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Abstract
Urban traffic is a system always prone to overload, often approaching breakdown during rush hour times. Well-adjusted 
modifications of traffic policies, with appropriate interventions, promise potential improvements by inducing change in both 
individual as well as global system behaviour. However, truly effective measures are hard to identify, and testing in vivo is at 
least expensive and often hardly feasible. Computer-based simulations have successfully been applied for studying effects of 
policies, and multi-agent systems are accepted tools for that purpose as they provide means to model individual behaviour. 
These simulations have primarily studied effects of policies by measuring performance indicators on social benefit, while 
effects on individuals are hardly considered. However, successful implementation of policies hinges on whether they are 
accepted by the common public. Thus, effects on individuals cannot be neglected. Evaluating effects on individuals requires 
a more detailed modelling that is able to capture individual preferences as determining factors of agent decisions. In this 
paper, we present a simulation framework that focuses on modelling of individuals and thus allows evaluation of effects of 
policies on both the individual as well as global system behaviour. We use semantic technology (OWL ontologies and SWRL 
rules) to model preferences and knowledge of agents in our simulation. Using AGADE Traffic simulator, we demonstrate 
modelling and simulation for a mobility scenario and discuss observed results.

Keywords Traffic simulation · Policy assessment · Agent modelling · Agent knowledge

Introduction

A well-functioning transport system is an indispensable pre-
requisite for economic prosperity and development. With the 
rapid increase in economic output and world population, the 
need for individual mobility is also growing to an unprec-
edented extent. There is an increasing demand for living 
and office space in urban areas, however, available space 
and resources are limited [1]. Therefore, the majority of the 
urban population has moved into the surrounding area, and 
consequently causes higher traffic volume due to increasing 
commuter flows [2]. The repercussions for urban traffic are 
evident. Current demand for flexible and individual mobil-
ity has exceeded the capacity limits of available infrastruc-
ture. To cope with these challenges, a fundamental change 
is required in the design of urban mobility.

Policy making has a wide range of measures that dif-
fer in the required time and cost of implementation. For 
example, expansion or reconstruction of infrastructure is 
a highly expensive measure that can only be implemented 
across a longer period of time. The implementation of such 
a measure typically requires extensive modifications of the 
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spatial territory, which causes considerable damage to the 
local environment. This puts infrastructure projects at risk of 
running into tedious debates before even starting with their 
implementation, and thus prevents them from dealing with 
the original issue at hand. The A49 motorway expansion in 
Germany [3] is an example of how this type of project is 
often slowed down due to public opposition. Consequently, 
smaller projects with less intrusive interventions lower the 
risk towards public opposition, and can therefore have an 
immediate impact. For example, private navigation or intel-
ligent transportation systems (ITS) that are given access to 
real-time information on traffic can help to evenly redistrib-
ute travellers on alternative routes to provide relief to road 
sections that are typically congested. Traffic planners are 
already working on alternative strategies that exploit state 
of the art technology [4], but need more elaborate tools for 
working out effects of potential interventions. In particular, 
tools typically measure effectiveness and efficiency of poli-
cies using performance indicators on social benefit, but are 
unable to measure effects on individuals. However, effects on 
individuals are the primary cause of public opposition which 
is why they cannot be neglected. To develop policies that are 
able to deal with the pressing problems in transportation, it 
is important to understand the underlying mechanisms that 
have led to the current traffic situation. Computer-based 
simulations are an effective instrument for analysing com-
plex processes such as traffic patterns and social systems. 
Simulations can show the eventual real effects of alternative 
conditions and courses of action [5]. Macroscopic simula-
tions are quite common in this field, and the advantage of 
macroscopic models are normally its fast execution speed. 
However, the simulation of microscopic models can offer 
more insight as they typically model interactions between 
individual travellers. This involves investigating traffic as 
an emergent phenomenon, rather than a problem that can be 
modelled from a global perspective. Thus, higher-level sys-
tem properties emerge from the interactions of lower-level 
subsystems (e.g. individuals with personal objectives and 
autonomous behaviour) [6] which makes the application of 
agent models particularly suitable.

This paper is an extension of [7] in which we first pre-
sented our simulation framework. We demonstrate how 
using semantic technology individuals and their individual 
preferences can be modelled, and thus establish the ground-
work for measuring individual utility. In this paper, we 
further elaborate on how our proposed solution improves 
modelling of individuals and give detailed information 
about the technical implementation. We also provide addi-
tional experimentation which demonstrates how effects of 
interventions can be examined in our simulation. Note that 
with this publication we do not aim at presenting a validated 
simulation model but to demonstrate how our approach can 
be used to model and simulate what-if scenarios to measure 

effects of interventions in our simulation. In particular, we 
focus on modelling scenarios in which it is possible to inves-
tigate assumptions about individual behaviour and how this 
relates to attitude of individual agents. Attitudes are mod-
elled as preferences and domain knowledge in ontologies. 
We demonstrate how our approach allows preferences to 
be computed from real survey data. In our experiments, 
we then focus on showing how our simulation can respond 
appropriately by producing predicted changes in behaviour 
for different input settings. Based on these objectives, the 
paper is structured as follows: In “Related Work” we give an 
overview of available traffic simulators and discuss current 
state of implementation for the modelling of individuals. 
We then describe in “Method” the theoretic concepts of our 
modelling, and expand on the technical implementation of 
our agent structure. We use semantic technology to model 
preferences and knowledge of individual traveller agents, 
and elaborate on how the proposed solution improves model-
ling of individuals for evaluating effects of traffic policies. 
In “Proof-of-Concept”, we demonstrate a simulation for a 
mobility scenario using the AGADE Traffic simulator by 
extending our simulation model from [7] and have a look 
at changes in observed results. Finally, in “Conclusion and 
Future Work” we reflect on key findings of our work and 
give an insight into further research.

