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Abstract
We present a new challenging dataset, CPPE-5 (Medical Personal Protective Equipment), with the goal to allow the study of 
subordinate categorization of medical personal protective equipments, which is not possible with other popular data sets that 
focus on broad-level categories (such as PASCAL VOC, ImageNet, Microsoft COCO, OpenImages, etc). To make it easy 
for models trained on this dataset to be used in practical scenarios in complex scenes, our dataset mainly contains images 
that show complex scenes with several objects in each scene in their natural context. The image collection for this dataset 
focuses on: obtaining as many non-iconic images as possible and making sure all the images are real-life images, unlike other 
existing datasets in this area. Our dataset includes five object categories (coveralls, face shields, gloves, masks, and goggles), 
and each image is annotated with a set of bounding boxes and positive labels. We present a detailed analysis of the dataset 
in comparison to other popular broad-category datasets as well as datasets focusing on personal protective equipments, we 
also find that at present, there exist no such publicly available datasets. Finally, we also analyze performance and compare 
model complexities on baseline and state-of-the-art models for bounding box results. Our code, data, and trained models 
are available at https:// git. io/ cppe5- datas et.
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Introduction

Deep learning is revolutionizing multiple areas of computer 
vision. An explosive popularity in this field was brought 
after the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) [1] and has pushed forward the state of 
the art in generic object detection. It contains a detection 
challenge using ImageNet images [2]. Since then, the perfor-
mance of models has been improving at unparalleled speeds. 
Among the many challenges in machine learning, data col-
lection is becoming one of the critical bottlenecks [3]. As 
deep learning becomes popular the core of their success is 
the need for rich and large annotated training data [4]. Larger 
and richer annotated datasets are a boon for leading-edge 

research in computer vision to enable the next generation of 
state-of-the-art algorithms [5] and have been instrumental 
in driving progress in object recognition over the last decade 
[6–9].

Object detection is a fundamental problem of computer 
vision that deals with detecting instances of visual objects 
of a certain class in digital images. The objective of object 
detection aims to develop models and techniques to provide 
the information: “what objects are where?” [10] Building 
larger and richer datasets often play a key role in allowing 
computers to identify and interpret images as compositions 
of one or multiple objects which has been quite tricky for 
machines so far [11]. Through this object detection data-
set, we majorly aim to advance machines to automatically 
identify where objects (personal protective equipments) are 
precisely located.

In object detection, a number of well-known datasets and 
benchmarks have been released in the past 10 years. Most 
datasets contain a wide variety of common-level classes, 
such as different kinds of animals or inanimate things. Sev-
eral such datasets have emerged as standards for the com-
munity including MIT-CSAIL [12], PASCAL VOC Chal-
lenges (e.g., VOC2007, VOC2012) [13, 14], ImageNet [2], 
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Caltech-256 [15], Microsoft COCO [16] and DOTA [17, 
18]. However, this dataset was built bearing in mind to 
allow for subordinate categorization especially for detect-
ing personal protective equipment which is not possible with 
other large-scale popular datasets that focus on rather broad 
categories.

Though the first part subset of the dataset was released 
to facilitate working on Medical Personal Protective Equip-
ments, these were carefully ported to create the final dataset 
expanding the goals to medical personal protective equip-
ments. COVID-19 is causing widespread morbidity and 
mortality globally. The severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) responsible for this disease 
infected more than 17 million people by August 2020 [19]. 
It has also been observed that the global trend is approxi-
mately exponential, at a rate of tenfold every 19 days [20]. 
Considering this, it is very important to be able to accurately 
detect Medical Personal Protective Equipment to help limit 
the growth of COVID-19. To encourage the development of 
such tools we present this dataset publicly on GitHub and a 
subset of the dataset on Kaggle1 focusing on accurately iden-
tifying the Personal Protective Equipments through images.

In this paper, we introduce the CPPE-5 (Medical Personal 
Protective Equipment), an object detection dataset, which 
contains images and ground-truth annotations for the task 
of object detection. The majority of the images have been 

collected from Flickr,2 with an aim to collect a majority of 
non-iconic images. A small portion of images was collected 
from Google Images as well. After doing so each of the 
images was annotated using crowd-sourcing techniques [21]. 
Each of these annotations were evaluated by multiple people 
and were also then evaluated by us to keep a strict check on 
the quality of the ground-truth annotations.

As mentioned, we provide unified annotations for the 
task of object detection with the dataset. In Fig. 1, we show 
examples of annotations provided in the dataset. In (a) cov-
eralls, gloves, mask, goggles; (b) coveralls, gloves, mask; 
(c) coveralls, gloves, goggles; (d) coveralls, gloves, mask, 
goggles; (e) coveralls, gloves, mask, goggles, face shield; 
and (f) coveralls, mask, goggles are demonstrated. Some 
more sample images for each category could be found in 
Appendix 2.

With the CPPE-5 dataset, we hope to facilitate research 
and use in applications at multiple public places to autono-
mously identify if a PPE kit has been worn and also which 
part of the PPE kit has been worn. One of the main aims of 
this dataset was to also capture a higher ratio of non-iconic 
images or non-canonical perspectives [22] of the objects in 
this dataset. We further hope to see high use of this dataset 
to aid in medical scenarios which would have a huge effect 
worldwide.

The remainder of this article is organized as follows: In 
“Related Work”, related works are given. In “Dataset Col-
lection and Annotation’,’ we describe the process used to 

Fig. 1  Example annotations in CPPE-5 for object detection demonstrating the five classes of our data set. Each example image is shown with an 
outline (bounding box) and the object it is identified as

1 https:// www. kaggle. com/ ialim ustufa/ object- detec tion- for- ppe- covid 
19- datas et. 2 https:// www. flickr. com/.

https://www.kaggle.com/ialimustufa/object-detection-for-ppe-covid19-dataset
https://www.kaggle.com/ialimustufa/object-detection-for-ppe-covid19-dataset
https://www.flickr.com/
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collect and annotate the dataset. In “Dataset Statistics”, we 
present statistics related to the dataset. In “Experimental 
Results”, we present the experimental results, training mul-
tiple state-of-the-art and baseline models. In “Conclusion”, 
we conclude the article and give future works.

Related Work

Throughout the history of computer vision research rich 
and large datasets have played a very important role. They 
not only provide a means to train and evaluate algorithms, 
but they also drive research in new and more challenging 
directions [16]. Earlier datasets like the Caltech-256 Object 
Category Dataset [15] and the MIT Pedestrian Database [23] 
facilitated the direct comparison of hundreds of computer 
vision algorithms and also pushed toward more complex 
problems. Recent datasets like The Open Images dataset v4 
with ∼ 9.2 M images [5] ImageNet dataset [2] with ∼ 14 M 
images and Microsoft COCO with ∼ 2.5 M labeled instances 
[16] have enabled breakthroughs in object detection research 
with a new wave of deep-learning algorithms.

