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Abstract
Although few performance evaluation instruments have been used conventionally in different machine learning-based clas-
sification problem domains, there are numerous ones defined in the literature. This study reviews and describes perfor-
mance instruments via formally defined novel concepts and clarifies the terminology. The study first highlights the issues 
in performance evaluation via a survey of 78 mobile-malware classification studies and reviews terminology. Based on 
three research questions, it proposes novel concepts to identify characteristics, similarities, and differences of instruments 
that are categorized into ‘performance measures’ and ‘performance metrics’ in the classification context for the first time. 
The concepts reflecting the intrinsic properties of instruments such as canonical form, geometry, duality, complementa-
tion, dependency, and leveling, aim to reveal similarities and differences of numerous instruments, such as redundancy and 
ground-truth versus prediction focuses. As an application of knowledge representation, we introduced a new exploratory 
table called PToPI (Periodic Table of Performance Instruments) for 29 measures and 28 metrics (69 instruments including 
variant and parametric ones). Visualizing proposed concepts, PToPI provides a new relational structure for the instruments 
including graphical, probabilistic, and entropic ones to see their properties and dependencies all in one place. Applications of 
the exploratory table in six examples from different domains in the literature have shown that PToPI aids overall instrument 
analysis and selection of the proper performance metrics according to the specific requirements of a classification problem. 
We expect that the proposed concepts and PToPI will help researchers comprehend and use the instruments and follow a 
systematic approach to classification performance evaluation and publication.

Keywords Classification · Knowledge representation · Machine learning · Performance evaluation · Performance 
measures · Performance metrics · Periodic table

Introduction

Numerous binary-classification performance evaluation 
instruments have been developed and used independently 
for different requirements of classification problems in vari-
ous domains for decades. The choice of an instrument for 
classification performance evaluation (i.e. measurement 
of closeness between a classifier’s prediction and ground 

truth) generally relies on domain knowledge and previous 
related studies. Hence, although these instruments might 
be frequently used in their specific domain, they could be 
unknown to the researchers working in the other domains. 
This paper aims to fill an elemental gap in the literature 
by reviewing 57 performance instruments compiled from 
different domains in-depth, and proposes a methodology to 
reveal their intrinsic properties, similarities, and differences. 
To our knowledge, this is the first time that such an ultimate 
set of classification performance instruments is addressed 
in the literature.

Performance instruments originated, and the related terms 
and notations appeared in different domains including statis-
tics (i.e. 2 × 2 contingency table, binary similarity/distance 
measures), biology (i.e. binary association measures), signal 
processing (e.g., area under the receiver operating character-
istic curve), information retrieval (e.g., ‘precision’, ‘recall’), 
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medical diagnosis (e.g., ‘sensitivity’, ‘specificity’), statistical 
pattern recognition (e.g., ‘accuracy’) and marketing analysis 
(e.g., ‘lift’) at different times. For example, ‘precision’ and 
‘recall’ metrics were proposed by Mooers as a necessity for 
measuring performance in the information retrieval domain 
[1]. Then, the terminology was established among different 
alternatives gradually.

In 1964, a group of researchers discussing the proper ter-
minology for ‘positive predictive value’ (PPV) suggested the 
use of ‘acceptance rate’ instead of ‘relevance ratio’ to avoid 
confusion [2]. They also discussed the use of terms under 
different names in different domains, most of which are still 
used today. For example, ‘recall ratio’, ‘sensitivity’, ‘hit rate’ 
for ‘true positive rate’ (TPR), ‘Snobbery ratio’ for ‘false-
negative rate’ (FNR), ‘precision ratio’, ‘relevance ratio’, 
‘pertinency factor’, ‘acceptance rate’ for PPV, ‘noise fac-
tor’ (borrowed from signal processing) for ‘false discovery 
rate’ (FDR), ‘specificity’ for ‘true negative rate’ (TNR), and 
‘fallout ratio’ for ‘false positive rate’ (FPR). Additionally, 
‘inverse recall’ and ‘inverse precision’ are used for TNR and 
‘negative predictive value’ (NPV), respectively [3]. Based 
on the inverse relationship (i.e. increasing the classification 
performance in terms of one metric generally decreases the 
performance in terms of the other) between recall (TPR) 
and precision (PPV), some individual metrics have been 
proposed, for example, F, which is a transformation of F1 
metric [4]. It was later expressed as an unnamed coefficient 
version of F1 by Sokal and Sneath [5]. Note that the earliest 
record of the F1 metric’s usage is by Jaccard, as he called it 
‘coefficient de communauté’ [6].

Classification research problems requiring Machine 
Learning (ML)-based solutions have increased and varied 
significantly in recent years. Researchers mostly used the 
ones they have already known for the problem they have 
been studying. Otherwise, they either adapted the ones used 
in similar domains or even implemented new performance 
evaluation instruments for specific research problems. 
Besides instrument choice, different approaches in the lit-
erature to describe performance evaluation instruments also 
cause variations in terminology. In the literature, the defini-
tions of some performance instruments are not clear, such 
as ‘performance metrics’ and ‘performance measures’ are 
undistinguished.

As a result, each community conventionally adapted the 
performance instruments according to their domain-spe-
cific practices and considerations [7]. Although numerous 
instruments have been proposed and used, their properties, 
similarities, and differences have not been thoroughly ana-
lyzed in the literature. Several works reviewed in “Seman-
tic/formal definitions and organization of performance 
evaluation instruments” address the class imbalance effect 
on well-known instruments, especially accuracy (ACC ). 
Relationships between different instrument types, as well 

as confusion-matrix-derived instruments (i.e., entropic, 
graphical-based, and probabilistic instruments) were not 
studied together. The review studies express performance 
evaluation instruments with different notations, abbrevia-
tions, and symbols [8–10]. The contributions of this research 
can be summarized as follows:

• To the best of our knowledge, this study is the first to 
review the interchangeable naming of the instruments in 
general and the alternating terminology of the ones from 
both semantic and formal perspectives.

• The study also identifies three relationships between the 
instruments, namely duality, complementation, and class 
counterparts.

• Instruments are categorized into metrics and measures by 
determining whether they can be used to evaluate classi-
fication results directly in the performance context (e.g., 
ACC ) or they are related to the non-performance aspects 
such as ground-truth or prediction class-related measure-
ments (e.g., PREV or IMB for ground-truth and BIAS for 
prediction). The categorization is described semantically 
and defined formally.

• We also propose different forms by which the instru-
ments' equations are expressed, such as canonical, high-
level, equivalent, and base-measure forms.

• The axioms about the summarization of the confusion 
matrix to reflect the performance and the leveling of the 
instruments per instrument category to observe their 
dependencies are defined.

• A geometry concept is developed to identify ground-truth 
or prediction dimensions of the instruments.

Finally, a visual exploratory table is proposed to represent 
all the concepts for the comprehensive set of performance 
instruments in one place, including the instruments for sin-
gle-threshold ML models or crisp binary classifiers, as well 
as graphical-based performance metrics based on varying 
model thresholds, entropy-based instruments, and the meas-
ures based on the probabilistic interpretation of classification 
error or loss. The table covers 57 instruments along with 12 
variant and parametric instruments.

The rest of the paper is structured as follows. The next 
section presents and discusses the results from the conducted 
case study, summarizes the related works in the literature, 
and describes the research questions addressed in this study. 
The subsequent section categorizes performance instru-
ments, and describes the axioms and formal definitions for 
the proposed concepts about them. It also presents a new 
leveling approach by defining the base and higher-level 
measures/metrics and introducing new measures followed 
by which the proposed binary-classification performance 
instrument table PToPI as a knowledge organization tool is 
introduced. It describes the design methodology, meaning 
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of visual design elements, and its practical applications by 
examples in the literature. The final section outlines the 
contribution of this study and summarizes its potential use. 
Appendix 1 lists abbreviations and alternative names of 
performance measures and metrics in levels. Appendix 2 
presents the instrument equations as a complete reference. 
Appendix 3 gives a full view of the proposed exploratory 
table. Appendix 4 describes the selection methodology for 
Android malware classification studies surveyed. Finally, 
Appendix 5 lists survey references.

Online Data and Materials

The following data and materials are provided online for 
researchers:

• The detailed data and findings for the case study in “Case 
study: performance evaluation in android mobile-mal-
ware classification” are made online at https:// doi. org/ 
10. 17632/ 5c442 vbjzg.3 via the Mendeley Data platform.

• An online repository is also maintained at https:// www. 
github. com/ gurol/ ptopi, which includes the proposed 
exploratory table as a spreadsheet (PToPI.xlsx) along 
with full-resolution PToPI images (full view: online Fig. 
C.1 and plain view: Fig. 4).

The spreadsheet also provides extra materials such as 
an instrument list (showing proposed concepts: instrument 
category, level, symbol, derivatives, complements, duals, 
geometries, alternating terms, range, error types, etc.), a 
probabilistic error instrument list, and probabilistic error/
loss, confusion matrix-based, and entropic instruments cal-
culator/simulation tool for hypothetical classifiers on syn-
thetic datasets.

Case Study: Performance Evaluation 
in Android Mobile‑Malware Classification

A case study was conducted to clarify the issues described 
above. We selected “mobile-malware classification” as 
a case study domain to analyze performance evaluation 
approaches systematically. The domain was chosen because 
it is a recent rapidly changing classification research prob-
lem, where ML-based binary classification (whether it is 
malicious (positive) or benign (negative) software) is fre-
quently used [11, 12]. Our survey included 78 studies from 
2012 to 2018, which reported their performances with dif-
ferent ML algorithms on Android mobile-malware binary 
classification problems. The results showed that even within 
the same domain, several researchers used alternative termi-
nology, as listed in Table 1 (see Appendix 4 for the details 
of the systematic literature review and online Table E.1 for 
the references of the studies).

In mobile-malware classification, positive class detection 
success in class-imbalanced datasets is referred to as ‘detec-
tion rate’. The overall performance is stated as ‘malware 
detection’. Besides, “malware classification” corresponds 
to “binary classification” encapsulating “malware detec-
tion”. This is due to the reason that the studies we surveyed 
reported other binary classification metrics such as CK and 
MCC. The researchers also used a limited number of instru-
ments to evaluate and compare the performance of their 
classifiers, as listed in “Case study: performance evalua-
tion in android mobile-malware classification”. Addition-
ally, the findings show that they prefer using different terms 
for the instruments. Mainly, some used the same term (e.g., 
‘detection rate’) to refer to various instruments (ACC , TPR, 
and PPV, as shown double underlined). Moreover, different 
terms for the same metrics were expressed in the same study. 
For example, 15% used both ‘true positive rate’ and ‘recall’ 
in the same context as shown in underlined.

Table 1  The distribution of alternative terms per individual performance metrics referred by the surveyed studies

The metrics referred to with a single term are: FNR (‘False Negative Rate’), NPV (‘Negative Predictive Value’), CK (‘Cohen’s Kappa’), 
MCC(‘Matthews Correlation Coefficient’), MCR as ERR (‘Misclassification Rate’)

Metrics Terms

‘Accuracy’ (ACC ) ‘Accuracy’ (80%), ‘Detection Rate/Ratio’ (11%), ‘Detection Accuracy’ 
(7%). ‘Success Rate/Ratio’, and ‘Overall Accuracy/Efficiency’

‘F metric’ (F1) ‘F-measure’ (43%), ‘F-score’ or ‘F1 score’ (39%), F1 (22%), Fm
‘True Positive Rate’ (TPR) ‘True Positive Rate’ (39%), ‘Recall’ (26%), ‘True Positive Rate’ and 

‘Recall’ (at the same time) (15%), ‘Detection Rate’ (9%), ‘Sensitivity’ 
(5%), and ‘Accuracy Rate’

‘Positive Predictive Value’ (PPV) ‘Precision’ (86%), ‘Positive Predictive Value’ (8%), and ‘Detection Rate’
‘False Positive Rate’ (FPR) ‘False Positive Rate (96%) and ‘False Alarm Rate’ (7%)
‘True Negative Rate’ (TNR) ‘True Negative Rate (60%), ‘Specificity’ (27%), and ‘Recall Benign’ (13%)

https://doi.org/10.17632/5c442vbjzg.3
https://doi.org/10.17632/5c442vbjzg.3
https://www.github.com/gurol/ptopi
https://www.github.com/gurol/ptopi
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More interestingly, we even found that six of the sur-
veyed studies (7.7%) published the same metrics (referring 
to as TPR and ‘recall’) with the same values redundantly.1 
Although it is a typical binary classification domain, some 
researchers used conventional terms that are rather semantic, 
namely ‘precision’, ‘recall’, ‘sensitivity’, and ‘specificity’. 
For the rest, the findings show that researchers are familiar 
with syntactic terms. For example, (‘True’/‘False’) + ‘Posit
ive’/‘Negative’ + ‘Rate’/‘Predictive Value’ (e.g., ‘True Posi-
tive Rate’, ‘Positive Predictive Value’).

