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Abstract
Designing applications adhering to the key design principles of microservice-based architectures (MSAs) enables fully 
exploiting the potentials of cloud computing platforms. A specification of an application’s MSA can help determining whether 
it adheres to such principles, and reasoning on how to refactor it when this is not the case. However, manually generating such 
a specification is complex and costly, mainly due to the multitude of heterogeneous software services and service interactions 
forming an MSA. The main objective of this article is to automate the generation of the specification of an existing MSA. We 
introduce an offline technique for automatically mining the specification of an MSA from its Kubernetes deployment. The 
mined MSA is expressed in � TOSCA, a microservice-oriented profile of the OASIS standard TOSCA. We also provide an 
open-source prototype implementation of the proposed mining technique, called � TOM. Four case studies based on four dif-
ferent third-party applications show that our technique can effectively mine the MSAs of existing applications, being it more 
accurate than its state-of-the-art competitor. The proposed offline mining technique can help researchers and practitioners 
working with microservices, by enabling them to automatically mine the MSAs of their applications. The obtained MSAs 
can then be visualised and analysed with existing tools to enhance their adherence to the key design principles of MSAs.

Keywords  Microservices · Microservices architecture · Software architecture mining

Introduction

Microservice-based architectures (MSAs) enable realising 
so-called cloud-native applications, viz., applications archi-
tected to fully exploit the potentials of cloud computing plat-
forms [1]. As a result, MSAs have become commonplace for 
cloud-based applications. For instance, Amazon, Netflix, or 
Twitter are already exploiting MSAs to deliver their busi-
nesses [2].

MSAs are essentially service-oriented architectures satis-
fying some additional key design principles, e.g., ensuring 

services’ independent deployability and horizontal scal-
ability, or isolating failures [3]. It is hence crucial to deter-
mine whether a service-based application adheres to the key 
design principles of MSAs, and understanding how to refac-
tor an application to resolve possible violations of such key 
design principles [4].

� TOSCA and � Freshener [5] enable modelling, analys-
ing, and refactoring the architecture of a service-based appli-
cation, to enhance its adherence to the key design principles 
of MSAs. � TOSCA is a model enabling to specify MSAs 
with the human- and machine-readable OASIS standard 
TOSCA [6]. MSAs are represented by typed directed graphs, 
called topology graphs, where nodes model the services, 
integration components (e.g., load balancers or message 
queues), and databases forming an MSA. Directed arcs rep-
resent the interactions among such components.

� Freshener [5] then provides a visual enviroment to 
manually edit the � TOSCA specification of the MSA of an 
existing application, viz., its modelling as a � TOSCA topol-
ogy graph. Specified MSAs can then be automatically ana-
lysed to check whether the application includes some known 
architectural smells, viz., possible symptoms of violations 
of MSAs’ key design principles. � Freshener also enables 
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reasoning on how to refactor an application to resolve iden-
tified architectural smells, based on applying practitioner-
shared refactorings known to resolve their occurrence [7].

At the same time, manually specifying the whole MSA 
of an existing application is a complex, time-consuming, 
and error-prone process, even in a visual environment like 
that provided by � Freshener [4]. This is mainly because of 
the multitude of heterogeneous software services forming 
an MSA, and of the many complex interactions occurring 
among them to deliver the application’s businesses [2]. For 
this reason, the main objective of this article is enabling 
to automatically generate the � TOSCA specification of an 
existing MSA.

In this perspective, we propose a novel technique for min-
ing the � TOSCA specification of the MSA of an applica-
tion, which starts from the Kubernetes deployment of an 
application, configured to also exploit Istio [8] and Kiali [9], 
two Kubernetes-native tools for proxying deployed services 
and monitor their interactions. It then processes, offline, 
the Kubernetes manifest files specifying the application 
deployment and the Istio-based proxying of its services, as 
well as a graph generated by Kiali in any former run of the 
application, e.g., its production run. The Kiali graph mod-
els the deployed software components as nodes, and their 
monitored interactions as directed arcs. Given such inputs, 
our technique can automatically mine the MSA of an appli-
cation in two steps. It first elicits the software components 
and their interactions, producing a first draft of the MSA of 
an application. The draft is then refined by distinguishing 
services from integration components and databases, and 
by characterising the mined interactions, e.g., determining 
whether circuit breakers or timeouts are used therein. The 
refined architecture is finally marshalled to � TOSCA.

To illustrate the feasibility of the proposed mining tech-
nique, we present an open source prototype implementa-
tion, called � TOM ( � TOSCA Offline Miner). We also show 
how we used � TOM to assess our technique by applying it 
to mine MSAs in four case studies based on four existing, 
third-party applications, viz., Sock Shop [10], Online Bou-
tique [11], Robot Shop [12], and Book Info [13]. The case 
studies show that � TOM effectively mines the MSAs of the 

considered applications, and that it is more accurate in min-
ing MSAs if compared with � Miner, viz., the state-of-the-
art competitor that we presented in our previous work [14].

Our mining technique and its prototype implementation 
can be of practical value to researchers and practitioners 
working with microservices. They can indeed be exploited to 
automatically mine the � TOSCA specification of the MSAs 
of existing applications, by simply processing their existing 
Kubernetes deployments, rather than requiring to deploy 
and run them in suitably configured testing environments, 
as instead required by � Miner [14]. In addition, the MSAs 
obtained with our mining technique can be visualised and 
analysed with � Freshener [5] to identify and resolve the 
architectural smells therein, to enhance their adherence to 
the key design principles of MSAs.