Performing object detection often requires identifying 
which specific class the object belongs to and also localizing 
the object in the image usually done with a bounding box as 
shown in Fig. 1. One of the earliest algorithms focused on 
face detection often using ad hoc datasets [24]. Later, more 
realistic and challenging datasets were built which facilitated 
the creation of many deep-learning algorithms. Transform-
ers [25] were first introduced to vision in Vision Transformer 
(ViT) [26] by splitting an image into a sequence of visual 
tokens. The self-attention strategy in ViTs has demonstrated 
superior performance to modern convolutional neural net-
works (ConvNets) when trained with optimized recipes. A 
lot of popularity in using Transformers for object detection 
tasks was brought through DEtection TRansformer (DETR) 
[27] and achieved at-par results with earlier methods like 
Faster RCNN [28]. After this multiple works tried train-
ing transformers for object detection mainly using ViTs 
directly for object detection [26] and Swin Transformers 
[29]. Recently, self-attention and transformer-based meth-
ods have shown a lot of promise for object detection and 
dominated the state-of-the-art for this task [30–34].

For the detection of basic object categories the PASCAL 
VOC datasets [13] were created which contained 20 object 
categories, over (11,000) images, and over (27,000) anno-
tated objects using bounding boxes of which almost (7000) 
had detailed segmentations. Later, the ImageNet dataset was 
created [2] which included over 14 M images across 1000 
object categories. The ImageNet large-scale visual recogni-
tion challenge facilitated the creation of many deep-learning 
algorithms, namely AlexNet [6], Inception v1 [35], VGGNet 
[36], ResNet [37] and more. Later, the Microsoft COCO: 

Common Objects In Context dataset [16] was created for 
the detection and segmentation of objects occurring in their 
natural context. This dataset aimed to find non-iconic images 
containing objects in their natural context. The COCO data-
set consists of over (330,000) across 91 categories with 1.5 
M object instances.

Machine Learning for Health is quite a popular field with 
quite a lot of research pertaining to Machine Learning for 
COVID-related topics [38–40]. Many prior works aim to 
solve a binary classification problem: often if a mask is worn 
or not; masks are one of the most widely used components 
of a personal protective equipment kit. The datasets acquired 
in these papers were in controlled environments or simulated 
images however to deploy these tools majorly requires them 
to be robust to multiple variations (eg. lighting conditions, 
terrain, and background objects). In the next part of this 
section, we talk about some related work about identifying 
masks in images, masks being one of the most widely used 
objects and are also present in our dataset. However, to the 
best of our knowledge, we found no related work for the rest 
of the categories in our dataset.

Chowdary et al. [41] in their paper transfer learn on top 
of Inception V3 pre-trained on ImageNet dataset [42] for 
the task of binary classification: identifying if a mask has 
been worn or not. This paper also claims to achieve quite 
plausible results in testing on simulated data. However, the 
models proposed in this paper were trained and tested on 
simulated data: where an image of a mask was artificially 
superimposed later on top of the face images. Furthermore, 
the images in this dataset are all iconic face images on top 
of which a mask was artificially added, this tends to lose 
out not only on a lot of contextual information but models 
trained on this data are unable to identify all kinds of mask 
and masks worn in different positions due to the artificial 
training data. To this end, in our dataset, we have ensured 
each image is a real image and no objects were artificially 
added on the image. Our dataset also focuses on more than 
one category of personal protective equipment unlike this 
dataset which focuses on only masks.

Wang et al. [43] in their paper introduce three datasets 
Masked Face Detection Dataset (MFDD), Real-world 
Masked Face Recognition Dataset (RMFRD), and Simu-
lated Masked Face Recognition Dataset (SMFRD) for the 
task of binary classification. The multi-granularity masked 
face recognition model developed in this paper also claims 
to achieve (95)% accuracy on the Real-world Masked Face 
Recognition dataset. The Real-world Masked Face Recog-
nition dataset includes (5000) pictures of 525 people wear-
ing masks, and (90,000) images of the same 525 subjects 
without masks. However, the images in this dataset are not 
necessarily medical masks. As an example, this dataset also 
includes images with a scarf worn or sports helmets and 
masks under the category of people wearing masks. In our 
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Medical Personal Protective Equipment (CPPE-5) dataset, 
as we later mention in “Dataset Collection and Annotation”, 
all the images have been checked for quality and relevance.

Loey et al. [44] in their paper also use the three above-
mentioned datasets: Face Detection Dataset (MFDD), Real-
world Masked Face Recognition Dataset (RMFRD), and 
Simulated Masked Face Recognition Dataset (SMFRD) to 
train a binary classifier. The model proposed in this paper 
uses ResNet-50 [37] as a feature extractor and then uses 
traditional machine learning algorithms for classification. In 
this setting, the paper reports quite plausible performance on 
the Real-world Masked Face Recognition Dataset. However, 
this paper measures the performance of models by training 
on the Real-world Masked Face Recognition Dataset but 
majorly tests their models on simulated mask images and not 
real-world mask images. Our Medical Personal Protective 
Equipment (CPPE-5) dataset ensures all images are real-life 
images.

Nath et al. [45] in their paper aim to build a system to 
verify the Personal Protective equipment compliance of a 
construction worker. They also present an in-house data-
set Pictor-v3 in this paper which contains 774 annotated 
images collected with crowd-sourcing techniques and 698 
annotated images collected through web mining. In one of 
their approaches in this paper where their algorithm simulta-
neously detects individual workers and verifies PPE compli-
ance with a single convolutional neural network is reported 
to achieve 72.3 % mean average precision (mAP) in real-
world settings. However, their dataset only includes three 
categories: worker, hat, and vest out of which only two are 
protective equipment categories: hat and vest. These object 
categories are also not well suited for medical scenarios. Our 
Medical Personal Protective Equipment (CPPE-5) dataset 
contains 5 categories of personal protective equipment, all 
of which are well suited for medical purposes.

Dataset Collection and Annotation

This section describes how we decided on the categories 
and collected the images in the Medical Personal Protec-
tive Equipment - 5 dataset.

Object Categories

To create a dataset, we had to ensure the categories we 
choose from a representative set of all categories, be rel-
evant to practical applications, and occur with high enough 
frequency to enable the collection of a large dataset. A 
small group of daily Medical Personal Protective Equip-
ment users were asked to share components of a PPE kit 
based on how often they are used and their usefulness for 
practical applications. Through this, we received seven 
potential categories for this dataset: coveralls or gowns, 
masks, face shields, gloves, shoe covers, respirators, and 
goggles

Some common PPE objects which are quite similar to 
the above list like lab coats, safety boots, full facepiece 
respirators, self-contained breathing apparatus, etc. were 
not included in the initial list of potential categories. Also, 
we omitted some PPE objects which are not used for medi-
cal scenarios from the initial categories; like helmets, har-
nesses, hearing protection, ballistic vests, etc. to maintain 
the focus of this dataset.