The above brief history and our survey on the mobile-
malware classification domain showed that classification 
performance evaluation approaches in different domains 
were affected by the other deep-rooted domains such as 
information retrieval, biology, and medicine. Note that 
referring to one alternative instrument naming instead of the 
others is not wrong essentially. However, these alternative 
terms can lead to misunderstanding or unnecessary use of 
equivalent terms in knowledge transfer and communication 
between researchers from different disciplines.

Related Works

A comprehensive study by Japkowicz and Shah provided 
an ontology of performance instruments and a general clas-
sifier evaluation framework, including selecting a perfor-
mance metric [7]. Some studies compared metrics by testing 
standard ML algorithms on real-world or synthetic datasets. 
The examples of such experimental studies are as follows: 
Sokolova et al. covered three measures and six metrics using 
naïve Bayes and support vector machine classifiers [10]. 
Tharwat gives preliminary information for four measures 
and thirteen metrics [3]. Luque et al. analyzed the symmetry 
of ten metrics under three types of transformation, such as 
labeling transformation that exchanges positive and negative 
class labels [9].

Most of the related literature addressed the issues 
researchers encounter when they seek to use performance 
instruments, especially class imbalance, where the number 
of examples in positive and negative classes is not the same 
or close [13–17]. Valverde-Albacete and Peláez-Moreno 
focused on the so-called “accuracy paradox,” where a clas-
sifier with lower accuracy might have higher predictive 
power and vice versa [18]. Bradley earlier addressed sev-
eral desirable properties of AUCROC over ACC  [19]. Chicco 
and Jurman suggested MCC as a more informative metric 
compared with F1 and ACC  [20]. Hu and Dong studied the 

cost-based evaluation of twelve metrics for class-imbalance 
conditions [21]. They individually check whether a misclas-
sification from the class with fewer number of examples 
(e.g., positive, P = 100) will cause a higher cost than that 
from the other class with a higher number of examples (e.g., 
negative, N = 900). Another aspect reviewed in the literature 
is the chance correction in metrics (e.g., CK) that eliminates 
a potentially high performance exhibited by a random classi-
fier [22]. Wang and Yao focused on the relationship between 
diversity (i.e. the degree of disagreement within classifica-
tion ensembles) and performance metrics [23].

Other studies examined instruments and their properties 
from specific perspectives such as invariance in switch-
ing confusion matrix elements [24], a chronology of the 
instruments [25], and the patterns in the instruments’ equa-
tions [26]. Yan et al. discussed the metrics’ decomposability 
into the sum or average of individual losses on each example 
in the dataset due to incorrect classifications [27]. Forbes 
proposed constraints, which evaluate metrics in terms of 
whether they are statistically principled, readily interpret-
able, and generalizable to k-class situations [28]. Straube and 
Krell suggested the following criteria for choosing a proper 
metric: (i) performance-oriented (not data-oriented), (ii) 
intuitive (interpretable), and (iii) comparable (accepted in 
the literature) [13]. Huang and Ling recommended “consist-
ency” and “discriminancy” degrees for comparing perfor-
mance metrics through ACC  and AUCROC example metrics 
in balanced and imbalanced datasets [29]. The robustness of 
binary classification performance instruments is examined 
via a benchmarking method [30]. Multi-class/multi-labeled 
performance evaluation was also addressed [24, 31, 32].

Many binary-classification performance instruments 
are the same as binary similarity or distance metrics [33] 
because all are derived from a 2 × 2 contingency table. For 
example, F1 and ACC  were referred to as ‘Sørensen–Dice 
coefficient’ and ‘simple matching coefficient’, respectively. 
Tulloss suggested requirements and recommendations for 
binary similarity instruments such as sensitivity to the rela-
tive size of two compared lists (similar to the class imbal-
ance in classification) and having a lower and upper bound 
for identical and unequal lists, respectively [34].

Theoretically, performance instruments, as well as simi-
larity/distance and association instruments, can be formed 
in numerous ways by changing the coefficients or weights 
in the equations. Hence, generalized instruments (i.e. rep-
resenting the instruments in other forms) are suggested. 
Koyejo et al. described the equations as the ratio of two 
polynomials with one degree in four variables: TP, FP, 
FN, and TN [35]. Paradowski formed a function combin-
ing joint probability, marginal probabilities, and the mean 
of marginal probabilities for binary class variables (P and 
N) [36]. These forms might also be used in classification 
performance evaluation.

1 Surveyed studies: S#17 (in Table 9); S#32 (in Tables 9, 7, and 8); 
S#39 (in Table 8); S#40 (in Table 2); S#57 (in Table 8); and S#18 (in 
Table 8, TPR and recall equations are given at the same time). The 
tables given here are numbered as they appear in the studies listed in 
online Table E.1. described in Appendix 5.
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We observe that in the literature on performance evalu-
ation instruments, limited issues were examined, most of 
which were related to class imbalance on a few customary 
metrics, especially F1 and ACC . Besides, the instruments 
were compared at a high level without taking their intrinsic 
properties into account. To the best of our knowledge, an 
extensive analysis of performance evaluation instruments 
in broad coverage has not been conducted in the literature. 
This study also provides a baseline for the performance eval-
uation of classifications with a higher number of classes, 
because binary-classification evaluation metrics can be 
used for multi-class or multi-label classification by micro- 
or macro-averaging binary metrics [37, 38] or making spe-
cific adaptions such as one-versus-all approach [31, 32, 39]. 
Moreover, the literature has recently focused on the need for 
reliable measurement [40]. Note that the preliminary work 
of this study provides only a few concepts without formal 
definitions with a limited scope [41].

Research Questions

The paper has three main research questions:
RQ.1. How can we differentiate performance instruments 

semantically and formally?
‘Performance evaluation instruments’ (shortly ‘perfor-

mance instruments’) are generally expressed by various 
terms such as ‘performance metrics’, ‘performance meas-
ures’, ‘evaluation measures’, and ‘prediction scores’. The 
evaluation based on a 2 × 2 contingency table is named 
‘diagnostic accuracy’ or ‘test accuracy’ in medicine [42] 
or ‘skill score’ or ‘forecast skill’ in meteorology (forecast 
vs. observation classes) [43]. Concerning the literature, we 
observed that.

• Performance ‘measures’, ‘indicators’, ‘metrics’, ‘scores’, 
‘criteria’, ‘factors’ or ‘indices’ terms are used inter-
changeably.

• Despite the semantic differences between the terms, the 
studies directly related to classification performance use 
the terms interchangeably [22, 24, 29, 44, 45].

• In our surveyed studies, 42% use ‘performance metrics’, 
15% use ‘performance measures’, and 25% use both 
terms interchangeably.

In this paper, we present a recommendation to clarify 
the definitions of these terms to express and distinguish the 
instruments. We also give conventional naming and abbrevi-
ations in a generic classification context for the instruments.

RQ.2 How can we formally identify the properties of 
binary-class performance instruments and their similarities, 
redundancies, and dependencies?

Performance evaluation instruments summarize the 
confusion matrix via a mathematical function that can be 
expressed in numerous ways in terms of other instruments. 
Interpreting the functions and the dependencies among the 
instruments brings out difficulties in comprehension and 
comparison of the instruments. In this study, we examine 
57 instruments methodically and present novel concepts 
that reveal their inherent properties formally. We refer to the 
intrinsic properties enabling the comparison of those instru-
ments as “concepts”. This study introduces canonical forms 
and two basic measures, namely TC (True Classification) 
and FC (False Classification), to enhance comprehension 
and interpretation of instrument equations. Then, it defines 
geometry, duality, complementation, and leveling concepts 
formally to uncover the similarity, redundancy, and depend-
ency among instruments.

RQ.3 How can we effectively select instruments in per-
formance reporting and publication?

For performance reporting, it is not clear what and how 
many instruments should be used even in a specific applica-
tion domain. The performance of a classifier can be exam-
ined from the standpoint of failure instead of success. In this 
case, the number of false classifications, namely FP or FN 
(or both), becomes the primary concern. The choice of met-
rics in performance reporting depends on the classification 
problem domain. Type I error (false positives) is critical in 
many binary classification problems. For example;

• In information retrieval applications such as document 
filtering [37], FP might be critical.

• In malware (also known as “malicious software”, e.g., 
computer viruses) analysis, it might be better to label 
a “benign” software example incorrectly as “malign” 
(“malware”) than to omit malware by labeling benign 
incorrectly. Because the examples labeled as malware 
could be prioritized, then an expert could later go 
through further manual analysis to eliminate FP [46].

• An anti-malware product (also known as “anti-virus”) 
classifying a given computer file instance as malware 
or benign should behave with decreased FPs to prevent 
displaying excessive malware warnings.

However, according to our survey of studies involving 
Android mobile-malware classification, we found that most 
studies focused more on type I errors (63% report FPR, 
whereas 19% report FNR). Table 2 shows the key findings 
of our survey in reporting ML-based malware classification 
performance to answer “how many”, “which”, and “what 
combination of” metrics the researchers report.

As seen in Table 2a, the number of performance evalua-
tion instruments reported in a single study has a wide range. 
The studies tend to publish two or three instruments, but 
they may choose from only one instrument (ACC  or F1) 
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to seven instruments inclusive. TPR, FPR, and ACC  are 
the most reported metrics, as shown in Table 2b. Note that 
the same variance in selected metrics was also observed in 
multi-labeled performance reporting [31].

Consequently, we develop a solution to facilitate the 
selection of performance measures with an exploratory table 
called PToPI, which is similar to a periodic table of elements 
to represent the concepts proposed in this study. The peri-
odic table of elements can be considered an unprecedented 
example application of information or knowledge organiza-
tion. The classification of the elements (i.e. grouping, order-
ing, positioning the elements) is pragmatic (e.g., produc-
ing the most helpful one) and methodological suggesting 
new hypotheses, explanations, and theories [47]. Likewise, 
PToPI is also a schematic representation of available perfor-
mance evaluation instruments conveying different forms of 
intrinsic properties (i.e. concepts) [48, 49]. Additionally, as 
people are familiar with the periodic table, there are other 
adaptations of periodic tables in different scopes, such as in 
data science [50]. Covering these research questions, in this 
paper, we studied 57 instruments including the following 
instrument types:

• confusion-matrix derived instruments for a single/final 
classification model-threshold;

• entropy-based instruments (a subset of confusion-matrix 
derived instruments) such as mutual information (MI), 

outcome entropy (HO), class entropy (HC), joint entropy 
(HOC), and normalized mutual information (nMI);

• graphical-based performance metrics such as area-under-
ROC-curve (AUCROC, ROC: receiver operating charac-
teristic) or area-under-precision-recall-curve (AUCPR); 
and

• the instruments dependent on classification error’s 
probabilistic interpretation such as mean squared error 
(MSE, also known as Brier score), mean absolute error 
(MAE), root mean square error (RMSE), and LogLoss 
(also known as binary cross-entropy or relative entropy).

Considering entropy as an information-theoretic concept, 
mutual information indicating the strength of association in 
the contingency table [51] is also used for binary classifica-
tion, namely prior (“ground truth”: P or N) and posterior 
(“prediction”: OP or ON) distributions [44]. For the entropy-
based instruments, which are the subtype of confusion-
matrix-derived instruments, the following equation is valid: 
MI = HC + HO − HOC [52]. Note that entropy-based instru-
ments are measures of uncertainty with the true distribu-
tion of a random variable: HC for positive class distribution 
(PREV), HO for outcome-positive distribution (BIAS), and 
HOC for confusion-matrix elements (TP, FP, FN, TN). On 
the other hand, binary cross-entropy (LogLoss) is about the 
uncertainty with the approximate distribution of the variable 
with a probability function.

