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Abstract
The road user network is a dynamic, ever-evolving population in which road users interact to share and compete for road 
space. The advent of autonomous road vehicles (ARVs) will usher in numerous opportunities and challenges in road user 
dynamics. One of the challenges is whether an ARV population would be able to successfully enter the existing road user 
space. Previous work demonstrates that successful introduction of ARVs into the road network must consider the evolution-
ary dynamics of the existing population. This study examines the effect of different spatial parameters as starting conditions 
for the introduction of a small population of ARVs into a resident population of human-driven vehicles (HDV). The model 
utilises the concept of evolutionary game theory and uses a square lattice grid with a novel agent mobility approach. The 
results show that ARV success exhibits significant sensitivity to variations in initial cluster size, position, and travel range. 
ARVs seem to perform best in fewer, larger clusters with a shorter travel range. This suggests that the best form of early ARV 
introduction may take the shape of centralised, highly co-operative fleets of local passenger or freight transport.

Keywords Autonomous vehicles · Spatial evolutionary game theory · Evolutionarily stable strategies · Road user 
interaction · Hawk–Dove games

Introduction

Autonomous road vehicles (ARVs) are slowly reaching mar-
ket maturity and will soon begin entering the road network. 
The short- and long-term success of ARVs will depend on 
their ability to interact effectively with human-driven vehi-
cles (HDVs). Many researchers believe that human road 
users are likely to learn the nuances of ARV behaviour and 
so take advantage of them to force ARVs to yield at every 
interaction [1–3]. This would ultimately have a detrimen-
tal effect to the ARV population as a whole and may pre-
vent or slow down any real uptake of the new technology. 
Experiments have shown that humans expect co-operative 

behaviour from machines but are not generally willing to 
reciprocate it [4]. Indeed, there are fundamental differences 
in the behaviour, communication, and decision-making pro-
cess between ARVs and HDVs [1, 2, 5–10], that the two 
groups of road users can be described as two distinct popula-
tions competing on a population level.

Competition amongst populations has long been the sub-
ject of study by evolutionary biologists. One framework 
within which population-level competition and co-operation 
can be studied and modelled is evolutionary game theory 
[11–14]. Evolutionary game theory revolves around the idea 
that individuals which inhabit overlapping habitats must 
often interact to compete for or share resources necessary for 
survival, such as food, mates, and territory. The outcomes 
of such interactions influence an individual’s fitness (ability 
to survive and reproduce). Thus, strategies which do well 
against other strategies (and against copies of themselves) 
would grow in proportion within the population relative to 
other strategies. A strategy can be an evolutionarily stable 
strategy (ESS) if it meets one of the following two criteria 
[12]:
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The subject strategy does better against itself than other 
strategies do.
If Strategy S exists, which does equally well against the 
subject strategy, the subject strategy does better against 
S than S does against itself.

In any population, resident strategies which are not evo-
lutionarily stable are vulnerable to invasion by new strate-
gies which may outperform the resident strategy. Eventually, 
the resident strategy may become a minority strategy in the 
population or be driven out of it entirely. On the other hand, 
invading strategies must themselves be evolutionarily stable 
if they are to outcompete a resident ESS. These principles 
would apply to “invading” ARV populations entering a res-
ident—and likely evolutionarily stable—HDV population. 
Just as with natural populations, individuals (vehicles) on 
the road network must interact to compete for or share a 
resource (road space). The outcome of these interactions 
influences the fitness (delay, ride comfort, safety, etc.) of 
each vehicle. Just as living organisms reproduce, vehicles 
and driving styles on the road network use memetic “repro-
duction” through higher sales of “fitter” vehicle models and 
imitation of more successful driving styles [15].

Previous work has shown that evolutionary stability in 
a mixed ARV–HDV population can exist on the road net-
work if certain design and introduction considerations are 
followed [16]. However, these findings have only been 
applied to theoretical, well-mixed populations. In reality, it 
is unlikely that the population of ARVs and HDVs will be 
well mixed, especially during initial introduction. Instead, 
it is expected that early ARV introduction will take place 
within geographically bounded, technologically advanced 
smart cities [17, 18], with few ARVs venturing outside such 
environments.

