
Vol.:(0123456789)

SN Computer Science (2023) 4:304
https://doi.org/10.1007/s42979-023-01721-4

SN Computer Science

ORIGINAL RESEARCH

Offline Mining of Microservice‑Based Architectures (Extended Version)

Jacopo Soldani1  · Javad Khalili1 · Antonio Brogi1

Received: 1 August 2022 / Accepted: 1 February 2023 / Published online: 1 April 2023
© The Author(s) 2023

Abstract
Designing applications adhering to the key design principles of microservice-based architectures (MSAs) enables fully
exploiting the potentials of cloud computing platforms. A specification of an application’s MSA can help determining whether
it adheres to such principles, and reasoning on how to refactor it when this is not the case. However, manually generating such
a specification is complex and costly, mainly due to the multitude of heterogeneous software services and service interactions
forming an MSA. The main objective of this article is to automate the generation of the specification of an existing MSA. We
introduce an offline technique for automatically mining the specification of an MSA from its Kubernetes deployment. The
mined MSA is expressed in � TOSCA, a microservice-oriented profile of the OASIS standard TOSCA. We also provide an
open-source prototype implementation of the proposed mining technique, called � TOM. Four case studies based on four dif-
ferent third-party applications show that our technique can effectively mine the MSAs of existing applications, being it more
accurate than its state-of-the-art competitor. The proposed offline mining technique can help researchers and practitioners
working with microservices, by enabling them to automatically mine the MSAs of their applications. The obtained MSAs
can then be visualised and analysed with existing tools to enhance their adherence to the key design principles of MSAs.

Keywords  Microservices · Microservices architecture · Software architecture mining

Introduction

Microservice-based architectures (MSAs) enable realising
so-called cloud-native applications, viz., applications archi-
tected to fully exploit the potentials of cloud computing plat-
forms [1]. As a result, MSAs have become commonplace for
cloud-based applications. For instance, Amazon, Netflix, or
Twitter are already exploiting MSAs to deliver their busi-
nesses [2].

MSAs are essentially service-oriented architectures satis-
fying some additional key design principles, e.g., ensuring

services’ independent deployability and horizontal scal-
ability, or isolating failures [3]. It is hence crucial to deter-
mine whether a service-based application adheres to the key
design principles of MSAs, and understanding how to refac-
tor an application to resolve possible violations of such key
design principles [4].

� TOSCA and � Freshener [5] enable modelling, analys-
ing, and refactoring the architecture of a service-based appli-
cation, to enhance its adherence to the key design principles
of MSAs. � TOSCA is a model enabling to specify MSAs
with the human- and machine-readable OASIS standard
TOSCA [6]. MSAs are represented by typed directed graphs,
called topology graphs, where nodes model the services,
integration components (e.g., load balancers or message
queues), and databases forming an MSA. Directed arcs rep-
resent the interactions among such components.

� Freshener [5] then provides a visual enviroment to
manually edit the � TOSCA specification of the MSA of an
existing application, viz., its modelling as a � TOSCA topol-
ogy graph. Specified MSAs can then be automatically ana-
lysed to check whether the application includes some known
architectural smells, viz., possible symptoms of violations
of MSAs’ key design principles. � Freshener also enables

This article is part of the topical collection “Advances on Cloud
Computing and Services Science” guest edited by Donald F.
Ferguson, Claus Pahl and Maarten van Steen.

 *	 Jacopo Soldani
	 jacopo.soldani@unipi.it

	 Javad Khalili
	 javad.khalili443@gmail.com

	 Antonio Brogi
	 antonio.brogi@unipi.it

1	 Department of Computer Science, University of Pisa, Largo
B. Pontecorvo, 3, 56127 Pisa, Italy

http://orcid.org/0000-0002-2435-3543
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01721-4&domain=pdf

	 SN Computer Science (2023) 4:304304  Page 2 of 17

SN Computer Science

reasoning on how to refactor an application to resolve iden-
tified architectural smells, based on applying practitioner-
shared refactorings known to resolve their occurrence [7].

At the same time, manually specifying the whole MSA
of an existing application is a complex, time-consuming,
and error-prone process, even in a visual environment like
that provided by � Freshener [4]. This is mainly because of
the multitude of heterogeneous software services forming
an MSA, and of the many complex interactions occurring
among them to deliver the application’s businesses [2]. For
this reason, the main objective of this article is enabling
to automatically generate the � TOSCA specification of an
existing MSA.

In this perspective, we propose a novel technique for min-
ing the � TOSCA specification of the MSA of an applica-
tion, which starts from the Kubernetes deployment of an
application, configured to also exploit Istio [8] and Kiali [9],
two Kubernetes-native tools for proxying deployed services
and monitor their interactions. It then processes, offline,
the Kubernetes manifest files specifying the application
deployment and the Istio-based proxying of its services, as
well as a graph generated by Kiali in any former run of the
application, e.g., its production run. The Kiali graph mod-
els the deployed software components as nodes, and their
monitored interactions as directed arcs. Given such inputs,
our technique can automatically mine the MSA of an appli-
cation in two steps. It first elicits the software components
and their interactions, producing a first draft of the MSA of
an application. The draft is then refined by distinguishing
services from integration components and databases, and
by characterising the mined interactions, e.g., determining
whether circuit breakers or timeouts are used therein. The
refined architecture is finally marshalled to � TOSCA.

To illustrate the feasibility of the proposed mining tech-
nique, we present an open source prototype implementa-
tion, called � TOM ( � TOSCA Offline Miner). We also show
how we used � TOM to assess our technique by applying it
to mine MSAs in four case studies based on four existing,
third-party applications, viz., Sock Shop [10], Online Bou-
tique [11], Robot Shop [12], and Book Info [13]. The case
studies show that � TOM effectively mines the MSAs of the

considered applications, and that it is more accurate in min-
ing MSAs if compared with � Miner, viz., the state-of-the-
art competitor that we presented in our previous work [14].

Our mining technique and its prototype implementation
can be of practical value to researchers and practitioners
working with microservices. They can indeed be exploited to
automatically mine the � TOSCA specification of the MSAs
of existing applications, by simply processing their existing
Kubernetes deployments, rather than requiring to deploy
and run them in suitably configured testing environments,
as instead required by � Miner [14]. In addition, the MSAs
obtained with our mining technique can be visualised and
analysed with � Freshener [5] to identify and resolve the
architectural smells therein, to enhance their adherence to
the key design principles of MSAs.

