
Vol.:(0123456789)

SN Computer Science (2023) 4:246 
https://doi.org/10.1007/s42979-022-01659-z

SN Computer Science

ORIGINAL RESEARCH

Flexible Hybrid Table Recognition and Semantic Interpretation System

Marcin Namysł1,2   · Alexander M. Esser3 · Sven Behnke1,2 · Joachim Köhler1,2

Received: 18 June 2022 / Accepted: 30 December 2022 / Published online: 4 March 2023 
© The Author(s) 2023

Abstract
Extracting information from documents containing quantitative data in tabular format is an important but still unsolved task 
due to the heterogeneity of document layouts. This work aims to take a step toward developing a solution to this problem. 
This paper proposes a flexible, hybrid table extraction system consisting of a deep learning-based table detection module, a 
heuristic-based structure recognition method, and a graph-based semantic interpretation component. The proposed system 
is modular and supports the most frequent table layouts. Moreover, it handles both the documents in image format and PDF 
files with embedded text. The proposed system outperforms the baseline method and achieves results on par with state-of-
the-art approaches on the challenging benchmarks from ICDAR 2013 and ICDAR 2019 table interpretation competitions. 
Moreover, we correct an issue with the evaluation script used in the latter competition and report extended results of the 
proposed method in comparison with a leading commercial product. Finally, our table extraction system achieves a high F 

1
 

score in the scenario where raw documents are given as input and the targeted information is contained in a subset of table 
columns. The presented system achieves results competitive with leading methods in the field. It has already been evaluated 
on general-purpose data and biomedical benchmarks. We intend to continuously improve our approach and process data 
from other domains, e.g., financial documents. To support future research on information extraction from documents, we 
make the evaluation scripts and results from our experiments publicly available at https://​github.​com/​mnamy​sl/​tabrec-​sncs.

Keywords  Information extraction · Document understanding · Table detection · Table structure recognition · Table 
interpretation

Introduction

Automatic table extraction is a challenging task due to the 
heterogeneity of document types and layouts. Tables in the 
scientific literature are formatted and typeset differently 
than tables presenting financial data, tables used in busi-
ness documents, or tables in advertising materials. Tables 
are designed to present compressed information to the reader 
in a way that is easy to comprehend [35]. Nevertheless, auto-
matic table extraction, although widely studied before, has 
not been completely solved yet.

This work includes results of the doctoral thesis by Mar-
cin Namysł [43] and presents an extended version of the 
table extraction approach that was previously published in 
Namysl et al. [22], where a flexible, holistic method that 
combines table recognition and table interpretation modules 
was proposed. In this method, two rule-based table recogni-
tion heuristics perform table detection and table structure 
recognition (TSR) in one step. Specifically, for partially 
bordered tables, a book tabs-based heuristic was developed, 

This article is part of the topical collection “Advances on Computer 
Vision, Imaging and Computer Graphics Theory and Applications” 
guest edited by Kadi Bouatouch, Augusto Sousa, Mounia Ziat and 
Helen Purchase.

 *	 Marcin Namysł 
	 marcin.namysl@iais.fraunhofer.de

	 Alexander M. Esser 
	 aesser22@smail.uni-koeln.de

	 Sven Behnke 
	 behnke@cs.uni-bonn.de

	 Joachim Köhler 
	 joachim.koehler@iais.fraunhofer.de

1	 NetMedia, Fraunhofer IAIS, Sankt Augustin, Germany
2	 Autonomous Intelligent Systems, University of Bonn, Bonn, 

Germany
3	 University of Cologne, Cologne, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01659-z&domain=pdf
http://orcid.org/0000-0001-7066-1726
https://github.com/mnamysl/tabrec-sncs


	 SN Computer Science (2023) 4:246246  Page 2 of 21

SN Computer Science

which recognizes tables that are typeset with a commonly 
used LaTeX package.1 For fully bordered tables, a solid 
separator-based heuristic was implemented. We refer to this 
table recognition approach as baseline method.

Second, in Namysl et al. [22], the basic formulation of the 
table recognition task is complemented by a table interpreta-
tion module implemented as a rule-based method that lever-
ages regular expressions (RegEx) and an approximate string 
matching algorithm. It is worth noting that this method was 
also previously employed to extract and structure quantita-
tive information from a vast number of biomedical articles, 
as presented by Adams et al. [1] and Lage-Rupprecht et al. 
[18].

In this work, we address issues identified in these stud-
ies by focusing on decreasing the precision-recall gap. To 
this end, we improve the table recognition component by 
incorporating a deep learning-based table detection mod-
ule and combining it with the adapted version of the base-
line TSR component. We compare the proposed approach 
with the baseline method as well as with the state-of-the-art 
approaches in this field by performing experiments on two 
challenging benchmarks: the ICDAR 2013 [9] and ICDAR 
2019 [7] data sets from the table recognition competitions 
hold at the International Conference on Document Analysis 
and Recognition (ICDAR). Our results demonstrate that the 
proposed hybrid table recognition method achieves better 
recall and consequently higher F 1 scores, compared to the 
baseline method. Our approach exhibits recognition accu-
racy competitive with state-of-the-art approaches on both 
examined benchmarks (Fig. 1).

Moreover, in the course of our experiments, we found and 
corrected an issue with the official evaluation tool2 employed 
in ICDAR 2019 Table Competition [7]. We published the 

repository with the corrected script3 and submitted our 
changes to the official evaluation tool.4 Furthermore, we also 
noticed that the annotations used in this competition were 
updated recently.5 To facilitate comparison with previous 
and future work reporting the results on this benchmark, we 
include the scores of our method in all scenarios: with and 
without the corrected script, as well as using the previously 
used and the recently revised annotations.

To facilitate the reproducibility and fair comparison of the 
results obtained by different methods on the ICDAR 2013 
Table Competition benchmark [9], we release the evaluation 
script employed in our work. Our script parses the output 
produced by the official evaluation tool6 and accumulates 
them to produce the final document-level scores. It also 
includes the adjacency relations from the false-positively 
detected tables to give a better perspective on the actual per-
formance of the table recognition approaches.

We present a formal definition of the table interpretation 
task and explain the workflow of our method in more detail. 
For completeness, we also thoroughly describe the table 
detection and TSR tasks studied in this work.

Figure 2 gives an overview of our approach. Our system 
is modular and flexible: We are able to easily adapt particu-
lar modules to a specific scenario, as different components 
need to be optimized, depending on layout and type of the 
input. Our system supports both documents in image for-
mat and PDF files. Note that few table recognition methods 
support both types of input. Most approaches require PDF 
documents with embedded text.

In summary, this work makes the following contributions:

•	 We present a formal definition of the table extraction 
task and its main components: table detection, structure 
recognition, and interpretation.

Fig. 1   Diagram of the baseline information extraction system [22]. 
An unstructured document, either an image or a PDF file, is given as 
input. Preprocessing is performed prior to table recognition, which 
detects the table objects and recognizes their building blocks: rows, 

columns, and individual cells. Table interpretation links the extracted 
structural elements with predefined semantic concepts. As a result, 
the layout and the semantic interpretation of a table are written in a 
structured format. Adapted from Namysł [43]

1  https://​ctan.​org/​pkg/​bookt​abs.
2  https://​github.​com/​cndpl​ab-​found​er/​ctdar_​measu​rement_​tool.
3  https://​github.​com/​mnamy​sl/​ctdar_​measu​rement_​tool/​tree/​table_​
mappi​ng_​fix.

4  https://​github.​com/​cndpl​ab-​found​er/​ctdar_​measu​rement_​tool/​pull/1.
5  https://​github.​com/​cndpl​ab-​found​er/​ICDAR​2019_​cTDaR.
6  https://​round​tripp​df.​com/​en/​data-​extra​ction/​table-​recog​nition-​datas​
et-​tools.

https://ctan.org/pkg/booktabs
https://github.com/cndplab-founder/ctdar_measurement_tool
https://github.com/mnamysl/ctdar_measurement_tool/tree/table_mapping_fix
https://github.com/mnamysl/ctdar_measurement_tool/tree/table_mapping_fix
https://github.com/cndplab-founder/ctdar_measurement_tool/pull/1
https://github.com/cndplab-founder/ICDAR2019_cTDaR
https://roundtrippdf.com/en/data-extraction/table-recognition-dataset-tools
https://roundtrippdf.com/en/data-extraction/table-recognition-dataset-tools


SN Computer Science (2023) 4:246	 Page 3 of 21  246

SN Computer Science

•	 We extend our table recognition approach by integrating 
a deep learning-based table detection module and adapt-
ing the TSR component from our previous work [22].

•	 We thoroughly evaluate the proposed method on two 
widely adopted table recognition benchmarks. Our 
method outperforms the baseline approach from our 
previous work [22] and performs on par with the state-
of-the-art approaches in the field.

•	 We propose a fix of an issue with the evaluation script 
employed in the recent competition on table recognition 
and report the scores of our method in all scenarios that 
involve the original and the corrected script as well as the 
previously used and recently revised annotations.

•	 To facilitate reproducibility and fair comparison of the 
results obtained by different table recognition methods, 
we release the resources from our experiments and the 
evaluation script employed in our ICDAR 2013 experi-
ment publicly.7

Table Extraction Task

Table extraction can be considered as a three-step process 
consisting of table detection, structure recognition, and 
interpretation (Fig. 2).

The goal of the table detection task is to locate all table 
regions within the input document. Subsequently, table 
structure recognition (TSR) aims to recognize the structure 
of each detected table. Note that both tasks can be performed 
on different input levels: text lines, words, characters, or 
pixels.8 Moreover, although table detection and TSR aim to 
solve different problems, some approaches cover these two 
tasks jointly. In this case, we refer to joint table detection 
and structure recognition as the table recognition process.

Finally, the goal of table interpretation is to link the rec-
ognized cells with their semantic representation. This step 
strongly depends on the actual use case and no method fits 
all scenarios. In this work, this problem is formulated as 
maximum weight matching [5] on a graph with nodes that 
correspond to table cells and predefined semantic concepts.

In the following, the table detection, TSR, and table inter-
pretation tasks, that are studied in this work, are described 
in more detail.

Table Detection

Table detection aims to locate all tables within an input doc-
ument and can be considered a single-class object detection 
problem. Moreover, it can be split into two subtasks: (1) 
classify every input element, e.g., every pixel, as being part 
of a table or not (image segmentation) and (2) merge homo-
geneous input elements into distinct table regions (region 
growing and splitting).

In particular, region growing and splitting approaches 
make use of a heterogeneity criterion that specifies how 
similar two inputs are [10]. Specifically, keyword-based 
approaches look for specific words (like table or figure) 
and consider all elements within a specific distance to the 
keyword as being part of the same table region. In con-
trast, whitespace-based approaches detect large blank areas 
around the table and consider all enclosed pixels as a homo-
geneous table region [32].