Table 2  The statistics of 
performance metrics reported 
from 69 applicable studies of 78 
surveyed studies

(a) The distribution of the number of metrics reported in a study(i)

one two three four five six seven-metrics

9% 32% 13% 13% 13% 1% 3%

(b) Distribution of the reported 11 metrics(ii)

TPR FPR ACC PPV F1 FNR TNR   NPV, MCR, CK, MCC
75% 64% 55% 36% 30% 20% 17%                                  7%

(c) Distribution of 31 unique combinations of the reported metrics(iii)

TPR FPR     20%

TPR   PPV F1  10%

  ACC    7%

 FPR ACC   FNR 7%

TPR  ACC PPV   4%

TPR FPR ACC    4%

(top six combinations) 53%

(d) The distribution of the components of the reported metrics revealing ground-truth
OP TP FN P ON TN FP N TC     FC
6% 36% 2% 15% 1% 4% 9% 13% 8%     5%

Positive-class related 

(60%)

Negative-class related

(27%)

(i) Minimum of one metric and a maximum of seven metrics were published in the same 

research. (ii) The last four metrics have the same distribution ratio (iii) For example, out of 69 

studies, 14 studies reported only TPR and FPR metrics, and seven studies reported TPR, PPV, and 

 F1. The top six combinations (53%) are shown (the total of remaining 25 combinations is 47%) 
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Although graphical-based performance metrics are not 
based on a single instance of a confusion matrix, they are 
calculated by varying a decision threshold (i.e. full operat-
ing range of a classifier) for different TPR and false-positive 
rate (FPR) or positive predictive value (PPV) and TPR pairs 
in a specific binary-classification application [53, 54]. Such 
metrics are the summary statistics of the graphical measure-
ments of paired base metrics to rank classifiers according 
to performances [7]. Graphical-based metrics give insight 
into the performance of a classifier modeled for the whole 
possible model threshold range. In contrast, confusion-
matrix-derived instruments represent the final performance 
of the classifier for an optimum threshold. In other words, 
the former is for model development, and the latter is for 
production.

Although probabilistic error/loss instruments are not 
based on a confusion matrix generated for single-thresh-
old classification models or crisp classifiers [55], most of 
the proposed concepts and definitions are applicable. For 
example, they can be categorized as ‘measures’ with a 
half-bounded/unbounded interval or ‘metrics’ with a finite 
interval, indicating the performance failure (i.e. the smaller 
values, the better predictions). The instruments and their 
variants that summarize the deviation from the true prob-
ability are for regression problems rather than classification. 
While MAE (also known as Mean Absolute Deviation and 
abbreviated as MAD) is computationally less expensive and 
more resistant to outlier errors, MSE is more often used in 
practice [56]. LogLoss that is the predicted probability of 
the ‘true’ class measures the prediction uncertainty. It is also 
preferred for multi-class classification and modeling with 
artificial neural networks. Contrary to zero–one loss metrics 
(e.g., MCR, FPR, FNR, FDR, and FOR), probabilistic error/
loss instruments evaluate the performance error of scoring 
or non-crisp classifiers that label instances with a reported 
or attached belief value (score, probability, or likelihood) 
according to a decision boundary.

For example, instead of labeling an instance as positive 
(one) or negative (zero) absolutely (also known as a “hard 
label”), a classifier model with a 0.5 internal decision-
boundary value (the right side is for positive labels, the 
left side is for negative ones) in [0, 1] interval can label an 
instance as positive correctly with a 0.85 score (also known 
as “soft label”). In contrast, it labels another instance as neg-
ative correctly with a 0.40 score. Hence, we can interpret 
the probabilistic classification error for those instances such 
that the former labeling is more probable than the latter (|0.
85 − 0.50|= 0.35 > 0.10 =|0.40 − 0.50|). A significant differ-
ence in probabilistic error/loss instruments measured for test 
and training datasets might reveal over/underfitting (bias-
variance trade-off) unless it appeared due to the different 
statistical properties of the datasets or modeling errors [57] 
(e.g., RMSEtest > RMSEtraining for overfitting).

Note that probabilistic instruments are also used in the 
evaluation of ordinal classification, where there is an inher-
ent (but without a meaningful numeric difference), order 
between the classes [58]. Another related use of probabilistic 
instruments is to assess candidate classification models in 
the same dataset by checking the trade-off between mod-
els’ fit and complexity. Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC), two inter-model 
complexity criteria, put a penalty for the number of model 
parameters (i.e. model complexity) and reward goodness-of-
fit via negative MSE as a likelihood function (the equations 
are given in Appendix 2) [59, 60].

We reviewed 30 probabilistic instruments based on the 
summary of errors via different summary functions (see the 
last row for the summary functions of Probabilistic Error/
Loss Measures/Metrics equations in Appendix 2). Then we 
prepared a calculator and analyzed these instruments based 
on the hypothetical classifiers using synthetic datasets in ten 
cases. The calculator and example simulation results pro-
vided in the online PToPI spreadsheet showed the following 
specific deficiencies exhibited in some of the instruments:

• In ME and MPE, positive and negative errors are neutral-
ized in summation.

• In all percentage error instruments (e.g., MPE and 
MAPE), division-by-zero occurs when the samples have 
at least one negative class (N > 0).

• Scaled error instruments (MASE, MdASE, and RMSSE) 
for time series regressions and forecasting are not appli-
cable in binary classification because there is no innate 
sequence/order in classification dataset samples.

• Critically, Normalized Mean Squared Error (nMSE) 
in five variants, ME, and percentage error instruments 
yield unbalanced over-prediction (pi > ci, false posi-
tive) − under-prediction (pi < ci, false negative) errors.

Based on the findings, out of 30 instruments, we distin-
guished and presented five instruments (with a total of 9 
variants) that are proper for binary classification, namely 
LogLoss, MRAE (MdRAE, GMRAE), MSE (RMSE), MAE 
(MdAE, MxAE), and nsMAPE. Note that we excluded 
recently proposed binary-classification performance met-
rics such as

• SAR (an abbreviation of Squared Error, Accuracy, and 
ROC area) by Caruana and Niculescu-Mizil [61],

• Optimized Precision (OACC ) by Ranawana and Pal-
ade [62],

• Index of Balanced Accuracy (e.g., IBAα(G)) by Garcia, 
Mollineda, and Sanchez [63] and

• probabilistic error instruments with unconventional sum-
mary functions such as Mean Arctangent Absolute Per-
centage Error (MAAPE) by Kim and Kim [64],



 SN Computer Science (2023) 4:1313 Page 8 of 30

SN Computer Science

because they are derived from well-known standard 
metrics, or their use in the literature is limited. However, 
the concepts proposed in this study are also applicable to 
those metrics. Finally, this study focused on the performance 
instruments’ properties and their relations, but it does not 
aim to compare the superiority of an instrument over the 
other.

Semantic/Formal Definitions 
and Organization of Performance Evaluation 
Instruments

This section, first, proposes a semantic categorization of per-
formance evaluation instruments as ‘measure’ and ‘metric’. 
Second, we provide a formal definition of the categories 
consistent with measure and metric in mathematics and the 
semantic approach. We also propose another organization 
of multiple instruments per category to see their similarities 
and dependencies.

Semantic Categorization of Performance Evaluation 
Instruments

This section addressing RQ.1 aims to clarify ‘measure’ and 
‘metric’ terms that are used interchangeably. By definition 
at a high level,

• A measure is defined as “the dimensions, capacity, or 
amount of something ascertained by measuring”2 and a 
metric (often metrics) is “a standard of measurement”.3

• A measure is quantitatively derived from measurement, 
while a metric is close to inferring qualitative subjects.

• A metric is a calculated or composite measure based on 
two or more measures and is typically stated as percent-
ages, ratios, or fractions.

We distinguish ‘measures’ and ‘metrics’ referring to dif-
ferent but dependent concepts. This categorization was also 
examined by Texel from a general perspective [65]. Meas-
ures are numerical values providing incomprehensible or no 
context. In contrast, metrics have a compilation of measures 
within a comprehensible context. Figure 1 illustrates our 
proposed categorization with performance measures/metrics 
with their relative characteristics and typical intervals. Note 
that the literature in specific disciplines also focuses on simi-
lar terminologies. For example, Olsina and de Los Angeles 
Martín pointed out the lack of consensus in terminology 
about the assurance of the non-functional requirements 

of software such as quality, accessibility, and productiv-
ity (like classification performance) [66]. They proposed a 
comprehensive ontology covering various terms, including 
‘measures’, ‘metrics’, and ‘indicators’. The ontology exhibits 
a metric's dependency on one or more measures via value 
interpretation.

Measures are produced by a measurement activity, 
whereas metrics quantify an attribute of any entity in soft-
ware domain such as process, product, and resource. The 
analogies ‘data’ to ‘measures’ and ‘information’ to ‘metrics’ 
might also be insightful. García et al. mainly reviewed and 
discussed ‘measures’ and ‘metrics’ terms concerning soft-
ware management and proposed another ontology [67]. Our 
interpretation of ‘measures’ and ‘metrics’ described above 
is also in line with those studies.

Formal Definitions and Organization of Performance 
Evaluation Instruments

This section addresses RQ.1 for distinguishing instruments 
formally and RQ.2 for the identification of their intrinsic 
properties formally. Table 3 shows the notation proposed 
for instruments as well as their transformations (dual and 
complement) described in this study.

First, we propose the following axioms setting out a base 
for the formal definitions for the confusion-matrix-derived 
instruments, including entropic instruments.

Axiom 1 (Atomicity). The only indivisible instruments to 
evaluate binary-classification performance are TP, FP, FN, 
and TN, which are the elements of a confusion matrix (2 × 2 
contingency table).

Axiom 2 (Atomic Expression). Any binary-classification 
performance evaluation instrument can be expressed with 
the confusion matrix elements.

Metrics

Mea s u r e s

• 2nd Level Metric
• 1st Level Metrics
• Base Metrics

• 3rd Level Measures
• 2nd Level Measures
• 1st Level Measures
• Base Measures

+∞
0

−∞

+1
0

−1

▲Precision: Coarse, Interpretation: Easy▲

▼Precision: Fine, Interpretation: Hard▼

Typical Ranges

Fig. 1  Dependency and relative characteristics of performance evalu-
ation instrument categories. The attached semicircles on the left show 
the typical intervals for each category. For classification performance 
measures and metrics, the intervals are usually [0, ∞) and [0, 1], 
respectively

2 https:// www. merri am- webst er. com/ dicti onary/ measu re.
3 https:// www. merri am- webst er. com/ dicti onary/ metric.

https://www.merriam-webster.com/dictionary/measure
https://www.merriam-webster.com/dictionary/metric
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Axiom 3 (Basic Summary). A basic summary includes the 
summation of the pairwise or all of the confusion matrix 
elements.

Axiom 4 (Binary-classification Performance Instrument 
Expression). All performance instruments can be expressed 
via functions of individual or basic summaries of confusion 
matrix elements.

The axioms are valid for graphical-based metrics and 
probabilistic error/loss measures, which also depend on 
or have a similar relationship with the confusion-matrix-
derived instruments, as depicted in Fig. 3b and c. Namely, 
AUCROC and AUCPR depend on multiple TPRs vs. TNRs 
and TPRs vs.. PPVs, respectively. Probabilistic instruments 
measuring classification uncertainty or type I/II errors are 
similar to FPR and FNR. An example of Axiom 2 could 
be given for PREV: PREV = P/Sn can be expressed in an 
atomic manner as PREV = (TP + FN)/(TP + FP + FN + TN). 
The other axioms are described in the sections below. We 
proposed the following formal definitions for organizing 
and describing binary-classification performance evalua-
tion instruments.

The Base Measures (TP, FP, TN, FN)

Based on Axiom 1, we called the four atomic confusion 
matrix elements “base measures”. As stated in Axiom 2, all 
other instruments can be expressed by these base measures. 
PToPI full-view in online Fig. C.1 provides different names 
of the base measures.

The First‑Level Measures (P, N, OP, ON, TC, FC, Sn)

Based on Axiom 3, the first-level measures are the composi-
tion of the four base measures by summation (pairwise and 
total):

• P and N are column (marginal) totals of a confusion 
matrix. They represent the ground truth denoting the real 
number of the two observed classes (known labels). For 
example, a classification test dataset with 3000 malign 

and 2000 benign application samples is expressed as 
P = 3000 and N = 2000.

• OP and ON measures that are row totals (the other mar-
ginal totals in probability theory) of a confusion matrix 
represent the prediction (test or classification result/
outcome) of the two classes, where OP = TP + FP and 
ON = FN + TN. For the same example, the outcome of 
a decision tree classifier that predicts 3,100 malign and 
1,900 benign applications is expressed as OP = 3100 and 
ON = 1900. These measures correspond to predicted, 
hypothesized, or estimated (classification) output.

• Moreover, True Classification (TC) and False Classifi-
cation (FC) are defined as the totals of diagonal base 
measures (TP and TN) and off-diagonal ones (FP and 
FN), respectively. Substituting those totals simplifies 
the instruments’ equations and their interpretation. For 
instance, ACC  that is defined as (TP + TN)/Sn (even as 
(TP + TN)/(TP + FP + FN + TN)) could be expressed 
merely as TC/Sn with TC. Including TC and FC, where 
appropriate, makes the equation easy to interpret. Note 
that this notation also simplifies the multi-class perfor-
mance instruments. For example, the accuracy of a ter-
nary classification is again TC/Sn.

