ful in complex scenarios. Moreover, because these methods
do not use any ground-truth head pose label during training,
they do not suffer from the inaccuracy of head pose labels
that exist in most publicly available training datasets. Room-
of-improvement might exist by designing specialized loss
function and addressing specifically the head pose estima-
tion task.

From Table 3 we can see that almost all the models can
estimate 3 DoF; actually, some of them (such as 3DMM
based) can estimate 6 DoF, but databases are mainly
equipped with 3 DoF or less. This highlights a great evolu-
tion, indeed until a few years ago, researchers focused more
on yaw estimation, because of its importance in applications
such as human attention, gaze estimation, etc. Deep learn-
ing changed the trend, all three rotation angles are currently
being addressed in most works.
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Table 6 Evaluation results of head pose estimation on AFLW [45] (ordered by training pipeline)

Name Type Train Test Evaluation pipeline Pitch Yaw Roll MAE Datatype Pre-process. step
DLDL (KL) [174] D AFLW AFLW 1 575  6.60 RGB

AVM [115] ME AFLW AFLW 2 17.48 RGB \ALD

Dlib® [132] MB  Notreq. AFLW Unknown 136 231 105 157 RGB

TRFH [103] MT  AFLW AFLW  Unknown 2381 549 1726 1552 RGB Direct
FAN® [133] MB Notreq. AFLW Unknown 123 64 8.7 9.13 RGB

3DDFA® [53] MB Notreq. AFLW Unknown 8.2 54 8.7 743 RGB

GLDL [178] D AFLW AFLW  Unknown 531 600 375 502 RGB FR/
LeNet-5 [148] D AFLW AFLW 5-FCV 7.15 11.04 440 753 RGB

MLP+Locations (5pnt.) [81] MB  AFLW AFLW 5-FCV 6.64 956 468 696 RGB OpenPose*?
CNN+Heatmaps (5pnt.) [81] MB  AFLW AFLW 5-FCV 558 619 376 518 RGB OpenPose*?
Segm+CNN [80] SB  AFLW AFLW 10-FCV 32 49 RGB SSD/
HPE-MSF-CRFs [30] SB AFLW AFLW 10-FCV 489 425 320 411 RGB SSD/
HAG-MSF-CREFs [32] SB AFLW AFLW 10-FCV 489 425 320 411 RGB SSD#
QT_PYR [129] MB Notreq. AFLW 3 760 7.60 7.17 745 RGB VI, Dlib*
Hybrid Coarse-fine [180] D 300W-LP AFLW 3 538 6.18 509 555 RGB

4D_4S [130] MB Notreq. AFLW 3 482 311 225 339 RGB Dlib*¢
KD-ResNet18 [91] D AFLW AFLW 4 6.02 545 416 521 RGB Yolo-v5#
KD-ResNet152 [91] D AFLW AFLW 4 593 541 407 514 RGB Yolo-v5/
QuatNet [89] D 300W-LP AFLW 5 432 393 259 361 RGB Gt bbox
CCR [177] MT  AFLW AFLW 6 585 522 251 453 RGB

KEPLER [14] MB AFLW AFLW P3 585 645 875 645 RGB

Hyperface [92] MT  AFLW AFLW P3 6.13 761 392 588 RGB SSOH
Hopenet (a = 1) [8] D AFLW AFLW P3 589 626 382 532 RGB FRA
MLP+Locations (5pnt.) [81] MB  AFLW AFLW P3 584 602 356 514 RGB OpenPose!?
VGG-16 [73] D AFLW AFLW P3 524 645 361 510 RGB

AlexNet [73] D AFLW AFLW P3 521 640 347 502 RGB

MOS [101] MT AFLW AFLW P3 4.89 RGB Direct
ResNet-50 [73] D AFLW AFLW P3 502 603 322 475 RGB

VGG-19 [73] D AFLW AFLW P3 493 599 315 469 RGB

ResNet-101 [73] D AFLW AFLW P3 498 569 307 459 RGB

ResNet-152 [73] D AFLW AFLW P3 488 592 298 458 RGB

CNN+Heatmaps (Spnt.) [81] MB ~ AFLW AFLW P3 443 522 253 4.06 RGB OpenPose!?
MNN [98] MT AFLW AFLW P3 307 416 243 322 RGB

#Results taken from [28]. Evaluation pipeline: (1) Random split—15.561 images for training, 7.848 for testing; (2) Random split——14.000
images for training, 7.041 for testing; (3) Test on all AFLW; (4) First 2.000 images for testing other for training; (5) Train on other dataset, test
on 1.000 random sample from AFLW; (6) Random split - 20.000 images for training other for testing; (n-FCV) n-fold cross-validation. Model
type: (D) Deep learning regressor; (MB) Model based; (ME) Manifold embedding; (ML) Machine learning regressor; (MT) Multi-task; (RNN)
Recurrent neural network; (SB) Segmentation based model. In preprocessing fd means face detector, kd means keypoints (landmarks) detector.
Not all papers specify the preprocessing applied, some are direct methods that incorporate a detection phase, other use face crop from gt bbox