The final selection of categories attempts to pick cat-
egories for which obtaining a large number of images with 
categories in them was available. The final categories 
based on this did not include respirator and shoe cover 
due to a lack of rich annotations and enough data for these 
categories. The final object categories are denoted in the 
dataset as:

• Coveralls
• Face_Shield
• Gloves
• Goggles

Table 1  Categories in the CPPE-5 dataset

Coveralls Coveralls are hospital gowns worn by medical professionals in order to provide a barrier between patient and professional, these 
usually cover most of the exposed skin surfaces of the professional medics

Mask Mask prevents airborne transmission of infections between patients and/or treating personnel by blocking the movement of patho-
gens (primarily bacteria and viruses) shed in respiratory droplets and aerosols into and from the wearer’s mouth and nose

Face shield Face shield aims to protect the wearer’s entire face (or part of it) from hazards such as flying objects and road debris, chemical 
splashes (in laboratories or in the industry), or potentially infectious materials (in medical and laboratory environments)

Gloves Gloves are used during medical examinations and procedures to help prevent cross-contamination between caregivers and patients
Goggles Goggles, or safety glasses, are forms of protective eyewear that usually enclose or protect the area surrounding the eye in order to 

prevent particulates, water or chemicals from striking the eyes
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• Mask

We also show in detail about the categories in this dataset 
in Table 1. The category definitions shown in Table 1 were 
adapted from their Wikipedia3 pages and were also used 
while annotating the datasets as shown in later sections.

Image Collection

Having decided on the object categories our next goal was 
to collect a set of candidate images. We classify images into 
two categories: iconic object images and non-iconic images 
as shown in Fig. 2. While iconic images (Fig. 2b): which 
have a single large object in a canonical perspective usually 
contain high-quality object instances they can lack impor-
tant contextual information, these could be found directly by 
searching for the object category on Google Images4 or Bing 
Image Search.5 It has been shown by Torralba et al. [46] 
that non-iconic images are better at generalizing. We thus 
aimed to collect a majority of non-iconic images (Fig. 2a). 
This allows us to have a majority of complex images which 
contain several other objects.

As popularized by Caltech-UCSD Birds-200 [47, 48], 
Microsoft COCO [16] and Open Images v4 [5] datasets we 
majorly collected images from Flickr which tend to have 
lesser iconic images. Flickr contains images uploaded by 
millions of photographers with searchable metadata. A 
smaller portion of images was also collected from Google 
Images. We also remove near-duplicate images in the data-
set using GIST descriptors [49, 50] greatly minimizing the 
chances of near-duplicate images in the dataset.

The images in the CPPE-5 dataset were collected using 
the following process: 

Obtain Images from Flickr: Following the object 
categories, we identified earlier, we first download 
images from Flickr and save them at the “Original” 
size. On Flickr, images are served at multiple different 
sizes (Square 75, Small 240, Large 1024, X-Large 4K, 
etc.), the “Original” size is an exact copy of the image 
uploaded by the author. In “Dataset Statistics”, we talk 
more about the variation in image sizes and present sta-
tistics for the sizes of images in this dataset.

Extract relevant metadata: Flickr contains images each with 
searchable metadata, we extract the following relevant 
metadata:

• A direct link to the original image on Flickr
• Width and height of the image
• Title given to the image by the author
• Date and time the image was uploaded on
• Flickr username of the author of the image
• Flickr Name of the author of the image
• Flickr profile of the author of the image
• The License image is licensed under
• MD5 hash of the original image

Obtain Images from Google Images: Due to the rea-
sons we mentioned earlier, we only collect a very small 
proportion of images from Google Images. For this set 
of images, we extract the following metadata:

• A direct link to the original image
• Width and height of the image
• MD5 hash of the original image

Filter inappropriate images: Though very rare in the 
collected images, we also remove images containing 
inappropriate content using the safety filters on Flickr 
and Google Safe Search.

Filter near-similar images: We then remove near-duplicate 
images in the dataset using GIST descriptors [51].

Fig. 2  Example of a non-iconic images and b the little number of iconic images from our dataset

3 https:// www. wikip edia. org/.
4 https:// images. google. com/.
5 https:// www. bing. com/ images.

https://www.wikipedia.org/
https://images.google.com/
https://www.bing.com/images
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Image Annotation

In this section, we describe how we annotated our image col-
lection. The dataset was labeled in two phases: the first phase 
included labeling 416 images and the second phase included 
labeling 613 images. In both phases, we used crowd-sourc-
ing techniques with multiple volunteers labeling the dataset 
using the open-source tool LabelImg.6 For all the images 
in the dataset volunteers were provided Table 1 as well as 
examples of correctly labeled images, incorrectly labeled 
images, and not applicable images. Before the labeling task, 
each volunteer was provided with an exercise to verify if the 
volunteer was able to correctly identify categories as well 
as identify if an annotated image is correctly labeled, incor-
rectly labeled, or not applicable.

The labeling process first involved two volunteers inde-
pendently labeling an image from the dataset. In any of the 
cases where the number of bounding boxes is different, the 
labels for on or more of the bounding boxes are different or 
two volunteer annotations are sufficiently different; a third 
volunteer compiles the result from the two annotations to 
come up with a correctly labeled image. After this step, a 
volunteer verifies the bounding box annotations. Follow-
ing this method of labeling, the dataset we ensured that all 
images were labeled accurately and contained exhaustive 
annotations. As a result of this, our dataset consists of 1029 
high-quality, majorly non-iconic, and accurately annotated 
images.

In Table 2 we show the frequency of the categories in the 
Medical Personal Protective Equipment (CPPE-5) dataset. 
Gloves and Mask are the most common annotations, with 
a considerable portion of the bounding boxes being marked 
as such.

Dataset Statistics

Next, we analyze the properties of the Medical Personal 
Protective Equipment (CPPE-5) dataset. The Medical Per-
sonal Protective Equipment (CPPE-5) dataset contains 1029 
images and 4698 object annotations consisting of 1343 
glove annotations, 1304 mask annotations, 1197 coverall 
annotations, 447 face shield annotations, and 407 goggle 

annotations as shown in Table 3. Table 3 also includes the 
number of images that contain at least 1 annotation belong-
ing to a specific category.