• Finally, Sn is the total of all the base measures 
(Sn = TP + FP + FN + TN). As specified in Axiom 3, P, 
N OP, ON, TC, and FC are pairwise and Sn is the overall 
summation of confusion matrix elements.

Canonical Form and Formal Instrument Categorization

This subsection proposes and defines a formal logic that 
determines whether a given equation of a performance eval-
uation instrument is a ‘metric’ or ‘measure’. The first step 
in the proposed formal definition is to standardize the equa-
tions satisfying Axiom 4. In canonical form, the equations 
are expressed with the base and first level measures (namely 
TP, FP, FN, TN, P, N, OP, ON, TC, FC, and Sn) that are 
also called “canonical measures” in this study.

For example, MCR = FC/Sn and F1 = 2TP/(2TP + FC) 
are expressed in canonical form. Note that any part of the 
given equations matched in the where clause of the defini-
tion above must be reduced into its complete form (P, N, 

Table 3  Performance instrument notations

Notation Style Meaning Examples

M Italic Any instrument (measure or metric) ACC  in [0, 1], MCC in 
[− 1, 1], PREV in [0, 1]

M +Bold Unlimited measures having positive integer values (recommended 
when used in a text, the notation optional in equations)

TP, P, Sn, DET

M* * Super-script The dual of an instrument PREV = BIAS*, HC = HO*

M Over bar The complement of an instrument TPR = FNR
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OP, ON, TC, FC, Sn) while converting an equation into 
canonical form (e.g., a TP + FP + FN + TN should always be 
reduced into Sn and likewise a remaining TP + FN into P).

Definition 1 (Canonical Form).

M is a binary-classification performance instrument 
expressed in the canonical form M ∶ X

11
→ ℝ

X = {(TP,FP,FN,TN,P,N,OP,ON,TC,FC, Sn) ∈ ℤ
∗ ∶

[0,∞)} , ℤ∗ = {0} ∪ ℤ
+ and ℝ = ℝ ∪ {−∞,∞} where 

basic summaries defined in Axiom  3 are reduced for 
Sn = P + N = OP + ON = TC + FC = TP + FP + TN + FN;

P = TP + FN;N = FP + TN;OP = TP + FP;ON = TN + FN;

TC = TP + TN;FC = FP + FN.
To find the canonical form, first, the equations should be 

in “base-measure form” (i.e. atomic expression in Axiom 2, 
expanded until all the terms are four base measures, namely 
TP, FP, FN, TN). Then the substitutions can be carried out 
according to Definition 1. As stated in Definition 2, a binary-
classification performance evaluation measure expressed in 
canonical form has only P, N, OP, ON, or Sn base measures, 
or its range is infinite as imposed in semantic interpretation 
(i.e. numerical values with limited or no context derived 
from measurement).

Definition 2 (Measure/Metric).

M is a binary-classification performance ‘meas-
ure’ if it can be expressed in the canonical form where 
M ∶ X → ℝ  a n d  (  dom(M) ⊆ {P,N,OP,ON, Sn} o r 
( min(M) = −∞ or max(M) = +∞)).

Otherwise, M is a ‘metric’.
The first condition states that an instrument consisting 

of only any of P, N, OP, ON, or Sn is a ‘measure’. P, N, 
and Sn, which are even available before a classifier is mod-
eled, depend on datasets (i.e. they are numerical values with 
no performance context). In contrast, OP and ON show the 
pure outputs of a classifier (i.e. numerical values with lim-
ited performance context). An instrument in canonical form 
that has any of four base measures (TP, FP, FN, and TN) 
and two diagonal 1st level measures (TC and FC), repre-
sent the performance context. However, if the range of the 
instrument is unlimited, it is a ‘measure’ as dictated by the 
second condition because the precision is fine, and inter-
pretation is challenging, as depicted in Fig. 1. For example, 
PREV = P/Sn and NER = N/Sn are measures because their 
domains are equal to {P, Sn} and {N, Sn}, respectively, 
whereas OR = (TP ⋅ TN)∕(FP ⋅ FN) is still a measure even 
though dom(OR) = {TP, FP, FN, TN} ⊈ {P, N, OP, ON, 
Sn} because the interval of OR is left-bounded, i.e. [0, ∞). 
G =

√
(TP ⋅ TN)∕(P ⋅ N) is a metric because neither dom(G) 

is a subset of {P, N, OP, ON, Sn} (because of TP and TN) 
and nor its interval is unbounded (range(G) = [0, 1]).

Comparison with Measures and Metrics in Mathematics

Performance measures and metrics defined formally above 
have similarities with measures and metrics in mathemat-
ics. Measure in mathematics is a function (μ) from Σ (an 
σ-algebra over a set X) to affinely extended real numbers 
( ℝ = ℝ ∪ {−∞,∞} ) like performance measures. Various 
types of measures are defined according to different prop-
erties or conditions, such as negativity, intervals, empty 
sets, additivity, and monotonicity properties. 26 of 29 per-
formance measures correspond to mathematical (positive) 
measures. “Signed measures” do not require negativity. Only 
DET, DPR, and DP are identified as signed (±) measures 
in (− ∞, ∞).

Canonical performance measures (X in Definition 1, e.g., 
TP and P) correspond to “counting measures”, another type 
of measure in mathematics (i.e. number of elements (cardi-
nality), a function to natural numbers: ℤ∗ = {0} ∪ ℤ

+ ). The 
performance measures in [0, 1] for a specific aspect of classi-
fication datasets, namely class or outcome ratios (e.g., PREV 
or BIAS), class or outcome entropies (HC vs. HO), and 
chance factor (CKc), correspond to “finite measures” (for 
example, a probability measure in [0, 1] yielding 0 for empty 
sets and its entire measure (probability) space is 1). Additiv-
ity is determined by two operations on subsets in X, namely 
“union”: �

�⋃∞

k=1
Xk

�
 and “sum”: 

∑∞

k=1
�
�
Xk

�
 . A measure 

is “countable additive” when union = sum, “subadditive” 
when union ≤ sum, and “superadditive” when union ≥ sum. 
For example, PREV satisfies “subadditivity” for two datasets 
(e.g., Sn = 20):  dataset1 with  samplei (i = 1, …, Sn/2 = 10) 
and  dataset2 with  samplei (i = 11, …, Sn = 20).

We evaluated all performance measures for two datasets 
and observed that all canonical performance measures sat-
isfy “countable additivity” and the remaining performance 
measures, except signed ones, satisfy “subadditivity” (see 
“Measures and additivity” worksheet in the online PToPI 
file). The additivity of DET, DPR, and DP signed meas-
ures is nondeterministic (subadditive, countable additive, or 
superadditive like the determinant of nonnegative Hermitian 
matrices).4 The measure values of the sub-datasets might 
cancel out each other. Canonical measures satisfy all five 
properties with the countable additive property.

Mathematically, metrics are defined as a distance func-
tion D between pairwise elements in a set. Both metrics and 
performance metrics are in a bounded interval [a, b] where 

4  DET(BM
X
)=

?

DET(BM
X1
) + DET(BM

X2
) ⇒ E x a m p l e s 

(Sn = 20 = 10 + 10): subadditive: 
||||
5 6

5 4

|||| ≤
||||
3 3

1 3

|||| +
||||
2 3

4 1

|||| (− 10 ≤ 6 +  

 − 10), superadditive: 
||||
5 7

3 5

|||| ≤
||||
2 4

2 2

|||| +
||||
3 3

1 3

|||| (4 ≥  − 4 + 6), counta-

ble additive: 
||||
4 4

6 6

|||| =
||||
3 2

2 3

|||| +
||||
1 2

4 3

|||| (0 = 5 +  − 5).
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0 ≤ a < b < ∞.5 However, performance metrics correspond 
to “similarity functions” as an inverse of (distance) metrics 
(e.g., S = 1 − D) in mathematics (how similar are classifica-
tion labels and class labels?). Performance metrics can be 
expressed as a similarity function S(o, c) between ground-
truth (c) and prediction (o, classifier’s outcome) for all the 
binary examples (i = 1, …, Sn) in a dataset where ci and 
oi ∈ {0 for positive and outcome positive, 1 for negative or 
outcome negative}.

The maximum similarity or the minimum distance (dis-
similarity) is the better performance (e.g., ACC  = 1). Error 
or loss metrics such as FPR, FNR, FDR, FNR, and MCR, 
described in “Instrument complement”, as well as probabil-
istic instruments, are directly distance metrics (D) in math-
ematics. As described in “Semantic/formal definitions and 
organization of performance evaluation instruments”, binary 
similarity measures are a well-studied domain historically in 
the literature where a fourfold table is used to calculate the 
similarity/distance between two binary vectors in a conveni-
ent manner instead of the comparison of pairwise elements.

The conventional notation concerning binary classifica-
tion is a = TP, b = FP, c = FN, and d = TN. As addressed 
in Ref. [26], binary-classification performance metrics had 
been studied as similarity coefficients, for example, ACC  by 
Sokal and Michener (1958) and Rand (1971), F1 by Gleason 
(1920), Dice (1945), and Sørenson (1948), CK by Cohen 
(1960), and MCC by Yule (1912) and Pearson and Heron 
(1913).

Three axioms are defined for mathematical metric 
definition:

 (i) identity of indiscernibles: D(o, c) = 0 ⇔ o = c,
 (ii) symmetry: D(o, c) = D(c, o)), and
 (iii) subadditivity or tr iangle inequality: D(o , 

c) = D(o, x) + D(x, c).

Performance metrics either satisfy all three axioms (e.g., 
ACC ) or the first and second axioms (“semimetrics” in math-
ematics, e.g., F1, CK, and MCC). Probabilistic error metrics 
correspond to Euclidian distance in mathematics (e.g., MAE 
and its variants are Euclidian distance whereas MSE and 
RMSE are squared Euclidean distance).

Probabilistic error measures are not metrics in mathemat-
ics. MRAE and its variants are not symmetric (exchanging 
ci ↔ pi, see Eqs. (B.pi, B.piii, and B.piv) and relative abso-
lute error measure equations in Appendix 2). LogLoss is not 
a mathematical metric because it does not satisfy the first 
axiom completely (LogLoss = 0 for ci = pi = 1, but LogLoss 
is undefined for ci = pi = 0). LogLoss > 0 for ci = 0 ≈ pi. For 

example, LogLoss = 6.64 (➝∞) for ci = 0 and pi = 0.01 
(➝0+) whereas MSE = MdSE = 0, RMSE = MAE = 0.01 
(➝0+), and nsMAPE = 1. Note that probabilistic metrics 
such as MAE, MSE, and RMSE in binary classification that 
are in [0, 1] are usually expressed in a right-open interval 
[0, ∞) in regression for convenience. Nevertheless, they 
become bounded according to the dependent variable’s 
range.

Comparing a classification and a regression model on the 
weather temperatures on Earth, which range ± 40 °C (100 °F 
to − 40 °F) annually, for example. The binary scoring clas-
sifier with “cold” (0) and “hot” (1) labels yield minimum 
0 and maximum 1 absolute errors (ci ∈ {0, 1}, pi [0, 1]). 
The regression classifier yields a minimum of 0 °C/°F and 
a maximum of 80 °C (140 °F) absolute errors (a threshold, 
for example, 20 °C/68 °F, could be used to categorize the 
scalar outcomes into cold and hot labels). Even MRAE and 
LogLoss also measure the same classification error; they 
have a right-open interval in both (binary) classification and 
regression because of the nature of their summary functions. 
As addressed by the practitioners, the interpretation of prob-
abilistic performance measures is not convenient, comparing 
the metrics [68].

The performance measures with open intervals, namely 
DPR, LRP, LRN, DET, LIFT, OR, DP, MRAE, and LogLoss, 
violating the first condition in Definition 2 (i.e. having at 
least one canonical measure different from {P, N, OP, ON, 
Sn} such as base measures, TC, and FC) are not used in 
the literature for performance evaluation, comparison, and 
publishing for different classifiers because they are not easy 
to interpret (unbounded and having non-linear distribu-
tion). The attempts to categorize their unbounded range 
are subjective, indecisive, and not accepted by the litera-
ture (e.g., DP [10], OR [69, 70], LRP/LRN [71]). They have 
domain-specific usages to reflect the specific aspects of the 
classifiers.

