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Abstract

In the paper, the authors investigated and predicted the future environmental circumstances of a COVID-19 to minimize its
effects using artificial intelligence techniques. The experimental investigation of COVID-19 instances has been performed
in ten countries, including India, the United States, Russia, Argentina, Brazil, Colombia, Italy, Turkey, Germany, and France
using machine learning, deep learning, and time series models. The confirmed, deceased, and recovered datasets from Janu-
ary 22, 2020, to May 29, 2021, of Novel COVID-19 cases were considered from the Kaggle COVID dataset repository.
The country-wise Exploratory Data Analysis visually represents the active, recovered, closed, and death cases from March
2020 to May 2021. The data are pre-processed and scaled using a MinMax scaler to extract and normalize the features to
obtain an accurate prediction rate. The proposed methodology employs Random Forest Regressor, Decision Tree Regres-
sor, K Nearest Regressor, Lasso Regression, Linear Regression, Bayesian Regression, Theilsen Regression, Kernel Ridge
Regressor, RANSAC Regressor, XG Boost, Elastic Net Regressor, Facebook Prophet Model, Holt Model, Stacked Long
Short-Term Memory, and Stacked Gated Recurrent Units to predict active COVID-19 confirmed, death, and recovered cases.
Out of different machine learning, deep learning, and time series models, Random Forest Regressor, Facebook Prophet,
and Stacked LSTM outperformed to predict the best results for COVID-19 instances with the lowest root-mean-square and
highest R* score values.

Keywords COVID-19 - Prediction - XG Boost - Facebook Prophet - Holt model - Stacked gated recurrent units - RANSAC
regressor - Random forest regressor - Stacked long short-term memory
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Throughout history, the world has confronted several major
pandemic and epidemic problems. The first recorded pan-
demic occurred in Athens during the Peloponnesian War in
430 BC, followed by the Antonine Plague in 165 A.D., in
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since spread to many other nations and healthcare systems
worldwide. At the same time, humans inhale contaminated
air, including airborne droplets and particles that are smaller
than 0.1 microns, and COVID-19 spreads [2].

Inhalation of these particles is more dangerous when
people are closely packed together; nevertheless, they can
be inhaled further apart, especially indoors. Infected flu-
ids sprayed on the skin, in the eyes, nose, or mouth, or on
surfaces contaminated with them may result in transmis-
sion. Someone can carry and spread the disease for up to
20 days even if they have no symptoms. During COVID-19,
a first wave began in the spring, which receded significantly
throughout the summer, and a second wave appeared in the
fall of 2020. The initial wave of the epidemic devastated
several nations, and many patients perished. The severity
of this early phase was exacerbated by a lack of specialist
equipment and a lack of understanding of the disease [4].
We all learned from our mistakes during the first wave of
the pandemic, and as a result, our confidence in being able
to handle the second wave much better was strong. Despite
this, the second wave had considerably greater infection
rates, more patients in ICUs, and, in certain countries, more
fatalities [5].

Figure 1 depicts the death rates from March 6, 2020, to
June 6, 2021, with Europe and the Americas having the most
significant mortality rates compared to India and South and
East Asia. Europe had 1,172,912 death cases, the Ameri-
cas had 1,926,520, South and East Asia had 739,802 death
cases, and India had 402,728 COVID death cases as of July
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Fig. 1 Ravages of the pandemic
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8, 2021. Europe accounted for 32% of all COVID fatality
cases, followed by the Americas (55%), South and East Asia
(15%), and India (11%) (approx). According to the survey,
the top eight countries that have been severely affected by a
novel coronavirus (in billion dollars) are the United States
(3.39), India (3.09), Brazil (1.92), France (58.2), Russia
(57.6), Turkey (54.9), the United Kingdom (51.9), Argentina
(46.8), and Colombia (45.3) [6].

In the beginning, no curative medication or vaccine was
available for COVID-19, but 18 months later, each of the
vaccines was shown to be safe and effective in treating
COVID-19 symptoms and lab-confirmed cases. Though
vaccinations are pretty successful, SARS-CoV-2, the virus
that causes COVID-19, will emerge even in this tiny number
of individuals. Many different approaches for diagnosing
the illness have been developed. RT-PCR, TMA, and RT-
LAMP can be used to identify the virus's nucleic acid. How-
ever, there are some situations when RT-PCR may not be an
option, such as when viral RNA must be analyzed in a hurry.
According to the UNICEF and World Health Organization,
around 342 million vaccinations have been supplied to medi-
cal facilities, resulting in the immunization of approximately
94 million people worldwide. China had the most excellent
vaccination rate, with 22.3 million.

In this study, machine learning, time series, and deep
learning-based models are developed to predict future
COVID's active verified, mortality, and healed cases of
random 5 days, using January 22, 2020, to May 29, 2021,
verified, mortality, and recovered instances of the top ten
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countries in the world, such as India, the United States, Rus-
sia, Argentina, Brazil, Colombia, Italy, Turkey, Germany,
and France. We used random forest regressor, decision
tree regressor, K-nearest neighbor regressor, kernel ridge
regressor, X Boost, RANSAC regressor, linear regression,
lasso regression, elastic net regressor, Bayesian regressor,
and Theilsen regressor from machine learning algorithms;
stacked LSTM and stacked GRU from deep learning models;
and Facebook Prophet and Holt algorithms from time series
model. To yet, in our investigation, we have been unable to
locate any previous research case studies about the top 10
nations affected by the COVID-19 pandemic. Our participa-
tion in this research study would benefit all ten countries in
rebuilding the plan and demography of COVID-19 prepara-
tion. The Root-Mean-Square Error (RMSE) and R? Score
are the evaluative metrics used to assess these models. After
this section, the rest of the paper is laid out as follows: The
second section tells about related work. The section “Contri-
bution Outline” presents the article's contribution in outline
form. The section “Materials and Methods” focus on the
subject matter and methods and are followed by a discus-
sion of the outcomes. The section “Result Analysis” draws
the conclusion and winds down the recommended research.