The rest of this article is organised as follows. Section
(“Background”) provides the necessary background on �
TOSCA, Kubernetes, Istio, and Kiali. Section (“Mining
MSAs”) presents our technique for mining MSAs offline.
Section (“Prototype”) introduces � TOM, the open source
prototype implementation of our mining technique. Section
(“Case Studies”) illustrates four case studies assessing our
technique and discusses the accuracy of � TOM in mining
the considered MSAs. Finally, Sects. (“Related Work”) and
(“Conclusions”) discuss related work and draw some con-
cluding remarks, respectively.1

Background

� TOSCA

The � TOSCA type system (Fig. 1) allows specifying
MSAs as typed topology graphs in TOSCA, the Topology

Fig. 1   The node types, relationship types, and group types defining � TOSCA. The corresponding definitions in TOSCA are publicly available
on GitHub at https://​di-​unipi-​socc.​github.​io/​micro​TOSCA/​micro​TOSCA.​yml

1  This article extends [15] by providing a more detailed description
of our mining technique, showing its application in two new case
studies (Sects. “Sock Shop” and “Online Boutique”), and discussing
the accuracy of and setup needed to run our mining technique (Sect.
“Discussion”).

https://di-unipi-socc.github.io/microTOSCA/microTOSCA.yml

SN Computer Science (2023) 4:304	 Page 3 of 17  304

SN Computer Science

and Orchestration Specification for Cloud Applications
[6]. Topology nodes model the services, communication
patterns, or databases in an MSA. A Service runs some
business logic, e.g., a service managing users’ orders in
an e-commerce application. A CommunicationPattern
implements message-based integration pattern [16], viz.,
MessageRouter and MessageBroker, which decouples
the communication among two or more components. Mes-
sageBrokers are also distinguished based on whether they
implement message brokering asynchronously (Asynchro-
nousMessageBroker) or synchronously (Synchronous-
MessageBroker). Finally, a Database is a component stor-
ing the data pertaining to a certain domain, e.g., a database
of orders in an e-commerce application.

Directed arcs instead model the interactions among the
components in an MSA, throughout InteractsWith rela-
tionships. Such relationships can be further characterised
by setting three boolean properties, viz., � , � , and � . The
properties � and � indicate that the source node is interacting
with the target node via a circuit breaker or by setting proper
timeouts, respectively. The property � instead indicates that
the endpoint of the target of the interaction is dynamically
discovered (e.g., with service discovery).

Finally, nodes can be added to an Edge group. The lat-
ter specifies the application components that are publicly
accessible from outside of the application, namely those
components that can be directly accessed by external clients.

Example. Figure 2 displays an example of � TOSCA
topology modelling the MSA of a toy e-commerce applica-
tion. The application includes four services, i.e., frontend
(accessible by external clients), orders, payment, and
shipping. It is then completed by two integration com-
ponents, i.e., router and queue, and two databases, i.e.,
catalogDb and ordersDb. The frontend allows browsing
the catalogue of available products, by interacting with
catalog. The actual instance of catalog used to access the
catalogDb is dynamically discovered by a message router
implementing server-side service discovery. The frontend
also allows to place orders, by interacting with orders.
The latter allows to upload new product orders, which are

stored in ordersDb, and which are also enqueued in the
asynchronous message broker implementing the queue of
orders to be shipped. A circuit breaker is set to let orders
tolerate the possible failures of the queue of orders.
Finally, the queue is consumed by the service shipping,
which pulls orders from the queue and proceeds with their
shipping.

Kubernetes

Kubernetes allows deploying and managing multi-service
applications in distributed clusters. Such a deployment and
management is realised by orchestrating pods, which con-
stitute Kubernetes’ deployment units. A pod is a deployable
instance of an application service, which is shipped within
a single container or in several tightly coupled containers. A
pod can actually encapsulate multiple Docker containers that
need to share the same resources, e.g., when a containerised
service is accompanied by “sidecar” containers monitoring
it or proxying its communications.

Pod instances are deployed and managed with Kuber-
netes controllers. The latter allow to spawn and manage pod
instances from pod templates, which are included in work-
load resource specifications, e.g., Deployments, StatefulSets,
and ReplicaSets. The latter specify the Docker containers
running in a pod, their target state, as well as the number
of replicas of the pod that must be deployed. Kubernetes
controllers then ensure that the specified number of replicas
of a pod continue to run on a cluster, with each pod instance
reaching and maintaining its target state.

Replicated pods can be accessed through Kubernetes ser-
vices, which define their load balancing policies. A Kuber-
netes service implements a message routing component,
balancing requests among the pods it manages according to
the specified balancing policy. Kubernetes services can be of
multiple types, depending on whether they should be acces-
sible only within the Kubernetes cluster (viz., ClusterIP ser-
vices), or whether they should be exposed to external clients
(viz., NodePort or LoadBalancer services).

Fig. 2   An example of � TOSCA topology modelling the architecture of an application

	 SN Computer Science (2023) 4:304304  Page 4 of 17

SN Computer Science

Istio and Kiali

Istio and Kiali are two Kubernetes-native tools for control-
ling and monitoring service interactions. Istio includes so-
called envoy proxies in a Kubernetes deployment, which are
deployed alongside application services to control how they
interact with each other. This is done by specifying Virtu-
alServices or DestinationRules, which define how to route
a message to its destination. This includes, e.g., indicating
whether timeouts or circuit breakers are used to avoid the
sender to continue waiting for an answer when the receiver
has failed.

Kiali is an observability console, which comes natively
integrated with Istio. It exploits Istio envoy proxies to store
proxied interactions, so as to trace the interactions among
deployed services. Each interaction is stored together with
its metadata, including the source and target Kubernetes
workloads or services, and whether the interaction suc-
cessfully completed. Kiali then exploits such interactions
to build different types of graphs, which enable visualising
them at different abstraction levels in the Kiali dashboard,
and which can be exported to JSON graph data files. In the
rest of this article, we consider Kiali graph modelling moni-
tored service interactions, viz., service graphs.2

Mining MSAs

The overall flow of our technique for mining MSAs is illus-
trated by the pipeline in Fig. 3, which starts from the Kuber-
netes manifest files specifying the application deployment
and a JSON graph data file specifying the graph generated
by Kiali while monitoring an existing application deploy-
ment. Such inputs are processed by a first step, called the
mining step, which consists of two other substeps, viz., min-
ing topology fragment and connecting topology fragments.
They essentially elicit the nodes and interactions forming the
target MSAs, and produce a first corresponding � TOSCA
topology graph. The graph is then passed to the refinement
step, which also consists of two substeps, viz., node refine-
ment and interaction refinement. The node refinement sub-
set determines whether mined nodes model databases or
message brokers, while the interaction refinement substep
characterises the mined relationships by indicating whether
dynamic discovery, circuit breakers, or timeouts are used in
the corresponding interactions.

We hereafter illustrate the above described steps in more
detail, to show how they enable building the � TOSCA
topology graph modelling a mined MSA. In doing so, we
denote the mined � TOSCA topology graphs following the
notation from our previous work [4]. Namely, we represent
the � TOSCA topology graph modelling a mined MSA as a
triple A = ⟨N,R,E⟩ , where:

•	 N is the set of typed topology nodes, with the name and
type of each node n ∈ N denoted by n.���� and n.���� ,
respectively;

Fig. 3   Our two-steps technique for mining MSAs from their Kubernetes deployment

2  https://​kiali.​io/​docs/​featu​res/​topol​ogy.

https://kiali.io/docs/features/topology.

SN Computer Science (2023) 4:304	 Page 5 of 17  304

SN Computer Science

•	 R ⊆ N × N × 2P is the set of node relationships, with
P = {�, �, �} being the set of properties that can be used
to characterise a relationship, viz., ( � ) circuit breaker set,
( � ) dynamic discovery used, or ( � ) timeout set;

•	 E ⊆ N is the subset of nodes in the Edge group, namely
those nodes that are publicly accessible to external cli-
ents.