We propose measure/metric categorization of instruments 
consistent with the mathematical definition and semantical 
interpretation of ‘measures’ and ‘metrics’ to clarify the ter-
minology as well as enhance the initial interpretation of the 
instruments. Metrics can be directly and conveniently used 
for performance evaluation, whereas measures are auxiliary 
to evaluate other factors such as datasets. Of the 57 perfor-
mance instruments covered, almost half of them are meas-
ures and half of them are metrics.

Instrument Geometry

Figure 2a depicts the following geometry of the 1st level 
measures defined above:

5 Performance metrics that are represented in [-1, 1] (e.g., CK and 
MCC) can be transformed into [0, 1].
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• P and N are column types (total of elements in vertical 
cells in confusion matrix) that are related to ground truth 
only.

• OP and ON are row types (total of elements in horizontal 
cells) related to prediction only.

• TC and FC are mixed types (total of elements in diagonal 
or off-diagonal cells).

Sn is mixed geometry and does not affect determining 
geometry type when it is involved in other instruments’ 
equations. In this study, we extend this column/row geom-
etry to any performance instrument apart from canonical 
measures via Definition 3.

Figure 2b depicts the geometries of all the measures and 
metrics that are determined via Definition 2. The figure is 
used as a starting point for the proposed exploratory table to 
position the different instruments in the table layout. Note 
that pale and dark solid edges represent geometry types, as 
depicted in the “Box edges” group as described in “Inter-
pretation of PToPI visual design elements”. In our survey, 
26% of the studies published column-geometry metrics (e.g., 
TPR, TNR, FPR, or FNR). 19% published true-classification-
only metrics (i.e. having TP or TN, e.g., TPR, TNR, PPV, 
NPV, or ACC ). Interestingly, 3% published FPR with FNR, 
which is a subset of false-classification-only metrics (the 
other one is MCR).

Definition 3 (Column, Row, and Mixed Geometry).

M is a binary-classification performance instrument 
expressed in a canonical form where M ∶ X → ℝ

The geometry of M is ‘column’ (depicted as Mc)
   if dom(M) ⊇ {P,N} and dom(M) ⊉ {OP,ON, TC,FC}.

The geometry of m is “row” (depicted as Mr)
   if dom(M) ⊇ {OP,ON} and dom(M) ⊉ {P,N, TC,FC}.

Otherwise, the geometry of M is ‘mixed’ (depicted as 
Mx).

Figure 2c depicts the possible confusion matrix examples 
for probabilistic error/loss performance measures. The clas-
sifier labels both the first and second examples as positives 
with a score greater than the decision boundary. Neverthe-
less, the second one is a negative example (i.e. false posi-
tive). Likewise, the third example is misclassified as nega-
tive (i.e. false negative) even if the classifier’s score falls 
under the threshold. As described in “PToPI: an explora-
tory table for binary-classification performance evaluation 
instruments”, those instruments give a score (pi) about the 
labeling predictions for the actual class of the example (ci). 
Figure 2d lists the corresponding calculations for each exam-
ple for LogLoss and MAE, which is a variant of MSE. Note 
that the parts yielding zero in the pairs of the sum function 
in LogLoss are not shown for the sake of simplicity. The 

evaluation of each case in both measures shows that proba-
bilistic error/loss instruments measure;

• either uncertainty/type-II-error in P, namely FN (like 
FNR = FN / P)

• or uncertainty/type-I-error in N, namely FP (like 
FPR = FP / N).

This reveals that the measures are a typical mathematical 
function for FPR and FNR like (FPR + FNR)/2, which is also 
examined in “Instrument complement”. The instruments are 
column-geometry because their domains {P, N} satisfy the 
first condition in Definition 3.

Transforming Geometry: Instrument Duality

The extended geometry divides classification performance 
instruments into two orthogonal dimensions besides the 
mixed ones: column (ground-truth only) vs. row (prediction 
only). This approach brings about transformations in cor-
responding instruments expressed in Definition 4.

Definition 4 (M*, Duality).

M is a binary-classification performance instrument 
expressed in a canonical form, where M ∶ X → ℝ and the 
geometry of M is “column”, “row”, or “mixed”. The dual of 
M, M* is produced by

if the geometry of M is “column” ( Mc),

if the geometry of M is “row” ( Mr ), or

if the geometry of M is “mixed” ( Mx),
where (Mc)∗ = Mr , (Mr)∗ = Mc , and (Mx)∗ = Mx.
Essentially, duality is to transform one concept into 

another concept in a bilateral manner. It could be per-
ceived as an interchanging antecedent and consequent [8]. 
A transformation via switching column to row geometries 
and vice versa corresponds to ground-truth versus predic-
tion perspective change. The introduced transformation via 
duality facilitates researchers to see the special relations in 

dom(M)

P → OP

N → ON
���������������������������������������������→ dom(M∗)

dom(M)

OP → P

ON → N
���������������������������������������������→ dom(M∗)

dom(M)

P → OP

N → ON

OP → P

ON → N
�������������������������������������������������→ dom(M∗)
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(a) The 1st level measures’ geometries (b) Geometry types and layout of all measures and metrics

(c) Examples predicted by a probabilistic-based classifier with a decision boundary (e.g., 0.5)

=
1

| − | = −
1

log + (1 − ) log (1 − )

i = 1: |1 (P) – 0.8| = 0.2 (type II error in P: FN)

i = 2: |0 (N) – 0.6| = 0.6 (type I error in N: FP)

i = 3: |1 (P) – 0.4| = 0.4 (type II error in P: FN)

i = 4: |0 (N) – 0.2| = 0.2 (type I error in N: FP)

MAE = ¼ (0.2 + 0.6 + 0.4 + 0.2) = 0.35

Average type I/II error

i = 1: 1 (P) log20.8 = log20.8 = –0,32 (uncertainty: FN in P)

i = 2: (1 – 0 (N)) log2(1 – 0.6) = –1.32 (uncertainty: FP in N)

i = 3: 1 (P) log20.4 = log20.4 = –1.32 (uncertainty: FN in P)

i = 4: (1 – 0 (N) ) log2(1 – 0.2) = –0.32 (uncertainty: FP in N)

LogLoss = –¼ (–0.32 + –1.32 + –1.32 + –0.32) = 0.82

Average uncertainty
(d) Example calculation of probabilistic error/loss measures

Fig. 2  The origin of laying out of performance evaluation instruments in PToPI and probabilistic error/loss instruments for four samples labeled 
as one TP, FP, FN, and TN 
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corresponding instruments. A dual of a column/row type 
instrument is formed by swapping between {P} and {OP} 
and between {N} and {ON}, respectively. For instance, 
TPR = PPV* and PPV = TPR* (dual metrics) or HC = HO* 
and HO = HC* (entropy-based dual measures). As seen in 
the examples, the symmetry (involution) is valid for duality 
( M1

∗ = M2 and M2
∗ = M1 , i.e. if M1 is the dual of M2 , then 

M2 is the dual of M1 ). The duality is essential for two dual 
concepts or dimensions where a mapping identified in one 
can be transferred into the other by duality. For example, a 
function (f) of two column-geometry instruments ( Mc

1 and 
Mc

2 ) could be transformed or sought in their corresponding 
dual (row-geometry) instruments ( Mr

1 and Mr
2 ) as described 

below:

For example, LRP is a mapping between TPR and 
TNR. The dual of LRP = TPR/(1  –  TNR) is TPR*/
(1 – TNR*) = PPV/(1 – NPV), which is not a common instru-
ment in existing classification performance evaluations. It 
is called “relative risk” which is mainly used in statistics, 
epidemiology, clinical research, and diagnostic tests [72]. 
The relation revealed by duality can connect classification 
performance evaluation with these domains. The example 
given for LRP is related to the transformations of the col-
umn- or row-geometry instruments. As for mixed geometry, 
duality transformation of high-level mixed-geometry instru-
ments reveals different dependencies (note that the dual of a 
mixed type instrument is equal to itself as expressed in the 
third condition of Definition 4). For instance, the following 
transformation of mixed-type ACC  from Eq. (2) showing 
PREV dependency further reveals BIAS (the dual of PREV) 
dependency of ACC :

Increasing prevalence leads to a higher performance 
value in terms of ACC , as shown in Eq. (2), which also 
causes a higher bias, as shown in Eq. (4). However, dual 
instruments should be interpreted correctly. For exam-
ple, Powers’ statement that the goal of the classification 
model is achieving the equality of dual instruments such 
as PREV = BIAS, TPR = PPV, or TNR = NPV should be 
clarified by adding “in the highest possible metric val-
ues” constraint (e.g., TPR = PPV = TNR = NPV ≈ 1.0) [8
]. Because a random classifier yielding the base measures 
equal (e.g., TP = FP = FN = TN = 50) also satisfies all these 

(1)

∀M
i∈{1,2},∃f∃M

r

1

∃Mr

2

f
(
M

c

1

,M
c

2

)

⇒ f
(
M

c

1

∗
,M

c

2

∗
)
= f

(
M

r

1

,M
r

2

)
.

(2)ACC = TNR + PREV ⋅ (TPR − TNR),

(3)ACC∗ = ACC = TNR∗ + PREV∗
⋅

(
TPR∗ − TNR∗

)
,

(4)ACC = NPV + BIAS ⋅ (PPV − NPV).

three equalities. The duals of column-geometry probabilistic 
error/loss measures depicted in Fig. 2c and d switch ground-
truth measures (P and N) to the prediction measures (OP and 
ON), see Appendix 2 for their equations. They are similar to 
(FPR* + FNR*)/2 = (FDR + FOR)/2 but not common in the 
literature.

Instrument Complement

Binary-classification performance metrics and some 
measures are normalized ratios having bounded inter-
vals, such as [0, 1] (also known as the unit interval) or 
[− 1, 1]. The complement of those instruments is defined 
below. For instance, TPR is a metric M, which has an 
interval [0, max(M) = 1], the complement of TPR is 
1 − TPR = 1 − (TP∕P) = (P − TP)∕P = FN∕P = FNR  . 
Likewise, INFORM is a metric M, which has an interval 
[min(M) =  − 1, max(M) = 1].

Definition 5 (M,Complement).

M is a binary-classification performance instrument 
where M ∶ X → ℝ . The complement of the M is M , where

The second condition is given for the sake of complete-
ness because there is no well-known instrument having zero 
and negative values (e.g., interval [− 1, 0]). Complements 
are useful.

• to simplify equations,
• to change the performance perspective (from a positive 

class perspective to a negative one (e.g., TPR to FNR or 
PPV to FDR), or

• to switch focus on correctness to both error types (I and 
II) (i.e. ACC  to MCR).

• Without any complements and duals practically observed 
in the literature, all probabilistic error/loss measures 
focus on classification errors (type I/II) or losses.

• As an example of the third condition in Definition 5,
• The complement of INFORM in [− 1, 1] is simply 

− INFORM,
• However, the complement of normalized INFORM in 

[0, 1] is 1 −  ((INFORM + 1)/2) = (2 − (TPR + TNR − 1 + 
1))/2 = (FPR + FNR)/2.

The former is not a common metric whereas the latter 
(mean false positive/negative rates or mean type I/II errors) 
is similar to the probabilistic error/loss measures interpreting 

M =

⎧
⎪⎨⎪⎩

max(M) −M, M in [0,max(M)]

min(M) −M,Min[min (M), 0]

−M,min (M) < 0 and max (M) > 0

.
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the errors for both classes (e.g., mean absolute error). Note 
that zero–one loss complement metrics (e.g., MCR, FPR, 
FNR, FDR, and FOR) along with probabilistic error/loss 
instruments are negatively oriented (i.e. negative perfor-
mance where zero is the best).

HC and HO entropy-based instruments measure the 
uncertainty associated with given distributions of PREV 
and BIAS, respectively, along with their corresponding 
complements (i.e. 1 − PREV and 1 − BIAS). In comparison 
to duality, reporting an instrument along with its comple-
ment does not provide extra information. This redundancy 
in performance reporting (i.e. reporting both a metric and its 
complement) is occasionally observed in the literature. Out 
of 51 surveyed studies reporting classification performance, 
16% have redundant metrics, namely TPR with FNR (14%), 
TNR with FPR (12%), and ACC  with MCR (2%).

Class Counterparts

Class-specific instruments have counterpart instruments that 
are defined per class (positive class only and negative class 
only). For example, TPR and TNR are class counterparts. 
The former is for positive classes and the latter is for nega-
tive classes. Likewise, FNR and FPR, the complements of 
TPR and TNR, are class counterparts. The other examples 
are PPV with NPV (and their complements, FDR with FOR) 
and LRP with LRN. Not all counterpart relations are com-
mon. For example, the counterpart of PREV (PREV = P/Sn) 
is NER (NER = N/Sn), which is not commonplace in the lit-
erature. However, the counterpart of BIAS (BIAS = OP/Sn) 

(i.e. ON/Sn) or the counterpart of F1 (i.e. 2TN/(2TN + FC)) 
is not used at all. Counterparts are also applicable in multi-
class performance evaluations above binary classification. 
Generic examples of n-ary classification are also provided 
in “Summary functions”.