The rest of this article is organised as follows. Section 
(“Background”) provides the necessary background on � 
TOSCA, Kubernetes, Istio, and Kiali. Section (“Mining 
MSAs”) presents our technique for mining MSAs offline. 
Section (“Prototype”) introduces � TOM, the open source 
prototype implementation of our mining technique. Section 
(“Case Studies”) illustrates four case studies assessing our 
technique and discusses the accuracy of � TOM in mining 
the considered MSAs. Finally, Sects. (“Related Work”) and 
(“Conclusions”) discuss related work and draw some con-
cluding remarks, respectively.1

Background

� TOSCA

The � TOSCA type system (Fig.  1) allows specifying 
MSAs as typed topology graphs in TOSCA, the Topology 

Fig. 1   The node types, relationship types, and group types defining � TOSCA. The corresponding definitions in TOSCA are publicly available 
on GitHub at https://​di-​unipi-​socc.​github.​io/​micro​TOSCA/​micro​TOSCA.​yml

1  This article extends [15] by providing a more detailed description 
of our mining technique, showing its application in two new case 
studies (Sects. “Sock Shop” and “Online Boutique”), and discussing 
the accuracy of and setup needed to run our mining technique (Sect. 
“Discussion”).

https://di-unipi-socc.github.io/microTOSCA/microTOSCA.yml
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and Orchestration Specification for Cloud Applications 
[6]. Topology nodes model the services, communication 
patterns, or databases in an MSA. A Service runs some 
business logic, e.g., a service managing users’ orders in 
an e-commerce application. A CommunicationPattern 
implements message-based integration pattern [16], viz., 
MessageRouter and MessageBroker, which decouples 
the communication among two or more components. Mes-
sageBrokers are also distinguished based on whether they 
implement message brokering asynchronously (Asynchro-
nousMessageBroker ) or synchronously (Synchronous-
MessageBroker). Finally, a Database is a component stor-
ing the data pertaining to a certain domain, e.g., a database 
of orders in an e-commerce application.

Directed arcs instead model the interactions among the 
components in an MSA, throughout InteractsWith rela-
tionships. Such relationships can be further characterised 
by setting three boolean properties, viz., � , � , and � . The 
properties � and � indicate that the source node is interacting 
with the target node via a circuit breaker or by setting proper 
timeouts, respectively. The property � instead indicates that 
the endpoint of the target of the interaction is dynamically 
discovered (e.g., with service discovery).

Finally, nodes can be added to an Edge group. The lat-
ter specifies the application components that are publicly 
accessible from outside of the application, namely those 
components that can be directly accessed by external clients.

Example. Figure 2 displays an example of � TOSCA 
topology modelling the MSA of a toy e-commerce applica-
tion. The application includes four services, i.e., frontend 
(accessible by external clients), orders, payment, and 
shipping. It is then completed by two integration com-
ponents, i.e., router and queue, and two databases, i.e., 
catalogDb and ordersDb. The frontend allows browsing 
the catalogue of available products, by interacting with 
catalog. The actual instance of catalog used to access the 
catalogDb is dynamically discovered by a message router 
implementing server-side service discovery. The frontend 
also allows to place orders, by interacting with orders. 
The latter allows to upload new product orders, which are 

stored in ordersDb, and which are also enqueued in the 
asynchronous message broker implementing the queue of 
orders to be shipped. A circuit breaker is set to let orders 
tolerate the possible failures of the queue of orders. 
Finally, the queue is consumed by the service shipping, 
which pulls orders from the queue and proceeds with their 
shipping.

Kubernetes

Kubernetes allows deploying and managing multi-service 
applications in distributed clusters. Such a deployment and 
management is realised by orchestrating pods, which con-
stitute Kubernetes’ deployment units. A pod is a deployable 
instance of an application service, which is shipped within 
a single container or in several tightly coupled containers. A 
pod can actually encapsulate multiple Docker containers that 
need to share the same resources, e.g., when a containerised 
service is accompanied by “sidecar” containers monitoring 
it or proxying its communications.

Pod instances are deployed and managed with Kuber-
netes controllers. The latter allow to spawn and manage pod 
instances from pod templates, which are included in work-
load resource specifications, e.g., Deployments, StatefulSets, 
and ReplicaSets. The latter specify the Docker containers 
running in a pod, their target state, as well as the number 
of replicas of the pod that must be deployed. Kubernetes 
controllers then ensure that the specified number of replicas 
of a pod continue to run on a cluster, with each pod instance 
reaching and maintaining its target state.

Replicated pods can be accessed through Kubernetes ser-
vices, which define their load balancing policies. A Kuber-
netes service implements a message routing component, 
balancing requests among the pods it manages according to 
the specified balancing policy. Kubernetes services can be of 
multiple types, depending on whether they should be acces-
sible only within the Kubernetes cluster (viz., ClusterIP ser-
vices), or whether they should be exposed to external clients 
(viz., NodePort or LoadBalancer services).

Fig. 2   An example of � TOSCA topology modelling the architecture of an application
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Istio and Kiali

Istio and Kiali are two Kubernetes-native tools for control-
ling and monitoring service interactions. Istio includes so-
called envoy proxies in a Kubernetes deployment, which are 
deployed alongside application services to control how they 
interact with each other. This is done by specifying Virtu-
alServices or DestinationRules, which define how to route 
a message to its destination. This includes, e.g., indicating 
whether timeouts or circuit breakers are used to avoid the 
sender to continue waiting for an answer when the receiver 
has failed.

Kiali is an observability console, which comes natively 
integrated with Istio. It exploits Istio envoy proxies to store 
proxied interactions, so as to trace the interactions among 
deployed services. Each interaction is stored together with 
its metadata, including the source and target Kubernetes 
workloads or services, and whether the interaction suc-
cessfully completed. Kiali then exploits such interactions 
to build different types of graphs, which enable visualising 
them at different abstraction levels in the Kiali dashboard, 
and which can be exported to JSON graph data files. In the 
rest of this article, we consider Kiali graph modelling moni-
tored service interactions, viz., service graphs.2

Mining MSAs

The overall flow of our technique for mining MSAs is illus-
trated by the pipeline in Fig. 3, which starts from the Kuber-
netes manifest files specifying the application deployment 
and a JSON graph data file specifying the graph generated 
by Kiali while monitoring an existing application deploy-
ment. Such inputs are processed by a first step, called the 
mining step, which consists of two other substeps, viz., min-
ing topology fragment and connecting topology fragments. 
They essentially elicit the nodes and interactions forming the 
target MSAs, and produce a first corresponding � TOSCA 
topology graph. The graph is then passed to the refinement 
step, which also consists of two substeps, viz., node refine-
ment and interaction refinement. The node refinement sub-
set determines whether mined nodes model databases or 
message brokers, while the interaction refinement substep 
characterises the mined relationships by indicating whether 
dynamic discovery, circuit breakers, or timeouts are used in 
the corresponding interactions.