The road user network is a spatial one. Vehicles generally 
travel, park, and operate within proximity of their “home” 
geography. In fact, the US Federal Highway Administra-
tion’s 2020 National Origin–Destination report shows that 
over 78% of all trips generated in the US were less than ten 
miles in length [19]. This indicates a strong geographical 
element in the distribution of vehicles on the network. Spa-
tial conditions can have a significant impact on the shape 
and evolution of dynamic populations. This is because the 
geographical element influences an individual’s probability 
of interaction with members of its own species and members 
of other species. In a spatially agnostic, well-mixed envi-
ronment, an individual interacts with other members of the 
population with the same probability as all other individu-
als. Conversely, an individual in a spatially non-homogenous 
environment interacts with geographically nearer individu-
als with a higher probability than farther ones. For exam-
ple, [20] found that Hawk populations fair worse in spatial 
simulations than well-mixed theory, because Doves tend to 

cluster in impenetrable masses which ensure any one Dove’s 
disbenefit from interacting with a Hawk is counteracted by 
the benefit of interacting with its many Dove neighbours. 
Conversely, [21] saw that co-operation fared poorly in their 
snowdrift game simulations. The reason for this was once 
again a spatial one in that co-operator populations tended 
to cluster, whereas game rules dictated that an individual 
was better off being surrounded by members of the opposite 
type. These findings suggest a significant potential impact of 
the spatial elements of the road user network on the future 
success of ARVs and the shape of the evolving road user 
network. Success in this context refers to ARVs’ ability 
to grow and maintain a viable population within the road 
user network and the final, stable size of this population. 
Therefore, a good understanding of the spatial dynamics of 
the population-level interaction between ARVs and HDVs 
would serve to ensure proper and sustainable introduction of 
ARVs. To this end, this paper sets out to investigate the pos-
sible impact of a selection of spatial factors on the success of 
ARVs in a simulation setting and whether special attention 
ought to be paid to these spatial conditions.

Literature Review

The transport environment is a highly interactive one. As 
such, ARVs that enter the road user population are expected 
to be able to interact with other road users safely, efficiently 
and successfully. Road user interaction models abound in 
the literature and vary in scope, complexity and implemen-
tation. Notable recent works include [22] who outlined a 
three-tiered hierarchical model of road user interaction 
originally devised by John Michon [23]. Tiered interaction 
models such as this and [24] provide computationally effi-
cient means of handling complex interaction algorithms in 
real time, which is vital for ARVs. Crucially, [24] employs 
a game-theoretic interaction protocol in its middle inter-
action layer. Game theory allows for the consideration of 
other road users as active agents with goals and incentives 
of their own, modelled as payoffs. Payoffs dictate how an 
agent would act given a set of circumstances and possible 
actions taken by opponents. The game-theoretic school of 
autonomous driving has so far largely focused on kinematic 
factors when formulating payoff functions and subsequent 
decisions [1, 7, 10, 25–32]. Many add an extra layer of com-
plexity for smarter and/or more realistic decision-making, 
such as repeated games [10], hierarchical reasoning [33–35], 
receding horizon control [7, 36], Bayesian probability [30, 
37] and proxemics [38, 39]. One common drawback of the 
mentioned models is that they are validated against virtual 
opponents playing by the same rules. This ignores the fun-
damental differences between ARVs and most existing road 
users with whom an ARV will interact. This in turn would 
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lead to a problem where ARVs are not equipped to deal 
with HDVs’ ability to react to and exploit ARVs’ decision-
making. Thus, proper understanding of the evolutionary 
dynamics of the road user population is necessary to ensure 
ARV manufacturers and policymakers can introduce ARVs 
that can keep a meaningful and sustainable presence within 
the road user population.

Several studies have been conducted in the field of trans-
port which employed evolutionary game theory as the main 
principle, primarily in the study and modelling of route and 
mode choice [40–44]. Other applications include predicting 
and building implementations of government subsidies in 
transport development that are effective and evolutionarily 
stable in the long term, such as in new-energy vehicles [45] 
and in public transport [46]. On the road user interaction 
level, evolutionary game theory has been used to predict 
driver attention, simulate driver co-operation and study 
social dilemmas in driving [47–50]. Previous work by the 
authors has demonstrated that evolutionary stability can be 
achieved in a well-mixed population of ARVs and HDVs 
using a combination of conditional strategies, effective V2V 
communication and external subsidies [16]. However, to the 
authors’ knowledge, there has been no exploration of the 
spatial implementation of evolutionary game theory in the 
context of road user interaction within the road network.

Spatial evolutionary game theory has been the subject 
of many studies over the years outside the field of transport 
[20, 21, 51–54]. Studies range considerably in their spa-
tial geometries, fitness parameters and replicator dynamics. 
However, literature generally agrees on the conclusion that 
the evolutionarily stable solutions for spatial games differ 
significantly, if not categorically, from their well-mixed, the-
oretical counterparts. For example, some simulations show 
that aggressive behaviour is less successful under spatial 
constraints than co-operative behaviour [20, 53]. Yet, others 
arrive at opposite conclusions [21]. In both cases, research-
ers cite spatial conditions for their findings.