We also compare the goals of the Medical Personal Pro-
tective Equipment (CPPE-5) dataset with other previous 
object detection datasets namely ImageNet [2], PASCAL 
VOC 2012 [52], Microsoft COCO [16] and RMFD [43]. 
ImageNet’s goals include capturing a large number of object 
categories, many of which are fine grained. PASCAL VOC’s 
goals include object detection in natural images. Microsft 
COCO is designed for the detection of objects occurring in 
their natural context. Real-world Masked Face Recognition 
Dataset aims to detect masked faces. The Medical Personal 
Protective Equipment (CPPE-5) dataset is designed for sub-
ordinate object detection for Personal Protective Equipment.

Next, we present statistics for images present in the data-
set. On average our dataset contains 4.57 annotations per 
image. As shown in Fig. 3a, we calculate the distribution of 
aspect ratios as measured by ( width

height
) . Our dataset has an aver-

age aspect ratio of 1.40 . We also measure the distribution of 
image sizes as measured by (

√

width × height) . Generally 
smaller objects are harder to recognize and require more 
contextual reasoning to recognize, our dataset has an average 
image size of 946.94 pixels.

Experimental Results

In this section, we evaluate baseline and state-of-the-art 
object detection models trained on the Medical Personal 
Protective Equipment Dataset (CPPE-5) through extensive 
experiments. In “Experimental Setup”, we detail the experi-
mental setup used. In “Baseline Models”, we describe how 
we chose the baseline models and share the results of the 
baseline models. In “Evaluating State-of-the-Art Models”, 
we present results for State-of-the-Art object detection tech-
niques trained on the Medical Personal Protective Equipment 
Dataset (CPPE-5) and make inferences about the difficulty 
of the dataset. To foster easy reproducibility of the results 

Table 2  Frequency of the categories appearing in the CPPE-5 dataset 
calculated by the percentage of bounding boxes

Category Coverall Mask Goggles Face_Shield Gloves

Frequency 25.48% 27.76% 8.66% 9.51% 28.59%

Table 3  Number of annotations in the dataset

Category No. of annota-
tions
≥ 1

No. of images 
with category 
annotation

Average 
annotations/
image

Coverall 1197 799 1.50
Mask 1304 898 1.45
Goggles 407 312 1.30
Face_Shield 447 344 1.30
Gloves 1343 575 2.34
Total 4698 4.57

6 https:// github. com/ tzuta lin/ label Img.

https://github.com/tzutalin/labelImg
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we present in this section, we have open-sourced the training 
code, trained models as well as the training logs as Tensor-
Board [53] dashboards in the associated code repository.

Experimental Setup

Our experiments are based on the open-source detection 
toolbox MMDetection [54] and implementations from the 
TensorFlow Model Garden [55]. The training is conducted 
on the 1029 training images and the models are tested using 
another set of 100 testing images. Depending on the through-
put, the models were trained either on 8 Tesla A100 GPUs 
or on a Cloud TPUv3 cluster.

For evaluation, we adopt the metrics from the COCO 
detection evaluation criteria, including the mean Average 
Precision (AP) across IoU thresholds ranging from 0.50 to 
0.95 at different scales which are standard for object detec-
tion tasks. The inference speed FPS (Frames per second) for 
the detector is measured on a machine with 1 Tesla V100 
GPU.

Baseline Models

A significant gain was obtained in object detection with the 
introduction of Regions with CNN features (RCNN). DNNs, 
or the most representative CNNs, act in a quite different way 

from traditional approaches. They have deeper architectures 
with the capacity to learn more complex features than shal-
low ones. RCNN [58] brought the advances in image clas-
sification using deep learning to object detection using a 
two-stage approach: classify object proposal boxes into any 
of the classes of interest (Table 4).

Since the proposal of RCNN, a lot of improved models 
have been suggested, including Fast RCNN which jointly 
optimizes classification and bounding box regression tasks, 
and Faster RCNN which takes an additional sub-network 
to generate region proposals. Faster RCNN stills provide 
very competitive results today in terms of accuracy. More 
recently, single-shot detectors were presented to bypass the 
computational bottleneck of object proposals by regressing 
object locations directly from a predefined set of anchor 
boxes (e.g., SSD [56] and YOLO [57]). This typically results 
in simpler models that are easier to train end-to-end [5, 59]. 
All of them bring different degrees of detection performance 
improvements over the primary RCNN and make real-time 
and accurate object detection become more achievable.

We carefully choose Faster RCNN [28], YOLOv3 
[57] and SSD [56] as our baseline testing algorithms for 
their excellent performance on general object detection. 
In Table 5, we present the results for these three baseline 
models. 

Table 4  Baseline models 
trained on the CPPE-5 dataset

Method AP
box

AP
box

50
AP

box

75
AP

box

S
AP

box

M
AP

box

L
#Params Epochs

SSD [56] 29.50 57.0 24.9 32.1 23.1 34.6 64.34 M 160
YOLO [57] 38.5 79.4 35.3 23.1 28.4 49.0 61.55 M 273
Faster RCNN [28] 44.0 73.8 47.8 30.0 34.7 52.5 60.14 M 24

Fig. 3  Image statistics, a distribution of aspect ratios as measured by ( width
height

) and b distribution of image sizes as measured by (
√

width × height) . 
Overall the average aspect ratio is 1.40 and the image size is 946.94 pixels
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Faster RCNN  was trained with a ResNet 101 backbone. 
Only random flip data augmentations were 
applied to the image. We use the SGD opti-
mizer with a momentum of 0.9 and a weight 
decay of 0.0001 and no gradient clipping. 
We use a step learning rate scheduler with 
an initial learning rate of 0.02 with a linear 
warm-up for 500 iterations. We use sigmoid 
cross entropy loss as the classifier loss and 
L1 loss as the bounding box loss. This base-
line model was trained for 24 epochs.

YOLO  was trained with a DarkNet 53 backbone 
The data augmentation pipeline uses ran-
dom flip, photometric distortion, and a 
random crop on the image and bounding 
boxes such that the cropped patches have 
minimum IoU requirement with the origi-
nal image and bounding boxes. We use the 
SGD optimizer with a momentum of 0.9 
and a weight decay of 0.0005 and apply gra-
dient clipping using the L2 norm. We use a 
step learning rate scheduled with an initial 
learning rate of 0.001 with a linear warm-up 
for 2000 iterations. We use sigmoid cross 
entropy loss as the classifier loss, confi-
dence loss, and the xy-coordinate loss, and 
MSE loss for wh-coordinate loss. The xy-
coordinate loss and wh-coordinate loss use 

a weight of 2 . This baseline model is trained 
for 273 epochs.

SSD  was trained with a MobileNet V1 backbone. 
Only random flip data augmentations were 
applied to the image. We use the momen-
tum optimizer with a momentum of 0.9 . We 
use a cosine decay learning rate schedule 
with an initial learning rate of 0.04 and 
warm-up for 2000 iterations with the learn-
ing rate 4

300
 . We use weighted smoothed L1 

as the localization loss and weighted sig-
moid focal as the classification loss with 
� = 0.25 and � = 2.0 . This baseline model 
is trained for 160 epochs.