We hereafter illustrate the above described steps in more 
detail, to show how they enable building the � TOSCA 
topology graph modelling a mined MSA. In doing so, we 
denote the mined � TOSCA topology graphs following the 
notation from our previous work [4]. Namely, we represent 
the � TOSCA topology graph modelling a mined MSA as a 
triple A = ⟨N,R,E⟩ , where:

•	 N is the set of typed topology nodes, with the name and 
type of each node n ∈ N denoted by n.���� and n.���� , 
respectively;

Fig. 3   Our two-steps technique for mining MSAs from their Kubernetes deployment

2  https://​kiali.​io/​docs/​featu​res/​topol​ogy.

https://kiali.io/docs/features/topology.
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•	 R ⊆ N × N × 2P is the set of node relationships, with 
P = {�, �, �} being the set of properties that can be used 
to characterise a relationship, viz., ( � ) circuit breaker set, 
( � ) dynamic discovery used, or ( � ) timeout set;

•	 E ⊆ N is the subset of nodes in the Edge group, namely 
those nodes that are publicly accessible to external cli-
ents.

Step 1: Mining

The mining step processes the available inputs to determine 
the nodes and interactions forming the target MSA. Firstly, � 
TOSCA topology fragments are mined from the Kubernetes 
manifest files, by essentially mapping Kubernetes entities to 
� TOSCA nodes. The topology graph is then completed by 
connecting mined topology fragments based on the runtime 
interactions contained in the Kiali graph.

Mining Topology Fragments. Topology fragments 
are extracted from the Kubernetes manifest files by first 
mapping the workloads and services specified therein to 
� TOSCA nodes. Each Kubernetes workload specifies the 
pod configuration for a component of the target MSA, by 
indicating the Docker container from which it runs and its 
target configuration (Sect. “Kubernetes”). Therefore, each 
Kubernetes workload is mapped to a � TOSCA node of type 
Service. The type may change in the refinement step, if 
the workload is used to deploy an integration component 
or database.

A Kubernetes service instead implements a message rout-
ing component balancing the traffic sent to the replicas of 
the pod they manage, specified by a Kubernetes workload 
(Sect. “Kubernetes”). They are hence mapped to � TOSCA 
nodes of types MessageRouter, which are directly speci-
fied to interact with the Service node corresponding to the 
workload they manage. In addition, if a Kubernetes service 
is a NodePort or LoadBalancer, its corresponding Mes-
sageRouter node is placed within the Edge group. This 
reflects the fact that NodePort or LoadBalancer services can 
be invoked by external clients.

More formally, the mining topology fragment substep 
generates a graph A = ⟨N,R,E⟩ by processing the Kuber-
netes manifest files as follows:

•	 Each Kubernetes workload w is modelled by a 
node n ∈ N  such that n.���� is the name of w and 
n.���� = �������.

•	 Each Kubernetes service s is modelled by a node 
n ∈ N  such that n.���� is the name of s and 
n.���� = ������������� . If the Kubernetes service s is a 
NodePort or LoadBalancer, the node n is also added to 
E.

•	 Each pairing of a Kubernetes service s with a work-
load w (managed by s) is modelled by a directed arc 
⟨n,m, �⟩ ∈ R , with n ∈ N  being the node modelling s 
and m ∈ N being the node modelling w.

Example. Figure 4 illustrates three examples of applica-
tion of our topology fragment mining. In case (a), a Kuber-
netes ClusterIP service orders.svc manages the Deploy-
ment workload running the service orders. By applying 
our node mining technique, we obtain a MessageRouter 
node modelling the Kubernetes service, which Interacts-
With the Service node modelling the workload. Case (b) 
is similar, with the only difference that the MessageR-
outer node is placed in the Edge group, since Kubernetes 
NodePort services are exposed to external clients. Finally, 
case (c) considers a Deployment workload used to deploy a 
message queue, without any Kubernetes service balacing 
its load. In this case, we obtain a singleton Service node. 
Case (c) also provides an example of � TOSCA node that 
may be typed as Service only temporarily: the type of 
queue might be changed to AsynchronousMessageBro-
ker, if it actually implements an asynchronous message 
broker (Sect. “Step 2: Refinement”).

Connecting Topology Fragments. The topology frag-
ments obtained from the mining topology fragments sub-
step are then interconnected to model the runtime interac-
tions occurring among the components they model. This is 
done by parsing the Kiali graph, which explicitly models 
the component interactions that were monitored in a for-
mer deployment of the application, e.g., in its production 
deployment.

A monitored interaction is represented as an edge in 
the Kiali graph, which connects the node corresponding 

Fig. 4   Examples of topology 
fragments mined from Kuber-
netes services and workloads.
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to the the Kubernetes workload that started the interaction 
to the Kubernetes service that was invoked.3 Each edge is 
hence mapped to an InteractsWith relationship connecting 
the Service node modelling the starting workload to the 
MessageRouter node modelling the target Kubernetes 
service. In addition, the mined InteractsWith relation-
ship are directly specified as enacting dynamic discovery, 
given that Kubernetes prescribes to invoke services based 
on their name and to rely on Kubernetes’ native DNS to 
resolve the address of the actual host to contact.

More formally, the connecting topology fragments 
extends the graph A = ⟨N,R,E⟩ obtained with mining 
topology fragments substep, by generating a new graph 
A� = ⟨N,R�,E⟩ . The extended graph A′ includes all for-
merly mined relationships, viz., R ⊆ R′ , plus a new rela-
tionship modelling each monitored interaction. The interac-
tion from a workload w to a Kubernetes service s (denoted 
by an arc in the Kiali graph) is modelled by a directed arc 
⟨n,m, {�}⟩ ∈ R� , with n ∈ N being the node modelling w and 
m ∈ N being the node modelling s. The label � is instead 
used to denote that the modelled interaction enacts dynamic 
discovery, as described above.