Related Work

Current research on traffic simulation has shown a growing 
interest in the application of multi-agent models. They are 
implementations of Decentralised Artificial Intelligence [8], 
and can be used to formally analyse interactions in complex 
dynamic systems. A key distinction of multi-agent models 
to other types of simulation models, e.g. cellular automata, 
is their focus on modelling individuals with autonomous 
and goal-driven behaviour [9]. Over the years, a broad range 
of agent-based traffic simulators has been developed that 
each focus on different aspects of the transportation system. 
In [10] we provide a systematic literature review of avail-
able traffic simulators and discuss implemented features for 
modelling individuals. In essence, implemented features for 
modelling individuals may vary significantly depending on 
the area of application and the simulated level of detail. For 
example, modelled aspects of individual behaviour differ 
in the considered time perspective. Long-term aspects may 
include decisions about residency, workplace or ownership 
of vehicles whereas short-term aspects model movements 
on a micro scale such as spontaneous interactions, lane 
changing, or acceleration and braking. In between, there 
are mid-term aspects that deal with prejourney decisions 
such as route or mode choice. Thus, individual behaviour 
is a broad term that encompasses various modelling aspects 
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(see Figure 1), and implementation of features in simulators 
for modelling individuals needs to focus depending on the 
research objective. As research objectives require very spe-
cific implementations, researchers typically need to adjust 
and extend details of individual behaviour. However, this 
type of customisation can be very time-consuming and usu-
ally requires a deep understanding of the underlying sys-
tem architecture. As a result, [11] have discussed that in 
many cases researchers have favoured creating a new model 
from scratch rather than building on an existing model. 
This shows that there is a lack of appropriate customisation 
options which complicates reuse of agents across different 
scenarios.

In this paper, we focus on modelling individual mid- and 
short-term behaviour. ITSUMO [12], MATISSE [13] and 
SimMobility [14] are examples of agent-based simulators 
that can be used for this type of modelling. Implemented 
features on modelling individuals in these simulators include 
for example spontaneous replanning during the journey 
[12–14], divergent driving behaviour due to distraction [13], 
or day-to-day learning [14]. A detailed discussion of features 
of state of the art traffic simulators can be found in [10]. 
To measure the effects of interventions on individuals, it 
is crucial to capture individual preferences as determining 
factors of agent decisions. There are only a few approaches 
in the field of traffic simulation that even consider modelling 
of individual preferences as part of agent behaviour [15–17]. 
Developers have mostly avoided detailed modelling of indi-
vidual preferences due to limited computing capacity [18]. 
However, [16] have demonstrated how neglecting individual 
preferences significantly changes simulation results, and 
have argued there is a limitation in available traffic simula-
tors for this type of modelling individual behaviour. In order 
to address this issue, [16] created a simulation model that 
uses individual preferences as part of utility functions for 
agent decisions. Preferences are based on survey data and 
vary depending on the three agent attributes: gender, age and 

income. While this type of preference-based utility function 
is a common practice in economics to model quantitative 
decision-making, this model does not consider that percep-
tion of preferences changes depending on the context that 
is simulated. For example, time/punctuality has a different 
value when commuting to work as compared to a social visit. 
Hence, travel behaviour is specific to the context of travel 
(travel purpose). The ASIMUT approach [17] has recog-
nised this problem and therefore introduces a weighted sum 
model on preferences that is used for calibration. However, a 
common notion that can be observed in the simulation mod-
els reviewed is that modelling of individual behaviour has 
focused primarily on traffic-related aspects e.g. decision fac-
tors are typically based on obvious indicators from the traf-
fic domain such as travel time, distance, monetary costs or 
in some more advanced approaches maybe convenience. In 
contrast, travel decisions in the real-world are also driven by 
a travel purpose which requires individuals to have knowl-
edge not only about traffic but also about the purpose of 
travel. Based on this, we focus our work on building a simu-
lation framework that is able to flexibly model knowledge 
as well as individual preferences as determining factors of 
purpose-driven travel behaviour. This will establish the basis 
for measuring individual utility in traffic simulations, and 
thus enable evaluation of effects of policies on individuals.

Method

We have developed an abstract model for representing 
knowledge and preferences of individuals using semantic 
technology. This use of semantic technology may potentially 
increase the complexity of the overall architecture of the sys-
tem and simulation models. However, agent knowledge and 
behaviour can now strictly be separated from the implemen-
tation of the simulation. As a result, agents can be flexibly 
reused across different domains and in varying scenarios, 

Fig. 1  Aspects of modelling 
individuals in traffic simulations

short-term mid-term long-term

behavioural aspects
lane-chaning x
acceleration/braking x
spontaneous replanning x
divergent driving behaviour x
interaction x
route choice x
mode choice x
individual preferences x
day-to-day learning x
ownership of vehicles x
residency x
workplace x
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requiring only marginal changes of the concrete implementa-
tion. The application of semantic technology thus facilitates 
modifications or extension of agent knowledge about their 
purpose of travel when changing agent activities. For exam-
ple, agents from a commuting scenario can be transferred to 
one that simulates mobility of individuals during their gro-
cery shopping. Furthermore, we use semantic reasoners to 
automatically compute preferences from census and survey 
data as determining factors of agent decisions.