Evaluating State‑of‑the‑Art Models

We also present results from training some state-of-the-art 
object detection models on Medical Personal Protective 
Equipment Dataset (CPPE-5) in Table 5 using the same 
evaluation procedure as mentioned earlier. Comparing these 
results with that of some other widely used object detec-
tion datasets like OpenImages, Microsoft COCO, and Pas-
cal VOC,7 we conclude that Medical Personal Protective 
Equipment Dataset (CPPE-5) does include more difficult 
(non-iconic) images of objects. We include more details on 
how each of these models was trained in the associated code 
repository.

Table 5  Top performing models 
based on the standard metric, 
box AP, trained on the CPPE-5 
dataset

Method (APbox) (APbox
50

) (APbox
75

) (APbox
S

) (APbox
M

) (APbox
L

) #Params Epochs

RepPoints [60] 43.0 75.9 40.1 27.3 36.7 48.0 36.6 M 24
Sparse RCNN [61] 44.0 69.6 44.6 30.0 30.6 54.7 124.99 M 36
FCOS [62] 44.4 79.5 45.9 36.7 39.2 51.7 50.8 M 24
Grid RCNN [63, 64] 47.5 77.9 50.6 43.4 37.2 54.4 121.98 M 25
Deformable DETR [65] 48.0 76.9 52.8 36.4 35.2 53.9 40.5 M 50
FSAF [66] 49.2 84.7 48.2 45.3 39.6 56.7 93.75 M 12
Localization distillation [67] 50.9 76.5 58.8 45.8 43.0 59.4 32.05 M 12
VarifocalNet [68] 51.0 82.6 56.7 39.0 42.1 58.8 53.54 M 24
RegNet [69] 51.3 85.3 51.8 35.7 41.1 60.5 31.5 M 24
Double heads [70] 52.0 87.3 55.2 38.6 41.0 60.8 148.7 M 12
DCN [71, 72] 51.6 87.1 55.9 36.3 41.4 61.3 148.71 M 12
Empirical attention [73] 52.5 86.5 54.1 38.7 43.4 61.0 47.63 M 12
TridentNet [74] 52.9 85.1 58.3 42.6 41.3 62.6 32.8 M 36

7 https:// paper swith code. com/ sota.

https://paperswithcode.com/sota
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Conclusion

This paper presented a new object detection dataset, the 
Medical Personal Protective Equipment Dataset (CPPE-5) 
which is the first dataset focusing on the subordinate cat-
egory of medical Personal Protective Items and would have 
wide practical uses. We conducted a detailed analysis of 
the dataset and compared it to other popular broad-category 
datasets and datasets focusing on personal protective equip-
ment. We found that there is currently no publicly available 
dataset for studying subordinate categorization of medical 
personal protective equipment. Overall, our CPPE-5 dataset 
fills a significant gap in the availability of datasets for the 
study of subordinate categorization of medical personal pro-
tective equipment. We annotate a huge number of well-dis-
tributed oriented objects with oriented bounding boxes with 
emphasis placed on finding non-iconic images of objects 
in natural environments and varied viewpoints. We assume 
this dataset is challenging but very similar to real-world 
scenarios, making this an appropriate dataset for practical 
applications. We explained how the data were collected and 
annotated and presented dataset statistics indicating that the 
images often contain multiple bounding boxes per image. 
We further also evaluated multiple modern state-of-the-art 
and baseline object detection models trained on our dataset, 
establishing a benchmark for subordinate categorization for 
medical Personal Protective Equipment images. Many object 
detection algorithms benefit from additional annotations, 
such as the amount an instance is occluded or the location 
of key points on the object which we believe are promising 
directions for future annotations. Detecting medical Personal 
Protective Equipments is a task of great practical impor-
tance, we believe CPPE-5 will not only promote the devel-
opment of object detection algorithms for this purpose but 
also pose interesting algorithmic questions to general object 
detection in computer vision.

Appendix 1: Implementation Details

In this section, we explain the implementation details of the 
experiments we perform and the models we train.

Sampling There is a slight class imbalance in the dataset 
for some of the classes, meaning that not all classes have a 
similar number of images. For this reason, we follow a strati-
fied sampling strategy during data loading.

Code Our code is in PyTorch 1.10 [75]. We use a number 
of open-source packages to develop our training workflows. 
Most of our experiments and models were trained with 
mmdetection [54] and we also used timm [76] for some of 
the experiments. We also utilized TensorFlow [77], Tensor-
Flow Lite,8 and TensorFlow.js9 for creating edge deploy-
ment ready models for the mobile and browser. Furthermore, 
we also used Tensorboard [53] while training the model. 
Our hardware setup for the experiments included either 
eight NVIDIA Tesla A100 GPUs or a TPUv3 cluster. We 
utilized mixed-precision training with PyTorch’s native 
AMP (through torch.cuda.amp) for mixed-precision 
training and a distributed training setup (through torch.
distributed.launch) which allowed us to obtain sig-
nificant boosts in the overall model training time.

Hyperparameters Due to the extent of our experiments, 
we redirect the reader to our GitHub repository to find the 
hyperparameters and configurations for each of the experi-
ments in this paper.

Appendix 2: Sample Images

In Fig. 4, we show 8 sample images from each of the cat-
egories in the dataset with the object annotations superim-
posed on the images. It is noteworthy to know that some of 
the images may not have the original image sizes since the 
class names were superimposed on the image and we did not 
want the class names to be cut off. These visualizations were 
generated with FiftyOne [78].

8 https:// github. com/ tenso rflow/ tenso rflow/ tree/ master/ tenso rflow/ 
lite.
9 https:// github. com/ tenso rflow/ tfjs.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite
https://github.com/tensorflow/tfjs
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Fig. 4  Samples of annotated images for each category in the CPPE-5 dataset
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Appendix 3: Comparing Model Complexities

In Table 6, we compare model complexities and their perfor-
mance on the CPPE-5 (Medical Personal Protective Equip-
ment) dataset. We measure model complexity in terms of 

the number of parameters of the model and FLOPs required 
to run a single instance of the model. In Figs. 5 and  6, 
we show a visual representation of comparing the model 
complexities.