Example. Figure 5 illustrates an example of mined Inter-
actsWith relationship, which connects two of the topology 
fragments in Fig. 4. The Kiali graph specifies that the Kuber-
netes workload running the frontend service interacted with 
the Kubernetes service managing the replicated orders ser-
vice. This is modelled by including an InteractsWith rela-
tionship connecting the corresponding � TOSCA nodes, viz., 
the Service frontend and the MessageRouter orders.svc.

Step 2: Refinement

The mining step produces a “draft” of the � TOSCA topol-
ogy modelling the target MSA, in which all nodes and inter-
actions are recognised, but associated with default types and 
properties. The objective of this step to suitably characterise 
the mined nodes and relationships.

Node Refinement. After the mining step, nodes are asso-
ciated with either one of two types: MessageRouter or 
Service. Whilst nodes types as MessageRouter are truly 
routing messages in the Kubernetes deployment of an MSA 
(being them obtained from Kubernetes services), Service 
is used as the default type for all other nodes. Nodes initially 
typed as Service s may however implement other compo-
nents than those running some business logic, namely data-
bases or asynchronous message brokers. The objective of 
the node refinement substep is hence to identify such nodes 
and assign them with the corresponding � TOSCA type, viz., 
Database and AsynchronousMessageBroker.

Database and message brokers can be seen as “passive” 
components: despite they reply when being invoked by other 
components, they are not proactively invoking other compo-
nents [4]. They hence appear as “sink nodes” in the mined 
� TOSCA topology graph, meaning that they are targeted 
by InteractsWith relationships, whilst no such relation-
ship outgoes from them. This intuition enables reducing the 
number of nodes to be processed for possible refinement: 
the node refinement substep indeed focuses on the Service 
nodes being sink nodes, and determines whether they should 
be rather typed as Database or AsynchronousMessage-
Broker. This is essentially done by looking at the Docker 
image running in the corresponding Kubernetes workload: 
if such image is one of the official Docker images for data-
bases or message brokers (Table 1), then the node’s type is 
changed to Database or AsynchronousMessageBroker, 
respectively. Otherwise, the node continues to be a Service.

More formally, the node refinement substep updates the 
� TOSCA topology graph A = ⟨N,R,E⟩ obtained from the 

Fig. 5   Examples of InteractsWith relationship mined from the Kiali graph

Table 1   Official Docker images of software implementing a database or message broker

Databases Message brokers

cassandra, db2, iris, mariadb, mongo, mysql, neo4j, oracle, postgres, 
redis, sqlite

activemq, kafka, mosquito, nats, rabbitmq

3  Kiali unifies a Kubernetes service with the Kubernetes worklaod it 
manages, assuming that Kubernetes services are used to enact server-
side service discovery, as recommended by Kubernetes documenta-
tion (https://​kuber​netes.​io/​docs/​conce​pts/​servi​ces-​netwo​rking/​servi​
ce).

https://kubernetes.io/docs/concepts/services-networking/service
https://kubernetes.io/docs/concepts/services-networking/service
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mining step, by generating a new graph A� = ⟨N�,R,E⟩ . The 
updated graph includes all formerly mined nodes, but the 
sink nodes of type Service, viz.,

It then refines the sink nodes of type Service as 
described above, when possible. More precisely, 
∀n ∈ N .∄⟨n, ⋅, ⋅⟩ ∈ R ∧ n.���� = �������:

•	 If the Docker image of the workload modelled by n is 
an official Docker image for databases, n is replaced by 
n� ∈ N� , with n�.���� = n.���� and n.���� = ��������;

•	 If the Docker image of the workload modelled by n 
is an official Docker image for message brokers, n 
is replaced by n� ∈ N� , with n�.���� = n.���� and 
n.���� = �������������������������;

•	 In any other case, n cannot be refined and is kept also in 
N′ , viz., n ∈ N�.

As a result, there might be nodes typed as Service s, 
despite they are implementing some databases or message 
brokers by means of unofficial Docker images. If this is the 
case, the application developer can refine the generated � 
TOSCA representation of the target MSA by suitably chang-
ing their types. To support this, our technique foresees its 
implementations to not only feature the fully automated 
mode described above, but also an interactive mode prompt-
ing developers when a sink node may implement something 

{n ∈ N ∣ ∃⟨n, ⋅, ⋅⟩ ∈ R ∨ n.���� ≠ �������} ⊆ N�
.

different from a Service. This would enable them to explic-
itly indicate whether such node should be typed as Service, 
Database, or AsynchronousMessageBroker.

Interaction Refinement. The interaction refinement sub-
step is intended to characterise mined interactions by asso-
ciating them with other properties than the default property 
d included during the mining step. More precisely, it associ-
ates each mined InteractsWith relationship with properties 
� and � , depending on whether a circuit breaker or a timeout 
is used during the corresponding interactions. This is done 
by inspecting the Istio traffic management rules defined for 
the service targeted by each mined relationship.

Istio traffic management rules are defined in VirtualSer-
vices and DestinationRules (Sect. “Istio and Kiali”). Virtual-
Services allow explicitly setting a timeout field to indicate 
the maximum amount of time after which the interaction 
with the target service is considered to have failed (Fig. 6a). 
DestinationRules instead feature a field outlierDetec-
tion that allows defining circuit breaking policies, by set-
ting the maximum number of tolerated consecutive errors 
before the circuit breaker trips, as well as the amount of time 
it remains tripped (Fig. 6b).