An important aspect of spatial distribution is the way 
the members of one “species” (homogenous group) in the 
spatial population are distributed relative to each other. Dif-
ferent starting cluster sizes and numbers can greatly influ-
ence the performance of the species in the population as the 
frequency of each individual’s interaction with members of 
its own and other species changes.

Many studies use grid-based lattice structures to represent 
the spatial distribution of agents [20, 21, 52, 53, 55, 56]. 
These structures space out agents into statically positioned 
coordinates on a grid and allow interaction between neigh-
bours. Most are square lattices but some can be polygonal 
[21], which increases the number of neighbours each agent 
in the grid has. Others such as [54] employed an interaction 
protocol where agents create and terminate interaction links 
with selected neighbours based on benefit. This contrasts 

with the typical, indiscriminate interaction with immediate 
neighbours employed in most lattice-based simulations and 
shows stable states closer to the theoretical standard thanks 
to the ability of agents to interact with other agents beyond 
the immediate vicinity. Other spatial distribution methods 
include diffusion dynamics as seen in [51]. These allow for 
population dispersal and variation in population densities 
and produce interesting results where free movement is 
applicable.

Method

Model Structure

The study aims to investigate the effect of several spatial 
characteristics on the success and viability of a small, intro-
duced ARV population within a large, resident HDV popu-
lation in a contained road user network. To model this, a 
conceptual visualisation of the spatial setup is demonstrated 
in Fig. 1. A square lattice grid is used as the basis for the 
spatial distribution. Each node in the grid represents a geo-
graphical region within a given road network. The node’s 
colour reflects the dominant vehicle type in that region. The 
spatial grid consists mostly of HDV-dominated nodes, with 
one or more small clusters of ARV-dominated nodes. These 
clusters will vary in number, size, and position to reflect 
different initial conditions. Interaction will follow a novel 
approach better suited to model the nature of travel on the 
road network. Conventional interaction protocols where 
static agents are restricted to interaction with immediate 
neighbours would serve as poor representations of road 

Fig. 1  Demonstrative spatial distribution of ARVs (blue) in a mod-
elled road user network
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network dynamics. Conversely, more dynamic approaches 
such as diffusion allow too many degrees of freedom for 
each agent compared to what is feasible on the road network. 
Instead, a novel approach to spatial interaction is adopted. 
At the start of each generation, a vehicle from each region 
(node) travels along a randomly generated path through 
neighbouring nodes. The extent of the travel is determined 
by the vehicle’s Range property. Each vehicle then interacts 
once at each node with the dominant vehicle type of that 
node. At the end of the generation, vehicles return to their 
home nodes. Vehicle movement takes place in all directions 
in two-dimensional space (orthogonally and diagonally). 
Two-dimensional movement represents the degrees of free-
dom associated with the movement of ground vehicles; thus, 
conflicts and interactions are determined on a two-dimen-
sional plane. Each vehicle will move (and interact) a total of 
six times per generation. This allows each vehicle multiple 
interactions per turn where the opponent is determined by 
the trajectory and range of the agent vehicle.

The maximum distance a vehicle travels at the end of 
each generation is determined by the vehicle’s Range prop-
erty. In this paper, Range ( R ) is an attribute that determines 
the distance required between a vehicle’s start and end points 
at the end of a generation.

In Fig. 1, RA = 3 and RB = 2 . A higher R means that the 
vehicle moves further away from its local cluster, and thus 
has an increased likelihood of encountering opponents out-
side of its immediate neighbours. Extended range has the 
obvious benefit of increased mobility, though can also poten-
tially expose the vehicle to opponents outside of its cluster.

Each interaction represents the meet-up of two vehicles 
at a junction where priority must be negotiated (ignoring 
each other is not an option at that point). This negotiation is 
a two-strategy, non-co-operative game in which each vehicle 
has the option to escalate the interaction by accelerating to 
force priority or facilitate the interaction by conceding prior-
ity to the other vehicle.

As the road network is rarely a closed space, each edge of 
the grid is surrounded by a population of “ethereal HDVs”. 
These HDVs do not travel and do not switch sides but will 
interact with any vehicles that travel out of bounds. These 
HDVs earn a consistent payoff equal to the standard pay-
off of HDV–HDV interactions ( D ) regardless of the type of 
vehicles travelling out of bounds. This payoff will then fac-
tor into the replication stage of each boundary vehicle. This 
ensures that ARVs do not cheat the game by latching onto a 
corner early on and eliminating competition from that side.