Table 6  Comparison between model complexity, in terms of number of parameters (in millions), FLOPs (in billions), and frames per second on 
a Tesla V100 GPU, and (APbox)

Method (APbox) #Params FLOPs FPS

SSD 29.5 64.34 M 103.216 G 25.6
YOLO 38.5 61.55 M 193.93 G 48.1
RepPoints 43.0 36.6 M 189.83 G 18.8
Faster RCNN 44.0 60.14 M 282.75 G 15.6
Sparse RCNN 44.0 124.99 M 241.53 G 21.7
FCOS 44.4 50.8 M 272.93 G 9.7
Grid RCNN 47.5 121.98 M 553.44 G 7.7
Deformable DETR 48.0 40.5 M 195.47 G 18.8
FSAF 49.2 93.75 M 435.88 G 5.6
Localization distillation 50.9 32.05 M 204.71 G 19.5
VarifocalNet 51.0 53.54 M 180.05 G 4.8
RegNet 51.3 31.5 M 183.29 G 18.2
Double heads 52.0 148.7 M 220.05 G 9.5
DCN 51.6 148.71 M 219.97 G 16,6
Empirical attention 52.5 47.63 M 185.83 G 12.7
TridentNet 52.9 32.8 M 822.13 G 4.2

Fig. 5  Comparison of model 
performance and model com-
plexity in terms of FLOPs (in 
billions)



 SN Computer Science (2023) 4:263263 Page 12 of 14

SN Computer Science

Acknowledgements The authors would like to thank Google for sup-
porting this work by providing Google Cloud credits. The authors 
would also like to thank Google TPU Research Cloud (TRC) program 
(https:// sites. resea rch. google/ trc) for providing access to TPUs. The 
authors are also grateful to Omkar Agrawal for his help with verifying 
the difficult annotations.

Data Availability The datasets generated during and/or analyzed during 
the current study are available in the CPPE-5 repository, at https:// git. 
io/ cppe5- datas et.

Declarations 

Conflict of interest The authors declare no competing interests.

References

 1. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang 
Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. Ima-
genet large scale visual recognition challenge. Int J Comput Vis. 
2015;115(3):211–52. https:// doi. org/ 10. 1007/ s11263- 015- 0816-y.

 2. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a 
large-scale hierarchical image database. In: 2009 IEEE confer-
ence on computer vision and pattern recognition. Ieee; 2009. p. 
248–55.

 3. Roh Y, Heo G, Whang SE. A survey on data collection for 
machine learning: a big data—AI Integration Perspective; 2019.

 4. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT 
Press, Cambridge. 2016. http:// www. deepl earni ngbook. org

 5. Kuznetsova A, Rom H, Alldrin N, Uijlings J, Krasin I, 
Pont-Tuset J, Kamali S, Popov S, Malloci M, Kolesnikov 
A, Duerig T, Ferrari V. The open images dataset v4. Int J 
Comput Vis. 2020;128(7):1956–81. https:// doi. org/ 10. 1007/ 
s11263- 020- 01316-z.

 6. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification 
with deep convolutional neural networks. Adv Neural Inf Process 
Syst. 2012;25:1097–105.

 7. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun 
Y. OverFeat: integrated recognition, localization and detection 
using convolutional networks. 2014.

 8. Viola P, Jones M, et al. Robust real-time object detection. Int J 
Comput Vis. 2001;4(34–47):4.

 9. Redmon J, Divvala S, Girshick R, Farhadi A. You only look 
once: unified, real-time object detection. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition; 
2016. p. 779–88.

 10. Zou Z, Shi Z, Guo Y, Ye J. Object detection in 20 years: a sur-
vey. 2019. arXiv preprint arXiv: 1905. 05055.

 11. Geirhos R, Janssen DHJ, Schütt HH, Rauber J, Bethge M, Wich-
mann FA. Comparing deep neural networks against humans: 
object recognition when the signal gets weaker. 2018.

 12. Torralba A, Murphy KP, Freeman WT. Sharing features: effi-
cient boosting procedures for multiclass object detection. In: 
Proceedings of the 2004 IEEE computer society conference on 
computer vision and pattern recognition. CVPR 2004., vol. 2. 
IEEE. 2004. p. 2004.

 13. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman 
A. The pascal visual object classes (voc) challenge. Int J Com-
put Vis. 2010;88(2):303–38.

 14. Everingham M, Eslami SA, Van Gool L, Williams CK, Winn 
J, Zisserman A. The pascal visual object classes challenge: a 
retrospective. Int J Comput Vis. 2015;111(1):98–136.

 15. Griffin G, Holub A, Perona P. Caltech-256 object category data-
set. California Institute of Technology. 2007.

 16. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, 
Dollár P, Zitnick CL. Microsoft coco: common objects in con-
text. In: European conference on computer vision. Springer; 
2014. p. 740–55.

 17. Xia G-S, Bai X, Ding J, Zhu Z, Belongie S, Luo J, Datcu M, 
Pelillo M, Zhang L. Dota: a large-scale dataset for object detec-
tion in aerial images. In: The IEEE conference on computer 
vision and pattern recognition (CVPR). 2018.

 18. Ding J, Xue N, Xia G-S, Bai X, Yang W, Yang MY, Belongie S, 
Luo J, Datcu M, Pelillo M, Zhang L. Object detection in aerial 
images: a large-scale benchmark and challenges. 2021.

 19. Merow C, Urban MC. Seasonality and uncer tainty 
in global covid-19 growth rates. Proc Natl Acad Sci. 
2020;117(44):27456–64.

 20. Li Y, Liang M, Yin X, Liu X, Hao M, Hu Z, Wang Y, Jin L. Covid-
19 epidemic outside china: 34 founders and exponential growth. J 
Investig Med. 2021;69(1):52–5.

Fig. 6  Comparison of model 
performance and model com-
plexity in terms of number of 
parameters (in millions)

https://sites.research.google/trc
https://git.io/cppe5-dataset
https://git.io/cppe5-dataset
https://doi.org/10.1007/s11263-015-0816-y
http://www.deeplearningbook.org
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1007/s11263-020-01316-z
http://arxiv.org/abs/1905.05055


SN Computer Science (2023) 4:263 Page 13 of 14 263

SN Computer Science

 21. Vaughan JW. Making better use of the crowd: how crowdsourc-
ing can advance machine learning research. J Mach Learn Res. 
2017;18(1):7026–71.

 22. Cutzu F, Edelman S. Canonical views in object representation 
and recognition. Vis Res. 1994;34(22):3037–56. https:// doi. org/ 
10. 1016/ 0042- 6989(94) 90277-1.

 23. Papageorgiou C, Poggio T. A trainable system for object detection. 
Int J Comput Vis. 2000;38(1):15–33.

 24. Hjelmås E, Low BK. Face detection: a survey. Comput Vis Image 
Underst. 2001;83(3):236–74.

 25. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez 
AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural 
Inf Process Syst. 2017;30.

 26. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, 
Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, 
et al. An image is worth 16 × 16 words: transformers for image 
recognition at scale. 2020. arXiv preprint arXiv: 2010. 11929.