The interaction refinement substep hence checks whether 
VirtualServices or DestinationRules are defined for the tar-
get of each interaction. To avoid unnecessarily browsing the 
input Kubernetes manifest files, it relies on the metadata 
included in the Kiali graph. Kiali indeed already determines 
whether the target of an interaction is reached through a 
VirtualService or through a DestinationRule defining some 
circuit breaking policy. If this is the case, Kiali associates the 

Fig. 6   Examples of a timeouts and b circuit breakers defined with Istio
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service targeted by a monitored interaction with properties 
hasVS or hasCB, respectively. Therefore, if the property 
hasVS is set for a service in the Kiali graph correspond-
ing to the target of a mined InteractsWith relationship, the 
interaction refinement substep looks for the correspond-
ing VirtualService in the Kubernetes manifest files. It then 
checks whether such VirtualService sets some timeout 
(similarly to Fig. 6a). If this is the case, the property � is set 
for the corresponding InteractsWith relationship, to model 
that a timeout is used therein.

Similarly, if the service in the Kiali graph correspond-
ing to the target of a mined InteractsWith relationship has 
the property hasCB set, the interaction refinement substep 
looks for the corresponding DestinationRule in the Kuber-
netes manifest files. The interaction refinement substep then 
checks whether such DestinationRule sets a circuit breaking 
policy through the outlierDetection field (similarly 
to Fig. 6b). If this is the case, the property � is set for the 
corresponding InteractsWith relationship, to model that a 
circuit breaker is used therein.

More formally, the interaction refinement substep updates 
the � TOSCA topology graph A = ⟨N,R,E⟩ obtained from 
the node refinement substep, by generating a new graph 
A� = ⟨N,R�,E⟩ . The updated graph A′ refines the interac-
tions modelled by R in A by updating their properties as 
described above. More precisely, ∀⟨n,m, p⟩ ∈ R:

•	 If there is a VirtualService setting a timeout 
to m, ⟨n,m, p⟩ is replaced by ⟨n,m, p�⟩ ∈ R� , with 
p ⊆ p� ∧ {�} ∈ p�;

•	 If there is a DestinationRule setting an outlier-
Detection circuit breaking policy to m, ⟨n,m, p⟩ is 
replaced by ⟨n,m, p�⟩ ∈ R� , with p ⊆ p� ∧ {�} ∈ p�;

•	 In any other case, ⟨n,m, p⟩ is preserved as is, viz., 
⟨n,m, p⟩ ∈ R�.

Prototype

To assess the feasibility of our mining technique, we have 
developed � TOM ( � TOSCA Offline Miner), an open source 
prototype tool implemented in Java.4 � TOM provides a 

command-line interface that automatically generates the 
� TOSCA specification of an MSA, given the Kubernetes 
manifest files specifying the corresponding application 
deployment and a Kiali graph obtained from an existing 
deployment.

� TOM consists of the five components shown in Fig. 7. 
Main implements the command-line interface offered by � 
TOM and coordinates the other components for enacting 
our two-steps mining technique. It first invokes Parsers, 
which resembles the Java classes implementing the logic for 
running the mining step (Sect. “Step 1: Mining”) by parsing 
the input Kubernetes manifest files and Kiali graph. The 
mined MSA is represented by istantiating the object model 
provided by the Graph component, and returned to Main. 
The latter then invokes Refiners, which resembles the Java 
classes implementing the logic of the refinement step (Sect. 
“Step 2: Refinement”). This results in updating the instance 
of the Graph object model, which is refined by updating 
the types associated with mined nodes and by character-
izing mined relationships. The refined instance is returned 
to Main, which passes it to Writer. The latter implements 
the logic for processing the obtained instance of the Graph 
object model and marshalling it to a � TOSCA specification 
in YAML, which constitutes the output of � TOM.

� TOM can be run by issuing the command:

where “microTOM-1.0.jar” is the executable file 
JAR file obtained from � TOM ’s sources. “WORKDIR” 
is instead the path to a directory containing the Kubernetes 
manifest files and the Kiali graph to be passed as input to 
� TOM, and where � TOM will also store the generated � 
TOSCA file. Finally, the option “-i” enables activating 
the interactive refinement mode foreseen in Sect. (“Step 2: 
Refinement”): when “-i” is set, the user is prompted with 
the nodes that remain assigned with type Service even if 
their interactions are such that they may implement some 

Fig. 7   Architecture of � TOM 

4  The sources of � TOM are publicly available on GitHub (https://​
github.​com/​di-​unipi-​socc/​micro​TOM) and on Software Heritage (https://​archi​ve.​softw​arehe​ritage.​org/​browse/​origin/​direc​tory/?​origin_​

url=​https://​github.​com/​di-​unipi-​socc/​micro​TOM).

Footnote 4 (continued)

https://github.com/di-unipi-socc/microTOM
https://github.com/di-unipi-socc/microTOM
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM
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different component, and she is asked to confirm or update 
their type. By default, � TOM however runs the fully auto-
mated mode.

Case Studies

To assess our approach, we exploited � TOM to mine the 
MSA of four open source, third-party applications, namely 
Sock Shop [10], Online Boutique [11], Robot Shop [12], and 
Book Info [13]. We actually compared the MSA mined by 
� TOM (in its fully automated mode) with that declared 
in the online available documentation of the considered 
applications, as well as with that mined by � Miner [5], the 
state-of-the-art tool for mining the � TOSCA specification 
of an MSA [4]. As a result, we observed that � TOM effec-
tively mined the MSA of the considered applications (as per 
what declared in their documentation), and that it generated 
more informative � TOSCA specifications if compared with 
� Miner. For instance, � TOM identified the use of timeouts 
and circuit breakers in mined interactions, which were not 
instead detected by � Miner.

We hereafter report on the mining of the MSAs of Sock 
Shop (Sect. “Sock Shop”), Online Boutique (Sect. “Online 
Boutique”), Robot Shop (Sect. “Robot Shop”), and Book Info 
(Sect. “Book Info”). To enable repeating our assessment, we 
published a dump of all the necessary inputs online.5

Sock Shop

Sock Shop [10] is a microservice-based application simu-
lating an e-commerce website selling socks. According to 
its documentation, the MSA of Sock Shop is that shown in 
Fig. 8a, and the application does not include failure handling 
mechanisms like timeouts or circuit breakers [10].