From Table 5 we observe that methods that use depth
data, alone or in conjunction with RGB information, can
usually achieve better results. In particular, the use of depth
data enhances the efficacy under challenging illumination
conditions and occlusions, making the models suitable for
particularly complex scenarios, such as automotive. From
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Table 7 we can see that, recently, also thermal infrared
images (IR) are used as input for HPE algorithms, in some
cases obtaining better results than with depth information.
However, depth or infrared data are not always available in
real-world contexts, and are also quite expensive; therefore,
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# Syntehtic Generated Data. Model type: (D) Deep learning regressor; (MB) Model based; (ME) Manifold embedding; (ML) Machine learning regressor; (MT) Multi-task; (RNN) Recurrent

neural network; (SB) Segmentation based model

methods based only on monocular images have more gener-
alization abilities and simpler deployment.

Issues and Problems

The main problem that emerges from this analysis is that dif-
ferent experimental set-ups and different validation protocols
are adopted for HPE algorithms, and this strongly influences
the evaluation, making comparison difficult. Another source
of noise comes from the preprocessing phase, that may eas-
ily result in the detection of different bounding boxes/facial
keypoints eventually influencing further elaboration steps.

Coming to more technical problems, Shao et al. [179]
discovered in their experiments that bounding box margin
has a large impact on the final accuracy of the model; head
pose estimators are vulnerable to changes in the background
scene around the target face, as shown in image 16.

To solve this problem Xue et al. [153] propose a convo-
lutional cropping module (CCM) that can learn to crop the
input image to an attentional area for head pose regression,
and a background augmentation technique that can make
the network more robust to the background noise. In their
experiment SSR-Net-MD [88] MAE error fell from 6.01 to
5.38 and FSA-Net [88] goes from 5.25 to 5.13 thanks to
CCM and background augmentation. If on one hand, this
shows how there are techniques that allow to improve the
results obtained, on the other, hand differences in the ways
of getting the bounding boxes do not allow for a valid com-
parison of the methods for HPE.

The same problem emerged for face landmark detectors,
as shown by Xin et al. [187] in their experiments, as reported
in Table 9.

Also, the impact of image quality is little studied in the
literature. When few low-quality images are present in
training data, networks can easily fail to cope with these
under-represented cases. Using synthesized LR samples
and data augmentation during training is a delicate trade-
off between the positive gain deriving from more diverse
training instances, and the additional difficulty related to
the higher problem complexity. It is proven that when the
resolution variation increases, the performance on the origi-
nal High-Resolution (HR) samples drops [8]. Little studies
have been conducted on establish a resolution-agnostic HPE
framework [170].

The last question that arises is about the evaluation met-
rics used. MAE is the standard evaluation metric employed,
but is optimal only for narrow range models, as explained
in section “Evaluation Metrics”. It’s worth noting that also
Cao et al. [76] criticise the use of MAE of Euler angles as
evaluation metric, as according to them it cannot correctly
measure the performance on profile images. They propose to
use the Mean Absolute Error of Vectors (MAEV) to assess
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Fig. 14 Example of e distribu-
tion of the head rotation angles
for the AFLW?2000 dataset [53]
(image from [195])

Images #

-90 -75 -60 -45

Fig. 15 Example of inaccura-
cies in ground-truth annotations
on AFLW2000 dataset [53].

In some cases results from
SADRNeEet [87] model are more
accurate that the ground-truth.
From the top row to the bottom
row there are: the AFLW2000
[53] images, the sparse align-
ment results of SADRNet [87]
and the corresponding ground-
truth (blue for the former and
red the latter), the reconstructed
face models of SADRNet

[87], and the ground-truth face
models [87]. Vall et al. [98]
reannotated AFLW2000 with
poses estimated from correct
landmarks and evaluated their
MNN model, the MAE fell from
3.83 to 1.71 after the reannota-
tion (image from [87])

Model Landmark Input

GT Model

the performance. They use three vectors, extracted from the
rotation matrix, to describe head poses and compute the dif-
ference between the ground-truth vectors and the predicted
ones. They showed how this representation is more con-
sistent and how MAEYV is a more reliable indicator for the
evaluation of pose estimation results (see Fig. 17).

The MAWE metric (details in Section “Evaluation Met-
rics”) could be a better choice: first, it can be used with Euler
angles representation; second, if used to evaluate narrow
range methods gives the same result as MAE; third, at this
point narrow range methods have reached very high accu-
racy and it seems the time has come for a switch to full range
methods with MAWE as main evaluation metric.

Pitch s
Roll s
Yaw mmem

n B _ B
-30 -15 0 15 30 45 60 75 90
Angle, degrees

Research Directions

Due to the growing specialization of the field on ad-hoc
contexts and tasks, it is natural to expect more and more
investigation on topics like domain adaption, partial domain
adaption, inaccurate semi-supervised learning, and knowl-
edge transfer.