Table detection can be performed on different input lev-
els. For instance, on text line level, region growing and split-
ting becomes, geometrically, a one-dimensional problem. 
For a text line, one has to decide whether the lines above 
and below are similar enough or not to form a common table 
region.

Table Structure Recognition

During TSR, the structure of a table, i.e., rows, columns, and 
cells, is recognized.

Fig. 2   Overview of our information extraction system. An unstruc-
tured document, either an image or a PDF file, is given as input. 
Table detection locates all tables within an input document. Pre-
processing is performed prior to TSR, which recognizes the building 

blocks of a table: rows, columns, and individual cells. Table interpre-
tation links the extracted structural elements with predefined seman-
tic concepts. As a result, the layout and the semantic interpretation of 
a table is written in a structured format. Adapted from Namysł [43]

7  https://​github.​com/​mnamy​sl/​tabrec-​sncs.
8  Oro and Ruffolo [24] speak of so-called content elements that form 
a table.

https://github.com/mnamysl/tabrec-sncs


	 SN Computer Science (2023) 4:246246  Page 4 of 21

SN Computer Science

Given a set of input elements E belonging to the table 
object, TSR aims to map these elements to a regular table 
grid. Formally, we are looking for a mapping:

which maps each position within a K × N table to a content 
element e ∈ E or a set of multiple elements Ei,j ⊆ E , with 
P(E) denoting the power set of E.

In simple cases, one coordinate (i, j) is mapped to one 
single element e. Alternatively, elements can be merged at 
this step—multiple text lines to one text region—so that they 
collectively form a cell. Thus, � generally points to a subset 
Ei,j of elements in E.

To allow cells that span more than one row or column, it 
is valid that two neighboring coordinates ((i, j) and (i, j + 1) ) 
or ((i, j) and (i + 1, j) ) both point to the same element. A 
resulting table cell consists of all neighboring grid points 
mapped to the same element. Finally, it is also allowed that 
a grid point is empty and that � points to an empty set.

Table Interpretation

In the final table interpretation step, the semantic meaning 
of the table cells is understood. Formally, there exists a set 
of cells P and a set of meanings M, so that a cell p ∈ P is 
mapped to a meaning m ∈ M.

The matching between cells P and meanings M is not 
necessarily a perfect matching. If a table contains additional 
columns that are not foreseen in the table model, the cells in 
these columns cannot be assigned a meaning. On the other 
hand, when the table model provides optional meanings, 
some of them cannot always be matched.

In Fig. 3, for instance, there exists a meaning REVE-
NUE_2020, which specifies the revenue for the fiscal year 
2020.9 During the table interpretation step, one aims to map 
cell (1, 1) with the content 30,500 to this meaning.

Related Work

Complete Table Recognition Approaches

In this section, we summarize recent approaches that per-
form complete table recognition (CTR). We describe both 
heuristic-based and learning-based approaches performing 
CTR. For a thorough review of the approaches formerly used 
for this task, please refer to a comprehensive review pre-
sented by Silva et al. [33].

(1)
𝜇 ∶ {1,… ,K} × {1,… ,N} ⟶ P(E)

𝜇(i, j) = Ei,j ⊆ E,

Heuristic‑Based CTR Methods

Heuristic-based methods were mainly designed to handle 
PDF files with embedded text. These methods perform fairly 
accurate, given that the format of the tables is compatible 
with the designed heuristics.

Hassan and Baumgartner [11] describe a system that 
extracts word boxes from PDF files, groups them into tables 
by analyzing their spatial features and ruling lines, if pre-
sent, and outputs the identified tables in HTML format. It 
is worth noting that their system can detect cells that span 
multiple rows or columns as well as partially bordered and 
borderless tables.

Oro and Ruffolo [24] proposed PDF-TREX, a heuristic, 
bottom-up approach for table recognition in single-column 
PDF documents. To identify tabular arrangements of page 
elements, their method aligns and groups them by consider-
ing their spatial features, e.g., white spaces, the distribution 
of horizontal and vertical distances between the blocks, ver-
tical overlapping ratios, etc. Their method obtains table cells 
from the intersections of rows and columns and is able to 
recognize multiple-line row and column headers.

Nurminen [23] developed the Tabler system that imple-
ments a set of heuristics for table detection and structure 

(a)

(b)

Fig. 3   Table interpretation example. a A financial statement (bal-
ance sheet in tabular form). b The corresponding table interpretation 
graph. Cells p ∈ P are mapped to possible meanings m ∈ M . For 
each mapping, an affinity value is calculated, indicated by the thick-
ness of the lines. Adapted from Namysł [43]

9  The meanings are denoted in capital letters.



SN Computer Science (2023) 4:246	 Page 5 of 21  246

SN Computer Science

recognition. Tabler takes PDF files with embedded text 
as input and outputs the recognized tables in a structured 
HTML or XML format. Tabler combines the information 
extracted directly from PDF files with raster image process-
ing techniques.

Rastan et al. [28] proposed TEXUS, a task-based table 
extraction method from PDF documents with embedded 
text. To detect table positions, they locate table lines and 
use transitions between them and main text lines. To iden-
tify columns, they look for spatial alignments of text chunks 
inside the table region. Moreover, the rows are located by 
finding a dominant table line pattern. In addition, they also 
implemented functional and structural analysis compo-
nents that are used to identify the role of each cell in a table 
and to detect the logical relationships between table cells, 
respectively.

Shigarov et al. [32] presented TabbyPDF, a heuristic-
based method for table detection and structure recognition 
from PDF documents. Their system uses textual informa-
tion and graphical features embedded into PDF files such as 
horizontal and vertical distances, font properties, and ruling 
lines. In addition, they propose to exploit the feature of the 
appearance of text printing instructions and the positions of 
a drawing cursor. Their system can detect borderless tables 
by exploiting ruling lines embedded in a PDF file. Alterna-
tively, implicitly defined tables are recognized by analysis 
of white spaces between cells.

Learning‑Based CTR Methods

Recently, many deep learning-based methods were proposed 
to solve the image-based table recognition problem. These 
approaches were often combined with heuristics implement-
ing the missing functionality or used as postprocessing.

Schreiber et al. [31] proposed DeepDeSRT that employs 
the Faster R-CNN model for table row and column detec-
tion followed by a semantic segmentation approach for TSR. 
They fine-tune a general-purpose object detection model for 
the target task. Before structure recognition, they stretch the 
images vertically and horizontally to facilitate the separation 
of rows and columns by the model. Moreover, they apply 
postprocessing to fix problems with spurious detection frag-
ments and conjoined regions.

Reza et al. [30] applied conditional generative adversar-
ial networks for table localization and an encoder decoder-
based architecture for TSR. Their detection model was 
trained from scratch using a large augmented data set com-
posed of documents from both their private collection and 
publicly available sources. In contrast, their encoder-decoder 
architecture was initialized from a pretrained model and fine-
tuned using the data annotated with table row and column 
positions.

Paliwal et  al. [26] proposed TableNet, a multi-task, 
encoder-decoder architecture for table detection and struc-
ture recognition. They initialize the encoder using the 
weights of a general-purpose object detection model and 
share it between the table region detection and column seg-
mentation decoders. Their model takes an image as input 
and produces two semantically labeled images for table and 
column regions, respectively. Subsequently, they use the out-
put of the Tesseract OCR engine [34] to find table rows by 
locating words that are aligned horizontally.

Prasad et al. [27] described the CascadeTabNet model 
that uses the instance segmentation technique to detect table 
regions and that recognizes their structure in a single infer-
ence step. They use a CNN-based architecture and demon-
strate effective use of transfer learning and image augmen-
tation techniques. Their model additionally classifies tables 
into two classes: bordered and borderless types. Their model 
predicts the location of cells only for the borderless tables. 
In contrast, they employ rule-based text and line detection 
heuristics to extract the cells from bordered tables.

Inspired by the method proposed by Prasad et al. [27], 
Fischer et al. [6] presented Multi-Type-TD-TSR, a multi-
stage end-to-end table recognition approach combining a 
deep learning-based table detection model with heuristic-
based TSR. To improve the robustness of geometrical and 
pixel-level noise, they apply skew angle correction, noise 
filtering, and color normalization prior to the TSR method.

Table Interpretation Approaches

Table interpretation can be regarded as a strongly used 
case-specific task. Therefore, a variety of approaches from 
the area of natural language processing is used such as edit 
distance-based techniques [19] and RegEx matching algo-
rithms [16], which are applied, e.g., for matching column 
titles or data types [38]. Semantic interpretation of the table 
content can also be performed using word embeddings or 
large, pretrained language models [12], relation extraction 
[21], or semantic parsing methods [39].

Semantic Type Detection

Semantic type detection is a related task that aims to find the 
correspondence between columns and real-world entities, 
e.g., locations, person names, and organizations. This task 
is often performed by using dictionary lookup and RegEx 
matching of column headers and values. There exists a large 
variety of data preparation and visualization tools that incor-
porate this method.10

10  Popular data analysis tools: https://​power​bi.​micro​soft.​com, https://​
www.​trifa​cta.​com, https://​datas​tudio.​google.​com.

https://powerbi.microsoft.com
https://www.trifacta.com
https://www.trifacta.com
https://datastudio.google.com


	 SN Computer Science (2023) 4:246246  Page 6 of 21

SN Computer Science

A noteworthy deep learning-based approach was recently 
proposed by Hulsebos et al. [15]. Their method finds a corre-
spondence between column headers of a table and 78 seman-
tic types from a knowledge base [2]. Different features are 
employed to describe the content of a column, including dis-
tribution of characters, semantic meaning of the words, and 
global statistics like cardinality or uniqueness. In a follow-up 
study, Zhang et al. [40] proposed to additionally exploit the 
context of a column within a table to predict the underly-
ing semantic types. Their hybrid machine learning model 
combines single-column type prediction with topic modeling 
and structured prediction techniques; thereby they achieve 
improvements in recognition accuracy in comparison to the 
baseline model.

Proposed Method

In Fig.  2, the architecture of the proposed information 
extraction system is presented. This section describes the 
components of this system in detail. In particular, “Table 
Detection” presents the table detection module. “Preprocess-
ing” describes the preprocessing routines employed by our 
method.  “Fully Bordered Tables” and “Partially Bordered 
and Borderless Tables” explain the proposed TSR methods. 
Finally, “Table Interpretation Method” details the proposed 
table interpretation approach. For a thorough description of 
the baseline system (Fig. 1), please refer to Namysl et al. 
[22].

Table Detection

Table detection aims to locate all tables within an input 
document (“Table Detection”). Recent advances in deep 
learning-based object recognition [36, 37] allow to perform 
a highly accurate and reliable detection process.