 27. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, 
Zagoruyko S. End-to-end object detection with transformers. In: 
Computer vision—ECCV 2020: 16th European conference, Glas-
gow, UK, August 23–28, 2020, proceedings, Part I 16. Springer. 
2020. p. 213–229

 28. Ren S, He K, Girshick R, Sun J. Faster r-cnn: towards real-time 
object detection with region proposal networks. Adv Neural Inf 
Process Syst. 2015;28.

 29. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin 
transformer: hierarchical vision transformer using shifted win-
dows. In: Proceedings of the IEEE/CVF international conference 
on computer vision. 2021. p. 10012–10022.

 30. Liu Z, Hu H, Lin Y, Yao Z, Xie Z, Wei Y, Ning J, Cao Y, Zhang 
Z, Dong L, Wei F, Guo B. Swin transformer v2: scaling up capac-
ity and resolution. In: Proceedings of the IEEE/CVF conference 
on computer vision and pattern recognition (CVPR). 2022. p. 
12009–12019.

 31. Zhang H, Li F, Liu S, Zhang L, Su H, Zhu J, Ni LM, Shum H-Y. 
DINO: DETR with improved DeNoising anchor boxes for end-
to-end object detection. arXiv (2022). https:// doi. org/ 10. 48550/ 
ARXIV. 2203. 03605.

 32. Wei Y, Hu H, Xie Z, Zhang Z, Cao Y, Bao J, Chen D, Guo 
B. Contrastive learning rivals masked image modeling in fine-
tuning via feature distillation. arXiv 2022. https:// doi. org/ 10. 
48550/ ARXIV. 2205. 14141.

 33. Chen Q, Wang J Han C, Zhang S Li, Z, Chen X, Chen J, Wang 
X, Han S, Zhang G, Feng H, Yao K, Han J, Ding E, Wang J. 
Group DETR v2: strong object detector with encoder-decoder 
pretraining. arXiv 2022. https:// doi. org/ 10. 48550/ ARXIV. 2211. 
03594.

 34. Zong Z, Song G, Liu Y. DETRs with collaborative hybrid 
assignments training. arXiv 2022. https:// doi. org/ 10. 48550/ 
ARXIV. 2211. 12860.

 35. Szegedy, C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, 
Erhan D, Vanhoucke V, Rabinovich A. Going deeper with con-
volutions. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition. 2015. p. 1–9.

 36. Simonyan K, Zisserman A. Very deep convolutional networks 
for large-scale image recognition. 2015.

 37. He K, Zhang X, Ren S, Sun J. Deep residual learning for image 
recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2016. p. 770–778.

 38. Kushwaha S, Bahl S, Bagha AK, Parmar, KS, Javaid M, Haleem 
A, Singh RP. Significant applications of machine learning for 
covid-19 pandemic. J Ind Integr Manag. 2020;5(4).

 39. Alimadadi A, Aryal S, Manandhar I, Munroe PB, Joe B, Cheng 
X. Artificial intelligence and machine learning to fight covid-
19. Physiol Genom. 2020;52(4):200–2. https:// doi. org/ 10. 1152/ 
physi olgen omics. 00029. 2020. (PMID: 32216577).

 40. Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol 
AT. New machine learning method for image-based diagnosis 
of covid-19. PLoS ONE. 2020;15(6):1–18. https:// doi. org/ 10. 
1371/ journ al. pone. 02351 87.

 41. Chowdary GJ, Punn NS, Sonbhadra SK, Agarwal S. Face mask 
detection using transfer learning of inceptionv3. In: Interna-
tional conference on big data analytics. Springer. 2020. p. 
81–90.

 42. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking 
the inception architecture for computer vision. In: 2016 IEEE 
conference on computer vision and pattern recognition (CVPR), 
2016. p. 2818–26. https:// doi. org/ 10. 1109/ CVPR. 2016. 308

 43. Wang Z, Wang G, Huang B, Xiong Z, Hong Q, Wu H, Yi P, 
Jiang K, Wang N, Pei Y, Chen H, Miao Y, Huang Z, Liang J. 
Masked face recognition dataset and application. 2020.

 44. Loey M, Manogaran G, Taha MHN, Khalifa NEM. A hybrid 
deep transfer learning model with machine learning methods 
for face mask detection in the era of the covid-19 pandemic. 
Measurement. 2021;167:108288. https:// doi. org/ 10. 1016/j. 
measu rement. 2020. 108288.

 45. Nath ND, Behzadan AH, Paal SG. Deep learning for site safety: 
real-time detection of personal protective equipment. Autom 
Constr. 2020;112:103085.

 46. Torralba A, Efros AA. Unbiased look at dataset bias. In: CVPR 
2011; 2011. p. 1521–1528. https:// doi. org/ 10. 1109/ CVPR. 2011. 
59953 47.

 47. Wah C, Branson S, Welinder P, Perona P, Belongie S. The 
caltech-ucsd birds-200-2011 dataset. California Institute of 
Technology. 2011.

 48. Welinder P, Branson S, Mita T, Wah C, Schroff F, Belongie S, 
Perona P. Caltech-ucsd birds 200. California Institute of Tech-
nology. 2010.

 49. Douze M, Jégou H, Sandhawalia H, Amsaleg L, Schmid C. 
Evaluation of gist descriptors for web-scale image search. In: 
Proceedings of the ACM international conference on image and 
video retrieval. CIVR ’09. Association for Computing Machin-
ery, New York. 2009. https:// doi. org/ 10. 1145/ 16463 96. 16464 21

 50. Murillo AC, Singh G, Kosecka J, Guerrero JJ. Localization in 
urban environments using a panoramic gist descriptor. IEEE 
Trans Rob. 2012;29(1):146–60.

 51. Douze M, Jégou H, Sandhawalia H, Amsaleg L, Schmid C. 
Evaluation of gist descriptors for web-scale image search. In: 
Proceedings of the ACM international conference on image and 
video retrieval; 2009. p. 1–8.

 52. Everingham M, Van Gool L, Williams CKI, Winn J, Zisser-
man A. The PASCAL visual object classes challenge 2012 
(VOC2012) results. http:// www. pascal- netwo rk. org/ chall enges/ 
VOC/ voc20 12/ works hop/ index. html

 53. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, 
Corrado G.S, Davis A, Dean J, Devin M, Ghemawat S, Goodfel-
low I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, 
Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray 
D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar 
K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, 
Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. Tensor-
Flow. Large-scale machine learning on heterogeneous systems. 
Software available from tensorflow.org 2015. https:// www. tenso 
rflow. org/

 54. Chen K, Wang J, Pang J, Cao Y, Xiong Y, Li X, Sun S, Feng 
W, Liu Z, Xu J, Zhang Z, Cheng, D, Zhu C, Cheng T, Zhao Q, 
Li B, Lu X, Zhu R, Wu Y, Dai J, Wang J, Shi J, Ouyang W, Loy 
CC, Lin D. MMDetection. Open mmlab detection toolbox and 
benchmark. 2019. arXiv preprint arXiv: 1906. 07155.