Related Work

Since 2020, researchers have made significant attempts to
anticipate the onset of COVID illness in people or the end of
the disease around the globe. Keeping this in mind, Shastri
et al. [1] suggested a deep learning-based model, such as
a recurrent neural network, to forecast the future circum-
stances of new coronaviruses by studying instances from
India and the United States. Ten different nations with the
most significant number of verified cases were investigated.
It was shown that the predictive accuracy of a range of six
separate time series modeling approaches for coronavirus
epidemic detection varied by Papastefanopoulos et al. [2].
Using an LSTM model, Chimmula et al. [3] predicted the
end of the COVID-19 pandemic and worldwide epidemics
due to antiviral drugs and improved access to healthcare.
Indicating the date of the pandemic's demise, the writers
anticipate that it will be finished by June of 2020. Using a
deep learning model, Togacar et al. [4] identified coronavi-
rus in datasets containing instances of pneumonia, as well
as standard X-ray imaging data. The COVID-19 disease can
be diagnosed with 99.27% accuracy with the model that the
authors used. COVID-19 drug and vaccine research achieve-
ments were evaluated using artificial intelligence techniques
in a recent study by Arshadi et al. [5]. In addition, the scien-
tists gave information about the compounds, peptides, and
epitopes in the CoronaDB-AI library, which were discovered
both in silico and in vitro.

Categorizing chest X-rays into two groups was proposed
by the researchers led by Elaziz et al. [6]. The accuracy
percentage for the first and second datasets was 96.09%
and 98.09%, respectively. Alimadadi et al. [7] presented a
deep learning algorithm based on AlphaFold to predict the
structures related to COVID-19 illness. Alazab et al. [8]
used real-world datasets to detect COVID-19 patients using
artificial intelligence-based approaches on a deep convolu-
tion neural network. In Australia and Jordan, their methods
obtained an accuracy of 94.80% and 88.43%, respectively.
Alaska et al. [9] evaluated the efficacy of deep learning mod-
els in predicting COVID-19 illness using laboratory data
from 600 patients and got 91.89% accuracy. Their approach
was also utilized to help medical professionals validate test
data and for clinical prediction research. The Johns Hopkins
dashboard data, which were the primary source of the Punn
et al.’s [10] research, were utilized with machine learning
and deep learning models. The team's goal was to grasp the
exponential growth of the COVID-19 and then make predic-
tions about how widespread it may become across the coun-
try. Table 1 on the left shows the researchers who worked on
the forecast and detection of COVID-19.

Contribution Outline

The overall goal of this research is to build models that can
calculate two necessary evaluative measures: RMSE and R?
Score for confirmed, death, and recovered cases from ten
different nations to help future forecasts. The steps are as
follows:

Step 1: Initially, data are pre-processed to capture char-
acteristics utilizing various variables, such as active cases,
recovered cases, and COVID-19 fatality cases.

Step 2: Exploratory Data Analysis of COVID-19’s active
cases, closed cases, confirmed cases, recovered cases, and
death cases are calculated to summarize or interpret the
information that is hidden in rows or columns, and scaling
techniques such as Min—Max have been applied to normalize
each feature that is obtained from these attributes.

Step 3: Later, utilizing confirmed cases, recovered cases,
and death cases from 10 different nations, the gathered data
were used to anticipate the future conditions of a new Coro-
naVirus. To get the findings, several machine learning mod-
els, time series models, and deep learning models were used,
and they were assessed using parameters, such as root-mean-
square error and R square.

Step 4: Finally, all of the results have been ranked to
choose the technique with the lowest root-mean-square error
and the highest R-squared score.

As depicted in Fig. 2, the proposed approach works by
collecting and preparing a dataset from the Novel Corona
Virus dataset.
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Novel Corona

Virus Dataset — Generating

Pre-processing

Features
active cases, recovered cases
and mortality cases

Exploratory data analysis

Based on active cases,
Closed cases
Death cases and recovered cases

using

I

Model Selection

11 Machine Learning
Models

2 Time Series Models

2 Deep Learning
Models

Feature Scaling
Train/Test Splitting (Min-Max)
Model Evaluation
RMSE (Root Mean
Square Error)
| Best Model
—] R? (R Square) 1 Prediction

Fig.2 Proposed system design for COVID-19 prediction

Materials and Methods

This section provides a general description of the dataset,
along with libraries and methodologies imported during
implementation.

Dataset

Coronavirus (2019-nCoV) is a virus (more specifically
known as a coronavirus) discovered in Wuhan, China, and
responsible for an influenza-like outbreak. One of China's
earliest suspected sources of the COVID-19 epidemic was
an extensive seafood and animal market, which indicated
possible animal-to-human transmission.

However, an increasing number of cases are claimed to
have occurred in the absence of contact with animal markets,
suggesting that person-to-person transmission occurs. The
CDC [16] is currently unaware of how fast or sustainably
this virus spreads among humans. According to a report
issued in Wuhan City, Hubei Province, China, on December
31, 2019, several instances of pneumonia have been discov-
ered in the area. The virus has no similarity to any other
virus currently known. This raised concerns, as we have no
idea how a novel virus may affect humans. Everyday data
on individuals with a disease can lead to intriguing results
when released to the broader data science community [17].

This dataset is compiled daily to offer recent news on new
coronavirus infections, fatalities, and recoveries for 2019.
The data will be available from January 22, 2020 to May
29, 2021. This is a time series dataset with a total of 1248
time series datasets recorded for each day, while the count
of time series datasets registered for each day indicates the
cumulative total.

The dataset contains a serial number, the observation
date in the format MM/DD/YYY'Y, the province or state of
observation, the country or region of compliance, and the
time in UTC at which the row is updated for the given prov-
ince or country, the cuamulative number of confirmed cases,
the cumulative number of death cases, and the cumulative
number of recovered patients from January 22, 2020 to May
29, 2021. The confirmed, dead, and recovered cases from ten
different countries are included in Table 2.