For similar reasons, we expect an increasing application
of multi-task learning, which has seen a steady and strong
development from 2017 to today. Head pose can be used as
principal task to enhance other face-related subtasks, includ-
ing gender classification, expression detection and identity
recognition.

SN Computer Science
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Fig. 16 Influence of bbox margin and background on head pose
estimation: (a) Influence of bbox margin on head pose estimation.
The values predicted by FSA-Net [88] change significantly with the
change of bounding box size on all three axes. The network is not
robust to the change of bbox margin; (b) Influence of background on
head pose estimation. The values predicted by SSR-Net-MD [88] are
not robust in different background, e.g. the offset of pitch and yaw
between Al and A2 is about 5° (images from [153])

Table 9 Influence of different landmark detectors for EVA-GCN per-
formance

Landmark detector

Pitch Yaw Roll MAE
EVA-GCN+OpenPose 5.52 7.25 4.78 5.85
EVA-GCN+Dlib 5.76 6.39 3.63 5.26
EVA-GCN+RetinaFace 5.33 5.02 4.26 4.87
EVA-GCN+FAN 5.34 4.96 4.11 4.64
EVA-GCN + GT* 4.15 3.23 3.05 3.48

GT"* means ground-truth data (Table from [187])
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For deformable models, an important improvement would
be the ability to selectively ignore parts of the model that
are self-occluded, overcoming a fundamental limitation in
an otherwise very promising category, especially in uncon-
strained conditions.

Another interesting direction, not explored yet, is the use
of deep learning in segmentation based methods. A possibil-
ity is to use convolutional neural networks to regress pose
angles from segmented faces, or alternatively, segmentation
based methods can be extended through geometric/deform-
able methods, where the feature extraction and classification
could exploit specific deep learning architectures.

Finally, only Malakshan et al. [170] explored the use of
generative models, showing that HPE can be effectively
solved in conjunction with other face-related tasks typically
associated with the generative field. This seems a very inter-
esting possibility that showed promising result in another
partially unexplored area of HPE task the extreme low-res-
olution images. We expect the development of a specific
sub-filed that studies these techniques.

Although general head pose estimation will continue to
be an exciting field with a lot of room for improvement, we
expect an even stronger development of specific sub-fields
that address thematic areas of application, such as the “secu-
rity and surveillance” problem, recently addressed with the
release of GOTCHA-I [66] database, or the “driver head
pose estimation” which is already a very active field [16-20,
68]. Indeed, the role of head pose estimation in driving sys-
tems is becoming more and more important. By monitor-
ing the head pose of the driver in real-time and analysing
the behaviour of the driver, it will be possible to determine
whether the driving status of the driver is good, having a
profound impact on the future of automotive safety.

We expect new datasets will continue to be released with
an increasing focus on 6 degrees of freedom and full range
head angles, thanks to the development of new cheap and
powerful RGB-D cameras (such as Microsoft Kinect), and
other acquisition techniques.

Conclusion

Head pose estimation is a very important task for human-
computer interaction, since it provides rich information
about the intent, motivation and visual attention of people.

Despite the extensive research in this field, especially
during the last years, HPE still remains challenging when
images are collected under unconstrained conditions.

In this article, we presented a detailed list of publicly
available databases, and gave an in-depth survey of head
pose estimation methods, briefly mentioning oldest and
no more used classical approaches, and then providing an
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Fig. 17 Comparison of

pose estimation results with
MAE and MAEV metrics on
AFLW2000 profile images. All
models are trained on 300W-LP
(image from [76])

Ground
Truth

MAE = 41.7°
MAEV = 63.7°

MAE = 51.9°
MAEV = 58.1°

TriNet

MAE = 36.3°
MAEV = 3.2°

extensive analysis of modern techniques, mainly based on
deep learning. Indeed, most current heads pose estimation
methods exploit convolutional neural networks, from direct
regressors to deformable based approaches passing through
multi-task learning. We have also presented a comparative
analysis of the state-of-the-art performance obtained so far
in the field by providing organized and informative tables.

The article also discusses and suggests possible direc-
tions for future work. In particular, we expect the introduc-
tion of new light DL architectures that can perform well on
challenging datasets, i.e., those collected in unconstrained
environments.

We also expect the development of new sub-fields with
dedicated databases and evaluation pipelines, such as the
“driver head pose estimation” that is already very active.

An important trend observed is that the number of head
pose publications has constantly increased in the past few
years. This is a sign that more and more people are interested
in this area, which means that the development cycle of new
methods will be faster. A constant and periodic updating of
the literature is therefore important.

We hope that this survey may help to clarify the evolu-
tion of the field, its evaluation methodologies and techniques
thanks to the provided comprehensive list of datasets, meth-
ods and algorithms.
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