We run both � Miner and � TOM on the publicly avail-
able Kubernetes deployment of Sock Shop to automatically 
generate a � TOSCA representation of the MSA of Sock 
Shop. In both cases, we exploited the load script available 
on Sock Shop’s GitHub repository6 to load the application. 
More precisely, we used the load script to load the deployed 
Sock Shop instance during the dynamic mining step of � 
Miner [14]. When using � TOM, instead, we deployed an 
instance of the application and used the load script to gener-
ate workload. We then downloaded the Kiali graph obtained 

from the loaded deployment, which we then provided as 
input to � TOM.

Figure 8b illustrates the � TOSCA representation of the 
MSA of Sock Shop generated by � Miner. By looking at the 
figure, we can observe that � Miner successfully recognised 
all Sock Shop’s components, all the interactions occurring 
among them, and that front-end is the only service acces-
sible by external clients. � Miner also successfully typed 
the message routing components as MessageRouter s, 
rabbitmq as a AsynchronousMessageBroker, and carts-
db and order-db as Database s. � Miner instead wrongly 
typed user-db and catalogue-db, which are represented as 
Service s despite they actually are databases. The reason for 
this is that � Miner types a component as a Database if it 
runs from an official Docker image for databases, which is 
not the case for user-db and catalogue-db.

The same limitation is shared by the newly proposed � 
TOM, as � TOM also types a component as a Database if 
it runs from an official Docker image for databases (Sect. 
“Step 2: Refinement”). This can be observed by looking 
at the � TOSCA representation of the MSA of Sock Shop 
mined by � TOM, which is shown in Fig. 8c, and where 
user-db and catalogue-db are wrongly typed as Service 
s. As one can also observe, the � TOSCA representation 
generated by � TOM (Fig. 8c) is the same as that generated 
by � Miner (Fig. 8b), meaning that � TOM is as good as 
� Miner in mining the MSA of Sock Shop. The advantage 
of � TOM with respect to � Miner is however that � TOM 
did not require us to run Sock Shop in a suitably configured 
testing environment, as we were instead able to run it as is 
in a Kubernetes cluster.

Online Boutique

Online Boutique is a demo microservice-based application 
developed by Google [11]. It provides another example of 
e-commerce application, still without timeouts or circuit 
breakers handling possible service failures. According to 
its online available documentation [11], the MSA of Online 
Boutique is that in Fig. 9. It is worth noting that, being it 
a demo application, it natively includes a loadgenerator 
component generating workload to the application frontend 
when the application is deployed.

We run both � Miner and � TOM on the publicly avail-
able Kubernetes deployment of Online Boutique to auto-
matically generate a � TOSCA representation of its MSA. 
Fig. 9b and c provide the � TOSCA representations of the 
MSA mined by � Miner and � TOM, respectively. Both tools 
successfully elicited all the components forming Online 
Boutique and all interactions occurring among them. They 
also successfully typed all components, therein included 
recognizing that cache is a Database.

5  The inputs for repeating the assessment described in this section are 
publicly available on GitHub (https://​github.​com/​di-​unipi-​socc/​micro​
TOM/​tree/​main/​data/​examp​les) and on Software Heritage (https://​
archi​ve.​softw​arehe​ritage.​org/​browse/​origin/​direc​tory/?​origin_​url=​
https://​github.​com/​di-​unipi-​socc/​micro​TOM &​path=​data/​examp​les).
6  https://​github.​com/​micro​servi​ces-​demo/​load-​test.

https://github.com/di-unipi-socc/microTOM/tree/main/data/examples
https://github.com/di-unipi-socc/microTOM/tree/main/data/examples
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM%20&path=data/examples
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM%20&path=data/examples
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/microTOM%20&path=data/examples
https://github.com/microservices-demo/load-test.
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The only difference between the mined MSAs resides 
in the message routing components handling the requests 
arriving to frontend. � Miner “splits” the Kubernetes ser-
vice used to handle the requests sent to frontend into two 
message routing components, viz., frontend-default.svc 
handling the internal traffic sent by the loadgenerator and 
frontend-external.svc handling that potentially arriving 
from external clients. � TOM instead recognises that such 
Kubernetes service is actually one message routing compo-
nent, handling the requests arriving by both the loadgen-
erator and external clients.

In summary, � TOM was as good as � Miner in recogniz-
ing the components and interactions forming Online Bou-
tique. � TOM actually outperformed � Miner by avoiding to 
split the Kubernetes service handling the traffic arriving to 
frontend into multiple message routing components.

Robot Shop

Robot Shop [12] is a microservice-based application simulat-
ing an e-commerce website selling robots. Similarly to the 
two formerly considered applications, Robot Shop does not 

Fig. 8   MSAs of Sock Shop a taken from its documentation and mined with b � Miner and c � TOM. Issues in the mined MSAs are highlighted 
in yellow
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include failure handling mechanisms like timeouts or circuit 
breakers. Its MSA is documented to be as shown in Fig. 10a.

We run both � Miner and � TOM on the publicly avail-
able Kubernetes deployment of Robot Shop to automati-
cally generate a � TOSCA representation of the MSA of 
Robot Shop. In both cases we exploited the Robot Shop’s 
load component to generate workload for the applica-
tion and monitor the runtime interactions among its 

components. In the case of � Miner, we used the load 
directly in its dynamic mining step [14]. In the case of � 
TOM, we instead deployed the application, used the load 
component to generate workload, and then downloaded the 
Kiali graph from the running deployment, which we then 
provided as input to � TOM itself. The � TOSCA repre-
sentations generated by � Miner and � TOM are shown in 
Fig. 10b and c, respectively.