Step 1: Mining

The mining step processes the available inputs to determine
the nodes and interactions forming the target MSA. Firstly, �
TOSCA topology fragments are mined from the Kubernetes
manifest files, by essentially mapping Kubernetes entities to
� TOSCA nodes. The topology graph is then completed by
connecting mined topology fragments based on the runtime
interactions contained in the Kiali graph.

Mining Topology Fragments. Topology fragments
are extracted from the Kubernetes manifest files by first
mapping the workloads and services specified therein to
� TOSCA nodes. Each Kubernetes workload specifies the
pod configuration for a component of the target MSA, by
indicating the Docker container from which it runs and its
target configuration (Sect. “Kubernetes”). Therefore, each
Kubernetes workload is mapped to a � TOSCA node of type
Service. The type may change in the refinement step, if
the workload is used to deploy an integration component
or database.

A Kubernetes service instead implements a message rout-
ing component balancing the traffic sent to the replicas of
the pod they manage, specified by a Kubernetes workload
(Sect. “Kubernetes”). They are hence mapped to � TOSCA
nodes of types MessageRouter, which are directly speci-
fied to interact with the Service node corresponding to the
workload they manage. In addition, if a Kubernetes service
is a NodePort or LoadBalancer, its corresponding Mes-
sageRouter node is placed within the Edge group. This
reflects the fact that NodePort or LoadBalancer services can
be invoked by external clients.

More formally, the mining topology fragment substep
generates a graph A = ⟨N,R,E⟩ by processing the Kuber-
netes manifest files as follows:

•	 Each Kubernetes workload w is modelled by a
node n ∈ N such that n.���� is the name of w and
n.���� = �������.

•	 Each Kubernetes service s is modelled by a node
n ∈ N such that n.���� is the name of s and
n.���� = ������������� . If the Kubernetes service s is a
NodePort or LoadBalancer, the node n is also added to
E.

•	 Each pairing of a Kubernetes service s with a work-
load w (managed by s) is modelled by a directed arc
⟨n,m, �⟩ ∈ R , with n ∈ N being the node modelling s
and m ∈ N being the node modelling w.

Example. Figure 4 illustrates three examples of applica-
tion of our topology fragment mining. In case (a), a Kuber-
netes ClusterIP service orders.svc manages the Deploy-
ment workload running the service orders. By applying
our node mining technique, we obtain a MessageRouter
node modelling the Kubernetes service, which Interacts-
With the Service node modelling the workload. Case (b)
is similar, with the only difference that the MessageR-
outer node is placed in the Edge group, since Kubernetes
NodePort services are exposed to external clients. Finally,
case (c) considers a Deployment workload used to deploy a
message queue, without any Kubernetes service balacing
its load. In this case, we obtain a singleton Service node.
Case (c) also provides an example of � TOSCA node that
may be typed as Service only temporarily: the type of
queue might be changed to AsynchronousMessageBro-
ker, if it actually implements an asynchronous message
broker (Sect. “Step 2: Refinement”).

Connecting Topology Fragments. The topology frag-
ments obtained from the mining topology fragments sub-
step are then interconnected to model the runtime interac-
tions occurring among the components they model. This is
done by parsing the Kiali graph, which explicitly models
the component interactions that were monitored in a for-
mer deployment of the application, e.g., in its production
deployment.

A monitored interaction is represented as an edge in
the Kiali graph, which connects the node corresponding

Fig. 4   Examples of topology
fragments mined from Kuber-
netes services and workloads.

	 SN Computer Science (2023) 4:304304  Page 6 of 17

SN Computer Science

to the the Kubernetes workload that started the interaction
to the Kubernetes service that was invoked.3 Each edge is
hence mapped to an InteractsWith relationship connecting
the Service node modelling the starting workload to the
MessageRouter node modelling the target Kubernetes
service. In addition, the mined InteractsWith relation-
ship are directly specified as enacting dynamic discovery,
given that Kubernetes prescribes to invoke services based
on their name and to rely on Kubernetes’ native DNS to
resolve the address of the actual host to contact.

More formally, the connecting topology fragments
extends the graph A = ⟨N,R,E⟩ obtained with mining
topology fragments substep, by generating a new graph
A� = ⟨N,R�,E⟩ . The extended graph A′ includes all for-
merly mined relationships, viz., R ⊆ R′ , plus a new rela-
tionship modelling each monitored interaction. The interac-
tion from a workload w to a Kubernetes service s (denoted
by an arc in the Kiali graph) is modelled by a directed arc
⟨n,m, {�}⟩ ∈ R� , with n ∈ N being the node modelling w and
m ∈ N being the node modelling s. The label � is instead
used to denote that the modelled interaction enacts dynamic
discovery, as described above.

Example. Figure 5 illustrates an example of mined Inter-
actsWith relationship, which connects two of the topology
fragments in Fig. 4. The Kiali graph specifies that the Kuber-
netes workload running the frontend service interacted with
the Kubernetes service managing the replicated orders ser-
vice. This is modelled by including an InteractsWith rela-
tionship connecting the corresponding � TOSCA nodes, viz.,
the Service frontend and the MessageRouter orders.svc.

Step 2: Refinement

The mining step produces a “draft” of the � TOSCA topol-
ogy modelling the target MSA, in which all nodes and inter-
actions are recognised, but associated with default types and
properties. The objective of this step to suitably characterise
the mined nodes and relationships.

Node Refinement. After the mining step, nodes are asso-
ciated with either one of two types: MessageRouter or
Service. Whilst nodes types as MessageRouter are truly
routing messages in the Kubernetes deployment of an MSA
(being them obtained from Kubernetes services), Service
is used as the default type for all other nodes. Nodes initially
typed as Service s may however implement other compo-
nents than those running some business logic, namely data-
bases or asynchronous message brokers. The objective of
the node refinement substep is hence to identify such nodes
and assign them with the corresponding � TOSCA type, viz.,
Database and AsynchronousMessageBroker.

Database and message brokers can be seen as “passive”
components: despite they reply when being invoked by other
components, they are not proactively invoking other compo-
nents [4]. They hence appear as “sink nodes” in the mined
� TOSCA topology graph, meaning that they are targeted
by InteractsWith relationships, whilst no such relation-
ship outgoes from them. This intuition enables reducing the
number of nodes to be processed for possible refinement:
the node refinement substep indeed focuses on the Service
nodes being sink nodes, and determines whether they should
be rather typed as Database or AsynchronousMessage-
Broker. This is essentially done by looking at the Docker
image running in the corresponding Kubernetes workload:
if such image is one of the official Docker images for data-
bases or message brokers (Table 1), then the node’s type is
changed to Database or AsynchronousMessageBroker,
respectively. Otherwise, the node continues to be a Service.