The main advantage of deep learning-based object detec-
tion methods is the possibility to apply the transfer learning 
technique, which gives us the ability to use the knowledge 
gained from learning one task to solve a related problem. 
In the case of deep learning-based table detection methods, 
an object detection model that was pretrained on a large, 
general-purpose object detection benchmark (usually on 
the ImageNet data set [4]) is fine-tuned using a smaller-
scale data set for the target table detection task, e.g., 
TableBank [20].

Therefore, in this work, we exploit an existing deep learn-
ing-based table localization method and combine it with the 
TSR module from our previous work, resulting in an effi-
cient, hybrid table recognition approach.

The detection method is required to take either an image 
or a PDF file as input and to return a list of bounding boxes, 
each corresponding to a single table object. The choice of 

method is rather arbitrary, as long as the aforementioned 
requirements are met.

Using the results provided by the table detection com-
ponent, all identified tables are cropped from the original 
input document and passed to the preprocessing module as 
either images or PDF files, depending on the format of the 
original document.

Preprocessing

Preprocessing transforms the input document containing a 
single table object identified in the previous step into a semi-
structured representation that is exploited by the subsequent 
components of our system. We employ the layout analysis 
module described in Konya [17] to extract ruling lines (here-
after referred to as solid separators) and textual page regions 
from an input document.

In particular, if the input document is in PDF format, it 
is rendered as an image. The input image is then binarized 
using the global thresholding method proposed by Otsu [25]. 
Subsequently, the solid separators are detected on the binary 
image using a combination of methods described by Zheng 
et al. [41] and Gatos et al. [8]. In the case of PDF files with 
embedded text, the text is directly extracted using a PDF 
parsing method.11 Otherwise, OCR is performed using the 
Tesseract library [34] to extract the textual content from the 
image.

Table Structure Recognition

Although deep learning-based table detection has already 
reached very high accuracy on popular table recognition 
benchmarks, deep learning-based table structure recogni-
tion is still far from being solved [7]. Previous methods 
approached this problem by adapting the standard object 
detection framework to this task by detecting rows and col-
umns independently. Postprocessing heuristics were then 
used to merge the results and output the final table grid (see 
“Learning-Based CTR Methods”). Obviously, these meth-
ods struggled with the recognition of table cells spanning 
multiple rows or columns. The recent advent of hybrid deep 
learning-based methods coupled with heuristics enabled sur-
passing the current state-of-the-art performance on widely 
adopted table recognition benchmarks [6, 27].

Motivated by the success of hybrid table recognition 
approaches, we combine a deep learning-based table detec-
tion module with a heuristic-based TSR method. This sec-
tion describes the TSR methods employed in this work: heu-
ristics for fully bordered tables (“Fully Bordered Tables”) 

11  We employ Poppler (https://​poppl​er.​freed​esktop.​org) for both ren-
dering and text extraction.

https://poppler.freedesktop.org


SN Computer Science (2023) 4:246	 Page 7 of 21  246

SN Computer Science

and for partially bordered or borderless tables (“Partially 
Bordered and Borderless Tables”).

It is worth noting that the proposed TSR algorithms can 
be easily applied to both horizontal and vertical page lay-
outs. For the sake of clarity, we describe how our method 
works in the case of the horizontal layout. For the vertical 
layout, all steps are identical, except that we swap the hori-
zontal and the vertical separators with each other.

As a first step that is common for both proposed heuris-
tics, we calculate an average character size within the input 
image, denoted as Sx and Sy for the width and height dimen-
sions, respectively, using the semi-structured data provided 
by the preprocessing component. These values are then 
exploited in the subsequent steps of the proposed algorithm.

Fully Bordered Tables

Figure 4 shows an example of a fully bordered table, which 
is handled by the rule-based method described in this 
section.

Separator Merging
Our heuristic that recognizes fully bordered tables starts 

by sorting the horizontal and the vertical separators by the 

top and the left position, respectively. All separator boxes are 
first expanded by �x = max(5, Sx∕2) and �y = max(5, Sy∕2) 
pixels to increase the chance of intersection with the neigh-
boring solid separators. Then, we iteratively merge all 
intersecting separators, forming clusters of separators, as 
depicted in Fig. 5. Finally, all clusters that contain less than 
one separator with each orientation (vertical and horizontal) 
are pruned from the list. The remaining, distinct separator 
clusters found by this procedure correspond to the identified 
table object.

Table Grid Estimation and Refinement
Subsequently, for each separator cluster, a rough grid of 

cells is derived as follows: Each pair of subsequent vertical 
and horizontal separators forms a table column or table row 
region, respectively. The regions of intersection between the 
column and row boxes define the rough grid of cells.

Note that some cells in the roughly estimated grid need 
to be refined by merging them with the neighboring cells 
to recover the cells that span multiple rows or columns. To 
this end, we employ an approach inspired by the union-find 
algorithm proposed by Hoshen and Kopelman [13] and illus-
trated in Fig. 6.

Fig. 4   An example of a fully bordered table. The image was cropped 
from the cTDaR_t10047.jpg file contained in the ICDAR 2019 
Table Competition benchmark [7]. In this example, TI (threat index) 
indicates the relative significance of each threat and w is the attribute 

weight. TI of each type of an attack is computed by multiplying the 
threat frequency by the sum of the values in the right-hand columns 
under the outcome attributes weighted by the corresponding attribute 
weights. Adapted from Namysl et al. [22]

Fig. 5   Separator merging stage 
of the fully bordered TSR 
method. Vertical and horizontal 
separator regions are marked 
green and blue, respectively. 
Orange circles correspond to 
the intersection points. Adapted 
from Namysl et al. [22]



	 SN Computer Science (2023) 4:246246  Page 8 of 21

SN Computer Science

Specifically, we perform a raster scan through the rough 
grid of cells in the left-to-right direction. For each cell, we 
check whether the area near the right border of the cell over-
laps any vertical separator assigned to the current separator 
cluster. If this is not the case, we merge the current cell with 
its right neighbor and proceed to the next cell. We use a mar-
gin around the border of a cell calculated as mx = Sx . This 
procedure is then repeated in the top-to-down direction. In 
this case, we use the margin my = Sy . Note that the column 
spans of the cells that need to be merged must be equal.

Postprocessing
During the post-processing phase, all textual page regions 

are assigned to the corresponding table cells based on their 
overlap ratios; cells that do not contain any assigned page 
regions are marked as empty. Subsequently, the rows and 
columns that contain exclusively empty cells are removed 
from the table.

In an additional step, those tables are identified that pre-
dominantly exhibit a bordered layout but also contain many 
rows that are separated by white spaces instead of solid sepa-
rators. An example of such a table is presented in Fig. 7. 
As such tables would preferably be recognized using our 
heuristic for partially bordered tables, we give an option to 
discard them from the list of candidates found by the heu-
ristic for fully bordered tables. For each table, we calculate 
the ratio Hratio of the highest row to the median row height. 
We discard a table if its Hratio is greater than a predefined 
threshold Hmax

ratio
.

Finally, all table candidates that have less than a prede-
fined number of rows, columns, and cells are pruned from 
the list of candidates. Figure 8 shows an example of a table 
recognized by our heuristic for bordered tables.

Partially Bordered and Borderless Tables

Booktabs12 is a popular LaTeX package used to typeset 
tables in scientific articles. An example of a table in this 

format is shown in Fig. 9. It consists of three main compo-
nents: top, middle, and bottom rule. The middle rule sepa-
rates the table header and the table body region. In addi-
tion, multiple-level header structure can be represented using 
shorter cmidrules that span multiple columns aggregated 
under the same higher-level header (see Fig. 15a).

Our heuristic recognition method for partially bordered 
and borderless tables uses horizontal separators for docu-
ments with standard orientation. As noted in “Fully Bor-
dered Tables”, the pages with vertical orientation can be 
easily handled by swapping horizontal and vertical separa-
tors with each other.

Table Region Detection
In the first step, we perform separator filtering. Specifi-

cally, we discard all thick lines wider than Sy and sort all 
remaining separators by the top position. Moreover, if mul-
tiple separators are located within the margin of D = 2Sy , 
only the element with the lowest y-position is kept.

Given the above-described filtering routines and assuming 
that the input image contains a single table object, we can add 
virtual top and bottom rule lines at the top and the bottom of 
the image, respectively, without negatively influencing the 
recognition process. In this method, we stretch these ruling 
lines across the entire width of the image. This step should 
improve the results in case tables do not strictly follow the 
booktabs format, e.g., by missing a top or a bottom rule.

To detect table objects, we search for triples of consecu-
tive separators, for which the difference between their left 
and right coordinates is lower than Sx . Each triple forms a 
table candidate that is passed to the subsequent filtering step, 
where all candidates narrower than 90% of the image width 
are discarded.

If this process does not output any valid table candidate, 
we discard all spurious candidates and proceed as follows: 
We add an additional virtual ruling line at the position −Sy , 
and we repeat the searching process described in the pre-
vious paragraph. This step ensures that at least one table 
candidate is found, even in the case of borderless tables. 
Figure 10 illustrates a case that benefits from adding virtual 
ruling lines and filtering narrow tables.

Fig. 6   Cell merging stage of 
the fully bordered TSR method. 
Blue and orange circles are the 
centers of the cells that were 
merged horizontally and verti-
cally, respectively. Green circles 
are the centers of fully bordered 
cells. Arrows show the scanning 
direction. Adapted from Namysl 
et al. [22]

12  https://​ctan.​org/​pkg/​bookt​abs.

https://ctan.org/pkg/booktabs


SN Computer Science (2023) 4:246	 Page 9 of 21  246

SN Computer Science

Merging Overlapping Table Candidates
Moreover, in the case of a tabular layout that uses solid 

separators for the separation of rows, the above-described 
method will output multiple overlapping candidates. There-
fore, if the vertical overlap between two table candidates is 

greater than Sy , these candidates are merged together, i.e., 
the top and the middle rule with a lower y-position as well as 
the bottom rule with a higher y-position are retained in the 
merged table candidate, as illustrated in Fig. 11.