Libraries

Several Python-based libraries, such as Pandas—a python-
based software toolkit that contains data structures and
strategies for working with numerical tables and time
series—were imported during the prediction of COVID-19
confirmed, death, and recovered cases [18], and Numpy—
a Python array manipulation library. It also contains func-
tions for working with linear algebra, the Fourier trans-
form, and matrices [19], among other things. Matplotlib—a

SN Computer Science
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Table 2 Analysis of COVID-19 cases among the top ten countries

Countries Confirmed cases Death cases Recovered cases
India 27,894,800 325,972 25,454,320
USA 33,251,939 594,306 -

Russia 4,995,613 118,781 46,16,422
Argentina 3,732,263 77,108 3,288,467
Brazil 16,471,600 461,057 14,496,224
Colombia 3,363,061 87,747 3,141,549
Italy 4,213,055 126,002 3,845,087
Turkey 33,251,939 47,271 5,094,279
Russia 4,995,613 118,781 4,616,422
Germany 3,684,672 88,413 3,479,700

cross-platform data visualization and graphical plotting pro-
gram built-in Python for use with NumPy [19]; Seaborn—a
python data visualization software based on Matplotlib. It
uses a high-level interface to generate aesthetically beautiful
and functional data visualizations [20], Plotly is a Python
library that makes it easier to create professional-looking
visualization by providing a flexible, open-source charting
toolkit with over 40 chart types for a wide range of sta-
tistical, financial, geographic, scientific, and 3D use cases.
[21], Date—time is a module that mixes date and time and
characteristics like the year, month, day, hour, minute, sec-
ond, microsecond, and info [22]. Sklearn—Scikit-learn is the
most helpful Python machine learning package. The sklearn

search engine use is extensive. It is used in recommendation
systems, personal assistants, self-driving vehicles, weather
forecasting, and a wide variety of other applications [28].

Techniques

The pre-processing approach used to extract the charac-
teristics is covered in the part of this work. This part also
discusses the exploratory data analysis of the cleaned data,
which is followed by the scaling approach. Following that,
a section was presented in which many models from the
COVID-19 testing dataset were described and shown.

Pre-processing

Data collected from the novel corona 19 dataset have been
pre-processed using various mathematical formulas, such
as active cases, percentage of recovery rate, percentage of
mortality, and week of days to generate features. There is a
significant likelihood that the number of active topics has
increased, since some of the confirmed patients are now
dead, and fewer new cases are being found. To calculate it,
use Eq. (1). The recovery rate is the proportion of recov-
ered instances, while the mortality rate is the percentage of
death cases. Equations (2), (3) display the formulas. The last
parameter, the week of days, is calculated by importing the
library named WEEKOFYEAR [24]

Active cases = Total number of confirmed cases — (total number of recovered cases + total number of death cases, (1)

package contains several rapid machine learning and statis-
tical modeling algorithms, including classification, regres-
sion, clustering, and dimension reduction [23]. Fbprophet
utilizes time as a regressor and attempts to fit multiple linear/
nonlinear time functions as components. FbProphet will pro-
vide the data using a linear model by default, but it may be
modified to a nonlinear model (logistics growth) using its
parameters [24]; XGBoost is an implementation of Gradi-
ent boosted Decision Trees (GDTs) designed for both high-
performance and domination [25]; Tensor Flow—Tensor
Flow is an open-source framework that processes datasets
arranged as computational graph nodes. Keras is a Python-
based open-source software framework that provides an arti-
ficial neural network interface. Keras is a user interface for
the Tensor Flow library [26]. StazsModel is a Python pack-
age that includes classes and methods for estimating vari-
ous statistical models, running statistical tests, and exploring
statistical data [27]. PmdarimaMath is a statistical library
created to cover a gap in Python's time series capabilities.
CatBoost is an open-source package that offers a high-per-
formance gradient boosting algorithm for decision trees. The
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Recovery rate = Number of recovered cases % 100, @)
number of confirmed cases

. Number of death cases
Mortality rate = x 100.
ortaity rate Number of confirmed cases &)

Exploratory Data Analysis

Exploratory Data Analysis is a vital process that entails per-
forming preliminary analyses on data to uncover patterns,
identify anomalies, test hypotheses, and verify assumptions
using summary statistics and graphical representations.
Some of the critical steps in exploratory data analysis are
importing the data set in which we will get two data frames;
one consisting of the data to be trained and the other for
predicting the target value, identifying the number of fea-
tures and columns, identifying the qualities or cues, identi-
fying the data types of components, identifying the number
of observations, checking if the dataset has empty cells or
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samples, identifying the number of empty cells by features
or columns, and exploring categorical features [29].

This work employed an exploratory analysis of ten differ-
ent countries after pre-processing to assess its features via
statistical graphs. Figures shown below depicts the graphi-
cal analysis of active cases, death cases, closed points, and
recovered cases that have been recorded from Jan 2020 to
May 2021.

It was determined in Fig. 3 that 27,894,800 cases had
been confirmed, 2,114,508 were still active, 325,972 had
died, 25,780,292 had been closed, and 25,454,320 people
had been recovered from Jan 2020 to 29 May 2021. Addi-
tionally, the numbers of confirmed cases, deaths, and recov-
ered cases each day were, respectively, 57,397, 671, and
52,375.

According to Fig. 4, it has been discovered that US has
3,325,189,940 instances with high certainty, 3,266,576,333
cases with moderate certainty, 594,306 cases with low cer-
tainty, and O cases with a medium certainty which were seen

Number of Active Cases

3.5M
M

2.5M

Number of Cases

Mar 2020 May 2020  Jul 2020 Sep 2020 Nov 2020  Jan 2021 Mar 2021  May 2021

Date

Number of Death Cases

Number of Cases

Mar 2020 May 2020 Jul2020  Sep 2020 Nov 2020 Jan2021 Mar 2021 May 2021

Date

Fig. 3 India’s COVID-19 scenario

from January 1st, 2020 to May 29th, 2021. Additionally, the
daily average of confirmed cases was reported as 673,128,
while the daily average of deaths was recorded as 12,030.
Finally, the daily average of recovered cases was recorded
as 0.