A Semantic Framework for Modelling Adaptable 
Agents

At the heart of our method is a semantic framework that 
extends traditional agent programming with a qualitative 
modelling of decision aspects. The representation of deci-
sions and their reasons becomes significantly complex when 
decisions require a broad knowledge of the world [19]. Qual-
itative approaches can help reduce complexity of the mod-
elling process through application of established reasoning 
mechanisms. For this purpose, we separate general agent 
activity logic from aspects of modelling agent knowledge. 
While basic operations of the agents remain part of tradi-
tional agent programming, agent knowledge is shifted into 
separate ontologies (see [20]) which are expressive tools 
for creating knowledge bases. In our own previous work, 
we have demonstrated effectiveness and efficiency of this 
approach [21]. Furthermore, this separation makes it pos-
sible to employ state of the art methods from knowledge 
engineering to structure agent knowledge. For example, the 
CommonKADS project proposes a three layered architecture 
for structuring different types of knowledge [22]. The lowest 
layer domain knowledge defines relevant concepts as well as 
simple relations for a modelled subject area. Concepts from 
domain knowledge are put into a logical context which ena-
bles derivation of inference knowledge in the second layer. 
Based on this, information from the lower layers is used 
for determining action strategies which in the top layer is 
referred to as task knowledge. The following example shows 
how the different layers of knowledge can be reflected in a 
real world scenario (see Fig. 2). Given a scenario in which 
a mechanic repairs bicycles, domain knowledge typically 
contains information about components of a bicycle, poten-
tial technical problems that may occur, as well as possible 
causes and corrective measures. Inference knowledge puts 
this information into a logical context, and hence contains 
knowledge about the assembly or mechanics of bicycles. 
Task knowledge combines information from the lower layers 
allowing decision-making on appropriate actions, e.g. diag-
nosis of technical malfunctions of a bicycle and procedures 
to repair the damage.

In this work, we created an agent architecture that mod-
els preferences and knowledge of travelling individuals 

analogous to the structures of CommonKADS (see Fig. 3). 
We use OWL ontologies [23] to model concepts and rela-
tions in the layers for domain and inference knowledge. In 
particular, domain knowledge is split into separate ontolo-
gies that differ in scope of the modelled subject area. Each 
ontology is an extension of the information that is available 
to the agent. The combination of multiple ontologies that 
each focus on different aspects of the scenario produces a 
comprehensive model of world knowledge.

Traffic simulations typically share the same basic con-
cepts on infrastructure (e.g. roads, road signs, traffic lights) 
or modes of travel (car, bus, bicycle, etc.). Hence, we model 
a dedicated travel ontology that exclusively captures com-
mon traffic domain concepts. This will allow instances of 
this ontology to be reused across a wide range of differ-
ent traffic scenarios. For example, the same travel ontology 
is likely suitable for modelling both commuting within a 
city as well as modelling leisure trips. Both scenarios dif-
fer in the activity performed which is why agents require 
their own activity-specific domain knowledge. Thus, we 
extend our knowledge architecture with a second type of 
ontologies that we call activity ontologies to capture knowl-
edge about the purpose of travel. For example, an activ-
ity ontology on commuting typically provides agents with 

Hypothesise

Diagnose

Verify

Fault
(squeaking)

Hypothesis
(Oil shortage)

Test
(check chain)

Task 
Knowledge

Inference 
Knowledge

Domain 
Knowledge

Fig. 2  An example of the CommonKADS knowledge structure

Task 
Knowledge

Inference 
Knowledge

Domain 
Knowledge travel ontology activity ontology 1-n

person ontology

imports into

BDI agent

Fig. 3  Agent knowledge architecture
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information about places of work, while an activity ontol-
ogy on leisure trips would provide agents with information 
about landmarks, shops, or sports centres. Agents can be 
equipped with different ontologies that each can be “plugged 
in” and extended or replaced as needed to address differ-
ent research questions. For more complex scenarios (e.g. 
when simulating agents that perform a series of different 
activities throughout the day), agents can also be equipped 
with multiple activity ontologies. To combine information 
from the travel and activity ontologies, we have modelled 
an additional central person ontology which is a represen-
tation of the collective knowledge that is available to the 
agent. In addition to domain knowledge, this ontology also 
comprises information about person-specific concepts such 
as census properties (age, gender, occupation, etc.) which 
are prerequisite for inferring further agent attributes such as 
individual preferences. Inference knowledge is represented 
in SWRL rules [24] which extend OWL to express If-Then 
implications. We use rules to define how observed real world 
information is transferred into attributes of the agents. In 
particular, individual preferences on the travel and activity 
domains are inferred from survey data. Census properties 

are given to the agent by assigning persona profiles accord-
ing to the local population (see [25]). These properties are 
reflected into the ontology and serve as input to rules to infer 
preferences. Persona profiles are derived from a classifica-
tion of a consumer study [26] which represents the most 
relevant groups of individuals in the German demographic 
(see Fig. 4). They are categorised by current life stage, fam-
ily status as well as social strata/income (as illustrated in 
[27]). Inferred information in the ontology can be accessed 
by the agent for implementation of decision behaviour in the 
layer dealing with task knowledge. For this, we follow the 
standard BDI agent architecture [28]. This allows agents to 
perform the selection of actions (intentions) on the basis of 
their goals (desires) and preferences (beliefs), given their 
travel and activity domain knowledge (beliefs). We have 
implemented this using the AGADE Traffic simulator [29], 
which provides BDI action selection and definition of agent 
desires using JADEX [30] while beliefs are expressed with 
OWL language constructs augmented with SWRL rules. 
Note that our model uses semantic technology with its infer-
ence mechanisms throughout the implementation of agent 
behaviour.