More formally, the node refinement substep updates the
� TOSCA topology graph A = ⟨N,R,E⟩ obtained from the

Fig. 5   Examples of InteractsWith relationship mined from the Kiali graph

Table 1   Official Docker images of software implementing a database or message broker

Databases Message brokers

cassandra, db2, iris, mariadb, mongo, mysql, neo4j, oracle, postgres,
redis, sqlite

activemq, kafka, mosquito, nats, rabbitmq

3  Kiali unifies a Kubernetes service with the Kubernetes worklaod it
manages, assuming that Kubernetes services are used to enact server-
side service discovery, as recommended by Kubernetes documenta-
tion (https://​kuber​netes.​io/​docs/​conce​pts/​servi​ces-​netwo​rking/​servi​
ce).

https://kubernetes.io/docs/concepts/services-networking/service
https://kubernetes.io/docs/concepts/services-networking/service

SN Computer Science (2023) 4:304	 Page 7 of 17  304

SN Computer Science

mining step, by generating a new graph A� = ⟨N�,R,E⟩ . The
updated graph includes all formerly mined nodes, but the
sink nodes of type Service, viz.,

It then refines the sink nodes of type Service as
described above, when possible. More precisely,
∀n ∈ N .∄⟨n, ⋅, ⋅⟩ ∈ R ∧ n.���� = �������:

•	 If the Docker image of the workload modelled by n is
an official Docker image for databases, n is replaced by
n� ∈ N� , with n�.���� = n.���� and n.���� = ��������;

•	 If the Docker image of the workload modelled by n
is an official Docker image for message brokers, n
is replaced by n� ∈ N� , with n�.���� = n.���� and
n.���� = �������������������������;

•	 In any other case, n cannot be refined and is kept also in
N′ , viz., n ∈ N�.

As a result, there might be nodes typed as Service s,
despite they are implementing some databases or message
brokers by means of unofficial Docker images. If this is the
case, the application developer can refine the generated �
TOSCA representation of the target MSA by suitably chang-
ing their types. To support this, our technique foresees its
implementations to not only feature the fully automated
mode described above, but also an interactive mode prompt-
ing developers when a sink node may implement something

{n ∈ N ∣ ∃⟨n, ⋅, ⋅⟩ ∈ R ∨ n.���� ≠ �������} ⊆ N�
.

different from a Service. This would enable them to explic-
itly indicate whether such node should be typed as Service,
Database, or AsynchronousMessageBroker.

Interaction Refinement. The interaction refinement sub-
step is intended to characterise mined interactions by asso-
ciating them with other properties than the default property
d included during the mining step. More precisely, it associ-
ates each mined InteractsWith relationship with properties
� and � , depending on whether a circuit breaker or a timeout
is used during the corresponding interactions. This is done
by inspecting the Istio traffic management rules defined for
the service targeted by each mined relationship.

Istio traffic management rules are defined in VirtualSer-
vices and DestinationRules (Sect. “Istio and Kiali”). Virtual-
Services allow explicitly setting a timeout field to indicate
the maximum amount of time after which the interaction
with the target service is considered to have failed (Fig. 6a).
DestinationRules instead feature a field outlierDetec-
tion that allows defining circuit breaking policies, by set-
ting the maximum number of tolerated consecutive errors
before the circuit breaker trips, as well as the amount of time
it remains tripped (Fig. 6b).

The interaction refinement substep hence checks whether
VirtualServices or DestinationRules are defined for the tar-
get of each interaction. To avoid unnecessarily browsing the
input Kubernetes manifest files, it relies on the metadata
included in the Kiali graph. Kiali indeed already determines
whether the target of an interaction is reached through a
VirtualService or through a DestinationRule defining some
circuit breaking policy. If this is the case, Kiali associates the

Fig. 6   Examples of a timeouts and b circuit breakers defined with Istio

	 SN Computer Science (2023) 4:304304  Page 8 of 17

SN Computer Science

service targeted by a monitored interaction with properties
hasVS or hasCB, respectively. Therefore, if the property
hasVS is set for a service in the Kiali graph correspond-
ing to the target of a mined InteractsWith relationship, the
interaction refinement substep looks for the correspond-
ing VirtualService in the Kubernetes manifest files. It then
checks whether such VirtualService sets some timeout
(similarly to Fig. 6a). If this is the case, the property � is set
for the corresponding InteractsWith relationship, to model
that a timeout is used therein.

Similarly, if the service in the Kiali graph correspond-
ing to the target of a mined InteractsWith relationship has
the property hasCB set, the interaction refinement substep
looks for the corresponding DestinationRule in the Kuber-
netes manifest files. The interaction refinement substep then
checks whether such DestinationRule sets a circuit breaking
policy through the outlierDetection field (similarly
to Fig. 6b). If this is the case, the property � is set for the
corresponding InteractsWith relationship, to model that a
circuit breaker is used therein.

More formally, the interaction refinement substep updates
the � TOSCA topology graph A = ⟨N,R,E⟩ obtained from
the node refinement substep, by generating a new graph
A� = ⟨N,R�,E⟩ . The updated graph A′ refines the interac-
tions modelled by R in A by updating their properties as
described above. More precisely, ∀⟨n,m, p⟩ ∈ R:

•	 If there is a VirtualService setting a timeout
to m, ⟨n,m, p⟩ is replaced by ⟨n,m, p�⟩ ∈ R� , with
p ⊆ p� ∧ {�} ∈ p�;

•	 If there is a DestinationRule setting an outlier-
Detection circuit breaking policy to m, ⟨n,m, p⟩ is
replaced by ⟨n,m, p�⟩ ∈ R� , with p ⊆ p� ∧ {�} ∈ p�;

•	 In any other case, ⟨n,m, p⟩ is preserved as is, viz.,
⟨n,m, p⟩ ∈ R�.

Prototype

To assess the feasibility of our mining technique, we have
developed � TOM ( � TOSCA Offline Miner), an open source
prototype tool implemented in Java.4 � TOM provides a

command-line interface that automatically generates the
� TOSCA specification of an MSA, given the Kubernetes
manifest files specifying the corresponding application
deployment and a Kiali graph obtained from an existing
deployment.

� TOM consists of the five components shown in Fig. 7.
Main implements the command-line interface offered by �
TOM and coordinates the other components for enacting
our two-steps mining technique. It first invokes Parsers,
which resembles the Java classes implementing the logic for
running the mining step (Sect. “Step 1: Mining”) by parsing
the input Kubernetes manifest files and Kiali graph. The
mined MSA is represented by istantiating the object model
provided by the Graph component, and returned to Main.
The latter then invokes Refiners, which resembles the Java
classes implementing the logic of the refinement step (Sect.
“Step 2: Refinement”). This results in updating the instance
of the Graph object model, which is refined by updating
the types associated with mined nodes and by character-
izing mined relationships. The refined instance is returned
to Main, which passes it to Writer. The latter implements
the logic for processing the obtained instance of the Graph
object model and marshalling it to a � TOSCA specification
in YAML, which constitutes the output of � TOM.

� TOM can be run by issuing the command:

where “microTOM-1.0.jar” is the executable file
JAR file obtained from � TOM ’s sources. “WORKDIR”
is instead the path to a directory containing the Kubernetes
manifest files and the Kiali graph to be passed as input to
� TOM, and where � TOM will also store the generated �
TOSCA file. Finally, the option “-i” enables activating
the interactive refinement mode foreseen in Sect. (“Step 2:
Refinement”): when “-i” is set, the user is prompted with
the nodes that remain assigned with type Service even if
their interactions are such that they may implement some

Fig. 7   Architecture of � TOM 

4  The sources of � TOM are publicly available on GitHub (https://​
github.​com/​di-​unipi-​socc/​micro​TOM) and on Software Heritage (https://​archi​ve.​softw​arehe​ritage.​org/​browse/​origin/​direc​tory/?​origin_​

url=​https://​github.​com/​di-​unipi-​socc/​micro​TOM).