As demonstrated in Fig. 5, the numbers of confirmed,
active, and death cases have been as follows: 49,956,313.0,
260,410.0, 118,781.0, 47,352,203.0, and 46,164,322.0 from
January 1, 2020 to May 29, 2021. Finally, the total number
of confirmed cases was 10,300. The number of death cases
was 245, and the total number of recovered cases was 9518.

In Fig. 6, it was discovered that Argentina has reported
373,263.0 total cases, with 366,688.0 currently active cases,
77,108 currently known death cases, 336,575 previously
known to be closed cases, and 328,467 previously known
recovered cases from January 1st, 2020 to May 31st, 2021.
In addition to this, there were around 8239.0 confirmed
cases of the disease each day, approximately 170.0 deaths
per day, and approximately 7259.0 recovered cases per day.

Number of Closed Cases
25M
204
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Number of Cases

10M
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0
Mar 2020 May 2020 Jul 2020  Sep 2020 Nov2020 Jan2021 Mar 2021 May 2021
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Number of Active Cases
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Fig.4 US’s COVID-19 scenario

According to Fig. 7, it was discovered that 16,471,600.0
cases had been confirmed, 133,765.0 were active, 87,747.0
had died, and 3,229,296.0 had been closed. In Brazil, from
January 2020 to 29th May 2021, the total number of cases
was 3,229,296.0 and 3,141,549.0 of those cases were recov-
ered. In addition, the number of confirmed cases per day was
found to be about 7,457.0, and the number of fatality cases
per day was calculated to be around 195.0.

According to Fig. 8, it was discovered that Colombia has
experienced 3,363,061.0 instances of confirmed disease,
133,765.0 cases of current cases, 87,747.0 cases of death,
3,229,296.0 cases of closed cases, and 3,141,549.0 cases
of recovered disease during the first 5 months of 2020 and
2021. In addition, the number of confirmed cases per day
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was found to be about 7,457.0, and the number of fatality
cases per day was calculated to be around 195.0.

The data as shown in Fig. 9 have been gathered by Ita-
ly’s Department of Public Health which shows that there
were 421,305,055.0 confirmed cases, 24,19,660 active
cases, 12,6020 death cases, 39,710,890.0 closed cases, and
38,450,877.0 recovered cases from January 2020 to 20t May
2021. To this, we may add the approximate total number of
cases each day: 8687.0, the approximate number of deaths
each day: 260.0, and the approximate total number of cases
each day: 7928.0.

In Fig. 10, it was discovered that from January 2020 to
29th May 2021, there were 523,596,780 confirmed cases,
944,281 active cases, 47,271 death cases, 514,155,50
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Fig.5 Russia’s COVID-19 scenario

recovered cases, and 50,942,79 newly discovered cases. In
addition to this, on an average 11,766.0 confirmed cases
were found every day, on an average 106.0 death cases were
found every day, and on an average 11,448.0 cases were
found every day.

Looking at Fig. 11, Germany had 368,674,702 cases
throughout the time span from January 2020 to 29" May
2021, with 116,559 active cases, 884,130 death cases, and
35,684,113 open cases. The overall daily case counts were
as follows: 7551.0 confirmed cases, 181.0 death cases, and
7131.0 recovered cases.

Figure 12 shows that in France, there were 57,198,777.0
confirmed cases, 52,191,481.0 active cases, 10,953,178.0
death cases, and 500,396.0 closed cases, with 39,087,780.0
recovered cases between January 2020 and May 2021. The
results of this analysis also show that there were roughly
116,626 confirmed cases, nearly 223 deaths, and about 794
recovered cases each day.
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Feature Scaling

Normalizing the range of independent variables or features
of data using feature scaling is a feature scaling approach.
Min-Max scaling technique has been used to perform nor-
malization on the parts obtained during data pre-processing.
The Min—Max Normalization or Min—Max Scaling tech-
nique creates a scale that goes from 0 to 1 or from 1 to — 1.
Deciding on a range of data to aim for relies on the type of
data you are working with. Min—Max for the range[0,1] can
be computed using Eq. (4)

+ x—min(x)
"~ max (x) — min(x)”

“

Here, x is the original value and x is the normalized value
[30]. To rescale a range between any arbitrary set of values
[a, b], Eq. (4) becomes Eq. (5)
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Fig.6 Argentina’s COVID-19 scenario

Y —a+ (x — min (x))(b — a)

max (x) — min(x) )

After normalization, the data were split into two subsets:
the training set, which would be used to assess machine
learning methods, and the testing set, which would be used
to evaluate deep learning techniques. It applies to issues
involving classification or regression, as well as to any
supervised learning technique. Following data partitioning,
the first subset is utilized to fit the model; this is the training
dataset. The second subset is used as an input element in
the dataset supplied to the model, and predictions and com-
parisons to predicted values are performed. The test dataset
is the second dataset. In a nutshell, the train data set is used
to fit the machine learning model, while the test data set is
used to verify the fit. The goal is to assess the performance
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of time series, machine learning, and deep learning models
on new data. The most often used split percentages are as
follows:

80% training, 20% testing.

67% training, 33% testing.

50% training, 50% testing.

Model Selection

Three sets of models have been used such as machine learn-
ing models (random forest regressor, decision tree regres-
sor, K-nearest regressor, Kernel ridge regressor, XG Boost,
RANSAC regressor, Linear regression, Lasso regression,
Elastic Net regressor, Bayesian regressor, and Theilsen
regressor), time series models (Facebook Prophet model
and Holt model), and deep learning models (stacked long
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Fig. 7 Brazil’s COVID-19 scenario

short-term memory and stacked gated recurrent unit) have
been used to predict the confirmed cases, recovered cases.
Death cases are discussed in this section.

Machine Learning Models Random Forest Regressor

Regression using random forest regression is a super-
vised learning approach that employs ensemble learning
techniques to develop an accurate prediction model. During
the training period, a random forest is created by several
decision trees, and the output is the mean of the classes. A
random forest regression model is robust and accurate and
works primarily on nonlinear problems [31]. It can be cal-
culated using Eqgs. (6), (7)

Number of Closed Cases

14M
12M
'f, 10M
0
(8]
.
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14M
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0 10M
S M
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z
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Y. normfi,;
j€ all trees ij
RFfi, = , (0)
T
where
ﬁi
fi. =
normfi; = , (7

Zje all features ﬁi

RFfi sub(i) =the importance of feature i calculated from all
trees in the random forest model. normfi sub(ij) = the nor-
malized feature importance for i in tree j. T =total number
of trees.