Each vehicle will accumulate a payoff score as it moves 
through the grid. At the end of each generation, each node 
will adopt the colour (vehicle type) of the node with the 
highest cumulative payoff amongst its immediate nine-
node neighbourhood (itself included). This is akin to 
what’s employed in much of the literature, e.g. [20, 21, 

54] and is a useful replicator formula that provides a deter-
ministic and relatively computationally efficient approach 
to a selection process which favours the fittest individu-
als. Payoffs do not reset between generations. This is to 
reflect a “lifetime fitness” property where a vehicle’s per-
formance in the current generation is added to its historic 
performance. This prevents an amnesiac form of replica-
tor dynamics where nodes may repeatedly switch sides 
between generations (called blinkers) or a well-established 
node of one type is switched because of a single “bad” 
generation.

Experimental Design

To properly capture the effect of spatial characteristics and 
distribution on the evolution of ARVs within the model, sev-
eral simulations are run whilst varying three sets of spatial 
parameters:

Spatial position of the starting ARV cluster. The three 
possible starting positions are the centre, edge, and corner 
of the grid. This tests whether adjacency to the “ethereal 
HDV” population which does not enter the grid nor change 
type has any effect on ARV evolution. Centre populations 
have no adjacent ethereal HDVs. Edge populations adjoin 
the ethereal from one side (approx. 25% of the ARV popu-
lation’s perimeter). Corner populations adjoin the ethereal 
from two sides (approx. 50% of the perimeter).

Starting number of ARV clusters, reflecting the level 
of centralisation in initial ARV introduction—one, three 
and six individual clusters. Varying the number of clusters 
whilst maintaining the same introductory ARV population 
size allows for the measurement of the effect of spatial frag-
mentation on the overall success of the population. It will 
also help establish whether a certain critical mass exists, 
below which a cluster cannot prevent being overrun by the 
surrounding HDVs. The number of ARV clusters bears no 
impact on the computational complexity of the model. As 
evolutionary game theory is by design an agent-centric 
concept, the formation of clusters is an emergent property. 
Computational load is only a function of the population size 
in this model.

ARV travel range, which represents different applica-
tions of early ARVs—ranging from localised application to 
longer-range travel. The three choices are two, four and six 
nodes of travel range per generation. All HDVs have a fixed 
travel range of four nodes per generation. Increased range 
means a higher probability to interact with individuals out-
side of one’s nearest neighbours, thus reducing the impact 
of spatial conditions on the performance of the population. 
Investigating range will allow for a characterisation of the 
sensitivity of ARV performance with respect to overall pop-
ulation homogeneity.
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The above parameters give a total of nine different start-
ing conditions. Each of these nine is run in six different 
permutations based on the following:

Average expected payoff. Two scenarios are chosen to 
reflect two different dynamics which may exist between 
ARVs and HDVs on the road network. The two scenarios 
share the assumption that ARVs would face an immedi-
ate disadvantage upon introduction. This sets a conserva-
tive, “worst-case” representation of the possibility of HDV 
exploitation of ARVs. It also allows for a categorical evalu-
ation of ARV success where it occurs. The two proposed 
scenarios reflect two different levels of evolutionary stability 
for the resident HDV population. They are as follows:

A. HDVs do well against ARVs, but ARVs do not do as well 
against each other. This creates a profile where ARVs are 
thoroughly dominated by HDVs at every proportion of 
the mixed population, thus rendering ARV introduction 
theoretically impossible (Fig. 2a). HDVs in this scenario 
are an evolutionarily stable population, immune to ARV 
invasion

B. A more efficient ARV–ARV interaction protocol sees 
ARVs do just as well against each other as HDVs do 
against ARVs, but still suffer a greater disadvantage 
against HDVs. This means that ARVs could steadily 
improve their average expected payoff (AEP) as a func-
tion of their proportion until the AEP of both popula-
tions is equal at near-100% ARV (Fig. 2b). HDVs here 
still form an evolutionarily stable population, albeit a 
weaker one, and so would theoretically still be able to 
resist invasion.

In both scenarios, the values constituting the average 
expected payoffs for each of the two vehicle types is deter-
mined by two elements. The first element is the payoff 

functions which govern each vehicle type’s interaction. The 
main principles of interaction are designed as follows:

• ARVs interact with other ARVs in an efficient, coordi-
nated manner, thus maximising payoff for both vehicles 
at a small operating cost (Payoff A in Table 1)

• HDVs which detect ARVs will force priority, relying 
on ARVs’ propensity to be risk averse and quicker to 
respond to threats, thus HDVs earn a much higher payoff 
( C ) than ARVs (Payoff B ) when the two interact

• HDVs interact with other HDVs in a manner so as, on 
average, all HDVs will do equally well against each 
other (Payoff D ), though not as well as ARVs do against 
other ARVs (Payoff A ) as HDVs do not engage in co-
operative, electronic communication

The second element is the strategy profile for each vehicle 
type. Strategy profiles can be developed to reflect different 
driving styles or attitudes, such as increased aggressiveness 
towards ARVs or a more defensive driving culture. The cur-
rent study will not investigate the effect of different strategy 
profiles on ARV success. We therefore use a single strategy 
profile in which vehicles randomise evenly between escala-
tion and facilitation when interacting with other vehicles, 
regardless of the type of agent or opponent vehicle.