Fig. 7   An example of a table 
cropped from the us-001.
jpg file contained in the 
ICDAR 2013 Table Competi-
tion benchmark [9]. Solid blue 
lines represent the borders 
between the cells that were 
detected by the TSR heuristic 
for fully bordered tables. In 
contrast, light blue lines cor-
respond to the row borders that 
are not outlined with solid rul-
ing lines and therefore could not 
be recognized by this method. 
Adapted from Namysł [43]

Fig. 8   Recognition result 
obtained by the bordered TSR 
method. Blue circles represent 
the centers of the recognized 
cells. Adapted from Namysl 
et al. [22]

Fig. 9   An example of a table in 
booktabs format from the us-
021.pdf file contained in the 
ICDAR 2013 Table Competi-
tion benchmark [9]. Adapted 
from Namysl et al. [22]



	 SN Computer Science (2023) 4:246246  Page 10 of 21

SN Computer Science

Finally, for each valid table candidate, we collect all 
cmidrule lines that are located between the top and the mid-
dle rule, so they can be used to recognize a multiple-level 
header structure in the subsequent processing step. To this 
end, they are grouped by their y-position to isolate different 
levels of the header’s hierarchy and to separate header rows.

Table Row and Column Detection
The borders for the rows in the body region are deter-

mined using the horizontal profile, which is calculated by 
projecting all words within the body region of a table, as 
illustrated in Fig. 12. The row borders can then be easily 
estimated by taking center positions of the gaps in the result-
ing profile.

To recognize borders between columns, we first pro-
ject all page regions within the body region and the 
lowest-level header row vertically and we analyze the 
resulting projection to find all gaps with a length above 
Dcolumn = �Sx , where � is a hyperparameter. The center 
positions of these intervals correspond to the column bor-
ders, as illustrated in Fig. 13.

In contrast, all gaps with length below Dcolumn correspond 
to vertically aligned words that form spurious columns. Note 
that we exclude the higher-level headers, as they contain 

multiple-column cells that would otherwise distort the cal-
culated vertical projection.

Table Grid Estimation and Refinement
Given the row and column borders calculated in the previ-

ous stages, we compute the grid of cells from the intersec-
tions between the row and the column borders, which results 
in a partial table segmentation illustrated in Fig. 14.

Moreover, the structure of the remaining, higher-level 
headers is recognized as follows: The rough grid of cells 
calculated in the previous step is extended to the higher-level 
headers and all cells that intersect the same cmidrule seg-
ment are merged together, as illustrated in Fig. 15.

Postprocessing
Finally, all textual page regions are assigned to the cor-

responding table cells based on their overlap ratios and 
the cells that do not contain any assigned page regions are 
marked as empty. Subsequently, the rows and columns that 
contain exclusively empty cells are removed from the table. 
Moreover, all table candidates that have less than a prede-
fined number of rows, columns, and cells are pruned from 
the list of candidates.

Fig. 10   Illustration of the 
filtering based on the table 
width employed by the TSR 
heuristic for partially bordered 
and borderless tables. a An 
example of a table cropped from 
the cTDaR_t10005.jpg file 
contained in the ICDAR 2019 
Table Competition benchmark 
[7]. b An initial result before 
the filtering: two spurious can-
didates were identified. Green, 
orange, and blue lines corre-
spond to the top, middle, and 
bottom rule lines, respectively. c 
The result after filtering. Dotted 
green and blue lines correspond 
to the virtual top and bottom 
ruling lines, respectively. Dotted 
red line is the virtual ruling line 
added above the top ruling line. 
Note that the row between two 
virtual ruling lines at the top is 
discarded as it does not contain 
any textual content. Adapted 
from Namysł [43]



SN Computer Science (2023) 4:246	 Page 11 of 21  246

SN Computer Science

Fig. 11   Merging overlapping 
table candidates, as employed 
by the TSR heuristic for par-
tially bordered and borderless 
tables. a An example of a table 
cropped from the cTDaR_
t10058.jpg file contained 
in the ICDAR 2019 Table 
Competition benchmark [7]. b 
and c Overlapping tables. Each 
triple of consecutive separa-
tors, marked with gray lines, 
represents one table candidate. 
Using solid lines as row separa-
tors causes that a common line 
is included in the subsequent 
candidates. Merging the over-
lapping elements allows us to 
mitigate this problem. Dotted 
green and blue lines corre-
spond to virtual top and bottom 
rules, respectively. Solid blue 
lines represent the remaining 
solid separators. Adapted from 
Namysł [43]

Fig. 12   Row segmentation process employed by the proposed TSR 
method for partially bordered and borderless tables. Blue lines rep-
resent the top, middle, and bottom ruling lines. Orange lines mark the 
cmidrule lines. Orange bars to the right correspond to the horizontal 

profile (running sum of pixels in the text regions in each row). Green 
dotted lines correspond to the row borders. Adapted from Namysl 
et al. [22]

Fig. 13   Column segmentation process employed by the proposed 
TSR method for partially bordered and borderless tables. The dotted 
red line is a border of the lowest-level header. Orange bars at the bot-
tom correspond to the vertical profile (running sum of pixels in the 
word regions in each column). We clip the values in the profile for 

better visualization. The column gaps that are wider and narrower 
than Dcolumn are highlighted in green and red, respectively. Green 
vertical dotted lines represent the detected column borders. Adapted 
from Namysl et al. [22]



	 SN Computer Science (2023) 4:246246  Page 12 of 21

SN Computer Science

Table Interpretation Method

Instead of matching the cells p ∈ P to the meanings m ∈ M 
directly, as foreseen by the general formulation of the table 
interpretation task presented in “Table Interpretation”, the 
proposed table interpretation method first assigns meanings 
to the columns c ∈ C of a table t. Subsequently, for a column 
c that was matched with a meaning mj , it extracts the tuples 
xi,j by associating the cells in the body part of the column 
c with the meaning mj , where i is a row index, and j is the 
index of a matched meaning.

Our algorithm takes the set of recognized tables T as input 
and, for each table t ∈ T  , it assigns meanings m ∈ M to the 
columns c ∈ C . We define a set of affinity rules that describe 
a column that is likely to be matched with the meaning m that 
includes: 

(1)	 Title Keyword Score: implemented as approximate 
string matching between the title of a column and the 
predefined keywords.

(2)	 Title RegEx Score: computed as exact matching of the 
title of a column with customized RegEx.

(3)	 Data Type Score: computed as exact matching of the 
content of the cells in a column with RegEx for some 
common types (e.g., integer, date, etc.).

(4)	 Content RegEx Score: implemented as exact matching 
of the content of the cells in a column with customized 
RegEx.

Approximate string matching corresponds to the Levenshtein 
distance [19] calculated between two strings and divided by 
the length of the longer string. The exact RegEx score returns 
1.0 if the matching succeeds and 0.0 otherwise. Moreover, we 
average the values of the content and data type scores over the 
cells in the corresponding column. We compute the final affin-
ity score S for a column c with a meaning m by:

(2)S(c,m) =
wc max

(

SRx
c
, SDT

c

)

+ wt max
(

SRx
t
, SKW

t

)

wc + wt

,

Fig. 14   The resulting segmenta-
tion grid obtained by the pro-
posed TSR method for partially 
bordered and borderless tables. 
Blue lines and circles are the 
borders and the centers of the 
cells, respectively. Gray boxes 
outline the words within the 
table. Adapted from Namysl 
et al. [22]

Fig. 15   Higher-level header segmentation of the proposed TSR 
method for partially bordered and borderless tables. a The top part of 
a table extracted from the us-018.pdf file from the ICDAR 2013 
Table Competition benchmark [9]. b Header cell merging. Orange 
lines correspond to the cmidrule lines. Green areas and lines repre-
sent column white spaces and borders, respectively. Blue circles are 

the centers of the cells intersecting a cmidrule line. The cells that 
intersect the same cmidrule line are merged. In contrast, other cells 
(marked with green circles) remain unchanged. c Header segmenta-
tion. Blue lines and circles correspond to the borders and the centers 
of the cells in the final grid, respectively. Adapted from Namysl et al. 
[22]



SN Computer Science (2023) 4:246	 Page 13 of 21  246

SN Computer Science

where wt and wc are the weights of the title and the content 
scores, respectively, SRx

c
 and SDT

c
 are the affinity scores of 

the content RegEx and the data type, respectively. Moreo-
ver, SRx

t
 and SKW

t
 are the scores of the title RegEx and the 

approximate matching with the keywords, respectively. In 
Eq. (2), the sum of weights must be a positive number. Note 
that, if a particular rule is not defined for a meaning m, the 
corresponding score is set to zero. All rules are defined in 
a configuration file, as presented in an example in Fig. 16.

Given a list of recognized tables and a set of predefined 
meanings, we perform the matching between the meanings 
and the columns in each table. To this end, we construct a 
weighted bipartite graph with two sets of vertices, each rep-
resenting the meanings on one side and the columns on the 
other side, as illustrated in Fig. 17b. We link each column with 
each meaning with an edge weighted by the affinity score that 
specifies how likely a column matches with a certain meaning. 
To improve performance, we prune the connections that do 
not reach a predefined required minimum affinity value Smin.

Subsequently, we perform maximum weight matching, 
as defined by Edmonds [5], on the created bipartite graph 
to find the best assignment of the columns to the meanings. 
Finally, we extract the tuples xi,j , where i is a row index 
and j is the index of a meaning, as shown in Fig. 17c.

Table Recognition Experiments

To evaluate our method we perform extensive experiments 
on two widely adopted table recognition benchmarks. In both 
cases, we evaluate the complete table recognition (CTR) 
process, i.e., end-to-end table detection and recognition.

Data Sets

The data set used in the ICDAR 2013 Table Competition by 
Göbel et al. [9] contains born-digital business and govern-
ment PDF documents with 156 tables in total. Ground-truth 
annotations for both table detection and segmentation tasks 
are available.

The ICDAR 2019 Table Detection and Recognition data 
set by Gao et al. [7] is a collection of modern and archival 
document images. We employed only the former part, as the 
latter consists of handwritten documents and the analysis 
of hand-drawn tables is outside the scope of this work. We 
focused on track B2 in this competition as it corresponds to 
the CTR process.

Table Detection Setup

In the case of the ICDAR 2013 data set, all pages of a PDF 
document are first rendered as images with a resolution of 
300 DPI and the detection is performed for each rendered 
image separately. In the case of the ICDAR 2019 bench-
mark, the original images are used as input to the detection 
model.

Table Detection Models

In this work, we combine our TSR method with two previ-
ously released table detection models. Nevertheless, other 
models can readily be used instead (“Table Detection”).

The first variant is the table detection model released 
by Prasad et al. [27]. Their CascadeTabNet model uses an 
instance segmentation technique and performs pixel-level 
table identification. In the experiment in “ICDAR 2013 
Evaluation”, we use the model fine-tuned on the ICDAR 
2013 benchmark and in “ICDAR 2019 Evaluation” we 
employ the model tuned on the ICDAR 2019 data set. Please 
refer to Prasad et al. [27] for details about the architecture of 
the table detection model, the composition of the data used 
for training, and the employed training setup. Hereinafter we 
refer to the variant of our system that employs this model as 
the domain-specific table detection model.