Decision Tree Regressor
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Fig.8 Colombia’s COVID-19 scenario

The decision tree algorithm is an example of a supervised
learning algorithm. Regression and classification challenges
may be solved using a decision tree, unlike other supervised
learning techniques. To forecast the class or value of a target
variable, use fundamental decision rules from previous data
as building blocks for a training model that incorporates
decision rules outside the training dataset (training data). At
the tree's root, we forecast a class label for a record. When
it comes to root attributes and record attributes, the values
are compared. When we find the node with that particular
value, we follow the branch corresponding to that value and
go to the next node [32].

K Nearest Regressor

Non-parametric regression involves averaging nearby
observations to determine if one or more independent vari-
ables are associated with a continuous result. For an analy-
sis to be effective, the size of the neighborhood should be
selected by the analyst. However, in some cases, it can be
randomized to reduce the mean squared error. An algorithm
that considers the K-nearest neighbor numerical objective
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is utilized to determine the average of the K target values.
KNN regression and KNN classification both utilize the
same distance functions [33]. KNN regression uses the same
distance functions as KNN classification. The formulae to
compute K-nearest regressor are shown in Egs. (8)—(10)

Euclidean formula : ®)
k
Manbhattan formula : |x; = vil» )
i=1
k q
Minkowski formula : (Jx: =y - (10
i=1
Kernel Ridge Regressor
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Fig.9 Italy’s COVID-19 scenario

Using the kernel method in combination with ridge
regression creates a new regression technique called Kernel
Ridge Regression (KRR). It is a type of ridge regression
that is non-parametric. Our goal is to learn a function in the
space defined by the kernel k using an approach known as
minimization with optimization, and we define a squared
loss with a squared norm regularization term. The kernel
ridge regression does a linear function in the data space that
is also proportional to the relevant kernel [34]. The equation
can be written as Eq. (11)
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-1
a=K+zl)y, (11)

where K is the kernel matrix and «a is the vector of weights
in the space induced by the kernel.

XGBoost

A computer algorithm called XGBoost stands for
"eXtreme Gradient Boosting." Supervised regression models
are built using this method. XGBoost is a gradient boosted
decision tree algorithm that is efficient and fast. XGBoost is
a collection of software libraries with several user interfaces,
such as the Command Line Interface (CLI), C++, Python,
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Fig. 10 Turkey’s COVID-19 scenario

R, Java, and JVM interfaces. Three primary classes of boost-
ing techniques are supported by XGBoost, including gradi-
ent boosting, stochastic gradient boosting, and regularized
gradient boosting. The main reason to use XGBoost is to
speed up model execution and gain project execution speed.
Regression loss functions, such as linear and logistic, are
most commonly used with XGBoost for regression issues
[25]. The formula to compute it is shown in Eqgs. (12, 13)

L(9) = Z 1(5:,y;) + ; Q(fi), (12)
where
Q) =7+ Al (13)

y; is a real value (label) known from the training data set.
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RANSAC Regressor

RANSAC regressor is also known as the RANdom SAm-
ple Consensus algorithm. It is an iterative algorithm used for
the robust estimation of parameters by excluding the outli-
ers in the training dataset. RANSAC is a nondeterministic
algorithm as it produces a good result only with a certain
probability. This method uses machine learning and random
sampling of observable data to estimate model parameters in
conjunction with a voting system. The RANSAC algorithm
needs to be executed to perform RANSAC analysis. The
following formula is used to determine the results of the
RANSAC algorithm. It involves p, the probability that the
RANSAC algorithm returns valuable results, and w, the like-
lihood of selecting an inlier on each point. Each time a single
point is selected, there is a probability of picking an inlier.
The possibility of choosing an inlier on every single point is
called w. The chance of picking an inlier each time a single
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Fig. 11 Germany’s COVID-19 scenario

point is set is called wn. Then, 1-wn is the probability that at
least one of the # points is an outlier. Finally, & is the number
of iterations [35]. The likelihood that the algorithm never
selects a set of n inlier points is shown by Eqs. (14), (15)

(1-p)=1-w", (14)

and after taking the logarithm of both sides, Eq. (14)
becomes

log(1 - p)

= Togl )’ 1s)

Linear Regression

A machine learning approach that uses supervised learn-
ing, known as Linear Regression Analysis (LRA), is a
supervised learning algorithm. The model may be trained
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to predict the outcome of data using a given set of factors
using a linear regression method. In quantitative sciences,
linear regression is typically used to indicate a quantitative
response from the predictor variable. It is intended to show
how an independent variable affects the goal prediction
value. In forecasting, it is used to determine how variables
are related [36]. Linear regression can be written as by Eqgs.
(16)—(18)

y =a+ bx, (16)
where a and b are given by the formulae

nYxy— X0y 7
nYx2—-(x? a7

b(slope) =
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Fig. 12 France’s COVID-19 scenario
2
nYy-b(Tx) - . ,
a(intercept) = —— . 1 = —
( pt) MingL, = Vi x;B ) +4 B;|- (19)
n
i=1 j Jj=1

Here, x and y are two independent and dependent vari-
ables, respectively, on the regression line, b is slope of line,
and a is an intercept of the line.

Lasso Regression

The “LASSO” stands for Least Absolute Shrinkage and
Selection Operator, which is a regularization technique. It
is used over regression methods for a more accurate pre-
diction. This model uses shrinkage. The lasso technique
promotes the use of sparse, basic models (i.e., models with
fewer parameters). This form of regression is well suited for
models with a high degree of multicollinearity or automating
some aspects of model selection, such as variable selection/
parameter removal, as necessary [37]. The mathematical
equation of lasso regression is shown in Eq. (19)
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For simplicity, let p=1 and §; = f. Now, Eq. (19)
becomes Eq. (20)

L= —xp) + APl =y* =29 +*f*+ A, (20)

where A represents the amount of shrinkage.