All interactions follow a simple payoff formula of 
Reward − Cost . The Reward element refers to whether pri-
ority is taken, and thus can take the value of 0 or 1 in any 
single interaction, denoting conceding or taking priority, 

Fig. 2  Theoretical average expected payoffs and payoff profiles for Scenario A (a) and Scenario B (b)

Table 1  Tabular representation 
of the average expected payoffs 
of interaction between two 
vehicles

C > D > B, A > B

ARV HDV

ARV A B

HDV C D
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respectively. The Cost element is dependent on vehicle 
type, opponent vehicle type and the action taken. Table 2 
outlines the values which make up the costs and rewards 
for all interaction types.

Given the values in Table 2, Table 3 summarises the 
normal-form game matrices for each interaction type. 
Thus, the values shown in Fig. 2 represent the average 
expected payoffs for each vehicle type given the strategy 
profile of randomisation and the interaction payoff func-
tions illustrated in Table 3.

The values used in Table 2 and therefore those devised 
in Table 3 are not validated against real-world data. How-
ever, the values themselves are of less importance than the 
value difference between the payoffs of the different vehicle 
types for the same action pairs. It is the value differences 
that generate the selective pressure which drives the growth 
or contraction of each population relative to the other. The 
use of conceptual values such as those devised above means 
that one cannot take the resulting population dynamics as 
individually accurate representations. However, one may 
still observe the differences between the different popula-
tion dynamics that result from changes to the different spa-
tial parameters. Since the focus of this study is on investi-
gating the sensitivity of ARV evolutionary success to such 
changes, the use of the non-validated values in Tables 2 and 
3 is justified.

Starting ARV population as a percentage of the total: three 
starting percentages are chosen, which in practice would 
require different levels of funding, coordination, and legisla-
tion. These are one, five and ten per cent. This tests whether 
there exists a minimum viable introductory population given 
a set of payoff profiles. It also allows for the study of the sen-
sitivity of ARV success to the initial size of the population. 
No higher percentages are investigated as it is unlikely to see 
a real-world introduction of such size.

Finally, each of the resultant 54 simulations are repeated 
three times using three different seeds (the same three seeds 
are used for each of the 54 simulations) to normalise the effect 
of the random selection of vehicle trajectories at the beginning 
of each generation. All other model elements are deterministic.

Figure 3 below summarises the parameter choices which 
yield the 162 total simulation runs outlined previously, 

Table 2  Outline of the reward and cost values used in the simulation

Payoff variable Value Justification

Reward: mutual facilitation 0.5 Assumes that, on average, each vehicle would receive priority half of the time
Reward: facilitation against escalation 0 The facilitating vehicle will concede priority to the escalating vehicle
Reward: escalation against facilitation 1 The escalating vehicle will force priority
Reward: mutual escalation
(excl. HDV against ARV)

0.5 Assumes that, on average, each vehicle would succeed in forcing priority half of the time

Reward: mutual escalation
(HDV against ARV)

1 HDVs consistently force priority against the more risk averse ARVs

Cost: facilitation
(excl. ARV × ARV)

0.2 A low cost representing the effort taken to communicate and reach an agreement

Cost: escalation
(against HDV only)

0.5 Higher cost associated with increased risk and less ideal driving

Cost: escalation
(HDV against ARV)

0.4 A slightly lower cost to represent the relative ease in which HDVs force priority against ARVs

Cost: all interaction
(ARV × ARV)—Scenario A

0.2 A universal cost representing the use of V2V communication

Cost: all interaction
(ARV × ARV)—Scenario B

0.175 A lower cost representing more efficient use of V2V communication

Table 3  Normal-form games for the interaction between the different 
vehicle types

a ARV × HDV

ARV \ HDV Facilitate Escalate
Facilitate 0.3, 0.3 −0.2, 0.6
Escalate 0.5, −0.2 −0.5, 0.6

b HDV × HDV

HDV \ HDV Facilitate Escalate
Facilitate 0.3, 0.3 −0.2, 0.5
Escalate 0.5, −0.2 0, 0

c ARV × ARV (Scenario A)

ARV \ ARV Facilitate Escalate
Facilitate 0.3, 0.3 −0.2, 0.8
Escalate 0.8, −0.2 0.3, 0.3

d ARV × ARV (Scenario B)

ARV \ ARV Facilitate Escalate
Facilitate 0.325, 0.325 −0.175, 0.825
Escalate 0.825, −0.175 0.325, 0.325



SN Computer Science (2023) 4:336 Page 7 of 13 336

SN Computer Science

covering all permutations of the above parameters. Each 
simulation run comprises 2500 nodes in a 50-by-50 grid 
and run for 300 generations.