Name: Mike 
Gender: Male
Age: 18-24
Occupation: Apprenticeship
Education: Upper Secondary
Marital Status: Single

Name:  Christine
Gender: Female
Age: 25-34
Oc.: Young Professional
Ed.: Academic 
M. Status:  Relationship

Name:  Jerry
Gender: Male
Age: 45-54
Oc.: Unemployed
Ed.: Lower Secondary
M. Status:  Married

Name: Constance 
Gender: Female
Age: 35-44
Oc.: Young Prof.
Ed.: Post. Sec. Non-Tertiary
M.Status:  Married

Name: Tim 
Gender: Male
Age: 35-44
Oc.: Young Professional
Ed.: Academic 
M.Status:  Married

Name: Sarah 
Gender: Female
Age: 45-54
Oc.: Professional
Ed.: Academic 
M.Status:  Married

Name: John 
Gender: Male
Age: 45-54
Oc.: Professional
Ed.: Post. Sec. Non-Tertiary 
M.Status:  Married

Name: Harald 
Gender: Male
Age: 55-64
Oc.: Professional
Ed.: Post. Sec. Non-Tertiary 
M.Status:  Married

Name: Alex 
Gender: Male
Age: 55-64
Oc.: Management
Ed.: Academic
M.Status:  Married

Name: Margret 
Gender : Female
Age: 65+
Oc.: Unemployed
Ed.: Academic 
M.Status:  Married

Name: Jeremy 
Gender: Male
Age: 65+
Oc.: Unemployed
Ed.: Post. Sec. Non-Tertiary 
M.Status:  Separated

Education Work Life Retirement

Name:  Charlie
Gender: Male
Age: 35-44
Oc.: Professional
Ed.: Academic 
M. Status:  Single

Unemployed/
Working-Poor

Students/ Apprentices 
(w. own household)

DINKS (Double Income 
No Kids)

Young Families 
Middle Class

Older families 
Middle Class

Empty Nest Family 
Middle Class

Young Families 
Working Class

Older Families 
Working Class

Empty-Nest Families 
Working class

Pensioners 

Pensioners 
Living Alone 

Working Singles

Fig. 4  Persona profiles based on social census
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An Example Scenario of Travel for the Activity 
of Grocery Shopping

To illustrate how the framework can be applied, we con-
sider an example scenario in which individuals perform the 
activity of going grocery shopping. The scenario contains 
a set of supermarkets that differ not only in location and 
product availability, but also in the attributes of products 
such as their price and whether they are organic. This type of 
information is modelled in an activity ontology for the food/
grocery shopping domain. Agents are randomly assigned a 
list of food items from this ontology to purchase. In order 
to acquire all items on their shopping list, agents may have 
to visit multiple supermarkets. In addition to this, the travel 
domain ontology in this scenario comprises information 
about possible traffic mode options (walk, bicycle, car, pub-
lic transport) that agents can pick to get to the supermar-
kets. During their grocery shopping activity, agents have to 
determine a combination of supermarkets and appropriate 
modes of travel. This type of decision behaviour is imple-
mented in the layer of task knowledge which uses informa-
tion from domain and inference knowledge. In particular, 
inference knowledge contains information about individual 
preferences that are derived from rules based on survey data. 
Preferences and domain knowledge are then used as input 
for agent decisions. Based on this, the agent life cycle can be 
defined by the following three phases (see Fig. 5)

An agent a has a set of attributes A. A is the disjoint 
union of descriptive attributes Δ , and preference attributes 
Φ = T ∪ F with traffic related preferences T and food related 
preferences F. While ranges of attributes in Δ are all nomi-
nally scaled, attributes in Φ take values from a Likert scale 
of 1 to 5 (1=“not important” and 5 = “very important”). 
The selection of attributes relevant for modelling is based on 
behavioural surveys on mobility [31] and grocery shopping 
[32] (see Table 1).

The agent population conforms to the principal structure 
of the group of persons from which survey data was col-
lected. Survey data are used to create agents so that the 
empirical frequency distribution Dpersona is preserved in the 
agent population. For each agent, values for the attributes in 

Δ are determined by their persona. Now, values for prefer-
ences � ∈ Φ are derived depending on the values of the 
attributes in Δ , again according to the survey data. For this 
purpose, we model rules in the ontology with which a spe-
cific categorical probability distribution over the Likert scale 
values can be derived for each preference � ∈ Φ . Therefore, 
for each preference � ∈ Φ , and for each nominal attribute 
� ∈ Δ , we get a conditional probability distribution D�(L ∣ �) 
over the values of the Likert scale L = {1, 2, 3, 4, 5} depend-
ing on the value of � . The probabilities p�(L ∣ �) are deter-
mined by the empirical frequencies in the surveys. We 
assume that the preferences of an agent are influenced by the 
entire set of its descriptive attributes � ∈ Δ the correspond-
ing probabilities are aggregated over Δ into the weighted 
sum p�(l) =

∑

�∈Δ �� ⋅ p�(l ∣ �) with 
∑

�∈Δ �� = 1 giving a 
probability distribution for each � ∈ Φ . In this paper we 
weigh all attributes as of equal importance, i.e. �� =

1

∣Δ∣
.