Elastic Net Regressor

Elastic net linear regression regularizes regression mod-
els using both the lasso and ridge methods as shown in Eq.
(21). By learning from the inadequacies of both lasso and
ridge regression approaches, the methodology integrates
both to enhance the regularization of statistical models.
The elastic net technique overcomes the drawbacks of the
lasso method, namely that it only requires a few samples
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for high-dimensional data. The flexible net technique allows
for the addition of "n" variables until saturation is reached.
When the variables are highly linked groups, lasso tends to
pick one variable from each group and disregard the oth-
ers completely. To overcome the constraints of a lasso, the
elastic net incorporates a quadratic expression in the penalty,
which becomes ridge regression when employed alone. The
first step is determining the ridge regression coefficients,
followed by a lasso sort of coefficient shrinkage [38]. In a
nutshell

ENR = Lasso Regression + Ridge Regression, where,

ey
R ‘
Lasso Regression = (vi = (mx; + z) )2 + 4 Z(mxi +2),
i=1 i=1
(22
R c
Ridge Regression = I Z (yi - (mxl» + z))2 +4 Z (mxl- + 2)2.
i=1 i=1
(23)
Using both Egs. (22), (23), we get Eq. (24)
1 < 2 < 2 <
ENR = N Z (yl- - (mxl.+z)) +/12 (mxi+z) +/12(mxi+z).
i=1 i=1 i=1
24

Bayesian Regressor

Bayesian Regressor is a regression approach that uses
Bayesian inference to do statistical analysis. This method
enables a natural process to persist in the presence of limited
or poorly dispersed data. It generates predictions based on
the posterior probability of all feasible regression weights.
With Bayesian Linear Regression, the aim is not to choose
the "best" model parameter but to estimate the distribution
of model parameters [39]. It is demonstrated by Eq. (25)

POIB.X) X P(BIX)

P(Bly,X) = POIX)

(25)

Here, P(fly, X) is the posterior probability distribution
of the model parameters given the inputs and outputs. This
is equal to the likelihood of the data, P(fly, X), multiplied
by the prior probability of the parameters and divided by a
normalization constant.

Theilsen Regressor

Theilsen regressor is a non-parametric statistic where a
line is fitted to sampled points in the plane by selecting the
median of the lines connecting pairs of points. Theilsen
regression is a fast algorithm that is insensitive to outliers.
Additionally, it has been referred to as the most widely used
non-parametric approach for estimating a linear trend. The
two-dimensional point Theilsen regression x;,y; is the

median m of the slopes 0’_})) based on all pairwise sampling

j i

locations [40]. Once the slope m has been determined, we

can find a line from sample points by setting the y intercept
b to be the median of the values y; — mx;. A variant to
Theilsen regression can be calculated using Eq. (26)

rrs(x,y) = sign (mpg(y,x)) - \/mps(v. %) - mpg(x.y).  (26)

Time Series Models Facebook Prophet

A forecasting approach based on an additive model
known as a prophet is used to correlate nonlinear trends
with seasonal and holiday impacts as well as yearly, weekly,
and daily patterns. Time series with strong seasonal influ-
ences and extensive historical data spanning many seasons
do well with this approach. The Prophet works well with
outliers, which makes it resistant to data and trend shifts.
The time series model is built on a prophet, and it is fast,
fully automated, and very exact. The trend, seasonality, and
holidays form our time series model, which we break down
into three key components: trend, seasonality, and holidays
[24]. They are merged in Eq. (27) as follows:

y(1) = g() +s(0) + h(D+ €1, (27)

g(#): For modeling non-periodic changes in time series,
a piecewise linear or logistic growth curve is used. s():
changes on a regular basis (e.g., weekly/yearly seasonality).
h(?): The impact of vacations (supplied by the user) on indi-
viduals with irregular schedules. et: The error term is used
to account for any unforeseen changes that the model does
not account for.

Holt Model

The Holt model is a well-known technique for predict-
ing data with a trend. Holt's model consists of three distinct
equations that interact to create a final forecast. The first is a
fundamental smoothing equation, often known as the level
equation, which directly adjusts the previous smoothed value
for the trend of the previous period. The trend is updated
over time using the second equation, which expresses the
trend as the difference between the previous two smoothed
values. Finally, the final forecast is generated using the third
equation. Holt's approach makes use of two parameters: one
for global smoothing and another for the trend smoothing
equation. Additionally, this technique is referred to as dou-
ble exponential smoothing or trend-enhanced exponential
smoothing [41]. It is computed using Egs. (28)-(30)

Level equation = I, = ay, + (1 — @)({,_; + 0b,_,), (28)
Trend equation = b, = f*(I, = [,_;) + (1 = )b, (29)

Forecast equation = §,,,, = [, + hb,, (30)

where /, represents the estimation of the series' level at time
t, b, represents the estimation of the series' trend (slope)
at time ¢, and a and f* are the smoothing parameters for
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Fig. 13 Stacked LSTM architecture

the level, 0<a <1, and trend, 0 < f*< 1, respectively. [, is a
weighted average of observation y, and the one-step-ahead
training forecast for time 7, denoted here by [, — 1+b,— 1. b,
is a weighted average of the estimated trend at time ¢ based
onl, — I, — 1and b, — 1, the trend's earlier estimations,
according to the trend equation. The prediction for the next
h steps forward is equal to the most recent predicted level
multiplied by % times the most recent estimated trend value.
As aresult, the predictions in terms of /4 are linear.