Footnote 4 (continued)

https://github.com/di-unipi-socc/microTOM
https://github.com/di-unipi-socc/microTOM
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM

SN Computer Science (2023) 4:304	 Page 9 of 17  304

SN Computer Science

different component, and she is asked to confirm or update
their type. By default, � TOM however runs the fully auto-
mated mode.

Case Studies

To assess our approach, we exploited � TOM to mine the
MSA of four open source, third-party applications, namely
Sock Shop [10], Online Boutique [11], Robot Shop [12], and
Book Info [13]. We actually compared the MSA mined by
� TOM (in its fully automated mode) with that declared
in the online available documentation of the considered
applications, as well as with that mined by � Miner [5], the
state-of-the-art tool for mining the � TOSCA specification
of an MSA [4]. As a result, we observed that � TOM effec-
tively mined the MSA of the considered applications (as per
what declared in their documentation), and that it generated
more informative � TOSCA specifications if compared with
� Miner. For instance, � TOM identified the use of timeouts
and circuit breakers in mined interactions, which were not
instead detected by � Miner.

We hereafter report on the mining of the MSAs of Sock
Shop (Sect. “Sock Shop”), Online Boutique (Sect. “Online
Boutique”), Robot Shop (Sect. “Robot Shop”), and Book Info
(Sect. “Book Info”). To enable repeating our assessment, we
published a dump of all the necessary inputs online.5

Sock Shop

Sock Shop [10] is a microservice-based application simu-
lating an e-commerce website selling socks. According to
its documentation, the MSA of Sock Shop is that shown in
Fig. 8a, and the application does not include failure handling
mechanisms like timeouts or circuit breakers [10].

We run both � Miner and � TOM on the publicly avail-
able Kubernetes deployment of Sock Shop to automatically
generate a � TOSCA representation of the MSA of Sock
Shop. In both cases, we exploited the load script available
on Sock Shop’s GitHub repository6 to load the application.
More precisely, we used the load script to load the deployed
Sock Shop instance during the dynamic mining step of �
Miner [14]. When using � TOM, instead, we deployed an
instance of the application and used the load script to gener-
ate workload. We then downloaded the Kiali graph obtained

from the loaded deployment, which we then provided as
input to � TOM.

Figure 8b illustrates the � TOSCA representation of the
MSA of Sock Shop generated by � Miner. By looking at the
figure, we can observe that � Miner successfully recognised
all Sock Shop’s components, all the interactions occurring
among them, and that front-end is the only service acces-
sible by external clients. � Miner also successfully typed
the message routing components as MessageRouter s,
rabbitmq as a AsynchronousMessageBroker, and carts-
db and order-db as Database s. � Miner instead wrongly
typed user-db and catalogue-db, which are represented as
Service s despite they actually are databases. The reason for
this is that � Miner types a component as a Database if it
runs from an official Docker image for databases, which is
not the case for user-db and catalogue-db.

The same limitation is shared by the newly proposed �
TOM, as � TOM also types a component as a Database if
it runs from an official Docker image for databases (Sect.
“Step 2: Refinement”). This can be observed by looking
at the � TOSCA representation of the MSA of Sock Shop
mined by � TOM, which is shown in Fig. 8c, and where
user-db and catalogue-db are wrongly typed as Service
s. As one can also observe, the � TOSCA representation
generated by � TOM (Fig. 8c) is the same as that generated
by � Miner (Fig. 8b), meaning that � TOM is as good as
� Miner in mining the MSA of Sock Shop. The advantage
of � TOM with respect to � Miner is however that � TOM
did not require us to run Sock Shop in a suitably configured
testing environment, as we were instead able to run it as is
in a Kubernetes cluster.

Online Boutique

Online Boutique is a demo microservice-based application
developed by Google [11]. It provides another example of
e-commerce application, still without timeouts or circuit
breakers handling possible service failures. According to
its online available documentation [11], the MSA of Online
Boutique is that in Fig. 9. It is worth noting that, being it
a demo application, it natively includes a loadgenerator
component generating workload to the application frontend
when the application is deployed.

We run both � Miner and � TOM on the publicly avail-
able Kubernetes deployment of Online Boutique to auto-
matically generate a � TOSCA representation of its MSA.
Fig. 9b and c provide the � TOSCA representations of the
MSA mined by � Miner and � TOM, respectively. Both tools
successfully elicited all the components forming Online
Boutique and all interactions occurring among them. They
also successfully typed all components, therein included
recognizing that cache is a Database.

5  The inputs for repeating the assessment described in this section are
publicly available on GitHub (https://​github.​com/​di-​unipi-​socc/​micro​
TOM/​tree/​main/​data/​examp​les) and on Software Heritage (https://​
archi​ve.​softw​arehe​ritage.​org/​browse/​origin/​direc​tory/?​origin_​url=​
https://​github.​com/​di-​unipi-​socc/​micro​TOM &​path=​data/​examp​les).
6  https://​github.​com/​micro​servi​ces-​demo/​load-​test.

https://github.com/di-unipi-socc/microTOM/tree/main/data/examples
https://github.com/di-unipi-socc/microTOM/tree/main/data/examples
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM%20&path=data/examples
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM%20&path=data/examples
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM%20&path=data/examples
https://github.com/microservices-demo/load-test.

	 SN Computer Science (2023) 4:304304  Page 10 of 17

SN Computer Science

The only difference between the mined MSAs resides
in the message routing components handling the requests
arriving to frontend. � Miner “splits” the Kubernetes ser-
vice used to handle the requests sent to frontend into two
message routing components, viz., frontend-default.svc
handling the internal traffic sent by the loadgenerator and
frontend-external.svc handling that potentially arriving
from external clients. � TOM instead recognises that such
Kubernetes service is actually one message routing compo-
nent, handling the requests arriving by both the loadgen-
erator and external clients.

In summary, � TOM was as good as � Miner in recogniz-
ing the components and interactions forming Online Bou-
tique. � TOM actually outperformed � Miner by avoiding to
split the Kubernetes service handling the traffic arriving to
frontend into multiple message routing components.

Robot Shop

Robot Shop [12] is a microservice-based application simulat-
ing an e-commerce website selling robots. Similarly to the
two formerly considered applications, Robot Shop does not

Fig. 8   MSAs of Sock Shop a taken from its documentation and mined with b � Miner and c � TOM. Issues in the mined MSAs are highlighted
in yellow

SN Computer Science (2023) 4:304	 Page 11 of 17  304

SN Computer Science

include failure handling mechanisms like timeouts or circuit
breakers. Its MSA is documented to be as shown in Fig. 10a.

We run both � Miner and � TOM on the publicly avail-
able Kubernetes deployment of Robot Shop to automati-
cally generate a � TOSCA representation of the MSA of
Robot Shop. In both cases we exploited the Robot Shop’s
load component to generate workload for the applica-
tion and monitor the runtime interactions among its

components. In the case of � Miner, we used the load
directly in its dynamic mining step [14]. In the case of �
TOM, we instead deployed the application, used the load
component to generate workload, and then downloaded the
Kiali graph from the running deployment, which we then
provided as input to � TOM itself. The � TOSCA repre-
sentations generated by � Miner and � TOM are shown in
Fig. 10b and c, respectively.