Figure 4 illustrates the steps of the model in flowchart 
form.

Hardware/Software Requirement

The simulations are carried out in a purpose-built simulator 
programmed in Python 3.10.4, in Visual Studio Code, and 
run on a Windows 10 Desktop PC housing a 2.9-GHz, six-
core Intel Core i5-10,400 processor, 16 GB of DDR4 RAM 
at 3200 MHz data rate, and an Nvidia GeForce RTX 3060 
Ti graphics processor.

Results

All 162 simulation runs were concluded successfully and 
the proportion of ARVs out of the total population in every 
generation was recorded and plotted. Figures 5, 6 and 7 out-
line the results of the runs.

All nine pARV10% position runs under Scenario A pay-
offs successfully completed the entire 300-generation run 
with a stable ARV population. The centre starting position 
produced no other stable ARV populations. In contrast, the 
edge starting position produced one stable ARV population 
at pARV5% and the corner starting position produced three. 
None produced any viable ARV populations at pARV1% as 
all such runs concluded with ARV extinction within the first 
15 generations.

ARVs fared better in the Scenario B position runs, with 
all pARV5% and pARV10% runs concluding with stable 
ARV populations. As with Scenario A runs, however, none 
of the pARV1% runs produced a viable population. ARVs 
seemed to perform marginally better in the centre, which 

Cluster Posi�on ( ) Number of Clusters ( ) ARV Range ( )

= 1

= 4

=

= 4

=

= 11

3

6

2

4

6

Scenario A
HDV Dominance

1 2 3

1 2 3

1 2 3

Scenario B
Equal AEP at 100% ARV

1 2 3

1 2 3

1 2 3

Fig. 3  Diagram outlining the 162 permutations of the chosen starting conditions
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is in contrast with the observations made under Scenario 
A runs.

The clustering runs showed more varied results under 
Scenario A payoffs. Here, only three out of 27 runs produced 
stable ARV populations. These were the three pARV10% 
runs with the one-cluster start. The remainder all saw ARVs 
die out relatively quickly, though the failed one-cluster runs 
fared significantly better than both the failed three-cluster 
and six-cluster runs. On average, one-cluster runs had ARVs 
die out in 57 generations (max. 170), three-cluster runs in 
18 generations (max. 57) and six-cluster runs in six genera-
tions (max. 11).

A relatively better picture once again materialises in the 
Scenario B clustering runs. Ten out of 27 runs produced 
stable ARV populations. Six of these were one-cluster runs 
(all pARV5% and pARV10% ), and the remaining four were 
three-cluster runs (three pARV10% , one pARV5% ). None 
of the six-cluster runs produced a viable ARV population. 
Whilst both the one-cluster and three-cluster scenarios pro-
duced an equal maximum viable population of 25% ARV 
(both pARV10% ), the six successful one-cluster runs fared 

better on average (16% ARV) than the four three-cluster runs 
did (13%).

The range runs showed significant variability with differ-
ent ranges as well. Under Scenario A payoffs, ARVs fared 
best with a range of two nodes and worst with six nodes. Ten 
runs in total produced stable ARV populations—six two-
node runs (all pARV5% and pARV10% ), three four-node runs 
(all pARV10% ) and one six-node run ( pARV10% ). A side-
by-side comparison also shows that pARV10% produced 
higher stable ARV populations in two-node runs (9% aver-
age) than four-node runs (5% average) and the six-node run 
(4% average).

Finally, the Scenario B range runs were the only runs to 
produce a stable population of ARVs from a pARV1% start. 
Predictably, this result was obtained from a two-node run. 18 
other runs (19 total) concluded with stable ARV populations. 
These were divided equally amongst the three range starting 
conditions, culminating in all pARV5% and pARV10% runs 
producing viable ARV populations. Side-by-side compari-
son shows a similar trend to the Scenario A runs in that two-
node runs fared best, and six-node runs fared worst.

Overall, Scenario B runs fared better than the Scenario 
A ones in all nine different starting conditions in both the 
number of runs producing stable ARV populations and the 
final ARV population percentage in these runs.