Deep Learning Models Stacked LSTM

Deep LSTM is another name for an LSTM that has a large
number of LSTM layers. The model described in Fig. 13 is
called a stacked LSTM, with several hidden LSTM layers
layered on top of each other.
Assume i, f’, 0!, ¢l and h! are the values of the input gate,
forget gate, output gate, memory cell, and hidden state using
Egs. (31)-(35) at time ¢ in the sequence and layer /, respec-
tively. x,; is the input of the system at time ¢ at location ,
whereas W, for j € {i,f, 0, c} are the weights that connect
the input, x, = [x, 1, X5, .-+ xm]T to the corresponding gates
and the memory cell [42]

i, = 0(Wux, + Wyh,_y + Wac,_ +b;), 31
fi=o0(Wyx, + Wyeh,_y + Wc, ) +by), (32)
¢, =f,0c¢_y+i, ©tanh(W_x, + W, .h,_, +D,), (33)
0, =0 (Wox, + Wy + Woc, o +b,), (34)
h, = 0, ® tanh (c,). (35)
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Stacked GRU

The simple model, GRU, is incapable of doing advanced
feature extraction. On the other hand, the deep model,
stacked GRU, is formed from several simple models, with
the input of the first layer being the original data, as shown
in Fig. 14.

Increased classifier performance may be realized by mak-
ing use of time series data. Instead of considering whether
the models are time-dependent, these individuals sidestep
the trade-off between time and precision. As described in
Egs. (36)—-(39) [43], the central GRU unit receives the out-
put of the top GRU unit's hidden layer. A sigmoid layer is
added to the preceding layer's hidden layer to accomplish the
ultimate result in Eq. (40)

g =o(W,- [h_,.17']), (36)
ry=o(W, - Uy_p by, 37)
h' = tanh(W' - [ @ K_ |, hi™']), (38)
h=Zoh +(1-Z)ohn™ (39)

Here, z represents the update gate, r is the reset gate
which is used to control the direction of the data stream at
time #, h, _ , is the output of the hidden layer, and &, is the
output of candidate hidden layer at time ¢

Viast = 0 (WIH! + ). (40)

Here, ¥, is the predicted label at the last moment, W}, is
the weight of the output layer, and b/ is the bias of the n-th
GRU unit.

Evaluative Parameters

RMSE The usual technique of quantifying the error of a
model in quantitative data is the root-mean-square error. It is
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defined by an Eq. (41). By identifying the error, the dataset
reveals how distant each data point is from a regression line,
and the root-mean-square error quantifies how concentrated
each data point is around the line of best fit [44]

(41)

37,- are predicted vales, y; are observed values, and # is the
number of observations.

R? Score The statistician's coefficient is a model's ability
to predict or explain a result in a regression setting. R*> Score
is a percentage used to quantify the amount of variance in
the dependent variable that can be predicted using linear
regression and the predictor variable (independent variable)
[44]. Tt is shown by Eq. (42)

RSS.

R=1-——;
TSS

(42)
RSS is the sum of squares of residuals and TSS is the total
sum of squares

Result Analysis

Different machine learning models, time series, and deep
learning algorithms were used to calculate the RMSE and
R? values, features extracted in the form of confirmed cases,
death cases. They recovered points of ten different countries,
such as India, USA, Russia, Argentina, Brazil, Colombia,
Italy, Turkey, Germany, and France.

In Fig. 15, we can see the range of different algorithms for
calculating the root-mean-square error and R square values
of confirmed cases, death cases, and recovered cases of ten
other countries. Hence, to show the best algorithm out of
these three techniques, three scenarios have been taken to
elaborate the values of root-mean-square error and R?.

Scenario 1: Predict RMSE and R Square Value Using
Machine Learning Models

We have used 11 algorithms in machine learning models,
such as Random Forest Regressor, Decision Tree Regres-
sor, K neighbor Regressor, Kernel Ridge Regressor,
XBoost, RANSAC Linear Regression, Lasso Regression,
Elastic Net Regressor, Bayesian Regressor, and Theilsen
Regressor. Out of all these algorithms, Random Forest
Regressor has obtained the minor root-mean-square error
value for confirmed, death, and recovered cases of India
by 68,302, 813, and 64,494, Italy by 7447,256 and 8283,
and France by 14,391, 243, and 763, respectively, as well
as R Square achieved by it for all the three cases of these

countries, is 99.9%. On the other hand, for the US, the
lowest RMSE and highest R square value for confirmed
cases have been achieved by XBoost by 290,098 and 97.5,
respectively. For death and recovered points, random for-
est regressor reached the lowest RMSE and highest R
square value by 1159, 53,667, and 99.9, respectively. For
Russia, Brazil, and Colombia, random forest regressor
achieved the highest R square value of 99.9 for all the
three cases and the lowest RMSE matters by (9113, 196),
(8682, 846), and (8020, 241) for confirmed and death
cases, respectively, while as decision tree regressor in
recovered cases by 8124,29,276 and 10,027, respectively.
For Argentina, the random forest regressor achieved the
highest R square value of 99.9 and the lowest RMSE value
of 7976 and 7438 for confirmed and recovered cases. In
contrast, the decision tree regressor scored a 182 RMSE
value in terms of death cases. For Turkey, Random For-
est Regressor has achieved 13,539, 100 root-mean-square
error values for confirmed and instances of death, while
X Boost has achieved 16,465 root-mean-square error for
recovered patients with 99.9 R Square. In the end, for Ger-
many, K Neighbor Regressor has reached 11,977 and 221
root-mean-square error values for confirmed and death
cases, while the random forest regressor achieved the least
RMSE for recovered instances 6753.