In contrast, the second variant of our system employs 
the table detection model proposed by Li et al. [20], which 
is based on the Faster R-CNN architecture [29] with the 
ResNeXt-152 model as backbone [37]. Their model was 
pretrained on the ImageNet data set [4] and fine-tuned on 
the TableBank data [20], which contains a large number of 
Word and LaTeX documents crawled from the internet. Note 
that this model was not fine-tuned on the examples from the 
benchmarks employed for evaluation. Therefore, we refer 
to this model as a general-purpose table detection model.

Fig. 16   An example of a configuration file used by the proposed 
table interpretation method. It defines the meanings COMPOUND 
and HDAC6 GENE, as well as the rules for matching table columns 
to these meanings. The file is stored in JSON format. Adapted from 
Namysl et al. [22]



	 SN Computer Science (2023) 4:246246  Page 14 of 21

SN Computer Science

Filtering Rules

Note that the employed table detection method takes an 
image as input and returns, for each detected table, a bound-
ing box and a confidence value. We keep all detection results 
with a confidence greater than or equal to 0.85 and to 0.1, 
respectively, in the case of the domain-specific and the 
general-purpose table detector. Moreover, if some detection 
results overlap with each other by more than 50% , we keep 
only the result with a higher confidence value.

TSR Setup

All detected tables are cropped from the input documents 
based on the returned bounding box coordinates and fed 
to the preprocessing module, followed by the TSR compo-
nent, one table at a time. In the case that the input document 
is in PDF format, we use the PyPDF2 library13 to crop a 
region from a PDF file. Therefore, the preprocessing mod-
ule can extract the text embedded in the PDF files, which is 
essential to obtain competitive results on the ICDAR 2013 
benchmark.

The Order of Applying TSR Heuristics

Regarding the TSR heuristics, it is worth noting that a table 
candidate that overlaps any other table that was already 
detected by the previous heuristic is automatically discarded. 
Therefore, the order in which we apply our methods impacts 
the final results. As the heuristic for partially bordered and 
borderless tables could generate spurious candidates from 
fully bordered tables, we first apply the method for fully 
bordered tables followed by the other heuristic.

Hyperparameters

In Table 1, we present the hyperparameter values of the TSR 
methods used in the experiments. We empirically estimated 
these values based on the results on a practice data set from 
ICDAR 2013 Table Competition that consists of 58 PDF 
documents and the data from the remaining tracks in ICDAR 
2019 Table Competition.

Postprocessing

In the case of the ICDAR 2019 benchmark, the results for 
all tables on a page are gathered to produce the output XML 

Fig. 17   Illustration of the 
proposed table interpreta-
tion method: a An image of a 
table containing the inhibitory 
activity of some representative 
compounds toward the HDAC 
gene. The columns correspond-
ing to the meanings COM-
POUND and HDAC6 GENE 
(see Fig. 16) are marked with 
red and blue boxes, respectively. 
c Table interpretation graph: 
Columns c ∈ C are mapped to 
the meanings m ∈ M . For each 
mapping, an affinity value is 
calculated, symbolized by the 
thickness of the lines. d The 
extracted tuples that represent 
the inhibitory activity of each 
compound towards the HDAC6 
gene. The resulting file is stored 
in JSON format

(a)

(b)
(c)

13  https://​pypi.​org/​proje​ct/​PyPDF2.

https://pypi.org/project/PyPDF2


SN Computer Science (2023) 4:246	 Page 15 of 21  246

SN Computer Science

file in a format14 that is supported by this competition. Simi-
larly, in the ICDAR 2013 setup, the results of TSR from 
all pages are gathered to produce the final XML file in a 
format15 exploited by the evaluation tools employed in this 
competition.

ICDAR 2013 Evaluation

In this section, we present the results obtained by the pre-
sented approach on the table recognition benchmark from 
ICDAR 2013 Table Competition.16

Evaluation Setup

We developed a Python wrapper for the competition’s evalu-
ation tool17 that computes the document-level metrics—pre-
cision, recall, and F 1 score—which were used to compare 
the accuracy of the examined methods. Our script parses 
the output produced by the official evaluation tool written in 
Java programming language and accumulates them to pro-
duce the final, per document average scores. It also includes 
the adjacency relations from the false-positively detected 
tables to give a better perspective on the actual performance 
of the table recognition approaches and utilizes alternative 
ground-truth annotations prepared by the organizers for sev-
eral documents in this data sets. To facilitate reproducibility 
and fair comparison of research results, we include our script 
in a public repository associated with this paper.18

Evaluation Results

Table 2 reports the results obtained by our method for the 
CTR task. For comparison, we present the best previously 
published results on this data set.19

The proposed approach outperformed the method pre-
sented in our previous work [22]. Moreover, we achieved 
the F 1 score better than all previously reported results except 
for the commercial FineReader method that won the original 
competition. The precision and recall scores obtained by 
our method are well balanced. In particular, the recall was 
improved significantly in comparison with the results of the 
baseline method from our previous work.

Moreover, comparing the results of two variants of our 
system that employed either the general-purpose or the 
domain-specific table detection model (“TSR Setup”) we 
can see a clear advantage of the latter. Nevertheless, the gen-
eral-purpose variant is still very competitive, outperforming 
other competitors, except for the FineReader engine.

ICDAR 2019 Evaluation

In this section, we present the results obtained by our 
method on the benchmark from the ICDAR 2019 Table 
Competition.20

Table 1   Values of the hyperparameters used in the experiments

We present the values used both in the experiment on the ICDAR 
2013 (“ICDAR 2013 Evaluation”) and the ICDAR 2019 (“ICDAR 
2019 Evaluation”) benchmark. Note that, in the case of ICDAR 2019, 
we do not discard table candidates based on Hratio

Name ICDAR 2013 ICDAR 2019

Min. number of rows 2 2
Min. number of columns 2 2
Min. number of cells 7 7
Hmax

ratio
 threshold 10.0 not used

Column gap threshold ( �) 1.5 1.0

Table 2   Evaluation results on the ICDAR 2013 benchmark. We 
report the precision, recall, and F 

1
 score (per document averages) for 

the CTR process

Bold values indicate the best results (the highest precision, recall, and 
F1 score)
a Uses a domain-specific table detection model from [27]
b Uses a general-purpose table detection model from [20], i.e., the 
X152 (ResNeXt-512) Latex+Word model

Method Precision Recall F
1

FineReader v11 [9] 0.8710 0.8835 0.8772
This worka 0.8714 0.8468 0.8589

This workb 0.8483 0.8397 0.8439

OmniPage 18 [9] 0.8460 0.8380 0.8420
Nurminen [9] 0.8693 0.8078 0.8374
Baseline [22] 0.9179 0.7616 0.8325
TabbyPDF [32] 0.8339 0.8298 0.8318
TEXUS [28] 0.8071 0.7823 0.7945

14  https://​cndpl​ab-​found​er.​github.​io/​cTDaR​2019/​datas​et-​descr​iption.​
html.
15  https://​round​tripp​df.​com/​en/​data-​extra​ction/​datas​et-​format.
16  https://​round​tripp​df.​com/​en/​data-​extra​ction/​icdar-​2013-​table-​
compe​tition.
17  https://​round​tripp​df.​com/​en/​data-​extra​ction/​table-​recog​nition-​
datas​et-​tools.
18  https://​github.​com/​mnamy​sl/​tabrec-​sncs.

19  For fair comparison, we only include the prior work that reported 
the results of the CTR process and we exclude the methods that used 
only a subset of the data for evaluation.
20  https://​cndpl​ab-​found​er.​github.​io/​cTDaR​2019/​index.​html.

https://cndplab-founder.github.io/cTDaR2019/dataset-description.html
https://cndplab-founder.github.io/cTDaR2019/dataset-description.html
https://roundtrippdf.com/en/data-extraction/dataset-format
https://roundtrippdf.com/en/data-extraction/icdar-2013-table-competition
https://roundtrippdf.com/en/data-extraction/icdar-2013-table-competition
https://roundtrippdf.com/en/data-extraction/table-recognition-dataset-tools
https://roundtrippdf.com/en/data-extraction/table-recognition-dataset-tools
https://github.com/mnamysl/tabrec-sncs
https://cndplab-founder.github.io/cTDaR2019/index.html


	 SN Computer Science (2023) 4:246246  Page 16 of 21

SN Computer Science

Evaluation Setup

For this experiment, we employed the official tools and met-
rics used in the original competition.21 We performed the 
evaluation of the track B2, which corresponds to the CTR 
process.

The organizers of this competition adopted the metrics 
employed in the ICDAR 2013 Table Competition, except 
that the textual content of the cells is not used for the com-
parison of adjacency relations, i.e., relations between the 
neighboring cells in a table, and the evaluation focuses on 
the geometrical proximity between the ground-truth and 
the recognized cells. The main metric used to compare the 
results of the examined methods is the weighted average 
F 1 score, abbreviated as WAvg. F 1 , which is computed as 
a weighted sum of the F 1 scores obtained using different 
Intersection over Union (IoU) thresholds for the cell match-
ing procedure. IoU is defined as the ratio between the area 
of the overlap and the union of two bounding boxes.

Evaluation Results

Table 3 reports the results of our method in comparison 
with the baseline approach and the best-reported scores.22 In 
addition, we also evaluated ABBYY FineReader Engine,23 a 
commercial solution that facilitates information extraction 
from documents and also provides a table recognition mod-
ule. We used the method employed in Adams et al. [1] that 
parses all table blocks from the output in the ABBY-XML 
format and converts them to the XML format supported by 
the ICDAR 2019 evaluation tool.

Both variants of our system improved upon the baseline 
approach from our previous work. The variant that exploited 
the domain-specific table detection model performed sub-
stantially better than the general-purpose variant. Neverthe-
less, our system was outperformed by the state-of-the-art 
methods in terms of WAvg. F 1 , although we performed 
on par with the FineReader engine. Interestingly, both our 
method and FineReader engine perform better than the other 
methods at the highest IoU threshold.

Correcting an Issue in the Evaluation Script

We carried out a thorough investigation of the results of our 
method but we could not explain the low recognition scores 

in the case of some test examples. Therefore, we performed 
a simple sanity check and fed the ground-truth data as the 
input to the evaluation script, evaluating it against itself and 
expecting to get perfect WAvg. F 1 score of 1.0. Surprisingly, 
we obtained a score of 0.793, which suggested some issues 
with the evaluation script. In fact, we located the problem 
in the code and fixed it. The problem caused incorrect table 
matching in the case when there are two or more tables in an 
image. After correcting the issue with the evaluation script, 
the sanity check passed.