Fig. 9   MSAs of Online Boutique a taken from its documentation and mined with b � Miner and c � TOM. Issues in the MSA mined by � Miner 
are highlighted in yellow
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By looking at Fig. 10, we can observe that both � Miner 
and � TOM successfully identified all components forming 
the MSA of Robot Shop. Given that they are deployed as 
Kubernetes workloads managed by Kubernetes services, 
each mined node is proxied by a MessageRouter node 
implementing the corresponding Kubernetes service. At 
the same time, we can observe that there are some issues in 
the nodes mined by � Miner, viz., (i) mongodb and mysql 
are not recognised to be Database s, but rather typed as 
Service s, and (ii) the load component used to generated 
workload is included in the mined MSA, even if it is not 
truly part of the MSA of Robot Shop. The same does not 
hold for � TOM, which successfully identifies mongodb 
and mysql as Database s, and which does not include the 
load component in the mined MSA.

In addition, while both � Miner and � TOM effectively 
characterise the mined InteractsWith relationships, two 
relationships are missing in the MSA mined by � Miner. 
The latter does not include the interactions from payment 
and catalog to the Kubernetes services managing rab-
bitmq and mongodb, respectively. As a result, the por-
tions including rabbitmq and mongodb result to be dis-
connected from the rest of the MSA in the topology mined 
by � Miner. The same does not hold for the � TOSCA 
topology mined by � TOM, which successfully identifies 
all the interactions in the MSA of Robot Shop.

Fig. 10   MSAs of Robot Shop a taken from its documentation and mined with b � Miner and c � TOM. Issues in the MSA mined by � Miner are 
highlighted in yellow
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Book Info

Book Info [13] is a microservice-based application devel-
oped to play with Istio. It consists of the four services in 
Fig. 11a. We instrumented its Kubernetes deployment by 
exploiting Istio to set a timeout in the interactions between 
productpage and details, and a circuit breaker in that 
between productpage and reviews. This enabled us to 
show that � TOM outperforms � Miner in determining 
whether timeouts or circuit breakers are used in interactions.

The above can be readily observed by looking at the � 
TOSCA representations of the MSA of Book Info generated 
by � Miner and � TOM, which are shown in Fig. 11b and 
c, respectively. Whilst both � Miner and � TOM effectively 

mined all components and interactions forming Book Info, 
only � TOM successfully detected the timeout and circuit 
breaker used in the InteractsWith relationships outgoing from 
productpage.

Discussion

Figure 12 shows the accuracy of � Miner and � TOM in 
mining the MSAs of the applications considered in our 
case studies. The accuracy is measured using the classical 
formula:

accuracy =
TP + TN

TP + TN + FP + FN

Fig. 11   MSAs of Book Info a taken from its documentation and mined with b � Miner and c � TOM. Issues in the MSA mined by � Miner are 
highlighted in yellow

Fig. 12   a Table and b bar plot 
of the accuracy of � Miner 
and � TOM in identifying and 
characterising the nodes and 
interactions in the applications 
considered in our case studies. 
In the table, the highest accu-
racy in each column is bolded
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where:

•	 Successfully recognised components and interactions are 
classified as true positives (TP),

•	 Wrongly typed components and wrongly characterised 
interactions are classified as false positives (FP), and

•	 Missing components/interactions are classified as false 
negatives (FN).

It is worth noting that, as per the above definition, false posi-
tives (FP) also include those components/interactions that 
were mined even if they were not present in the original 
MSA of a considered application. Also, counting true nega-
tives (TN) is not meaningful for the task of mining the MSA 
of an existing application, as they would correspond in cor-
rectly identifying the components that are not part of the 
target MSA. TN was hence set to zero when computing the 
accuracy of � TOM and � Miner in each of the considered 
cases.

The numbers in Fig. 12 show that � TOM achieved 100% 
accuracy when mining the MSAs of Online Boutique, Robot 
Shop, and Book Info, as it successfully identified and charac-
terised all the components/interactions forming their MSAs. 
It hence outperformed � Miner in mining the MSAs of such 
applications: the accuracy of � Miner when mining their 
MSAs was indeed significantly below 100%, especially in 
the cases of Robot Shop and Book Info. The same did not 
hold for the case of Sock Shop, where � TOM and � Miner 
achieved the same accuracy, as they both did not recognise 
that two of the mined components were Database s (Sect. 
“Sock Shop”). However, the numbers in the table, also con-
sidering the average values of accuracy (rightmost column), 
show that � TOM outperformed � Miner in the four consid-
ered case studies.

Other than effectiveness, it is also worth commenting on 
what we did to let � Miner and � TOM mine the MSAs 
of the applications considered in our assessment. In both 
cases, we set up a Kubernetes cluster where to deploy the 
considered applications and used load generators to simulate 
end user requests, by devising ad-hoc scripts for the applica-
tions coming without a load generator, viz., Sock Shop and 
Book Info. The application deployments were however con-
figured differently. In the case of � Miner, we configured the 
security of the cluster-based deployments ad-hoc, to ensure 
that no traffic encryption was enforced, and that we could 

run � Miner on the master node of the Kubernetes cluster 
with root privileges. In the case of � TOM, we instead only 
enabled Istio and Kiali on the clusters where the considered 
applications were deployed. While the Kubernetes cluster 
setup and load generation are mandatory in general for � 
Miner (Table 2), they were required by � TOM only since 
we were considering third-party applications, whose existing 
deployments were not accessible for us. The above consid-
erations are only giving first insights on the usability and 
applicability of � TOM and � Miner: a thorough empirical 
evaluation is however needed, and planned as part of our 
future work.

Related Work

Several solutions have been proposed for mining the MSAs 
of existing applications. The closest to � TOM is � Miner, 
which we presented in our previous work [14]. � Miner is 
indeed the only existing solution mining a � TOSCA rep-
resentation of an application’s MSA from its Kubernetes 
deployment. � Miner runs the application deployment on a 
devoted cluster, and it sniffs the packets exchanged among 
the deployed application components to mine services and 
service interactions. The enacted sniffing requires � Miner 
to run with root privileges on the cluster, and the applica-
tion to not encrypt any of the messages exchanged among 
deployed components, which can of course happen only in 
a testing environment. The deployed application must also 
be loaded to stress all possible service interactions, to allow 
� Miner to monitor them. In short, � Miner requires to run 
the target microservice-based application in a suitably con-
figured testing environment, which limits its applicability, 
e.g., not allowing it to consider an existing deployment of 
the application, like its production deployment. The same 
does not hold for our technique, which works with existing 
Kubernetes application deployments, including production 
deployments. In addition, as we have shown in Sect. (“Case 
Studies”), our technique outperforms � Miner in the quality 
of mined MSAs.