An example will illustrate this: Let Δ = {age, occupation} 
be the set of descriptive attributes and Φ consist of a sin-
gle preference Environmental Impact lying in T meaning 
that there are no food preferences in F. Furthermore, let a1 
with Δa1

 = {18–25, student} and a2 with Δa2
 = {46–55, fac-

tory worker} be agents. Given the specific values of their 
descriptive attributes, we expect a1 and a2 to have differ-
ent preferences manifested in the values for � ∈ T  , i.e. their 
awareness for Environmental Impact. Indeed, survey data 

Fig. 5  Agent life cycle

Table 1  Attributes and preferences assigned at initialisation of an 
agent

Descriptive attributes Δ Traffic preferences T Food preferences Φ

Age Flexibility Price tendency
Education Time Product quality
Gender Reliability Eco-friendliness
Occupation Privacy Fair trade
Marital status Safety

Monetary costs
Environmental impact
Convenience
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gives evidence that persons of age = 18–25 show a higher 
awareness for environmental issues. This is modelled in 
pEnvironmentalImpact (see Table  2). For the second descrip-
tive attribute occupation, again probabilities for l ∈ L are 
drawn from the empirical distribution of data in the survey 
(see Table 2). The weighted sum of the values for age and 
occupation yields pEnvironmental Impact(l) for each l ∈ L . Rou-
lette wheel selection is then used, based on the aggregated 
probabilities p�(l) , to determine the value l which is then 
assigned to preference � . This concludes the initialisation 
phase of agent a. Computation of the probabilities p�(l ∣ �) 
uses rules of the ontology of the following scheme:

Based on this, the following SWRL rule can be defined to 
determine probabilities pEnvironmental Impact(l ∣ age = 18–24”) 
for our example agent a1:

In the second phase of the agent life cycle (prejourney 
planning), the agent makes decisions about supermarkets to 
be visited as well as appropriate modes of travel according 
to its personal preferences. For this purpose, preferences of 
the agent are used as input arguments for compound utility 
functions. Based on this, the agent successively constructs 
a shopping journey consisting of legs from supermarket to 
supermarket (and from home to the first supermarket and 
back home from the last) with appropriate travel modes. 
Supermarkets and modes of travel are chosen to maximise 

Agent(?a) ∧ Preference(?�) ∧ hasCensusProp(?a, ?cprop)

∧ swrlb ∶ equal(?cprop, �)

⇒ Agent(?a) ∧ hasPreference(?a, ?�) ∧ Preference(?�)∧

hasLikert1(?�, p� (1 ∣ �)) ∧ hasLikert2(?�, p� (2 ∣ �))∧

hasLikert3(?�, p� (3 ∣ �)) ∧ hasLikert4(?�, p� (4 ∣ �))∧

hasLikert5(?�, p� (5 ∣ �)).

Agent(a1) ∧ Preference(EnvironmentalImpact) ∧ hasAge(a1, ?age)

∧ swrlb ∶ equal(?age, }}18 − 24��)

⇒ Agent(a1) ∧ hasPreference(a1, ?EnvironmentalImpact)∧

Preference(EnvironmentalImpact)∧

hasLikert1(EnvironmentalImpact, p� (1 ∣ 0.05))∧

hasLikert2(EnvironmentalImpact, p� (2 ∣ 0.1))∧

hasLikert3(EnvironmentalImpact, p� (3 ∣ 0.15))∧

hasLikert4(EnvironmentalImpact, p� (4 ∣ 0.3))∧

hasLikert5(EnvironmentalImpact, p� (5 ∣ 0.4)).

the utility of the agent. Note that these decisions are mutu-
ally interdependent and have to happen simultaneously, 
e.g. distant supermarkets can only be reached by car while 
choosing to walk will likely determine a nearby market. 
Thus, decision-making is multi-criterial as agent behaviour 
is not only based on traffic related aspects but also on indi-
vidual preferences relevant for the selection and purchasing 
of food items.

We first define the utility that reflects traffic related pref-
erences of an agent a. For a given attribute � ∈ T  (T the set 
of traffic related attributes) and a traffic mode m ∈ M (M 
the set of available traffic modes), let u(�,m) be the given 
utility of mode m with regard to a specific mode attribute 
� and a� the preference value of � for agent a. Spontaneous 
modal change during the journey accounts for extra effort 
and therefore involves costs which we model with a function 
c ∶ M ×M → ℝ with c(m,m�) the associated cost for chang-
ing from mode m to mode m′ with c(m,m�) = 0 for m = m� . 
Note that we add an artificial mode mnull to represent the start 
of the food shopping journey and that c(mnull,m) = 0 for all 
m ∈ M . Based on this, the total traffic utility UTT of traffic 
mode m for agent a is defined. Note that the value of this 
function also depends on the traffic mode mc of the last leg.

Supermarkets s ∈ S (S the set of supermarkets) are assigned 
utilities u(�, s) that rate their products with regard to � ∈ Φ 
( Φ the set of food related attributes) (see Table 1). Further-
more, a� is the value for preference � of agent a. Based on 
this a shopping utility UΦ(a, s) is determined:

Furthermore, supermarkets are assessed by the degree to 
which the products they stock cover the items on the shop-
ping list of an agent as well as their distance to the current 
location. If agent a has ra open items on its list, qs of which 
are available in supermarket s, then the quotient ra

qs
 quantifies 

the product coverage of s for a. Furthermore, for each agent 
a a randomly generated value ea models aversion of a 
towards additional trips to other supermarkets based on 
probabilities provided by [33]. The euclidean distance 
d(a, s) from the current position of a to the supermarket s is 
used as an estimate for the travel distance to s. For each 

(1)UTT (a,m,mc) =
∑

�∈T

u(�,m) ⋅ a� − c(mc,m).

(2)UΦ(a, s) =
∑

�∈Φ

u(�, s) ⋅ a�.