Fig. 9   MSAs of Online Boutique a taken from its documentation and mined with b � Miner and c � TOM. Issues in the MSA mined by � Miner
are highlighted in yellow

	 SN Computer Science (2023) 4:304304  Page 12 of 17

SN Computer Science

By looking at Fig. 10, we can observe that both � Miner
and � TOM successfully identified all components forming
the MSA of Robot Shop. Given that they are deployed as
Kubernetes workloads managed by Kubernetes services,
each mined node is proxied by a MessageRouter node
implementing the corresponding Kubernetes service. At
the same time, we can observe that there are some issues in
the nodes mined by � Miner, viz., (i) mongodb and mysql
are not recognised to be Database s, but rather typed as
Service s, and (ii) the load component used to generated
workload is included in the mined MSA, even if it is not
truly part of the MSA of Robot Shop. The same does not
hold for � TOM, which successfully identifies mongodb
and mysql as Database s, and which does not include the
load component in the mined MSA.

In addition, while both � Miner and � TOM effectively
characterise the mined InteractsWith relationships, two
relationships are missing in the MSA mined by � Miner.
The latter does not include the interactions from payment
and catalog to the Kubernetes services managing rab-
bitmq and mongodb, respectively. As a result, the por-
tions including rabbitmq and mongodb result to be dis-
connected from the rest of the MSA in the topology mined
by � Miner. The same does not hold for the � TOSCA
topology mined by � TOM, which successfully identifies
all the interactions in the MSA of Robot Shop.

Fig. 10   MSAs of Robot Shop a taken from its documentation and mined with b � Miner and c � TOM. Issues in the MSA mined by � Miner are
highlighted in yellow

SN Computer Science (2023) 4:304	 Page 13 of 17  304

SN Computer Science

Book Info

Book Info [13] is a microservice-based application devel-
oped to play with Istio. It consists of the four services in
Fig. 11a. We instrumented its Kubernetes deployment by
exploiting Istio to set a timeout in the interactions between
productpage and details, and a circuit breaker in that
between productpage and reviews. This enabled us to
show that � TOM outperforms � Miner in determining
whether timeouts or circuit breakers are used in interactions.

The above can be readily observed by looking at the �
TOSCA representations of the MSA of Book Info generated
by � Miner and � TOM, which are shown in Fig. 11b and
c, respectively. Whilst both � Miner and � TOM effectively

mined all components and interactions forming Book Info,
only � TOM successfully detected the timeout and circuit
breaker used in the InteractsWith relationships outgoing from
productpage.

Discussion

Figure 12 shows the accuracy of � Miner and � TOM in
mining the MSAs of the applications considered in our
case studies. The accuracy is measured using the classical
formula:

accuracy =
TP + TN

TP + TN + FP + FN

Fig. 11   MSAs of Book Info a taken from its documentation and mined with b � Miner and c � TOM. Issues in the MSA mined by � Miner are
highlighted in yellow

Fig. 12   a Table and b bar plot
of the accuracy of � Miner
and � TOM in identifying and
characterising the nodes and
interactions in the applications
considered in our case studies.
In the table, the highest accu-
racy in each column is bolded

	 SN Computer Science (2023) 4:304304  Page 14 of 17

SN Computer Science

where:

•	 Successfully recognised components and interactions are
classified as true positives (TP),

•	 Wrongly typed components and wrongly characterised
interactions are classified as false positives (FP), and

•	 Missing components/interactions are classified as false
negatives (FN).

It is worth noting that, as per the above definition, false posi-
tives (FP) also include those components/interactions that
were mined even if they were not present in the original
MSA of a considered application. Also, counting true nega-
tives (TN) is not meaningful for the task of mining the MSA
of an existing application, as they would correspond in cor-
rectly identifying the components that are not part of the
target MSA. TN was hence set to zero when computing the
accuracy of � TOM and � Miner in each of the considered
cases.

The numbers in Fig. 12 show that � TOM achieved 100%
accuracy when mining the MSAs of Online Boutique, Robot
Shop, and Book Info, as it successfully identified and charac-
terised all the components/interactions forming their MSAs.
It hence outperformed � Miner in mining the MSAs of such
applications: the accuracy of � Miner when mining their
MSAs was indeed significantly below 100%, especially in
the cases of Robot Shop and Book Info. The same did not
hold for the case of Sock Shop, where � TOM and � Miner
achieved the same accuracy, as they both did not recognise
that two of the mined components were Database s (Sect.
“Sock Shop”). However, the numbers in the table, also con-
sidering the average values of accuracy (rightmost column),
show that � TOM outperformed � Miner in the four consid-
ered case studies.

Other than effectiveness, it is also worth commenting on
what we did to let � Miner and � TOM mine the MSAs
of the applications considered in our assessment. In both
cases, we set up a Kubernetes cluster where to deploy the
considered applications and used load generators to simulate
end user requests, by devising ad-hoc scripts for the applica-
tions coming without a load generator, viz., Sock Shop and
Book Info. The application deployments were however con-
figured differently. In the case of � Miner, we configured the
security of the cluster-based deployments ad-hoc, to ensure
that no traffic encryption was enforced, and that we could

run � Miner on the master node of the Kubernetes cluster
with root privileges. In the case of � TOM, we instead only
enabled Istio and Kiali on the clusters where the considered
applications were deployed. While the Kubernetes cluster
setup and load generation are mandatory in general for �
Miner (Table 2), they were required by � TOM only since
we were considering third-party applications, whose existing
deployments were not accessible for us. The above consid-
erations are only giving first insights on the usability and
applicability of � TOM and � Miner: a thorough empirical
evaluation is however needed, and planned as part of our
future work.

Related Work

Several solutions have been proposed for mining the MSAs
of existing applications. The closest to � TOM is � Miner,
which we presented in our previous work [14]. � Miner is
indeed the only existing solution mining a � TOSCA rep-
resentation of an application’s MSA from its Kubernetes
deployment. � Miner runs the application deployment on a
devoted cluster, and it sniffs the packets exchanged among
the deployed application components to mine services and
service interactions. The enacted sniffing requires � Miner
to run with root privileges on the cluster, and the applica-
tion to not encrypt any of the messages exchanged among
deployed components, which can of course happen only in
a testing environment. The deployed application must also
be loaded to stress all possible service interactions, to allow
� Miner to monitor them. In short, � Miner requires to run
the target microservice-based application in a suitably con-
figured testing environment, which limits its applicability,
e.g., not allowing it to consider an existing deployment of
the application, like its production deployment. The same
does not hold for our technique, which works with existing
Kubernetes application deployments, including production
deployments. In addition, as we have shown in Sect. (“Case
Studies”), our technique outperforms � Miner in the quality
of mined MSAs.