Duali ty,  complementat ion,  and class  coun-
terparts together help to identify the character-
istics of performance instruments. For example, 
MCC =

√
TPR ⋅ TNR ⋅ PPV ⋅ NPV −

√
FNR ⋅ FPR ⋅ FDR ⋅ FOR 

in Eq.  (B.23) can be re-formulated as MCC =√
TPR ⋅ TNR ⋅ TPR

∗
⋅ TNR

∗ −
√
TPR ⋅ TNR ⋅ TPR

∗
⋅ TNR

∗ 

and MCC =
√∏

XTXR ⋅ TXR∗ −

�∏
XTXR ⋅ TXR∗ , which 

is easier to interpret and extendable to multi-class (X ∈ {‘P’, 
…, ‘N’}).

More Geometries: Dependencies, Levels, and High‑Level 
Dependency Forms

Performance instruments can be expressed in terms of others 
in numerous ways. For example, in addition to Eqs. (2)–(4), 
Eq. (5) reported by Powers that expresses ACC  in terms of 
BIAS/PREV and INFORM metrics can be transformed into 
Eq. (6) in terms of BIAS/PREV and MARK metrics [8].

(5)

ACC = 2(INFORM ⋅ (1 − PREV) ⋅ PREV + BIAS ⋅ PREV)

+ 1 − BIAS − PREV .

(6)
ACC = 2(MARK ⋅ (1 − BIAS) ⋅ BIAS + BIAS ⋅ PREV)

+ 1 − BIAS − PREV .

(a) A partial dependency graph showing non-redundant metrics only (i.e. without FPR, FNR, and MCR)

(b) Dependency for graphics-based metrics (c) Dependency for probabilistic error/loss measures

Fig. 3  Instrument dependencies graphs. The full-resolution graphs and the DOT (graph description language) files to produce them via Graphviz 
are provided online at https:// github. com/ gurol/ ptopi

https://github.com/gurol/ptopi
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However, such expression derivations (i.e. equivalent 
form) are exhaustive and might be confusing. Therefore, 
we suggest a leveling approach based on high-level depend-
encies among the existing instruments to simplify their 
summarization relationships and interdependencies. We 
prepared a dependency graph among binary classification 
instruments. Figure 3 shows partial views of the dependency 
graph. We use high-level equation forms (i.e. substituting 
instruments other than base level measures/metrics and 1st 
level measures) where possible to identify direct dependen-
cies. Otherwise, the dependencies are calculated based on 
the equations in canonical form. For example,

• TPR, TNR, PPV, and NPV metrics and their complements 
depend on canonical measures. Therefore, they are con-
sidered base metrics

• INFORM depends on TPR and TNR; MARK depends on 
PPV and NPV base metrics. Therefore, they are 1st level 
metrics.

• MCC =
√
INFORM ⋅MARK shows that MCC has direct 

dependencies on INFORM and MARK 1st level metrics 
at a high level. Therefore, MCC is a 2nd level metric.

Beyond the well-known ones, the literature rarely exam-
ines the instrument equations with different expressions 
like in Eqs. (2)–(6). Press, for example, found the equiva-
lent form of PPV and NPV by expressing them with TPR 

and TNR [73]. Sokolova et al. expressed INFORM and DP 
in terms of LRP and LRN [10]. The high-level dependency 
reveals another kind of redundancy observed in perfor-
mance evaluation publications (i.e. reporting a metric with 
its direct dependencies). For example, out of 51 surveyed 
studies reporting classification performance, 27% published 
F1 along with the two direct dependencies (the harmonic 
mean of TPR and PPV).

Upper‑Level Measures (the 2nd and 3rd Level Measures) 
and Metrics Leveling (the Base, 1st, and 2nd Level Metrics)

As a result of applying the leveling approach described 
above, measures have four levels and metrics have three 
levels, including base levels. The complete list of levels and 
corresponding instruments is listed in Appendix 1 in alpha-
betic order.

Summary functions

High-level metrics summarize the dependent metrics into a 
single figure, as listed in Table 4. In parametric instruments 
such as wACC  or Fβ (see Eqs. (B.18) and (B.21.1) in Appen-
dix 2), the summary function depending on two or more 
instruments can be adjusted according to the importance 
given to each dependent [37]. For example, wACC  puts more 
weight on one of the high-level dependent metrics TPR and 
TNR, as shown in Table 4.

Table 4  The instruments’ 
summary functions and their 
class counterparts or dual high-
level dependencies

The equations are given in Appendix 2
a Total of 31 probabilistic error instruments are reviewed. More details are provided in the online PToPI 
spreadsheet

Instrument Summary functions High-level dependencies

Column geometry Class counterparts (positive vs. nega-
tive)

INFORM Addition TPR TNR
BACC Arithmetic mean TPR TNR
G Geometric mean TPR TNR
wACC Weighted mean TPR TNR
Mixed geometry Duals (column vs. row)
nMI MI / Arithmetic/geometric means or 

minimum/maximum of
HC HO

MI / joint (HOC) – –
Fβ Weighted harmonic mean TPR PPV
MCC Geometric mean INFORM MARK
Probabilistic error instrumentsa

ME, MSE, RMSE, MdSE, SSE, nMSE (in five variants), MAE, MdAE, MxAE, GMAE, MRAE, MdRAE, 
GMRAE, RAE, RSE, MPE, MAPE, MdAPE, RMSPE, RMdSPE, sMAPE, nsMAPE, nsMdAPE, MASE, 
MdASE, RMSSE, and LogLoss

Summary functions
Normalized/Symmetric/Root/Geometric mean/Mean/Median/Max/Sum/Square(d)/Relative/Absolute/

Percentage/Scaled + ‘Error’ along with Logarithmic function for LogLoss
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High-level dependency and summary functions are key to 
understanding the properties of performance instruments. In 
information retrieval, for instance, the single metric properly 
summarizing dual TPR and PPV metrics is Fβ parametric 
metric (usually F1 where β = 1). Because the datasets avail-
able for information retrieval are extremely skewed (over 
99% of the documents are irrelevant), some metrics, espe-
cially ACC , are not appropriate.

Using harmonic mean in F1 as a summary function 
instead of simple arithmetic/geometric means suppresses the 
extreme performance values in cases where PPV is exceed-
ingly high (e.g., by returning all documents for a specific 
query) [74]. Note that β > 1 emphasizes PPV and type I error 
whereas 0 < β < 1 emphasizes TPR and type II error.

Leveling not only allows the researchers to distinguish 
similar instruments from a large number of instruments but 
also shows the dependencies among levels and their summa-
rization degree. For example, MCC depends on and summa-
rizes the 1st level metrics that depend on and summarize the 
base metrics. Table 5 summarizes complementation, duality, 
and class-counterpart concepts applicable to the reviewed 
performance instruments.

PToPI: An Exploratory Table 
for Binary‑Classification Performance 
Evaluation Instruments

We designed a compact exploratory table for a total of 
57 binary-classification performance evaluation instru-
ments. The table is the pictorial specification or blueprint 
of instruments from multiple perspectives covering all the 
proposed concepts that we described and formally defined 

in “Conclusion and discussion”. Figure 4 and online Fig. 
C.1 show its plain (simplified) and full view versions, 
respectively.

PToPI Design Methodology

The proposed exploratory table is designed with the follow-
ing methodology:

• Reviewing the literature to compile the instruments and 
related information such as alternative names and equa-
tions;

• Equations are converted into different forms where possi-
ble, such as canonical form (Definition 1) and high-level 
dependency form (see “More Geometries”);

• Measure and metric categories are identified by canonical 
form equations (via Definition 2);

• Geometry types are determined as “column”, “row”, or 
“mixed” (via Definition 3);

• A dependency graph is prepared to formulate the lev-
els and discover the similarities and dependencies (see 
dependency graph in Fig. 3);

• The determined levels and dependencies along with the 
geometry types are used to position and level the meas-
ures/metrics around base measures shown in a 2 × 2 con-
tingency table;

• Entropic instruments are noticeable by positioning them 
beneath or right of the base measures;

• After the layout is completed, the dual and complement 
of measures/metrics are determined (via Definitions 4 
and 5, respectively);

• Unique background colors are used to distinguish meas-
ures (grey) and metrics (gold) along with their levels 
(shades of grey or gold color);

Table 5  Summary of the 
concepts for the instruments 
with column/row geometry and 
suggested notation and naming 
for multi-class classification 
instruments (3-ary, 4-ary, …, 
n-ary classification)

Concept For measures For metrics

Complements Positive Negative Success Failure

PREV NER TPR FNR
TNR FPR
PPV FDR
NPV FOR
ACC MCR

Duals Column Row Column Row
PREV BIAS TPR PPV
HC HO TNR NPV

INFORM MARK
Class Counterparts Positive Negative Positive Negative For n-ary classification (e.g., class "X")

LRP LRN TPR TNR TXR (True X Rate)
FPR FNR FXR (False X Rate)
PPV NPV XPV (X Predictive Value)
FDR FOR FPXR (False Predictive X Rate)
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• Geometry is depicted by dark and pale (greyed-out) lines 
(pale bottom/top edges for column geometry, pale left/
right edges for row geometry, and all dark for mixed 
geometry, see Table 6);

• Measures and metrics are separately numbered according 
to levels and dependencies from the innermost (meas-
ures are underlined). Within each level, the numbers are 
assigned from column to row and mixed geometry and 
from positive to negative class dependencies. Graphical-
based metrics and probabilistic instruments are numbered 
separately with ‘g’ and ‘p’ prefixes, respectively;

• Instrument abbreviations, names, and alternative names 
(for common instruments) are displayed. The metrics in 

the [− 1, 1] interval is indicated in name via a ‘±’ suffix 
(e.g., ‘MCC ± ’).

• The complement pairs are displayed only for the instru-
ment indicating classification errors (e.g., PPV  is shown 
in FDR where 0 is the best performance value, but FDR 
is not shown in PPV);

• Dual instrument pairs are stated (e.g., INFORM* is shown 
in MARK and vice versa);

For the full view:

• The error types, if exist, are indicated (type I: I, type II: 
II, and type I/II errors: I/II);

Fig. 4  Plain view of PToPI (see online Fig. C.1 for the full view)
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• Instrument value intervals (other than [0, 1]) and whether 
an instrument yields not-a-number (i.e. 0/0) are calcu-
lated and indicated by “NaN” (i.e., instruments yield not-
a-number in extreme cases, e.g., on datasets without any 
positive samples where P = 0); and

• Equations are displayed per instrument.

Note that Appendix 2 also suggests corrections for com-
mon performance metrics to avoid indeterminacies.)

Interpretation of PToPI Visual Design Elements

Table 6 lists the visual design elements employed in PToPI 
to represent the properties of individual instruments or 
instrument categories. The full view also presents abbre-
viated names, full names, alternative names, and particu-
lar attributes of measures and metrics such as error types, 
whether having not-a-number value (i.e. no 0/0), intervals 
that are different from [0, 1].

Recall that the names of measures with integer values are 
written in bold, as shown in Table 3. Measures are numbered 
with underlined text. The instruments above or below the 
confusion matrix frame are the column-geometry type with 
only these dependencies: base measures, Sn, P, and/or N.

In contrast, the ones located on the left or right of the 
confusion matrix are the row-geometry type with only base 
measures and/or Sn but with OP, and/or ON. F0.5 empha-
sizing TPR is positioned closer to TPR and F2, emphasizing 
PPV is placed closer to PPV.

Demonstration of PToPI Usage

PToPI enables standardized specifications of a large num-
ber of performance evaluation instruments, provides termi-
nological relations, and avoids the uninformed choice of a 
metric. Knowing the limitations of the instruments elimi-
nates unnecessary performance reporting and allows for the 
selection of the most appropriate instruments according to 
specific requirements. The table is intended to be a single 
comprehensive reference that will be updated upon new 
instrument proposals. The practical use of PToPI can be 
described in two pillars:

• Overall instrument analysis (addressing RQ.2): Seeing 
and comparing the relationships, differences, and simi-
larities of all the instruments.

• The proper metric choice for performance reporting and 
comparison (addressing RQ.3): Deciding which instru-
ments are suitable for establishing classification models, 
comparing different classifiers, and reporting classifica-
tion performances.