Table 2  Example for preference 
probabilities for agent a1

Probabilites/Likert values l 1 2 3 4 5

pEnvironmental Impact(l ∣ age = }}18 − 24��) 0.05 0.1 0.15 0.3 0.4
pEnvironmental Impact(l ∣ occupation = }}student��)      0.1 0.1 0.2 0.3 0.3
pEnvironmental Impact(l) 0.075 0.1 0.175 0.3 0.35
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agent values for UTT , UΦ and d(a, s) are normalised with 
min–max normalisation so that they lie in [0,1]. As decisions 
on mode of travel and selection of supermarket are interde-
pendent, traffic and food related utilities are aggregated into 
a single utility function with which an agent determines the 
next supermarket to go to and how to get there. Therefore, 
the leg r = (m, s) to the next supermarket s is an element in 
M × S (with M travel modes and supermarkets S) that has a 
utility:

Algorithm 1 shows how an agent successively selects super-
markets and determines rides that are concatenated into a 
journey. We assume that the overall supply of all supermar-
kets covers all items on shopping lists and that items are 
abundantly available. Note, that no additional optimisation 
with respect to the order in which the supermarkets is per-
formed as we try to simulate natural behaviour of individu-
als. This concludes the prejourney planning phase for agent 
a.

(3)U(a, r,mc) = (1 − d(a, s)) + UTT (a,m,mc) + UΦ(a, s) +
ra

qs
× ea.

The shopping phase terminates once all scheduled super-
markets in the journey have been visited and the agent has 
returned to his home location.

Proof‑of‑Concept

As proof-of-concept, we created an example simulation 
for the German city of Wetzlar. Wetzlar counts a total of 
29 supermarkets based on data provided by Google Maps. 
According to the German census of 2011 [35], the popula-
tion in Wetzlar consists of approximately 50,000 citizens 
that are spread over 20 residential areas. We assume that 
one person shops for its entire household and that 20% of 
these households shop during the simulated time interval. 
As a result, we generated a population of 2130 agents that 
replicate the empirical distribution of residents. Agents are 
assigned a persona profile (as illustrated in Fig. 4) which 
define values for their descriptive attributes. Based on this, 
agent preferences are computed. Note that our current imple-
mentation uses stochastic elements only while computing 
preference values, thus keeping the subsequent decision 

Algorithm 1 Algorithm to determine agent journey.
Require: agent a, list of shopping items Ia, supermarkets S, traffic modes M
1: journey= empty list;
2: while Ia is not empty do
3: r = (m, s) = argmax

r∈M×S
U(a, r)

4: journey=journey+r
5: Ia=Ia\supply(s)
6: end while
7: return journey

Finally, the agent enters into the shopping phase of the 
simulation. Travel decisions from prejourney planning are 
primarily based on preferences derived from survey data, 
which currently do not change. Hence, target supermarkets 
as well as selected modes of travel remain unchanged dur-
ing the shopping tour. However, agents may spontaneously 
change routes depending on the current traffic load. Routing 
uses the A* algorithm based on shortest time [34]. Let W 
be a route with w ∈ W  being a continuous section of route 
W with same speed limit v(w). Travel speed of an agent is 
defined v(w,m) = min{v(w), v(m)} for v(m) the maximum 
speed of travel mode m. Furthermore, d(w) defines distance 
to be covered on w and n(w) an indicator for present traffic 
load. Thus, overall travel time T is computed:

(4)T(W,m) =
∑

w∈W

d(w)

v(w,m)
+ n(w).

processes deterministic, and in consequence not requiring 
multiple runs of the simulations. This simplifies analysis and 
proof-of-concept, making comparison of simulations easier.

We performed three simulation runs (A, B and C) with 
identical agent populations in order to examine how dif-
ferent interventions have an effect on traffic. Simulation A 
reflects traffic without interventions and therefore serves as 
the benchmark scenario. In simulation B, we consider as an 
intervention an educational campaign that achieves a change 
of attitude for 35% of the inhabitants (756 agents) to traffic 
and its environmental consequences. This is modelled by 
increasing traffic preferences on Environmental Impact and 
reducing traffic preferences for Convenience. In particular, 
42 of these agent changed their preference value on Environ-
mental Impact from 1 to 5, 200 from 2 to 5, and 514 from 
3 to 5, while at the same time 150 of these agents changed 
their preferences on Convenience from 5 to 1, 295 from 
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4 to 1, 198 from 3 to 1 and 101 from 2 to 1. For simulations 
A and B, agents are modelled to have access to all modes 
of travel. However for simulation C, as an intervention we 
limit ownership of a private car for 38.5% of the population 
(821 agents), forcing these agents to switch to alternative 
mode options. We assume the same utilities u(�,m) for mode 
options across all simulations A, B and C (see Table 3). Fur-
ther details about simulation data and implemented source 
code are available at Github.1

Given that agents in simulation A have access to all 
modes of travel and that mode utilities from Table 3 gener-
ally favour car usage, simulation results in A show that most 
of the agents have chosen to travel by car (see Table 4). We 
assume that policy makers prefer agents to choose green 
transportation modes such as walking or cycling to avoid 
emission of exhaust gases. In the simulation, this is mir-
rored through key performance indicators on aggregated 
travelled distances. Environmental impact is measured by 
the indicators global travel distance which is the sum of 
the overall distances travelled by the set of all agents, and 
combustion distance that only considers modes of travel that 
produce exhaust gases (see Table 5). Thus, we examine to 
what extent interventions from simulations B and C are suit-
able to achieve the desired change.

The educational campaign from simulation B produces 
only a minimal shift in modal choices. In particular, car 
usage has been reduced ( ⇓ 0.23%) while the number of 
cyclist ( ⇑ 0.09%) and pedestrians ( ⇑ 0.14%) has increased. 