Other approaches worth mentioning are those presented
in [17–21]. They introduce different techniques, which dif-
fer from ours in the mining approach and in the generated
representation of mined MSAs. As for the latter, we gener-
ate a representation of the mined MSA where components

Table 2   Inputs, requirements,
and type of run for � Miner and
� TOM 

∗ If not available

Inputs Requirements Run

� Miner Kubernetes manifest files Kubernetes cluster
load generator∗

No traffic encryption root privi-
leges on cluster

Online

� TOM Kubernetes manifest files Kiali graph Istio and Kiali enabled Offline

SN Computer Science (2023) 4:304	 Page 15 of 17  304

SN Computer Science

are distinguished among services, integration components,
and databases. This is intended to enable checking whether
the mined MSA is affected by some architectural smells,
by giving the mined MSA to smell detection tools like �
Freshener [5]. The same is not supported by the approaches
presented in [17–21], which do not distinguish the type of
mined components.

As for the enacted mining approach, the approaches pre-
sented in [17–19] reconstruct the MSA of an application
by statically analysing the source code of its components.
They hence follow a “white-box” approach, assuming the
availability of the source code of the components form-
ing an MSA. Our mining technique instead works also in
“black-box” scenarios, viz., when the source code of appli-
cation components is not available. We indeed only require
the manifest files specifying its deployment in Kubernetes
and the runtime interactions monitored among its compo-
nents. In addition, while our mining solution can be fully
automated, those presented in [18, 19] require developers
to manually intervene while mining an MSA.

Similar considerations apply to the approaches presented
in [20, 21], which also employ a white-box, semi-automated
technique to mine an MSA from the source code of its com-
ponents. Such technique is semi-automated since it relies on
developers to manually refine the obtained MSA by remov-
ing the infrastructure facilities (e.g., service discovery com-
ponents) used to let application components interoperate.
At the same time, the approaches presented in [20, 21] are
a step closer to ours, given that they enrich the mined MSA
by relying on runtime monitored interactions. Our technique
hence differs from what proposed in [20, 21], since it can
fully automate the mining of an MSA, and since it can work
in black-box scenarios, i.e., when the source code of some
application components is not available.

Finally, it is worth relating our mining technique with
existing systems for monitoring Kubernetes-based appli-
cation deployments. For instance, Kiali [9], KubeView
[22], and WeaveScope [23] are three open source tools for
monitoring and visualising the structure of applications
deployed with Kubernetes. They differ from our technique
mainly since their goal is to enable visualising the deployed
Kubernetes objects (e.g., workloads and services) and their
interactions. Our solution instead generates a machine-
readable representation of an MSA, whose components are

distinguished among services, integration components, and
databases forming an MSA, and where component interac-
tions are characterised by indicating whether client-side ser-
vice discovery, timeouts, or circuit breakers are used therein.

Similar considerations apply to Instana [24], another
tool for visualising applications deployed with Kubernetes.
Instana [24] is however closer to our mining technique in
the generated representation, given that it distinguishes the
deployed components among services and databases. Our
mining technique goes beyond this, by recognising whether
deployed components are implementing message routing/
brokering patterns, and whether service discovery, time-
outs, or circuit breakers are used in component interactions.
Additionally, while Instana [24] is a commercial and sub-
scription-based tool, an open source implementation of our
technique is publicly available on GitHub.

Conclusions

We have presented a technique for mining MSAs from their
Kubernetes deployment. Our technique also inputs the com-
ponent interactions monitored in a former deployment with
Kiali, and it process all such inputs offline. As a result, it
automatically generates a representation of the mined MSA
in � TOSCA, a microservice-oriented profile of the TOSCA
standard.

We have also presented � TOM, a prototype imple-
mentation of our mining technique. � TOM plugs into the
� TOSCA toolchain [4], as shown in Fig. 13. It actually
provides an offline alternative to � Miner [14] to gener-
ate � TOSCA representations of MSAs, which can still be
processed by � Freshener [7] to identify and resolve the
architectural smells therein. � TOM showed to outperform
� Miner in generating more informative representations of
mined MSAs, without requiring to run the target applica-
tion in a suitably configured testing environment, but rather
by processing the information monitored with Kubernetes-
native monitoring in former application deployments, e.g.,
production deployments. If such information is not avail-
able, e.g., since Kubernetes-native monitoring is not ena-
bled, one could anyhow still use � Miner to mine the MSA
of an application.

Fig. 13   Updated � TOSCA toolchain. Existing tools are in light blue, while the newly introduced tool is darker

	 SN Computer Science (2023) 4:304304  Page 16 of 17

SN Computer Science

We anyhow plan to further enhance the mining capabilities
of � TOM and, more generally, of our mining technique. For
instance, we plan to enhance the detection of the type of mined
components, which currently detects message brokers or data-
bases when they run from official Docker images of software
distributions known to implement such components. The type of
component run by a Docker image may be detected by exploit-
ing machine learning techniques, e.g., similary to what done in
[25] to predict the popularity of Docker images, or by inspecting
them with approaches like that proposed in DockerFinder [26].

We also plan to enable � TOSCA to model security
aspects of MSAs and our mining technique to elicit them
from their Kubernetes deployment, e.g., whether service
interactions are encrypted, whether microservices are
directly accessible by external clients, or which access rights
are given to microservices. This would enable analysing
mined MSAs to also, e.g., identify and resolve microser-
vices’ security smells [27].

Finally, we plan to enable our technique to work with
other technologies than Kubernetes, Istio, and Kiali. For
instance, we plan to include support for manifest files speci-
fying the deployment of a microservice-based application
with Docker Compose/Swarm. We also plan to support pro-
cessing the interactions monitored with other tracing tools,
e.g., Jaeger [28] or Zipkin [29].

Funding  Open access funding provided by Università di Pisa within
the CRUI-CARE Agreement. The authors have no relevant financial
or non-financial interests to disclose.

Data availability  No data was used for the research described in the
article.

Declarations 

Conflict of Interest  The authors also do not have any competing/con-
flict of interests relevant to content presented in this article.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Kratzke N, Quint P-C. Understanding cloud-native applications after
10 years of cloud computing-a systematic mapping study. J Syst
Softw. 2017;126:1–16. https://​doi.​org/​10.​1016/j.​jss.​2017.​01.​001.

	 2.	 Soldani J, Tamburri DA, Van Den Heuvel W-J. The pains and
gains of microservices: a systematic grey literature review. J Syst
Softw. 2018;146:215–32. https://​doi.​org/​10.​1016/j.​jss.​2018.​09.​
082.

	 3.	 Zimmermann O. Microservices tenets. Computer Sci:
Res Dev. 2017;32(3–4):301–10. https://​doi.​org/​10.​1007/​
s00450-​016-​0337-0.

	 4.	 Soldani J, Muntoni G, Neri D, Brogi A. The �TOSCA toolchain:
mining, analyzing, and refactoring microservice-based architec-
tures. Softw: Pract Exp. 2021;51(7):1591–621. https://​doi.​org/​10.​
1002/​spe.​2974.

	 5.	 Brogi A, Neri D, Soldani J. Freshening the air in microservices:
Resolving architectural smells via refactoring. In: Yangui, S.,
(eds.) Service-Oriented Computing–ICSOC 2019 Workshops,
2020;pp. 17–29. Springer, Cham. https://​doi.​org/​10.​1007/​
978-3-​030-​45989-5_2

	 6.	 OASIS: TOSCA Simple Profile in YAML. v1.3, https://​docs.​
oasis-​open.​org/​tosca/​TOSCA-​Simple-​Profi​le-​YAML/​v1.3/​
TOSCA-​Simple-​Profi​le-​YAML-​v1.3.​pdf 2020.