Overall Instrument Analysis

The exploratory table shows the similarities of the perfor-
mance instruments. For instance, comparing INFORM and 
MARK dual metrics in the 1st level, three additional col-
umn-geometry metrics are shown near INFORM, namely 
BACC , wACC , and G. However, the duals of those additional 
metrics corresponding to row geometry are not present near 
MARK. For example, there is no metric taking the arithme-
tic mean of PPV and NPV like BACC  (arithmetic mean of 

Table 6  Descriptions of the visual design elements used in PToPI
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TPR = PPV* and TNR = NPV*). No metric in row geometry 
is found that corresponds to G taking the geometric mean 
of the dependents (i.e. geometric mean of PPV and NPV). 
Probabilistic error/loss measures are located near INFORM, 
because they are similar to the normalized complement of 
INFORM (i.e. (FPR + FNR)/2) as described in “Instrument 
complement”. The reason for the lack of dual metrics in row 
geometry is attributed to the fact that performance metrics 
based on the prediction of a classifier (i.e. depending on 
OP and ON) are not as significant as the ones based on the 
ground truth (i.e. depending on P and N). The duals of LRP, 
LRN, and OR column-type measures are also missing due 
to the same reason. We revealed such findings that were not 
addressed in the literature after seeing the big picture via 
the developed table.

The Proper Metric Choice for Performance Reporting 
and Comparison

The following performance evaluation examples are com-
piled from different domains in the recent literature to show 
the practical assistance of PToPI in selecting suitable met-
rics in performance comparison and reporting. Note that we 
used those papers to reflect performance instrument choices 
in practical in various problem domains in the literature. 
Therefore, they are selected for demonstration purposes. In 
the examples below, we present different conventions across 
different domains.

• Example 1: F1 is frequently used as a single metric in 
many domains, especially in information retrieval. Refer-
ring to PToPI, we can see that F1 is the harmonic mean 
of TPR and PPV, which then depends on positive-class-
only measures (TP, P, and OP). While using F1 could be 
acceptable because of the domain requirements focusing 
on positive performance (i.e. excluding the negative class 
counterparts, namely TNR and NPV), it would be better 
to report a supporting metric with F1 to distinguish the 
negative class performance. The best alternative is TNR 
or NPV which is shown near TPR and PPV. Briefly, the 
primary metric (i.e. used as a single figure in a perfor-
mance comparison and ranking of different classifiers) is 
F1 and the supporting metric (i.e. additional metrics used 
in performance reporting to indicate other perspectives) 
is TNR in this case. A classifier with higher performance 
in terms of a primary metric could have a lower perfor-
mance in terms of supporting metrics.

• Example 2: Another common approach in performance 
reporting, as shown in Table 2c, is reporting F1 along 
with its direct dependencies, namely TPR and PPV 
(e.g., in predicting hospital admissions from emergency 
department medical records [75]). Following the same 
approach above and addressing the negative class per-

formance, F1 can be reported as the primary metric. 
Furthermore, TNR and one of the TPR and PPV direct 
dependent metrics can be published as supporting met-
rics. In the medical example given, PPV can be selected 
as a supporting metric along with F1 primary metric 
because PPV values are less than TPR. Thus, the lower 
PPV performances are also disclosed to the readers.

• Example 3: Some domains prioritize false classifications 
(either or both FPR and FNR). For example, an intru-
sion detection system focuses on and reports FPR (type 
I error) and then FNR (type II error) along with TPR and 
ACC  [76]. Because, high false positives can be annoy-
ing for end-users, in the example given, reporting TPR, 
which is the complement of FNR, is redundant. Report-
ing a metric (INFORM, BACC , and G groups in PToPI) 
above FPR and FNR is also redundant unless focusing 
on both error types. As an alternative to reporting ACC , 
a mixed geometry metric above FPR and FNR level such 
as CK or MCC can be used as a primary metric besides 
supporting FPR and FNR metrics (e.g., reporting three 
metrics: MCC, FPR, FNR instead of ACC , TPR, FPR, 
FNR).

• Example 4: ad hoc increasing reported metrics does not 
necessarily guarantee the revelation of the superiority of 
a classification method. Reporting an excessive number 
of metrics might make comprehension and interpretation 
of the performance results harder. For example, an e-mail 
spam detection study reports performance via three base 
metrics, namely ACC , TPR, and PPV  [77]. Besides, 
TNR, NPV, and G metrics are also published in detailed 
performance tables. Going up in one level in PToPI per 
reported column and row base metrics, INFORM could 
be reported instead of TPR and TNR, and MARK (as the 
dual of INFORM) could be reported instead of PPV and 
NPV. There is no need to report G because it is similar 
to INFORM. Reporting MCC is also appropriate by not 
only summarizing INFORM and MARK dependents but 
also including FP and FN. Hence, three metrics (MCC as 
the primary metric and INFORM and MARK as the sup-
porting metrics) are sufficient for this example of perfor-
mance comparison and reporting instead of six metrics.

• Example 5: Another performance reporting example that 
classifies “code smells” (issues in software codes poten-
tially causing error or failure) reports ten instruments: 
ACC , TPR, TNR, FPR, FNR, PPV, TPR, F1, PREV, 
and NER. As shown in PToPI, three instruments are 
redundant: FPR, FNR, and NER. From a class-balanced 
performance view (covering both positive and negative 
classes), CK or MCC can be used instead of ACC  and F1 
along with supporting INFORM. PREV should also be 
reported as a supporting instrument indicating a class 
imbalance in datasets. Hence, four instruments (either 
CK, F1, and INFORM or MCC, F1, and INFORM along 
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with PREV) can be reported instead of ten. Supporting 
instruments can be further taken into account where ACC  
and F1 yield the maximum performance (1.000).

• Example 6: The last example extends the reporting of 
Example 2 (F1 with TPR and PPV) with a probabilis-
tic error/loss measure (LogLoss) where five ML models 
classify SARS-CoV-2 (COVID-19) via the early-stage 
symptoms  [78]. Because both LogLoss and TPR are 
column-geometry instruments, the other direct depend-
ent of F1, namely PPV with row geometry, can be dis-
tinguished. Hence, three instruments, namely F1 as the 
primary metric along with LogLoss and PPV supporting 
instruments, could be reported instead of four instru-
ments.

Above examples showed that researchers need assistance 
on metrics selection. PToPI can provide a visual guidance 
on selecting proper and sufficient metric(s) in classifica-
tion performance evaluation and performance reporting 
in the literature. Specifically;

• Avoiding redundant metric reporting via dual metrics 
and/or direct dependencies (for example, publishing F1 
with or without TPR or PPV instead of F1 with TPR and 
PPV)

• Avoiding redundant metric reporting via false classifica-
tions (for example, publishing TPR or FNR instead of 
TPR and FNR)

• Reporting most representative metric instead of several 
similar metrics (for example, publishing MCC instead of 
INFORM, G, and/or BACC )

Conclusion and Discussion

This study presents a multi-perspective analysis in the lit-
erature to review a large number of binary-classification 
performance evaluation instruments (29 measures and 28 
metrics, a total of 57 instruments or 69 instruments, includ-
ing variant and parametric ones) in detail. It initially pro-
poses a holistic set of novel formally defined concepts to 
identify the intrinsic properties of any performance instru-
ment and to reveal the relationship among the instruments. 
Second, it introduces a new exploratory table to represent 
all the instruments, their properties, and their relationships. 
The study covered the graphical-based performance met-
rics (AUCROC and AUCPR), the instruments based on 
the probabilistic interpretation of classification error and 
entropy-based instruments as well as the instruments derived 
from the confusion matrix. To present all the instrument 
alternatives, we included and analyzed the metrics that have 

been recently recommended by the literature, such as CK, G, 
MCC, or nMI [52, 79–81].

The paper aimed to shed light on the properties of per-
formance instruments, which have been in use in different 
domains, along with their differences and similarities. The 
instruments are the means of comparing the performances 
of different machine learning algorithms applied to differ-
ent datasets [82]. Considering a few research in the litera-
ture reviewing a small number of instruments by focusing 
on a few issues such as the class imbalance effect causing 
biased performance metric values [16], this study is also 
the first systematic, self-consistent, and solid attempt in the 
literature to bring out standardization in describing perfor-
mance instruments via formally defined novel concepts and 
to clarify overall terminology.

Although the analysis of metric behaviors under dataset 
irregularities such as class imbalance or label ambiguity is 
out of scope of this paper, we provide additional insights 
here by reviewing the PToPI with respect to the results of 
a comprehensive benchmark of performance metrics called 
BenchMetrics [30]. BenchMetrics analyzed and compared 
the robustness of fifteen binary classification performance 
metrics based on eighteen criteria including class imbal-
ance, which revealed that MCC, BACC, INFORM, CK, and 
MARK are the most robust five metrics. When we evaluate 
those robust metrics and the findings of BenchMetrics with 
PToPI perspective, we can draw the following inferences 
and relations:

• The most robust metric MCC is also the only 2nd (the 
highest) level metric in PToPI (MCC is distinctively 
located at the top left of PToPI).

• The remaining most robust metrics, namely BACC, 
INFORM, CK, and MARK are also the 1st level metrics 
in PToPI.

• The least robust metrics (e.g., TNR, TPR, NPV, and 
PPV) are the base (the lowest) level metrics in PToPI.

• Above three findings suggest that the metrics in higher 
level in PToPI are more robust in BenchMetrics (see 
Table 10 in BenchMetrics [30]) than the ones in lower 
level.

• Considering class imbalance effect on metrics, Bench-
Metrics provide two benchmarking criteria: Meta-met-
ric-2 Class imbalance uncorrelation (UIMBucor) and 
class imbalance uncorrelation in stratified random and 
random synthetic classifiers. For the former, BenchMet-
rics measured that PPV, NPV, F1, nMI, CK, and G are 
correlated with class imbalance in some degree indicat-
ing a caution to use in class imbalanced datasets. For the 
later, BenchMetrics identifies that TPR, TNR, PPV, NPV, 
ACC, G, and F1 (base and 1st level metrics in PToPI) 
are directly affected by class imbalance (see Fig. 6 in 
BenchMetrics [30]).
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The inferences and relations above suggests a future 
work for us to indicate or put a reference of the core find-
ings of BenchMetrics in each performance metric (such as 
class imbalance sensitivity or robustness rank) so that user 
will be aware of those robustness issues. As a future work, 
the potential relations will be investigated between the level 
positioning of metrics in PToPI and the robustness rank of 
the metrics found in BenchMetrics.

Generally, the instruments used in established domains 
such as information retrieval are well founded and have 
become de facto standards. However, in emerging domains 
or interdisciplinary topics, choosing the right metrics for 
performance evaluation, comparison, and reporting might 
be challenging. We have initially shown that the variation 
in reported instruments is quite high in the mobile-malware 
classification problem domain via a systematic literature 
analysis. The selected metrics and the combination of met-
rics reported per study are highly diverse within a specific 
domain. The researchers reported one to seven metrics 
among the limited customary alternatives (i.e. TPR, FPR, 
ACC , PPV, and F1, from the most to the least reported one). 
In this study, we specifically addressed three research ques-
tions explained in “Research questions”:

RQ.1. How can we differentiate performance instruments 
semantically and formally?

Studying whether all the performance instruments 
derived from a confusion matrix are the same:

• We semantically and formally differentiated ‘perfor-
mance measures’ and ‘performance metrics’ that were 
often used interchangeably in the literature.

• We further examined that the proposed categorization 
is consistent with ‘measure’ and ‘metric’ definitions in 
mathematics.

The new categorization allows us to distinguish, for 
example, ACC  or F1 as a ‘metric’ whereas PREV and BIAS 
as a ‘measure’ reflecting class imbalance in ground-truth and 
prediction, respectively. Such categorization will avoid the 
possible terminology confusion around ‘performance meas-
ures’ and ‘performance metrics’, which is widely observed in 
the literature. Hence, this study has made a clear distinction 
between performance ‘measures’ and ‘metrics’ in a seman-
tic sense supported by a formal definition. We recommend 
researchers use performance ‘instruments’ to refer to them 
generically. The suggested terms and notation summarized 
in Tables 3 and 5 are more explicit and extendible to multi-
class classification (e.g., in ternary classification: TXR for 
class ‘X’, TYR  for class ‘Y’, and TZR for class ‘Z’). These 
definitions and terminological clarification will establish 
a common performance evaluation language among the 
researchers.

Considering the terms referring to individual instruments, 
we observe that alternative terms are still emerging, particu-
larly in new domains. For instance, in remote sensing, the 
metrics that are referred to as ‘producer’s accuracy’, ‘user’s 
accuracy’, ‘errors of commission’, and ‘errors of omission’ 
are the one-versus-all form of TPR, PPV, FNR, and FDR 
where ‘P’ is the class of interest and ‘N’ is for all the other 
classes.