Other approaches worth mentioning are those presented 
in [17–21]. They introduce different techniques, which dif-
fer from ours in the mining approach and in the generated 
representation of mined MSAs. As for the latter, we gener-
ate a representation of the mined MSA where components 

Table 2   Inputs, requirements, 
and type of run for � Miner and 
� TOM 

∗ If not available

Inputs Requirements Run

� Miner Kubernetes manifest files Kubernetes cluster 
load generator∗

No traffic encryption root privi-
leges on cluster

Online

� TOM Kubernetes manifest files Kiali graph Istio and Kiali enabled Offline
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are distinguished among services, integration components, 
and databases. This is intended to enable checking whether 
the mined MSA is affected by some architectural smells, 
by giving the mined MSA to smell detection tools like � 
Freshener [5]. The same is not supported by the approaches 
presented in [17–21], which do not distinguish the type of 
mined components.

As for the enacted mining approach, the approaches pre-
sented in [17–19] reconstruct the MSA of an application 
by statically analysing the source code of its components. 
They hence follow a “white-box” approach, assuming the 
availability of the source code of the components form-
ing an MSA. Our mining technique instead works also in 
“black-box” scenarios, viz., when the source code of appli-
cation components is not available. We indeed only require 
the manifest files specifying its deployment in Kubernetes 
and the runtime interactions monitored among its compo-
nents. In addition, while our mining solution can be fully 
automated, those presented in [18, 19] require developers 
to manually intervene while mining an MSA.

Similar considerations apply to the approaches presented 
in [20, 21], which also employ a white-box, semi-automated 
technique to mine an MSA from the source code of its com-
ponents. Such technique is semi-automated since it relies on 
developers to manually refine the obtained MSA by remov-
ing the infrastructure facilities (e.g., service discovery com-
ponents) used to let application components interoperate. 
At the same time, the approaches presented in [20, 21] are 
a step closer to ours, given that they enrich the mined MSA 
by relying on runtime monitored interactions. Our technique 
hence differs from what proposed in [20, 21], since it can 
fully automate the mining of an MSA, and since it can work 
in black-box scenarios, i.e., when the source code of some 
application components is not available.

Finally, it is worth relating our mining technique with 
existing systems for monitoring Kubernetes-based appli-
cation deployments. For instance, Kiali [9], KubeView 
[22], and WeaveScope [23] are three open source tools for 
monitoring and visualising the structure of applications 
deployed with Kubernetes. They differ from our technique 
mainly since their goal is to enable visualising the deployed 
Kubernetes objects (e.g., workloads and services) and their 
interactions. Our solution instead generates a machine-
readable representation of an MSA, whose components are 

distinguished among services, integration components, and 
databases forming an MSA, and where component interac-
tions are characterised by indicating whether client-side ser-
vice discovery, timeouts, or circuit breakers are used therein.

Similar considerations apply to Instana [24], another 
tool for visualising applications deployed with Kubernetes. 
Instana [24] is however closer to our mining technique in 
the generated representation, given that it distinguishes the 
deployed components among services and databases. Our 
mining technique goes beyond this, by recognising whether 
deployed components are implementing message routing/
brokering patterns, and whether service discovery, time-
outs, or circuit breakers are used in component interactions. 
Additionally, while Instana [24] is a commercial and sub-
scription-based tool, an open source implementation of our 
technique is publicly available on GitHub.

Conclusions

We have presented a technique for mining MSAs from their 
Kubernetes deployment. Our technique also inputs the com-
ponent interactions monitored in a former deployment with 
Kiali, and it process all such inputs offline. As a result, it 
automatically generates a representation of the mined MSA 
in � TOSCA, a microservice-oriented profile of the TOSCA 
standard.

We have also presented � TOM, a prototype imple-
mentation of our mining technique. � TOM plugs into the 
� TOSCA toolchain [4], as shown in Fig. 13. It actually 
provides an offline alternative to � Miner [14] to gener-
ate � TOSCA representations of MSAs, which can still be 
processed by � Freshener [7] to identify and resolve the 
architectural smells therein. � TOM showed to outperform 
� Miner in generating more informative representations of 
mined MSAs, without requiring to run the target applica-
tion in a suitably configured testing environment, but rather 
by processing the information monitored with Kubernetes-
native monitoring in former application deployments, e.g., 
production deployments. If such information is not avail-
able, e.g., since Kubernetes-native monitoring is not ena-
bled, one could anyhow still use � Miner to mine the MSA 
of an application.

Fig. 13   Updated � TOSCA toolchain. Existing tools are in light blue, while the newly introduced tool is darker
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We anyhow plan to further enhance the mining capabilities 
of � TOM and, more generally, of our mining technique. For 
instance, we plan to enhance the detection of the type of mined 
components, which currently detects message brokers or data-
bases when they run from official Docker images of software 
distributions known to implement such components. The type of 
component run by a Docker image may be detected by exploit-
ing machine learning techniques, e.g., similary to what done in 
[25] to predict the popularity of Docker images, or by inspecting 
them with approaches like that proposed in DockerFinder [26].

We also plan to enable � TOSCA to model security 
aspects of MSAs and our mining technique to elicit them 
from their Kubernetes deployment, e.g., whether service 
interactions are encrypted, whether microservices are 
directly accessible by external clients, or which access rights 
are given to microservices. This would enable analysing 
mined MSAs to also, e.g., identify and resolve microser-
vices’ security smells [27].

Finally, we plan to enable our technique to work with 
other technologies than Kubernetes, Istio, and Kiali. For 
instance, we plan to include support for manifest files speci-
fying the deployment of a microservice-based application 
with Docker Compose/Swarm. We also plan to support pro-
cessing the interactions monitored with other tracing tools, 
e.g., Jaeger [28] or Zipkin [29].
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