In principle, the observed course of change is favourable, 
but given that only a very small percentage of agents exhibit 
change in behaviour, desired effects on global indicators 
are hardly noticeable with global travel distance decreas-
ing by ⇓ 0.53% and combustion distance decreasing by ⇓ 
0.66%. In comparison to this, the intervention from simula-
tion C achieved a more significant effect. Agents that were 
denied ownership of a private car were forced to switch to 
alternative mode options and in consequence the number 
of cyclist ( ⇑ 37.93%) and pedestrians ( ⇑ 0.61%) increased. 
Performance indicators on environmental impact also show 
a favourable decrease on global travel distance ( ⇓ 10.82%) 
and combustion distance ( ⇓ 37.87%). Hence, from a global 
perspective a ban on vehicles is more effective than trying to 
achieve change of attitude. However, real-world implemen-
tation of such a measure has strong effects on individuals 
which causes public opposition. As we have included more 
details in the modelling of individuals, we are able to meas-
ure exactly this type of effects on individuals in our simula-
tions. For assessing interventions in a system by (individual) 
utility, we necessarily have to take a utilitarian perspective 
on utility [36]. Utility as experienced by individuals has 
been associated with happiness measures [37]. Following 
this idea, we use utility function to quantify experienced 
utility as an indicator for the satisfaction of individuals. We 
are aware that this relation between utility and happiness is 
debatable, but so far, there is no consensus on this matter 
(see [36] for a discussion). For our analysis, we specifically 
look at the utility of agents affected by the intervention (see 
Table 6). With regard to simulation B, a total of 756 agents 
is affected by the educational campaign. Individual utility of 
these agents in simulation A averages 0.60642 in comparison 
to a utility value of 0.58036 in simulation B. This indicates a 
decrease ( ⇓ 4.29%) in experienced utility of affected agents 
in simulation B. In contrast, utility values of agents affected 
by the vehicle ban in simulation A averages 0.59892 which 
in simulation C decreases by ⇓ 12.26% to a value of 0.5255. 
This shows that the effects of interventions on individuals 
for the vehicle ban (C) are more intrusive in comparison to 
the educational campaign (B), which increases the risk of 
public resistance.

As mode utility in all three simulations A, B and C sig-
nificantly favours car usage, we recalibrated utility values 
of cycling and walking to reduce the utility gap between 
mode options (see Table 7). In the real world, this models an 
improvement in the quality of alternative travel modes, e.g. 
through measures that generally facilitate travel conditions 
for pedestrians and cyclists, and thus reduce the advantage 
of cars. We then, rerun simulations with the same popula-
tions and configurations from A, B and C, and look at how 
effects of interventions change under new circumstances. 
Simulations from this iteration of experiments are referred 
to as A2, B2 and C2.

Table 3  Mode utilities on a scale of 0 to 8 for simulations A, B and C

Car Bike Walking

Flexibility 8 2 1
Time 8 3 0
Reliability 7 7 8
Privacy 8 1 0
Safety 7 2 5
Environmental impact 0 8 8
Monetary costs 2 6 8
Convenience 8 0 0
∑ 48 29 30

Table 4  Comparison of modal choices for simulations A, B and C

A B C

Car 99.95% 99.72% ( ⇓ 0.23%) 61.41% ( ⇓ 38.5%)
Bike 0.05% 0.14% ( ⇑ 0.09%) 37.98% ( ⇑ 37.93%)
Walking 0.00% 0.14% ( ⇑ 0.14%) 0.61% ( ⇑ 0.61%)

1 see https:// github. com/ kite- cloud/ agade- traffi c.

https://github.com/kite-cloud/agade-traffic
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Although car users still account for the majority of trav-
ellers in this iteration of experiments, modal choices in the 
new benchmark simulation A2 (see Table 8) show a greater 
representation of cyclists and pedestrians in comparison 
to the observed modal split in the original simulation A. 
This time, effects of the educational campaign in simula-
tion B2 are more pronounced showing a shift from car users 
to cyclist by 34.65%. This development is also reflected in 
the performance indicators on environmental impact (see 
Table 9). While global travel distance only decreases by 
⇓ 3.03%, combustion distance is reduced by a total of ⇓ 
29.77%. In contrast, limiting the ownership of vehicles in 
simulation C2 achieves a similar outcome as in B2. Results 

of C2 also show a shift from car users to cyclist by 32.72% 
which in consequence reduces global travel distance ( ⇓ 
6.57%) as well as combustion distance ( ⇓ 34.96%). The 
comparison of results from B2 and C2 with output data from 
the original simulations B and C suggests that measures can 
yet become more effective when the quality of alternative 
mode options increases, and thus the advantage in utilities 
of the car is reduced. Furthermore, utility values in Table 8 
show that the supposedly harsh intervention of the vehicle 
ban in C2 is perceived as less intrusive with individual util-
ity decreasing by only ⇓ 2.88% in comparison to the original 
simulation C ( ⇓ 12.26%) when there are genuine mode alter-
natives to the car option. Overall, simulation C2 achieves 
the best outcome with regard to indicators on environmental 
impact but B2 is almost equally effective while using a less 
intrusive intervention (educational campaign) which reduces 
the risk of public opposition (Table 10).