The Case of Revised Annotations

Moreover, we noticed that the annotations available in the 
official repository hosting the data for this competition have 
recently been updated. To estimate the expected difference 
in recognition scores obtained using the revised versus the 
old annotations, we fed the old annotations as input and 
evaluated them against the revised annotations using the 
corrected evaluation script. The resulting WAvg. F 1 score 
of 0.647 suggested that the results obtained by evaluating 
against the old annotations could substantially differ from 
the results obtained by employing the revised annotations. 
Furthermore, as noted in our previous work [22], the WAvg. 
F 1 score employed in this competition is biased toward high 
overlap ratios between the cells, strongly penalizing lower 
IoU scores.

Table 3   ICDAR 2019 evaluation (track B2—modern documents)

Bold values indicate the highest WAvg. F1 score overall and the 
best F1 scores at different IoU thresholds
We report F 

1
 scores for the reference values of the IoU threshold 

between the ground-truth and the recognized cells. For comparison, 
we include the best results reported in previous works. WAvg. F 

1
 

denotes the average F 
1
 score weighted by the IoU threshold for IoU 

∈ {0.6, 0.7, 0.8, 0.9}
a Uses a domain-specific table detection model from [27]
b Uses a general-purpose table detection model from [20], i.e., the 
X152 (ResNeXt-512) Latex+Word model

Method IoU WAvg. F 
1

0.6 0.7 0.8 0.9

CascadeTabNet [27] 0.438 0.354 0.190 0.036 0.232
NLPR-PAL [7] 0.365 0.305 0.195 0.035 0.206
This worka 0.288 0.249 0.181 0.089 0.191
FineReader v12 0.270 0.239 0.198 0.092 0.190

This workb 0.267 0.237 0.173 0.086 0.181

Baseline [22] 0.233 0.213 0.164 0.064 0.159

21  https://​github.​com/​cndpl​ab-​found​er/​ctdar_​measu​rement_​tool.
22  For fair comparison, we include the prior work that employed the 
official tools and annotations for evaluation. For instance, the results 
of the Multi-Type-TD-TSR approach [6] are omitted because the 
authors reannotated the test data and used images of cropped tables 
as input.
23  https://​www.​abbyy.​com/​ocr-​sdk (SDK v12).

https://github.com/cndplab-founder/ctdar_measurement_tool
https://www.abbyy.com/ocr-sdk


SN Computer Science (2023) 4:246	 Page 17 of 21  246

SN Computer Science

Re‑evaluation Using a Corrected Script and Revised 
Annotations

Motivated by these observations, we performed a further 
evaluation of our method in four different scenarios reflect-
ing the two above-mentioned observations: (1) Using either 
the corrected or the original evaluation script and (2) Using 
either the old or the revised annotations. As a baseline 
method in this experiment, we employ ABBYY FineReader 
Engine.

The results of the extended evaluation are presented in 
Table 4. The proposed method considerably outperformed 
ABBYY FineReader in the scenarios, where the revised 
annotations were used. Otherwise, both methods exhibited 
comparable scores. Consistent with the previous results, the 
variant of our method that employed the domain-specific 
table detection model outperformed the general-purpose var-
iant. The best results were obtained when both the corrected 
script and the revised annotations were employed (Table 4).

Table Interpretation Experiment

Evaluation Data Set

For table interpretation, a common, publicly available 
benchmark can hardly be found, neither for general data nor 
for our use case [18], which motivated us to prepare the 
data for experiments ourselves. To this end, we annotated 
13 documents with tables from our internal biomedical data 
collection.24

In our evaluation scenario, the annotated, ground-truth 
data for a table consists of a list of tuples, each representing 
an intersection of a data row and the columns that corre-
spond to the defined meanings. The annotations are stored 
in JSON files (Fig. 17c) with the following name pattern:
<FILE_ID>_<PAGE_NR>_<TABLE_IDX>.json

where <FILE_ID> is the file identifier, <PAGE_NR> 
is the page number in the corresponding PDF file, and 
<TABLE_IDX> is the index of a table on a page.

In total, 113 tuples from 17 tables were annotated and 
used as ground-truth test data in our experiment. Moreover, 
a separate, representative development set of four documents 
was also prepared and used to fine-tune the rules employed 
by our table interpretation method. Figure 18 presents an 
example of a ground-truth file from our data collection.

It is worth noting that only a subset of tables present in 
the employed data collection contains information relevant 
to our scenario. Even if it is the case, a table may contain 
superfluous columns that do not contain the target informa-
tion. Therefore, we carefully designed the rules employed 
by our table interpretation method using the documents in 
the development set (Fig. 19).

Evaluation Setup

To evaluate the end-to-end table extraction process, we exe-
cute the complete pipeline presented in Fig. 1. We first detect 
and recognize all tables in the test data set using the baseline 
method [22], as it performs reliably in the scenario where 
the tabular layout is well defined, i.e., it follows the fully or 
partially bordered format, and the table labels are present.

Subsequently, the proposed table interpretation method 
is employed to extract the relevant tuples from the tables 
recognized in the previous step. To facilitate evaluation, the 
extracted tuples for each table are stored in a separate JSON 
file (Fig. 17c) using the same file name pattern as in the case 
of the ground-truth files.

We feed two sets of JSON files, each corresponding to the 
ground-truth and the recognized tables, respectively, as input 
to the evaluation script. For every page, the script creates 

Table 4   Extended ICDAR 2019 evaluation (track B2 — modern doc-
uments)

Bold values indicate the best results within each evaluation scenario
We include the results of our method and ABBY FineReader 
Engine. We report the results of four different variants of the evalu-
ation  —  using the evaluation script either before or after the cor-
rection as well as using either old or revised annotations. WAvg. F 

1
 

denotes the average F 
1
 score weighted by the IoU threshold for IoU 

∈ {0.6, 0.7, 0.8, 0.9}
aUses a domain-specific table detection model from [27]
bUses a general-purpose table detection model from [20], i.e., the 
X152 (ResNeXt-512) Latex+Word model

Corrected 
script

Revised annota-
tions

Method WAvg. F 
1

× × This worka 0.1908
FineReader v12 0.1904

This workb 0.1806

✓ × FineReader v12 0.2481
This worka 0.2436

This workb 0.2203

× ✓ This worka 0.2773

This workb 0.2545

FineReader v12 0.2351
✓ ✓ This worka 0.3446

This workb 0.3092

FineReader v12 0.2903

24  We selected documents in the context of the histone deacetylase 
(HDAC) gene (https://​en.​wikip​edia.​org/​wiki/​Histo​ne_​deace​tylase), 
focusing on the HDAC1 and HDAC6 target genes.

https://en.wikipedia.org/wiki/Histone_deacetylase


	 SN Computer Science (2023) 4:246246  Page 18 of 21

SN Computer Science

a bipartite graph with two sets of nodes corresponding to 
the ground-truth and the recognized tables, respectively 
(Fig. 20) and, subsequently, it performs maximum weight 
matching, as proposed by Edmonds [5], to find the corre-
spondence between these two sets of tables.

To compute cumulative scores, the results from all pages 
are collected and the exact precision, recall, and F1 score 
are calculated. The tuples from the missed reference tables 
and incorrectly extracted relations are also included in the 
reported results. Therefore, the obtained scores reflect the 
performance of the complete table extraction process.

Evaluation Results

Table 5 reports the results of the complete table extraction 
system studied in this work. Our system extracted 74 tuples 
from 10 out of 28 tables present in the test data set, achiev-
ing a solid F1 score of 0.7380. Moreover, after decoupling 
the errors that result from the missed reference tables, our 
table interpretation method exhibits a high F1 score of 
0.9388 and proves its utility.

As we expect that lower recall of the complete system 
resulted from the errors made by its upstream components, 
we qualitatively analyzed the results and discovered that 
only one false-positive and one false-negative error was 
directly related to the designed interpretation rules. The 
remaining errors were caused by table structure recognition 
issues like incorrectly merged cells.

Discussion

Robustness to Preprocessing Errors

In the preprocessing stage (“Preprocessing”), some solid sepa-
rators might be missed or false-positively recognized. The pro-
posed TSR heuristics are designed to mitigate the errors caused 
by preprocessing artifacts and imperfect table formatting. In 

particular, the heuristic for partially bordered and borderless 
tables adds virtual ruling lines to facilitate the recognition of 
tables that do not strictly follow the rules of the booktabs for-
mat (see “Partially Bordered and Borderless Tables”). Moreo-
ver, the proposed heuristic for fully bordered tables expands 
the separator boxes to increase the chance of intersection with 
the neighboring solid separators in the separator merging stage 
(“Fully Bordered Tables”) to facilitate recognition of tabular 
grids that contain boxes that are not fully enclosed.

ICDAR 2019 Evaluation

As it was shown in “ICDAR 2013 Evaluation”, the compari-
son of the results reported on the ICDAR 2019 benchmark 
could be difficult. We advocate that the setup that employs 
the revised annotations and the corrected script should be 
used to evaluate approaches that report the results of this 
data set in the future. On the other hand, the scenario where 
the old annotations and the evaluation script before the cor-
rection are employed could be additionally presented to be 
used as a reference for comparison with the methods that 
reported the results on this data set in the past.

Proposed vs. Baseline TSR Method

In this section, we present all major differences between 
the TSR approach proposed in this work and the baseline 

Fig. 18   An example of a ground-truth file from our collection used 
in our table interpretation experiment (11_page07_table0.json). 
The character ’\u00b1’ corresponds to the Unicode symbol ’±’. 
Reprinted from Namysl et al. [22]

Fig. 19   A  JSON file defining the meanings and rules for matching 
columns to these meanings used in our table interpretation experi-
ment. Reprinted from Namysl et al. [22]



SN Computer Science (2023) 4:246	 Page 19 of 21  246

SN Computer Science

method from Namysl et al. [22]. In our previous work, we 
noticed a precision-recall gap in the results of our method. 
To overcome this issue, in this work, we proposed to inte-
grate a deep learning-based table detection module, which 
indeed balanced and improved the results of our method, 
as it was empirically validated in “Table Recognition 
Experiments”.

Note that, in this work, the input to the TSR method is 
supposed to contain a single table object. The approach from 
our previous work takes the image of a whole page as input 
to perform table detection and structure recognition at once. 
To adapt the method presented in Namysl et al. [22] to this 
new scenario, we have implemented the following changes: 

(1)	 We do not use table labels for filtering table candidates 
in this work as the table detection module already 
delivers fairly accurate detection results.

(2)	 We filter all fully bordered tables based on their row 
height ratio (see Fig. 7) to discard all candidates that 
contain many rows that are not separated by a solid 
separator. These candidates are preferably handled by 
the subsequent heuristic for partially bordered and bor-
derless tables.

(3)	 Our heuristic for partially bordered and borderless 
tables adds virtual ruling lines to facilitate the recog-
nition of tables that do not strictly follow the booktabs 
format, as illustrated in Fig. 10. We also merge verti-
cally overlapping candidates, as shown in Fig. 11.