RQ.2 How can we formally identify the properties of 
binary-class performance instruments and their similarities, 
redundancies, and dependencies?

Addressing the second research question, we proposed a 
formal way of expressing performance instruments, which 
shows their intrinsic properties and any relationship between 
them. The contributions can be expressed in the following 
headings:

• Axioms: Four axioms, namely “atomicity”, “atomic 
expression”, “basic summary”, and “performance instru-
ment expression,” are defined in “Formal definitions and 
organization of performance evaluation instruments” to 
provide a basis for our multi-perspective analysis.

• Canonical form: Because there are numerous ways of 
expressing binary-performance instruments, which can 
be exhaustive, we proposed and identified a canonical 
form to represent the equations of the instruments.

• Diagonal/off-diagonal measures: We also made use of 
TC (the ratio of total true or correct classifications) and 
FC (the proportion of overall false or incorrect classifi-
cations) measures (i.e. the sum of the diagonal and off-
diagonal elements of the confusion matrix) to simplify 
instrument equations and enable formal analysis.

• Leveling, dependency, and redundancy: A leveling 
scheme for each instrument category was also developed. 
The scheme groups the measures and metrics into the 
base, the first, or higher levels. It was shown that it is 
possible to systematically derive instruments on top of 
each other using the proposed leveling scheme. Hence, 
any dependency between them could be explicit. For 
instance, knowing that MCC has direct dependencies 
on INFORM and MARK and then INFORM has direct 
dependencies on TPR and TNR might help researchers to 
avoid using dependent measures in performance report-
ing redundantly.

• Summary functions: The instruments were also investi-
gated in terms of summary functions such as arithme-
tic, geometric, or harmonic means, where the effects of 
extreme performance values can be either suppressed or 
not, due to the inherent calculations.

• Geometry, duality, complementation, and class-counter-
part relations concepts: We defined a geometry concept 
(column, row, and mixed geometries) for performance 
instruments. This concept, along with the canonical 
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form, enabled us to establish duality, complementa-
tion, and class-counterpart relations of the instruments, 
which simplified the interpretation and expressions of 
the instruments. Besides, we achieved to show various 
mappings between the instruments. For instance, TPR 
(the ratio of TP to P) and its dual PPV (the ratio of TP 
to OP) measure the performance of the ground-truth 
class and prediction class, respectively. Redundancy in 
performance reporting such as TPR and FNR together 
(TPR = 1 – FNR) can also be spotted using complementa-
tion concepts.

• Parametric instruments and instrument variants: This 
study also highlights subtypes of instruments such as 
parametric metrics (Fβ with β parameter and wACC  with 
w parameter) and metric variants (nMI with arithmetic, 
geometric, min, max, and joint summary functions).

• The role of class imbalance in performance evaluation: 
This study has explicitly integrated the class imbalance 
that is the most addressed issue in the literature into per-
formance evaluation as a critical ‘performance measure’ 
for the first time. It also brings different forms of class 
imbalance together, namely PREV, SKEW, IMB, and NIR 
as well as presents BIAS as a dual measure of PREV.

RQ.3 How can we effectively select instruments in per-
formance reporting and publication?

Considering the third research question, we presented a 
practical solution to increase the effectiveness of the per-
formance evaluation process for the researchers. Because 
the comprehension of the proposed concepts and identify-
ing them for all the available instruments might be compli-
cated, we provided a new exploratory table for performance 
evaluation instruments named PToPI (Periodic Table of Per-
formance Instruments), which is like the periodic table of 
elements, covering 29 measures and 28 metrics (total of 69 
instruments including parametric ones and variants).

The exploratory table was developed by a formulated 
design methodology described in “PToPI design methodol-
ogy” represents the multi-dimensional concepts in a single 
picture. Besides visualizing the proposed concepts, PToPI 
can help researchers to select the right ones for performance 
reporting among an ultimate set of instruments. In “Inter-
pretation of PToPI visual design elements”, we also dem-
onstrated the practical usage via the example studies from 
various domains in the literature.

As people are familiar with the periodic table of elements 
that conveys various information about the elements, our 
table provided online at https:// github. com/ gurol/ ptopi can 
also be a powerful teaching and decision-making tool for 
establishing classification models, comparing different clas-
sifiers, and reporting classification performances.

The proposed concepts not only increase comprehensibil-
ity but also enable the right choice among many instruments 

by allowing clear identification of relationships, differences, 
and similarities between instruments. Qualifying perfor-
mance instruments in a solid manner will avoid confusion 
and prevent unnecessary or excessive reporting of perfor-
mance instruments observed in the literature. Proposing a 
conceptualization not only provides a better understanding 
of the fundamental aspects but also reveals the intrinsic char-
acteristics of the instruments.

To the best of our knowledge, this is the first time that 
such a wide range of instruments have been reviewed in 
this scope. As a growing body of literature conducts iso-
lated reviews and uses different types of instruments (either 
graphical [83, 84], probabilistic [55], or entropic [51]) and 
researchers use binary-classification instruments in multi-
class classification [31, 38, 39] as well as regression and 
time-series forecasting applications [85], such a holistic 
identification and representation of those instruments is 
critical to see and analyze the whole as well as to adapt or 
transfer the knowledge and practices into those applications.

We acknowledge a limitation in our research for a case 
study. Although a single case study was used to demonstrate 
the problems of alternating and redundant instruments in 
performance reporting, they can still be observed in other 
domains. For example, the studies regarding “intrusion clas-
sification” in network security (Example 3), “e-mail spam 
classification” in cyber security (Example 4), and “soft-
ware design defects classification” (Example 5) covered in 
“Demonstration of PToPI usage” were shown to have similar 
issues. All these findings and observations suggest that the 
issues are domain-independent and the results can be gen-
eralized. Our research will serve as a base for future studies 
exploring such issues in other domains.

In the future, the exploratory table can also be systemati-
cally evaluated in terms of usability by researchers. Besides, 
the validity or extendibility of proposed concepts and the 
table in multi-class performance evaluation instruments will 
be further explored and studied. The proposed approach and 
contributions summarized above are expected to have both 
theoretical and practical implications for further ML clas-
sification studies and researchers working with classification 
problems. Not only would they facilitate the selection of 
performance metrics for a classification problem domain, but 
also they could aid disciplines, particularly the ones that are 
emerging and interdisciplinary, to adapt proper instruments 
for performance evaluation.

Besides, the instruments developed independently in 
different domains are unified to enable knowledge trans-
fer among researchers from different disciplines through 
an exploratory table called PToPI. Having analyzed and 
described the instruments from multi perspectives also pro-
vides a comprehensive insight into existing instruments for 
the researchers who attempt to propose a new instrument as 
an improved alternative. It is expected that this study and the 

https://github.com/gurol/ptopi
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PToPI exploratory table provided online will be a familiar 
complete reference and an efficient tool for researchers who 
evaluate, compare, and report their classifiers’ performances 
and contribute toward systematic classification performance 
evaluation and publication.

Appendix 1: Instrument Abbreviation 
and Name List

The list of performance instrument abbreviations (symbols) 
in alphabetic order per level per instrument category and 
their names and alternative names are given below. We sug-
gest using the first full name (not the one in square braces) 
to standardize the terminology in the classification context.

PERFORMANCE MEASURES (29 measures)
(Canonicals: 11 measures: base measures and 1st level 

measures).
Base Measures (BM) (4 measures):
FN: False Negatives, FP: False Positives, TN: True Neg-

atives, TP: True Positives.
1st Level Measures (7 measures):
N: Negatives, P: Positives, ON: Outcome Negatives, OP: 

Outcome Positives,
FC: False Classification, TC: True Classification, Sn: 

Sample Size.
2nd Level Measures (11 measures):
BIAS: Bias, CKc: Cohen's Kappa Chance, DET: 

Determinant,
DPR: D Prime, IMB: (Class) Imbalance, LRN: Negative 

Likelihood Ratio, LRP: Positive Likelihood Ratio, NER: 
Null Error Rate, NIR: No Information Rate (non-information 
rate), PREV: Prevalence, SKEW: (Class) Skew.

Probabilistic error/loss measures (2 measures):
LogLoss (binary cross-entropy), MRAE (MdRAE / 

GMRAE): Mean (Median/Geometric Mean) Relative Abso-
lute Error.

3rd Level Measures (5 measures):
DP: Discriminant Power, HC: Class Entropy, HO: Out-

come Entropy, LIFT: Lift, OR: Odds Ratio.
PERFORMANCE METRICS (28 metrics)
Base Metrics (14 metrics):
ACC : Accuracy (efficiency, rand index), CRR : (Correct) 

Rejection Rate, DR: Detection Rate, FDR: False Discov-
ery Rate, FNR: False Negative Rate (miss rate), FOR: False 
Omission Rate (imprecision), FPR: False Positive Rate (fall-
out), HOC: Joint Entropy, MCR: Misclassification Rate, 
Zero–One Loss (normalized), MI: Mutual Information, NPV: 
Negative Predictive Value, PPV: Positive Predictive Value 
(precision, confidence), TNR: True Negative Rate (inverse 
recall, specificity), TPR: True Positive Rate (recall, sensitiv-
ity, hit rate, recognition rate).

1st Level Metrics (13 metrics):
Confusion-matrix derived metrics (8 metrics): BACC : 

Balanced Accuracy (strength), CK: Cohen's Kappa (Heidke 
skill score, quality index), F1: F metric (F-score, F-measure, 
positive specific agreement), (Fm: F-metrics for all weights, 
F2, F0.5, and Fβ: F metric with weight 2, 0.5 and β), G: 
G metric (G-mean, Fowlkes-Mallows index), INFORM: 
Informedness (Youden’s index, delta P', Peirce skill score), 
MARK: Markedness (delta P, Clayton skill score, predic-
tive summary index), nMI: Normalized Mutual Information, 
wACC : Weighted Accuracy.

Graphical metrics (2 metrics): AUCROC: Area-Under-
ROC-Curve (ROC: Receiver Operating Curve) (GINI), 
AUCPR: Area-Under-Precision–Recall Curve.

Probabilistic error/loss measures (3 metrics): MSE: Mean 
Squared Error (Brier score), MAE/MdAE/MxAE Mean/
Median/Maximum Absolute Error, RMSE: Root Mean 
Square Error, nsMAPE: Normalized Symmetric Mean Abso-
lute Percentage Error.

2nd Level Metric (1 metric):
MCC: Matthews Correlation Coefficient (Phi correlation 

coefficient, Cohen’s index, Yule phi).
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Appendix 3: (Online) PToPI: Periodic Table 
of Performance Instruments (Full View)

The proposed binary-classification performance instruments 
exploratory table for a total of 57 performance instruments 
is provided online at https:// github. com/ gurol/ ptopi as in two 
files: PToPI.xlsx spreadsheet file and ‘Fig. C.1.png’ high-
resolution image file). The full view (Fig. C.1) presents all 
the information such as canonical or high-level dependency 
equations. See the legend in Table 6 for the design elements 
used in PToPI.

Appendix 4: Case Study (Performance 
Evaluation in Android Mobile‑Malware 
Classification) Selection Methodology

The case study described in “Case study: performance evalu-
ation in android mobile-malware classification” surveys 78 
academic studies about Android malware classification from 
2012 to 2018. The references are given in online Table E.1. 
Additional to 35 symposia, conference, and journal articles 
published that had already been reviewed by us, 43 articles 
were included using the following methodology:

Selecting the relevant journal articles by searching the 
IEEE academic database with having "((Android and mal-
ware) and (accuracy or precision or "True Positive" or 
"False Positive") and (Classification OR Detection))" words 
in the articles’ title, abstract, or body on 27 March 2018.

Selecting the relevant conference/journal articles by 
searching Google Scholar by matching the same keywords 
above and reviewing the first ten related articles per year 
from 2012 to 2018 in May 2018, excluding the patents.

Among the relevant surveyed studies, all the articles were 
included in performance evaluation terminology findings 
where available. For other statistics, only the related studies 
were included, as specified in Appendix 5.

Appendix 5: (Online) References 
of the Surveyed Studies and the Detailed 
Results of the Case Study in “Case study: 
performance evaluation in android 
mobile‑malware classification”.

The detailed data and results are provided online at https:// 
doi. org/ 10. 17632/ 5c442 vbjzg.3 via the Mendeley Data 
platform. Besides, the online Table E.1, which is provided 
at (AppendixE_Table_E1.pdf) at https:// www. github. com/ 
gurol/ ptopi, lists the references of the surveyed studies 
selected by the methodology described in Appendix 4 above.
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