Scenario 2: Predict RMSE and R Square Value Using
Time Series Models

We have used two algorithms in time series models, i.e.,
Facebook Prophet Model and Holt Model. Out of these two
models, Facebook Prophet Model has played an essential
role by providing the lowest root-mean-square error value for
confirmed, death, and recovered cases of India by 1,112,918,
12,524, and 1,061,511, the US by 922,620,2530, and 80,401,
Russia by 5262,156, and 12196, Argentina by 55,118, 1048,
and 51,794, Brazil by 24,606, 2174, and 38,904, Colom-
bia by 39,239, 1208, and 63,090, Italy by 41,057, 582, and
15,202, Turkey by 111,271, 645, and 137,165, Germany by
24,606, 191, and 31,245, and France by 85,910, 361, and
2442, respectively. Moreover, Facebook Prophet Model also
achieved the highest R Square value for confirmed, death,
and recovered cases of India by 97.2, 97.5, and 96.8, the US
by 80.25, 99.9, Argentina, Brazil, Italy, Germany by 99.9,
Colombia by 99.8, 99.7, and 99.5, Turkey by 99.5, 99.7, and
99.1, and France by 99.8 and 99.9, respectively.
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Fig. 15 (continued)

Scenario 3: Predict RMSE and R Square Value Using
Deep Learning Models

We have used two algorithms in deep learning models,
i.e., Stacked Long Short-Term Memory and Stacked
Gated Recurrent Unit. On analyzing both the algorithms,
it has been seen that Stacked Long Short-Term Memory
has achieved the lowest root-mean-square error value
and 99.9 R? value for confirmed cases, death cases, and
recovered patients of US by 418,343, 1160, and 53,669,
Italy by 8835, 328, and 11,256, and France by 14,389,

()

240, and 762, respectively. It has also obtained the lowest
root-mean-square value for confirmed and death cases of
India by 68,303, and 814, Russia by 9113 and 196, Brazil
8682 and 846, Turkey by 13,539, and 100, Colombia by
8020 and 241, respectively, while as the root-mean-square
error value for the recovered cases of all these countries
has been achieved by Stacked Gated Recurrent Unit by
65,760, 8124, 29,276, 17,462, and 10,027, respectively.
Stacked Gated Recurrent Unit has gotten the least root-
mean-square error value for all the three cases, such as
confirmed, death, and recovered points of Germany by

SN Computer Science
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R Square

Table 3 is summed up the results by showcasing the best

respectively, while as in the death case, Stacked GRU

scored the lowest RMSE value by 182.
deep learning models for ten different countries. Besides,

model out of all applied machine learning, time series, and

TURKEY

RMSE
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11,977, 221, and 9533, respectively with 99.9 R2. In the
case of Argentina, Stacked LSTM showed the highest
R square value by 99.9 and the lowest RMSE value by

7974 and 7433 for confirmed and recovered instances,

Fig. 15 (continued)
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Table 3 Country-wise RMSE

and R square values Countries Confirmed cases Death cases Recovered cases
RMSE MSE R? RMSE MSE R? RMSE  MSE R?
India 68,302 261.34 98.4 813 28.51 99.9 64,494 253.96 99.7
USA 290,098 538.60 98.5 1159 34.04 98.4 53,667 231.66 98.6
Russia 9113 95.46 98.9 196 14 99.2 8124 90.13 98.9
Argentina 7974 89.29 99.3 182 13.49 98.8 7433 86.21 99.4
Brazil 8682 93.17 99.0 846 29.13 97.5 29,276 171.10 99.5
Colombia 8020 89.55 97.8 241 15.52 99.2 10,027 100.13 97.9
Italy 7447 86.29 99.2 256 16 99.5 8283 91.01 97.5
Turkey 13,539 116.35 96.4 100 10 97.7 17,462 132.14 99.9
Germany 11,977 109.43 97.7 191 13.82 99.6 6753 82.17 99.9
France 14,389 119.95 99.3 240 15.49 99.9 762 27.60 99.9

root-mean-square error, and R square, another parameter
has been added, i.e., mean square error (MSE) value to test
the performance of the model for three different cases, i.e.,
confirmed, death, and recovered, which the author will refer
to as case studies throughout this paper.

Many machine learning models, such as Facebook
Prophet model and stacked long short-term memory, and
the random forest regressor model from confirmed, death,
and recovered cases, have been found to have achieved the
lowest root-mean-square error value. In contrast, the Face-
book Prophet model and stacked long short-term memory
had the highest R Square value for the cases of ten countries.
It has been shown that the bulk of these calculations (for
confirmed, death, and recovered cases) were done using ran-
dom forest regressor and stacked long short-term memory.
Moreover, time series models, machine learning models, and
deep learning models were also applied to predict confirmed,
death, and recovered cases for ten different countries for
random 5 days on separate datasets. All results are given in
Tables 4, 5, and 6, respectively.

The time forecasting prediction will help the COVID war-
riors estimate their country’s COVID affected rate. They will
provide vaccinations to the respective government agencies
and protect the people from this dreadful disease. Neces-
sary steps will also be taken to ensure the mitigation of
financial, mental, and physical loss done to this devastating
pandemic. Based on these future assumptions, the countries
mentioned above will continuously improve to defeat this
unseen enemy. In addition to this, the results are also com-
pared in Table 7 with the existing techniques on the basis
of their mean R? score for multiple dataset of confirmed
COVID cases.

Conclusion and Future Scope

In this work, the active, recovered, closed, and death cases
from March 2020 to May 2021 of ten different countries,
which includes India, the United States of America, Russia,
Argentina, Brazil, Colombia, Italy, Turkey, Germany, and
France, were pre-processed and later graphically depicted
to examine the pattern and find missing values. Further, the
data have been scaled using a MinMax scaler to extract and
normalize the features to acquire an accurate prediction rate.
Various machine learning, time series, and deep learning
models, such as Random Forest Regressor, Decision Tree
Regressor, K Nearest Regressor, Lasso Regressor, Linear
Regressor, Bayesian Regressor, Theilsen Regressor, Kernel
Ridge Regressor, RANSAC Regressor, XG Boost, Elas-
tic Net Regressor, Facebook Prophet Model, Holt Model,
and Stacked Long Short-Term Memory, and Stacked Gated
Recurrent Memory, had been applied to forecast the con-
firmed, death, and recovered COVID-19 cases. At last, all
the models were evaluated and tested using root-mean-error
square and R square values to predict COVID-19 cases
for the aforementioned ten different countries, and during
implementation, it was discovered that the random forest
regressor and stacked long short-term memory produced
the majority of the best values for all the three cases, i.e.,
confirmed, death, and recovered.

The research is entirely based on statistical data and
methodology; hence, the results generated will help these
countries to take all essential safeguards before becoming
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enslaved by the terrible COVID-19 sickness. Furthermore,
an assessment of the complete economic failure in many
sectors during the decrease of COVID-19 should be planned
to assist countries in reviving their loss.
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