(4)	 We estimate the threshold for column separation using 
the average character size within the table instead of 
the median unit distance between the words on a page 
because, in the new scenario, the full page content can-
not be exploited by the TSR method. Nevertheless, the 
strategy used for threshold calculation employed in this 
work is still effective and less complicated than before.

Conclusions

In this article, a flexible, hybrid table extraction system was 
presented. It combines a deep learning-based table detec-
tion module with heuristic-based TSR method to infer the 
exact structure of tables in unstructured documents. Moreo-
ver, to extract semantic information from tables, the basic 
formulation of the table recognition task is complemented 
by including a graph-based table interpretation method. The 
proposed system works with both image-based inputs and 
born-digital PDF files. Our approach is modular and config-
urable, allowing us to adapt particular processing steps to a 
specific scenario.

We conducted extensive experiments on two challeng-
ing table recognition benchmarks, outperforming the base-
line approach from our previous work and achieving results 
on par with the state-of-the-art methods on the respective 
data sets. Moreover, we evaluated our system in a scenario, 
where the target information is extracted directly from raw 

Fig. 20   An example of a weighted bipartite interpretation graph that 
contains two ground-truth and three recognized tables, represented by 
green circles and blue squares, respectively. Each vertex in a graph 
corresponds to a set of tuples extracted from a table and stored in a 
separate JSON file. The edges are weighted by the F1 scores of the 

matching between the corresponding sets of tuples. The matching 
with the maximum sum of weights is marked with green solid lines. 
Note that the y2 vertex corresponds to a false-positive result, which is 
not included in the final matching. Adapted from Namysl et al. [22]

Table 5   Results of information 
extraction from tabular data

We include the scores obtained both through the end-to-end table extraction process (This work: end-to-
end method) and solely from the correctly recognized tables (This work: interpretation-only). We report the 
precision, recall, and F1 score. TP, FN, and FP refer to the number of tuples that were perfectly matched 
(true-positive), missed (false-negative), or incorrectly recognized (false-positive), respectively. Adapted 
from Namysl et al. [22]

Method TP FP FN Precision Recall F
1

This work: end-to-end method 69 4 45 0.9452 0.6053 0.7380
This work: interpretation-only 69 4 5 0.9452 0.9324 0.9388



	 SN Computer Science (2023) 4:246246  Page 20 of 21

SN Computer Science

documents, and achieved a solid F 1 score that confirmed the 
utility of our holistic table extraction system.

We make the corrected evaluation script used in ICDAR 
2019 Table Competition, the evaluation script employed 
in the experiment performed on the ICDAR 2013 bench-
mark, and the output XML files as well as detailed log files 
produced by our method publicly available and hope that 
our contribution will foster fair and reproducible future 
research on information extraction in the document process-
ing domain.

Future work could investigate different choices for the 
table detection module, preferably trained using a large, 
representative data set containing tables with various lay-
outs, originating from different sources. Perspectively, we 
intend to process various documents, including but not lim-
ited to invoices or balance sheets as well as camera-captured 
documents [42]. The most promising direction for future 
improvements is the incorporation of recent advances in the 
field of multimodal, pretrained models that exploit both vis-
ual and text information, such as the work presented recently 
by Huang et al. [14].

Author Contributions  Conceptualization and methodology: Marcin 
Namysl; Formal analysis and investigation: Marcin Namysl; Software: 
Marcin Namysl; Supervision and validation: Sven Behnke; Writing—
original draft preparation: Marcin Namysl, Alexander Esser; Writing—
review and editing: Marcin Namysl, Sven Behnke, Alexander Esser, 
Joachim Köhler.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. This work was supported in part by the Fraunhofer Internal 
Programs under Grant No. 836 885.

Data availability statement  The resources that support the findings of 
this study are available on GitHub: https://​github.​com/​mnamy​sl/​tabre​
csncs and https://​github.​com/​mnamy​sl/​table-​inter​preta​tion. The data-
sets analyzed in Section “Table Recognition Experiments” are available 
in the following repositories: ICDAR 2013 Table Competition (https://​
round​tripp​df.​com/​en/​data-​extra​ction/​pdf-​table-​recog​nition-​datas​et) and 
ICDAR 2019 cTDaR (https://​github.​com/​cndpl​ab-​found​er/​ICDAR​
2019_​cTDaR).

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Adams T, Namysl M, Kodamullil AT, Behnke S, Jacobs M. Bench-
marking table recognition performance on biomedical literature 
on neurological disorders. Bioinformatics. 2021;38(6):1624–30. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btab8​43.

	 2.	 Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. 
DBpedia: a nucleus for a web of open data. In: The semantic web. 
Berlin, Heidelberg: Springer; 2007. p. 722–35. https://​doi.​org/​10.​
1007/​978-3-​540-​76298-0_​52.

	 3.	 Debnath S, Debnath T, Bhaumik S, Majumdar S, Kalle AM, 
Aparna V. Discovery of novel potential selective HDAC8 inhibi-
tors by combine ligand-based, structure-based virtual screening 
and in-vitro biological evaluation. Sci Rep. 2019;9(1):17174. 
https://​doi.​org/​10.​1038/​s41598-​019-​53376-y.

	 4.	 Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Ima-
geNet: a large-scale hierarchical image database. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2009; 
pp 248–255 (2009) https://​doi.​org/​10.​1109/​CVPR.​2009.​52068​48.

	 5.	 Edmonds J. Maximum matching and a polyhedron with 0, 1 ver-
tices. J Res Natl Bur Stand. 1965;69B:125–30.

	 6.	 Fischer, P., Smajic, A., Abrami, G., Mehler, A.: Multi-Type-TD-
TSR - Extracting tables from document images using a multi-stage 
pipeline for table detection and table structure recognition: From 
OCR to structured table representations. In: KI 2021: Advances 
in Artificial Intelligence. Lecture Notes in Computer Science, 
vol. 12873. Springer, Cham, 2021; pp. 95–108. https://​doi.​org/​
10.​1007/​978-3-​030-​87626-5_8

	 7.	 Gao L, Huang Y, Déjean H, Meunier J-L, Yan Q, Fang Y, Kle-
ber F, Lang E. ICDAR 2019 competition on table detection and 
recognition (cTDaR). In: International Conference on Document 
Analysis and Recognition (ICDAR), 2019; pp. 1510–1515. https://​
doi.​org/​10.​1109/​ICDAR.​2019.​00243.

	 8.	 Gatos B, Danatsas D, Pratikakis I, Perantonis SJ. Automatic table 
detection in document images. In: Pattern recognition and data 
mining. Berlin, Heidelberg: Springer; 2005. p. 609–18.

	 9.	 Göbel M, Hassan T, Oro E, Orsi, G. ICDAR 2013 Table Com-
petition. In: International Conference on Document Analysis and 
Recognition (ICDAR), 2013; pp. 1449–1453. https://​doi.​org/​10.​
1109/​ICDAR.​2013.​292.

	10.	 Haralick RM, Shapiro LG. Image segmentation techniques. In: 
Applications of Artificial Intelligence II, vol. 0548, 1985; pp. 
2–9. https://​doi.​org/​10.​1117/​12.​948400. International Society 
for Optics and Photonics.

	11.	 Hassan T, Baumgartner R. Table recognition and understand-
ing from PDF files. In: International Conference on Document 
Analysis and Recognition (ICDAR), vol. 2, pp. 1143–1147 (2007). 
https://​doi.​org/​10.​1109/​ICDAR.​2007.​43770​94.

	12.	 Herzig J, Nowak PK, Müller T, Piccinno F, Eisenschlos J. TaPas: 
Weakly supervised table parsing via pre-training. In: Annual 
Meeting of the Association for Computational Linguistics (ACL), 
pp. 4320–4333. Association for Computational Linguistics, 
Online (2020). https://​doi.​org/​10.​18653/​v1/​2020.​acl-​main.​398.

	13.	 Hoshen J, Kopelman R. Percolation and cluster distribution. I. 
Cluster multiple labeling technique and critical concentration 
algorithm. Phys Rev B. 1976;14:3438–45. https://​doi.​org/​10.​1103/​
PhysR​evB.​14.​3438.

	14.	 Huang Y, Lv T, Cui L, Lu Y, Wei F. LayoutLMv3: Pre-training 
for document AI with unified text and image masking. In: ACM 
International Conference on Multimedia. Association for Comput-
ing Machinery, New York, NY, USA 2022; pp. pp. 4083–4091. 
https://​doi.​org/​10.​1145/​35031​61.​35481​12.

	15.	 Hulsebos M, Hu K, Bakker M, Zgraggen E, Satyanarayan A, 
Kraska T, Demiralp C, Hidalgo C. Sherlock: a deep learning 
approach to semantic data type detection. In: ACM SIGKDD 

https://github.com/mnamysl/tabrecsncs
https://github.com/mnamysl/tabrecsncs
https://github.com/mnamysl/table-interpretation
https://roundtrippdf.com/en/data-extraction/pdf-table-recognition-dataset
https://roundtrippdf.com/en/data-extraction/pdf-table-recognition-dataset
https://github.com/cndplab-founder/ICDAR2019_cTDaR
https://github.com/cndplab-founder/ICDAR2019_cTDaR
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bioinformatics/btab843
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1038/s41598-019-53376-y
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/978-3-030-87626-5_8
https://doi.org/10.1007/978-3-030-87626-5_8
https://doi.org/10.1109/ICDAR.2019.00243
https://doi.org/10.1109/ICDAR.2019.00243
https://doi.org/10.1109/ICDAR.2013.292
https://doi.org/10.1109/ICDAR.2013.292
https://doi.org/10.1117/12.948400
https://doi.org/10.1109/ICDAR.2007.4377094
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.1103/PhysRevB.14.3438
https://doi.org/10.1103/PhysRevB.14.3438
https://doi.org/10.1145/3503161.3548112


SN Computer Science (2023) 4:246	 Page 21 of 21  246

SN Computer Science

International Conference on Knowledge Discovery and Data Min-
ing (KDD). Association for Computing Machinery, New York, 
NY, USA 2019; pp. 1500–1508. https://​doi.​org/​10.​1145/​32925​
00.​33309​93.

	16.	 Kleene SC. Representation of events in nerve nets and finite 
automata. Technical report, Rand Project Air Force Santa Monica, 
CA, Santa Monica, CA 1951. https://​apps.​dtic.​mil/​sti/​pdfs/​ADA59​
6138.​pdf.

	17.	 Konya I. Adaptive methods for robust document image under-
standing. PhD thesis, Rheinische Friedrich-Wilhelms-Universität 
Bonn (April 2013).