Discussion

Several trends and observations can be established from the 
results discussed and shown.

Payoffs

The first observation of note is that unlike the theoretical 
profiles shown in Fig. 2, both payoff scenarios have yielded 
several evolutionarily stable ARV populations. This dem-
onstrates the non-trivial role spatial distribution plays in the 
evolution of spatial populations. Such findings are echoed 
in the literature, e.g. [20, 21, 55, 57]. In this paper, we show 
that ARVs can under the right conditions form self-sufficient 
clusters where each individual ARV interacts with enough of 
its ARV neighbours to keep them sustainably viable, even if 
in a well-mixed population such viability would be impossi-
ble. This is reflected well in the positive correlation between 
individual cluster size and ARV success and the negative 
correlation between ARV range and ARV success. This is 
because both larger cluster sizes and lower ranges translate 
to a higher probability of interaction with other ARVs—the 
ideal opponent for an ARV.

Predictably, Scenario B payoffs produced better results 
for ARVs across the board. More importantly, however, the 
simulations show that even under significantly unfavourable 

Fig. 4  Flowchart diagram outlining the simulation steps of each of 
the 162 runs
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conditions, as those afforded by the Scenario A payoffs, 
introducing, and maintaining viable ARV populations is 
not impossible.

Finally, lower ARV payoffs (as in Scenario A) are associ-
ated with significantly higher sensitivity to variation in the 
starting conditions. This is in line with [20]’s findings and 
is likely linked to the increased impact of such variations on 
the potential success of ARVs. Less favourable conditions 
would have their effect amplified by less forgiving payoff 
functions.

pARV

A higher introductory proportion of ARVs naturally trans-
lates to a better chance to develop a stable ARV population 
and a larger one at that. This is primarily due to the “strength 
in numbers” effect in play, as ARVs have a higher prob-
ability to interact with fellow ARVs and thus enjoy a higher 
payoff from these interactions. This, however, is likely to 
carry higher upfront implementation and coordination costs 
in the real world.

Position

The position conditions tested in this simulation relate to 
the “surface area” available for HDVs to interact with an 
ARV cluster. Vehicles from every node in the grid are free to 
travel to adjacent nodes and interact with the vehicles within 
them. This extends to interaction between HDVs entering 
an ARV cluster and an ARV from the destination node. The 
result from such an interaction is, of course, a high payoff 
for the HDV. By testing for the effect of “shielding” ARV 
clusters from one (edge) or two (corner) sides against HDV 
incursion, we can gain some insight on whether analogous 
arrangements in the real world would be beneficial for the 
introduction of ARVs. Such arrangements may take the 
form of “ARV-only” districts where HDV through-traffic is 
banned, thus allowing an introductory ARV population to 
mature under a far lighter pressure from HDVs.

The results show a significant improvement in ARV suc-
cess along edges and at corners when payoff conditions are 
more unfavourable (Scenario A). This is in line with the 
principles described in the previous paragraph. In contrast, 
however, the effect seems to be reversed under Scenario 
B payoff conditions. This behaviour can be attributed to 
a side effect resulting from the spatial restriction of ARV 
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Fig. 5  Simulation results for the 54 runs examining the effect of cluster positioning on ARV success
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growth beyond the grid boundaries. As explained earlier, 
this boundary helps protect ARVs when the conditions are 
unfavourable. However, under more favourable condition the 
boundary begins to restrict growth from the other side—the 
ARV side, which can hinder overall growth. Centred clusters 
would not suffer this limitation. This finding is of real-world 
relevance, though such boundaries would more likely be leg-
islative rather than physical.

Clustering

A general inspection of the clustering graphs shows that 
multi-clustered populations generally perform worse than 
single-clustered ones. Interestingly, however, this inverse 
correlation has a notable exception. This is well illustrated 
by the three-cluster runs under Scenario B payoff conditions 
(Fig. 6, Plot e), where ARV success shows greater sensitivity 
to pARV  than the single-cluster runs.

The reason for this is likely linked to the “strength in 
numbers” principle mentioned previously. At lower payoff 
values, dispersal of ARVs in multiple clusters forms a liabil-
ity and exposes ARVs to a higher probability of interact-
ing with non-ideal opponents (HDVs). Thus, coalescence 
into a single, geographically continuous unit makes better 

evolutionary sense. When ARVs enjoy a relative improve-
ment in payoff, however, multi-clustering can instead pro-
vide an avenue to multiply the number of simultaneously 
growing and self-sustaining ARV communities. Still, the 
dispersal does weigh lower-pARV  populations down, as 
demonstrated by the much larger gap in Plot e between 
the pARV10% three-cluster runs and the single successful 
pARV5% three-cluster run compared to what is seen in the 
single-cluster counterparts in Plot d. These results suggest 
the existence of a critical mass below which ARVs simply 
cannot form a viable population under a given set of condi-
tions. Our simulation results suggest that no fewer than 40 
ARV nodes are needed in a single cluster to produce a viable 
ARV population under the standard Scenario B, Range 4 
conditions. This explains why none of the pARV1% runs 
discussed so far have produced a viable ARV population, 
as the maximum single-cluster size under such conditions 
would be 25—well below the observed critical mass.