This concludes proof-of-concept for our proposed 
method. The purpose of our experiments is to demonstrate 
how our framework is able to capture plausible changes in 
performance indicators when using different input settings. 
Validation for exact values of simulation results typically 
involves empirical verification against real-world data which 
currently is not the focus of this paper. For real-world appli-
cation, relevant data for input and validation of the simula-
tion includes geographic information of the simulated area 
as well as census data and behavioural surveys. With regards 

Table 5  Indicators on 
environmental impact for 
simulations A, B and C

A B C

Global travel distance (km) 11,453 11,393 ( ⇓ 0.53%) 10,213 ( ⇓ 10.82%)
Combustion distance (km) 11,452 11,376 ( ⇓ 0.66%) 7115 ( ⇓ 37.87%)

Table 6  Normalised average traveller utility of changed agents for 
simulations A, B and C

A B C

Educational campaign 0.60642 0.58036 ( ⇓ 
4.29%)

–

Vehicle ban 0.59892 – 0.5255 ( ⇓ 
12.26%)

Table 7  Mode utilities on a scale of 0–8 for simulations A2, B2 and 
C2

Car Bike Walking

Flexibility 8 6 ( ⇑ 4) 4 ( ⇑ 3)
Time 8 4 ( ⇑ 1) 1 ( ⇑ 1)
Reliability 7 7 8
Privacy 8 6 ( ⇑ 5) 4 ( ⇑ 4)
Safety 7 2 6 ( ⇑ 1)
Environmental Impact 0 8 8
Monetary Costs 2 6 8
Convenience 8 1 ( ⇑ 1) 1 ( ⇑ 1)
∑ 48 40 ( ⇑ 11) 40 ( ⇑ 10)

Table 8  Comparison of modal choices for simulations A2, B2 and C2

A2 B2 C2

Car 85.77% 51.13% ( ⇓ 34.65%) 53.05% ( ⇓ 32.72%)
Bike 14.13% 48.78% ( ⇑ 34.65%) 46.85% ( ⇑ 32.72%)
Walking 0.09% 0.09% 0.09%

Table 9  Indicators on environmental impact for simulations A2, B2 
and C2

A2 B2 C2

Global travel distance 
(km)

10,828 10,499 ( ⇓ 3.03%) 10,117 ( ⇓ 6.57%)

Combustion distance 
(km)

9790 6875 ( ⇓ 29.77%) 6368 ( ⇓ 34.96%)

Table 10  Normalised average traveller utility of changed agents for 
simulations A2, B2 and C2

A2 B2 C2

Educational campaign 0.60634 0.5968 ( ⇓ 
1.57% )

–

Vehicle ban 0.60044 – 0.58316 
( ⇓ 
2.88%)
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to geographic map information, this data can be obtained 
from OpenStreetMap [38]. In addition to this, census data 
is typically accessible through governmental institutions, 
whereas obtaining survey information on activity-specific 
behaviour can be more difficult. In particular, this infor-
mation is usually surveyed as part of consumer studies by 
either public or private research institutions. Primary data 
and results from these studies are occasionally published in 
online databases such as GESIS2, Statista3, or can usually 
be made available upon request or individual agreements.

Conclusion and Future Work

Current research on traffic simulation already shows a wide 
range of agent-based applications to study effects of traffic 
policies. However, available traffic simulation models have 
primarily studied effects of policies by measuring social 
benefit and thus not sufficiently consider effects on indi-
viduals. Effects on individuals are the basic cause of how the 
system changes under interventions which is why they can-
not be ignored. In order to evaluate effects on individuals, 
simulation results need to include information on individual 
utility which requires a more detailed modelling of individu-
als that is able to capture preferences as determining factors 
of agent decisions. Furthermore, decisions and preferences 
vary depending on the context of travel, which is why agents 
require knowledge about the simulated activity.

For this purpose, we use semantic technology to separate 
general agent activity logic from aspects of modelling agent 
knowledge. This allows knowledge to be structured using 
state of the art methods from knowledge engineering. Based 
on the three layers of the CommonKADS approach, we 
extended the traditional BDI agent with a qualitative model 
of world knowledge. The lowest layer contains information 
on domain knowledge and abstracts common concepts from 
the travel domain from activity knowledge. Based on this, 
activity knowledge can be flexibly extended or replaced 
which allows agents to be reused across different scenarios. 
In the second layer, this domain knowledge is extended by 
person-related concepts that describe the agent attributes. 
In particular, census properties from this ontology serve as 
input to SWRL rules that compute agent preferences based 
on survey data. Information from the first and second layer is 
used for agent decision-making which is implemented using 
BDI agents in the third layer. Based on this, we have demon-
strated application of this approach in our experimentation. 
As stated previously our interest lies not in the input values 
given in Tables 3 and 7, but the manner in which the simu-
lation responds to their modification. In our experiments, 

this modification models an improvement in the quality of 
alternative travel modes to car travel, allowing walking and 
cycling to be viewed more favourably as genuine alternatives 
to the car. We note that simulation output reflects this appro-
priately. Table 8 demonstrates a shift away from car travel 
when the utility of the other modes is increased and policies 
that favour them are introduced (B2 and C2). It is this abil-
ity to respond appropriately to differing input scenarios that 
makes the proposed methods in this paper valuable. Further-
more, we have shown how this method establishes the basis 
for measuring individual utility and thus creates an indicator 
for measuring effects of policies not only on global system 
behaviour but also on individuals.

For future work, we will work on extending agent knowl-
edge on both the travel and activity domains. This will 
allow simulation of more complex scenarios, e.g. scenarios 
in which agents perform multiple activities during the day 
or scenarios in which agents with different travel purposes 
interact for use of shared resources (or shared services). The 
preparation of additional ontologies for different activities 
can be made available as part of an open-source library for 
travel-related activity knowledge. Ontologies can be flexibly 
plugged into the simulation model to facilitate customisa-
tion for specific research questions. Furthermore, as we have 
added more details to modelling of individuals, simulations 
become more complex and opaque. Therefore, we will work 
on appropriate analysis instruments that leverage structures 
of our semantic modelling by logging and visualising details 
of rule evaluations.
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