	18.	 Lage-Rupprecht V, Schultz B, Dick J, Namysl M, Zaliani A, Gebel 
S, Pless O, Reinshagen J, Ellinger B, Ebeling C, Esser A, Jacobs 
M, Claussen C, Hofmann-Apitius M. A hybrid approach unveils 
drug repurposing candidates targeting an Alzheimer pathophysiol-
ogy mechanism. Patterns. 2022;3(3): 100433. https://​doi.​org/​10.​
1016/j.​patter.​2021.​100433.

	19.	 Levenshtein VI. Binary codes capable of correcting deletions, 
insertions, and reversals. Sov Phys Dokl 1966;10(8).

	20.	 Li M, Cui L, Huang S, Wei F, Zhou M, Li Z. TableBank: table 
benchmark for image-based table detection and recognition. In: 
Language Resources and Evaluation Conference (LREC), pp. 
1918–1925. European Language Resources Association, Mar-
seille, France 2020. https://​aclan​tholo​gy.​org/​2020.​lrec-1.​236.

	21.	 Macdonald E, Barbosa D. Neural relation extraction on Wikipedia 
tables for augmenting knowledge graphs. In: ACM International 
Conference on Information and Knowledge Management. CIKM 
’20, pp. 2133–2136. Association for Computing Machinery, New 
York, NY, USA 2020. https://​doi.​org/​10.​1145/​33405​31.​34121​64.

	22.	 Namysl M, Esser A, Behnke S, Köhler J. Flexible table recogni-
tion and semantic interpretation system. In: International Joint 
Conference on Computer Vision, Imaging and Computer Graphics 
Theory and Applications, vol. 4: VISAPP, pp. 27–37. SciTePress, 
Setúbal, Portugal 2022. https://​doi.​org/​10.​5220/​00107​67600​
003124. INSTICC.

	23.	 Nurminen A. Algorithmic extraction of data in tables in PDF 
documents. Master’s thesis, Tampere University of Technology 
2013.

	24.	 Oro E, Ruffolo M. PDF-TREX: an approach for recognizing and 
extracting tables from PDF documents. In: International Confer-
ence on Document Analysis and Recognition (ICDAR), 2009; pp. 
906–910. https://​doi.​org/​10.​1109/​ICDAR.​2009.​12. IEEE.

	25.	 Otsu N. A threshold selection method from gray-level histograms. 
IEEE Trans Syst Man Cybern. 1979;9(1):62–6. https://​doi.​org/​10.​
1109/​TSMC.​1979.​43100​76.

	26.	 Paliwal SS, D, V, Rahul R, Sharma M, Vig L. TableNet: deep 
learning model for end-to-end table detection and tabular data 
extraction from scanned document images. In: International Con-
ference on Document Analysis and Recognition (ICDAR), 2019; 
pp. 128–133. https://​doi.​org/​10.​1109/​ICDAR.​2019.​00029.

	27.	 Prasad D, Gadpal A, Kapadni K, Visave M, Sultanpure K. Cas-
cadeTabNet: an approach for end to end table detection and 
structure recognition from image-based documents. In: IEEE/
CVF Conference on Computer Vision and Pattern Recognition 
Workshops (CVPRW), 2020; pp. 2439–2447. https://​doi.​org/​10.​
1109/​CVPRW​50498.​2020.​00294.

	28.	 Rastan R, Paik H-Y, Shepherd J. TEXUS: a task-based approach 
for table extraction and understanding. In: ACM Symposium on 
Document Engineering (DocEng), 2015; pp. 25–34. https://​doi.​
org/​10.​1145/​26825​71.​27970​69.

	29.	 Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time 
object detection with region proposal networks. In: Advances in 
Neural Information Processing Systems (NeurIPS), vol. 28. Cur-
ran Associates, Inc., Red Hook, NY, USA; 2015.

	30.	 Reza MM, Bukhari SS, Jenckel M, Dengel A.: Table localiza-
tion and segmentation using GAN and CNN. In: International 
Conference on Document Analysis and Recognition Workshops 
(ICDARW), vol. 5, 2019; pp. 152–157. https://​doi.​org/​10.​1109/​
ICDARW.​2019.​40097.

	31.	 Schreiber S, Agne S, Wolf I, Dengel A, Ahmed S. DeepDeSRT: 
deep learning for detection and structure recognition of tables 
in document images. In: International Conference on Document 
Analysis and Recognition (ICDAR), vol. 01, 2017; pp. 1162–
1167. https://​doi.​org/​10.​1109/​ICDAR.​2017.​192.

	32.	 Shigarov A, Altaev A, Mikhailov A, Paramonov V, Cherkashin E. 
TabbyPDF: Web-based system for PDF table extraction. In: Infor-
mation and Software Technologies, 2018; pp. 257–269. Springer, 
Cham. https://​doi.​org/​10.​1007/​978-3-​319-​99972-2_​20.

	33.	 Silva ACE, Jorge AM, Torgo L. Design of an end-to-end method 
to extract information from tables. Int J Doc Anal Recognit. 
2005;8:144–71. https://​doi.​org/​10.​1007/​s10032-​005-​0001-x.

	34.	 Smith, R.: An overview of the Tesseract OCR engine. In: Inter-
national Conference on Document Analysis and Recognition 
(ICDAR), vol. 2, 2007; pp. 629–633. https://​doi.​org/​10.​1109/​
ICDAR.​2007.​43769​91.

	35.	 Wainer H. Improving tabular displays, with NAEP tables as exam-
ples and inspirations. J Educ Behav Stat. 1997;22(1):1–30. https://​
doi.​org/​10.​3102/​10769​98602​20010​01.

	36.	 Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, Liu D, Mu 
Y, Tan M, Wang X, Liu W, Xiao B. Deep high-resolution rep-
resentation learning for visual recognition. IEEE Trans Pattern 
Anal Mach Intell. 2021;43(10):3349–64. https://​doi.​org/​10.​1109/​
TPAMI.​2020.​29836​86.

	37.	 Xie S, Girshick R, Dollar P, Tu Z, He K. Aggregated residual 
transformations for deep neural networks. In: IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR) 2017.

	38.	 Yan C, He Y. Synthesizing type-detection logic for rich semantic 
data types using open-source code. In: International Conference 
on Management of Data (SIGMOD). Association for Computing 
Machinery, New York, NY, USA 2018; pp. 35–50. https://​doi.​org/​
10.​1145/​31837​13.​31968​88.

	39.	 Yu T, Wu C-S, Lin XV, Wang B, Tan YC, Yang X, Radev D, 
Socher R, Xiong C. GraPPa: Grammar-augmented pre-training for 
table semantic parsing. In: International Conference on Learning 
Representations (ICLR) 2021. https://​openr​eview.​net/​forum?​id=​
kyaIe​Yj4zZ.

	40.	 Zhang D, Hulsebos M, Suhara Y, Demiralp C, Li J, Tan W-C. 
Sato: Contextual semantic type detection in tables. VLDB Endow. 
2020; 13(12), 1835–1848. https://​doi.​org/​10.​14778/​34077​90.​
34077​93.

	41.	 Zheng Y, Liu C, Ding X, Pan S. Form frame line detection with 
directional single-connected chain. In: International Conference 
on Document Analysis and Recognition (ICDAR), 2001; pp. 
699–703. https://​doi.​org/​10.​1109/​ICDAR.​2001.​953880.

	42.	 Zhu Z, Gao L, Li Y, Huang Y, Du L, Lu N, Wang X. NTable: a 
dataset for camera-based table detection. In: Document Analysis 
and Recognition (ICDAR), 2021; pp. 117–129. Springer, Cham. 
https://​doi.​org/​10.​1007/​978-3-​030-​86331-9_8.

	43.	 Namysł M. Robust Information Extraction From Unstructured 
Documents. Ph.D. Dissertation, Rheinische Friedrich-Wilhelms-
Universität Bonn (January 2023). https://​hdl.​handle.​net/​20.​500.​
11811/​10560.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1145/3292500.3330993
https://apps.dtic.mil/sti/pdfs/ADA596138.pdf
https://apps.dtic.mil/sti/pdfs/ADA596138.pdf
https://doi.org/10.1016/j.patter.2021.100433
https://doi.org/10.1016/j.patter.2021.100433
https://aclanthology.org/2020.lrec-1.236
https://doi.org/10.1145/3340531.3412164
https://doi.org/10.5220/0010767600003124
https://doi.org/10.5220/0010767600003124
https://doi.org/10.1109/ICDAR.2009.12
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/ICDAR.2019.00029
https://doi.org/10.1109/CVPRW50498.2020.00294
https://doi.org/10.1109/CVPRW50498.2020.00294
https://doi.org/10.1145/2682571.2797069
https://doi.org/10.1145/2682571.2797069
https://doi.org/10.1109/ICDARW.2019.40097
https://doi.org/10.1109/ICDARW.2019.40097
https://doi.org/10.1109/ICDAR.2017.192
https://doi.org/10.1007/978-3-319-99972-2_20
https://doi.org/10.1007/s10032-005-0001-x
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.3102/10769986022001001
https://doi.org/10.3102/10769986022001001
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.14778/3407790.3407793
https://doi.org/10.14778/3407790.3407793
https://doi.org/10.1109/ICDAR.2001.953880
https://doi.org/10.1007/978-3-030-86331-9_8
https://hdl.handle.net/20.500.11811/10560
https://hdl.handle.net/20.500.11811/10560

	Flexible Hybrid Table Recognition and Semantic Interpretation System
	Abstract
	Introduction
	Table Extraction Task
	Table Detection
	Table Structure Recognition
	Table Interpretation

	Related Work
	Complete Table Recognition Approaches
	Heuristic-Based CTR Methods
	Learning-Based CTR Methods

	Table Interpretation Approaches
	Semantic Type Detection


	Proposed Method
	Table Detection
	Preprocessing
	Table Structure Recognition
	Fully Bordered Tables
	Partially Bordered and Borderless Tables

	Table Interpretation Method

	Table Recognition Experiments
	Data Sets
	Table Detection Setup
	Table Detection Models
	Filtering Rules

	TSR Setup
	The Order of Applying TSR Heuristics
	Hyperparameters

	Postprocessing
	ICDAR 2013 Evaluation
	Evaluation Setup
	Evaluation Results

	ICDAR 2019 Evaluation
	Evaluation Setup
	Evaluation Results
	Correcting an Issue in the Evaluation Script
	The Case of Revised Annotations
	Re-evaluation Using a Corrected Script and Revised Annotations


	Table Interpretation Experiment
	Evaluation Data Set
	Evaluation Setup
	Evaluation Results

	Discussion
	Robustness to Preprocessing Errors
	ICDAR 2019 Evaluation
	Proposed vs. Baseline TSR Method

	Conclusions
	References