Whilst the numerical values provided in this paper are 
mainly of demonstrative value, the principle of critical mass 
remains an important finding which should be considered in 
a real-world introduction.

Clustering

Scenario B

Scenario A

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250 300

Pr
op

or
�o

n 
of

 A
RV

s

Genera�ons

Plot a: One Cluster

pARV1% pARV1% pARV1%
pARV5% pARV5% pARV5%
pARV10% pARV10% pARV10%

0 10 20 30 40 50 60
Genera�ons

Plot b: Three Clusters

pARV1% pARV1% pARV1%
pARV5% pARV5% pARV5%
pARV10% pARV10% pARV10%

0 2 4 6 8 10 12
Genera�ons

Plot c: Six Clusters

pARV1% pARV1% pARV1%
pARV5% pARV5% pARV5%
pARV10% pARV10% pARV10%

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300

Pr
op

or
�o

n 
of

 A
RV

s

Genera�ons

Plot d: One Cluster

pARV1% pARV1% pARV1%
pARV5% pARV5% pARV5%
pARV10% pARV10% pARV10%

0 50 100 150 200 250 300
Genera�ons

Plot e: Three Clusters

pARV1% pARV1% pARV1%
pARV5% pARV5% pARV5%
pARV10% pARV10% pARV10%

0 10 20 30 40 50 60 70
Genera�ons

Plot f: Six Clusters

pARV1% pARV1% pARV1%
pARV5% pARV5% pARV5%
pARV10% pARV10% pARV10%

Fig. 6  Simulation results for the 54 runs examining the effect of the number of clusters on ARV success
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Range

Range shows similar effects to clustering in that the higher 
the dispersal of ARVs, the lower the overall resultant fit-
ness. This is especially pronounced under Scenario A pay-
offs, where we go from six successful ARV runs at the two-
node range (Fig. 7, Plot a) down to just one at six nodes 
(Plot c). The effect is less pronounced under Scenario B 
payoffs, though higher pARV  rates show greater sensitivity 
to reduction in range. This is because the “strength in num-
bers” effect is compounded when larger clusters conduct 
their interactions closer to home. Therefore, we see largely 
comparable ARV success between the different pARV  rates 
at six-node range (Plot f), whereas pARV10% runs show 
remarkable improvement over lesser pARVs at four- and 
two-node ranges (Plots d and e). These results make sense 
as longer ranges allow for higher probabilities of interaction 
with farther vehicles, thus diluting the effect of spatial het-
erogeneity. This means that longer ranges are closer in effect 
to the theoretical well-mixed populations than shorter ones.

These observations give evidence that the best approach 
to the introduction of ARVs may be a single, localised, 
short-range cluster where ARVs can maximise the “strength 
in numbers” effect observed and discussed throughout this 

section. A practical application of this may take the form of 
a fleet of autonomous shuttles in a central business district or 
town centre, serving a circular line. Such application would 
ensure a large probability of ARV–ARV interactions. If 
coupled with a no-through-traffic restriction on HDVs, such 
introductions may prove effective and far more successful.

Conclusion

These conceptual experiments suggest a strong relationship 
between the spatial distribution, range, and size of an intro-
ductory population of ARVs and the shape of its evolution 
over time. The results show stronger performance for fewer, 
shorter-range clusters which suggests possible feasible appli-
cations of early ARVs in controlled, localised networks such 
as autonomous bus fleets in city centres. Dispersed, longer-
range applications such as autonomous heavy goods vehicles 
may only be viable if deployed in larger numbers as closely 
co-operative platoons capable of generating collective effi-
ciencies to counteract possible exploitation by human driv-
ers. Future work may investigate a wider range of starting 
conditions, such as the shape of the clusters, the density 
of ARV-dominated nodes within each cluster, the effect of 
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population mixing, and whether external large-scale factors 
such as government subsidies could influence the resultant 
ARV populations.

The model parameters used in this study are demonstra-
tive and further research will be required to characterise fit-
ness parameters more accurately. However, there is value in 
testing the sensitivity of ARV success and the evolution of 
the road network against the variances in the different spatial 
parameters.
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