	 7.	 Neri D, Soldani J, Zimmermann O, Brogi A. Design princi-
ples, architectural smells and refactorings for microservices:
a multivocal review. SICS Softw-Intensive Cyber-Phys Syst.
2020;35(1):3–15. https://​doi.​org/​10.​1007/​s00450-​019-​00407-8.

	 8.	 The Istio Authors: Istio. https://​istio.​io 2022.
	 9.	 The Kiali Authors: Kiali. https://​kiali.​io 2022.
	10.	 Weaveworks, Container Solutions: Sock Shop. https://​micro​

servi​ces-​demo.​github.​io 2021.
	11.	 Google Cloud: Online Boutique. https://​github.​com/​Googl​eClou​

dPlat​form/​micro​servi​ces-​demo 2021.
	12.	 Instana: Robot Shop. https://​github.​com/​insta​na/​robot-​shop

2021.
	13.	 The Istio Authors: Book Info. https://​github.​com/​istio/​istio/​tree/​

master/​sampl​es/​booki​nfo 2021.
	14.	 Muntoni G, Soldani J, Brogi A. Mining the architecture of micros-

ervice-based applications from their kubernetes deployment.
In: Zirpins, C., (eds.) Advances in Service-Oriented and Cloud
Computing, pp. 103–115. Springer, Cham 2021. https://​doi.​org/​
10.​1007/​978-3-​030-​71906-7_9

	15.	 Soldani J, Khalili J, Brogi A. Offline mining of microservice-
based architectures. In: Proceedings of the 12th International Con-
ference on Cloud Computing and Services Science–CLOSER,,
pp. 63–73. SciTePress, Setúbal, Portugal 2022. https://​doi.​org/​
10.​5220/​00110​61000​003200. INSTICC.

	16.	 Hohpe G, Woolf B. Enterprise integration patterns: designing,
building, and deploying messaging solutions. USA: Addison-
Wesley; 2003.

	17.	 Ma S, Fan C, Chuang Y, Lee W, Lee S, Hsueh N. Using service
dependency graph to analyze and test microservices. In: Reis-
man, S., (eds.) 2018 IEEE 42nd Annual Computer Software and
Applications Conference, pp. 81–86 2018. https://​doi.​org/​10.​
1109/​COMPS​AC.​2018.​10207

	18.	 Rademacher F, Sachweh S, Zündorf A. A modeling method for
systematic architecture reconstruction of microservice-based soft-
ware systems. In: Nurcan, S., (eds.) Enterprise, Business-Process
and Information Systems Modeling, pp. 311–326. Springer, Cham
2020. https://​doi.​org/​10.​1007/​978-3-​030-​49418-6_​21

	19.	 Alshuqayran N, Ali N, Evans R. Towards micro service archi-
tecture recovery: An empirical study. In: Gorton, I., (eds.) 2018
IEEE International Conference on Software Architecture, 2018;
pp. 47–4709. https://​doi.​org/​10.​1109/​ICSA.​2018.​00014

	20.	 Granchelli G, Cardarelli M, Di Francesco P, Malavolta I, Iovino
L, Di Salle A. Towards recovering the software architecture of
microservice-based systems. In: Malavolta, I., Capilla, R. (eds.)
2017 IEEE International Conference on Software Architecture
Workshops, 2017;pp. 46–53 . https://​doi.​org/​10.​1109/​ICSAW.​
2017.​48

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1002/spe.2974
https://doi.org/10.1002/spe.2974
https://doi.org/10.1007/978-3-030-45989-5_2
https://doi.org/10.1007/978-3-030-45989-5_2
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.pdf
https://doi.org/10.1007/s00450-019-00407-8
https://istio.io
https://kiali.io
https://microservices-demo.github.io
https://microservices-demo.github.io
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/instana/robot-shop
https://github.com/istio/istio/tree/master/samples/bookinfo
https://github.com/istio/istio/tree/master/samples/bookinfo
https://doi.org/10.1007/978-3-030-71906-7_9
https://doi.org/10.1007/978-3-030-71906-7_9
https://doi.org/10.5220/0011061000003200
https://doi.org/10.5220/0011061000003200
https://doi.org/10.1109/COMPSAC.2018.10207
https://doi.org/10.1109/COMPSAC.2018.10207
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48

SN Computer Science (2023) 4:304	 Page 17 of 17  304

SN Computer Science

	21.	 Granchelli G, Cardarelli M, Di Francesco P, Malavolta I, Iovino,
L, Di Salle A. MicroART: A software architecture recovery tool
for maintaining microservice-based systems. In: Malavolta, I.,
Capilla, R. (eds.) 2017 IEEE International Conference on Soft-
ware Architecture Workshops, 2017;pp. 298–302. https://​doi.​org/​
10.​1109/​ICSAW.​2017.9

	22.	 Coleman B. KubeView. https://​github.​com/​benc-​uk/​kubev​iew
2021.

	23.	 Weaveworks: WeaveScope. https://​www.​weave.​works/​oss/​scope
2021.

	24.	 Instana: Instana. https://​www.​insta​na.​com 2021.
	25.	 Guidotti R, Soldani J, Neri D, Brogi A, Pedreschi D. Helping

your Docker images to spread based on explainable models. In:
Brefeld, U., (eds.) Machine Learning and Knowledge Discovery
in Databases, pp. 205–221. Springer, Cham 2019. https://​doi.​org/​
10.​1007/​978-3-​030-​10997-4_​13

	26.	 Brogi A, Neri D, Soldani J. Dockerfinder: Multi-attribute search of
docker images. In: 2017 IEEE International Conference on Cloud
Engineering (IC2E), 2017; pp. 273–278. https://​doi.​org/​10.​1109/​
IC2E.​2017.​41

	27.	 Ponce F, Soldani J, Astudillo H, Brogi A. Smells and refactor-
ings for microservices security: a multivocal literature review. J
Syst Softw. 2022;192: 111393. https://​doi.​org/​10.​1016/j.​jss.​2022.​
111393.

	28.	 The Jaeger Authors: Jaeger. https://​www.​jaege​rtrac​ing.​io 2021.
	29.	 OpenZipkin: Zipkin. https://​zipkin.​io 2021.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICSAW.2017.9
https://doi.org/10.1109/ICSAW.2017.9
https://github.com/benc-uk/kubeview
https://www.weave.works/oss/scope
https://www.instana.com
https://doi.org/10.1007/978-3-030-10997-4_13
https://doi.org/10.1007/978-3-030-10997-4_13
https://doi.org/10.1109/IC2E.2017.41
https://doi.org/10.1109/IC2E.2017.41
https://doi.org/10.1016/j.jss.2022.111393
https://doi.org/10.1016/j.jss.2022.111393
https://www.jaegertracing.io
https://zipkin.io

	Offline Mining of Microservice-Based Architectures (Extended Version)
	Abstract
	Introduction
	Background
	 TOSCA
	Kubernetes
	Istio and Kiali

	Mining MSAs
	Step 1: Mining
	Step 2: Refinement

	Prototype
	Case Studies
	Sock Shop
	Online Boutique
	Robot Shop
	Book Info
	Discussion

	Related Work
	Conclusions
	References