 55. Yu H, Chen C, Du X, Li Y, Rashwan A, Hou L, Jin P, Yang F, 
Liu F, Kim J, Li J. TensorFlow model garden. 2020. https:// 
github. com/ tenso rflow/ models.

https://doi.org/10.1016/0042-6989(94)90277-1
https://doi.org/10.1016/0042-6989(94)90277-1
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/ARXIV.2203.03605
https://doi.org/10.48550/ARXIV.2203.03605
https://doi.org/10.48550/ARXIV.2205.14141
https://doi.org/10.48550/ARXIV.2205.14141
https://doi.org/10.48550/ARXIV.2211.03594
https://doi.org/10.48550/ARXIV.2211.03594
https://doi.org/10.48550/ARXIV.2211.12860
https://doi.org/10.48550/ARXIV.2211.12860
https://doi.org/10.1152/physiolgenomics.00029.2020
https://doi.org/10.1152/physiolgenomics.00029.2020
https://doi.org/10.1371/journal.pone.0235187
https://doi.org/10.1371/journal.pone.0235187
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1016/j.measurement.2020.108288
https://doi.org/10.1016/j.measurement.2020.108288
https://doi.org/10.1109/CVPR.2011.5995347
https://doi.org/10.1109/CVPR.2011.5995347
https://doi.org/10.1145/1646396.1646421
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/1906.07155
https://github.com/tensorflow/models
https://github.com/tensorflow/models


 SN Computer Science (2023) 4:263263 Page 14 of 14

SN Computer Science

 56. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg 
AC. Ssd: single shot multibox detector. In: Leibe B, Matas J, 
Sebe N, Welling M, editors. Computer vision—ECCV 2016. 
Cham: Springer; 2016. p. 21–37.

 57. Redmon J, Farhadi A. YOLOv3: an incremental improvement. 
2018.

 58. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierar-
chies for accurate object detection and semantic segmentation. 
In: Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2014. p. 580–587.

 59. Zhao Z-Q, Zheng P, Xu S-t, Wu X. Object detection with 
deep learning: a review. IEEE Trans Neural Netw Learn Syst. 
2019;30(11):3212–32.

 60. Yang Z, Liu S, Hu H, Wang L, Lin S. Reppoints: point set rep-
resentation for object detection. In: Proceedings of the IEEE/
CVF international conference on computer vision. 2019. p. 
9657–9666.

 61. Sun P, Zhang R, Jiang Y, Kong T, Xu C, Zhan W, Tomizuka M, 
Li L, Yuan Z, Wang C, et al. Sparse r-cnn: end-to-end object 
detection with learnable proposals. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition. 
2021. p. 14454–14463.

 62. Tian Z, Shen C, Chen H, He T. Fcos: fully convolutional one-
stage object detection. In: Proceedings of the IEEE/CVF inter-
national conference on computer vision. 2019. p. 9627–9636.

 63. Lu X, Li B, Yue Y, Li Q, Yan J. Grid r-cnn. In: 2019 IEEE/CVF 
conference on computer vision and pattern recognition (CVPR); 
2019. p. 7355–7364. https:// doi. org/ 10. 1109/ CVPR. 2019. 00754

 64. Lu X, Li B, Yue Y, Li Q, Yan J. Grid R-CNN plus: faster and 
better. 2019.

 65. Zhu X, Su W, Lu L, Li B, Wang X, Dai J. Deformable detr: 
Deformable transformers for end-to-end object detection. 2020. 
arXiv preprint arXiv: 2010. 04159.

 66. Zhu C, He Y, Savvides M. Feature selective anchor-free module 
for single-shot object detection. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition. 
2019. p. 840–849.

 67. Zheng Z, Ye R, Wang P, Wang J, Ren D, Zuo W. Localization 
distillation for object detection. 2021.

 68. Zhang H, Wang Y, Dayoub F, Sunderhauf N. Varifocalnet: An 
iou-aware dense object detector. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition 
(CVPR). 2021. p. 8514–8523.

 69. Radosavovic I, Kosaraju RP, Girshick R, He K, Dollár P. 
Designing network design spaces. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition. 
2020. p. 10428–10436.

 70. Wu Y, Chen Y, Yuan L, Liu Z, Wang L, Li H, Fu Y. Rethinking 
classification and localization for object detection. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pat-
tern recognition. 2020. p. 10186–10195.

 71. Dai J, Qi H Xiong Y, Li Y, Zhang G, Hu H, Wei Y. Deformable 
convolutional networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017. p. 764–773

 72. Zhu X, Hu H Lin S Dai J. Deformable convnets v2: More 
deformable, better results. In: Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition. 2019. 
p. 9308–9316.

 73. Zhu X, Cheng D, Zhang Z, Lin S, Dai J. An empirical study of 
spatial attention mechanisms in deep networks. In: Proceedings 
of the IEEE/CVF international conference on computer vision 
(ICCV). 2019.

 74. Li Y, Chen Y, Wang N, Zhang Z. Scale-aware trident networks 
for object detection. In: Proceedings of the IEEE/CVF interna-
tional conference on computer vision. 2019. p. 6054–6063.

 75. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, 
Killeen T, Lin Z, Gimelshein N, Antiga L, et al. Pytorch: an 
imperative style, high-performance deep learning library. Adv 
Neural Inf Process Syst. 2019;32.

 76. Wightman R. PyTorch image models github. 2019. https:// doi. 
org/ 10. 5281/ zenodo. 44148 61.

 77. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, 
Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga 
R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, 
Warden P, Wicke M, Yu Y, Zheng X. Tensorflow: A system 
for large-scale machine learning. In: 12th USENIX symposium 
on operating systems design and implementation (OSDI 16); 
2016. p. 265–283. https:// www. usenix. org/ system/ files/ confe 
rence/ osdi16/ osdi16- abadi. pdf.

 78. Moore BE, Corso JJ. Fiftyone. GitHub. Note: https:// github. 
com/ voxel 51/ fifty one. 2020.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1109/CVPR.2019.00754
http://arxiv.org/abs/2010.04159
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://github.com/voxel51/fiftyone
https://github.com/voxel51/fiftyone

	CPPE-5: Medical Personal Protective Equipment Dataset
	Abstract
	Introduction
	Related Work
	Dataset Collection and Annotation
	Object Categories
	Image Collection
	Image Annotation

	Dataset Statistics
	Experimental Results
	Experimental Setup
	Baseline Models
	Evaluating State-of-the-Art Models

	Conclusion
	Appendix 1: Implementation Details
	Appendix 2: Sample Images
	Appendix 3: Comparing Model Complexities
	Acknowledgements 
	References




