
Vol.:(0123456789)

SN Computer Science (2022) 3: 341
https://doi.org/10.1007/s42979-022-01231-9

SN Computer Science

ORIGINAL RESEARCH

Hydra: Practical Metadata Security for Contact Discovery, Messaging,
and Voice Calls

David Schatz1 · Michael Rossberg1 · Guenter Schaefer1

Received: 5 October 2021 / Accepted: 24 May 2022 / Published online: 18 June 2022
© The Author(s) 2022

Abstract
Protecting communications’ metadata can be as important as protecting their content, i.e., recognizing someone contacting
a medical service may already allow to infer sensitive information. There are numerous proposals to implement anonymous
communications, yet none provides it in a strong (but feasible) threat model in an efficient way. We propose Hydra, an
anonymity system that is able to efficiently provide metadata security for a wide variety of applications. Main idea is to use
latency-aware, padded, and onion-encrypted circuits even for connectionless applications. This allows to implement strong
metadata security for contact discovery and text-based messages with relatively low latency. Furthermore, circuits can be
upgraded to support voice calls, real-time chat sessions, and file transfers—with slightly reduced anonymity in presence of
global observers. We evaluate Hydra using an analytical model as well as call simulations. Compared to other systems for
text-based messaging, Hydra is able to decrease end-to-end latencies by an order of magnitude without degrading anonymity.
Using a dataset generated by performing latency measurements in the Tor network, we further show that Hydra is able to
support anonymous voice calls with acceptable quality of service in real scenarios. A first prototype of Hydra is published
as open source.

Keywords  Metadata security · Strong anonymity · Onion routing · Voice over IP

Introduction

Instant messaging services like Signal and WhatsApp have
become a ubiquitous utility for human-to-human commu-
nications. Due to their IP-based design, they are able to
support a wide variety of applications, including text-based
chats, file transfer and voice calls. However, such services
also raise privacy concerns, like a (de-)centralized provider
collecting communication content and metadata on a large

scale. And while confidentiality of communication content
may easily be achieved by end-to-end encryption, metadata
is far more challenging to protect. For one, providers may
still easily record communication metadata. For another,
third parties may observe size and timing information of
(encrypted) IP packets in different sections of the network to
infer communication relationships. Unfortunately, commu-
nication relationships may also leak sensitive communica-
tion content, for example, when users contact a specialized
counseling or medical service [1].

A promising concept to protect metadata are communi-
cation mixes, first introduced by David Chaum [2]. Instead
of trusting a single provider, packets are routed via mul-
tiple mixes, which are deployed in a distributed fashion.
At the same time, a fixed uniform size is enforced for all
packets by padding or splitting of application layer mes-
sages. Each packet is encrypted in layers, one for each mix,
which are removed along the way. In result, correlation of
packets based on size or encrypted content is not possible.
To defeat attacks based on timing of packets entering and
leaving an observed mix, packets are collected in batches
and forwarded in random order. Unfortunately, powerful

This article is part of the topical collection “Information Systems
Security and Privacy” guest edited by Steven Furnell and Paolo
Mori.

 *	 David Schatz
	 david.schatz@tu-ilmenau.de

	 Michael Rossberg
	 michael.rossberg@tu-ilmenau.de

	 Guenter Schaefer
	 guenter.schaefer@tu-ilmenau.de

1	 Telematics/Computer Networks Research Group, Technische
Universität Ilmenau, Ilmenau, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01231-9&domain=pdf

	 SN Computer Science (2022) 3: 341341  Page 2 of 22

SN Computer Science

attackers like a global observer are still able to infer com-
munication relationships by performing disclosure attacks
[3, 4]. Such attacks exploit user churn and correlate the
sending/receiving behavior of users over time. To mitigate
disclosure attacks, users should appear to be sending and
receiving packets even if they are not in an active commu-
nication, which requires dummy packets [4].

Modern anonymity systems that build upon communica-
tion mixes may further be categorized by the cryptographic
primitives they use for layered encryption. First, there are
many recent systems [5–7] that aim at providing metadata
security for short text messages even in the presence of a
global observer, often called strong anonymity. As originally
proposed by Chaum, they use asymmetric cryptography for
layered encryption of every packet. While this avoids any
setup or (long-term) state at mixes, it is not computation-
ally efficient, especially when combined with many dummy
packets. Furthermore, the missing connection context at
mixes prevents tunnelling of connection-oriented applica-
tions like Voice over IP (VoIP) in a secure way: Attackers
could use a simple form of network flow watermarking [8]
that drops packets at the sender and correlates the resulting
“gaps” in the packet flow at the receiver.

Both problems may be tackled by onion routing, which
became popular in the Tor network [9]: Before any applica-
tion data is sent, users select a fixed path of mixes and use
them to setup a circuit. While circuit setup still uses asym-
metric cryptography for key exchange, remaining packets
may be onion-encrypted using efficient symmetric ciphers.
Furthermore, mixes may use their state about a circuit to
defeat network flow watermarking [10–13]: A determinis-
tic schedule for packet sending times at each mix defeats
attacks based on correlation of packet timings, and gaps can
be detected and padded with dummy packets (“padded cir-
cuit”). However, existing circuit-based systems also have
various drawbacks like missing defense against watermark-
ing [9], weak anonymity in the presence of malicious mixes
[11] or weak location anonymity [10, 12] (IP addresses are
leaked to communication partners, facilitating geographical
tracking [1]).

In this article, we present Hydra, a circuit-based system
that overcomes the flaws of similar designs and is able to
efficiently provide strong anonymity for a wide variety of
applications. For this, all users are synchronized to periodi-
cally setup circuits, for example, once every ten minutes.
A packet-based rendezvous mechanism between circuit
endpoints provides location anonymity and allows the same
circuit to be used to send contact requests and text mes-
sages to different users, inspiring the name Hydra. To defeat
both network flow watermarking and disclosure attacks, cir-
cuits are padded by mixes and users. As long as users do
not participate in a communication or only send text mes-
sages, the padding rate is low, in the order of 3 pps (packets

per second), for efficiency. To also support voice calls (and
small file transfers), existing circuits may be “upgraded” to
a higher padding rate. Note that this comes at the cost of
reduced robustness against disclosure attacks because churn
of upgraded circuits is expected to be higher. Furthermore,
path selection for circuits has to consider mix capacities and
latencies between mixes to provide good quality of service
(QoS) for interactive voice calls [13]. For this, we propose
a novel approach to determine a suitable probabilistic path
selection by solving a minimum cost flow problem.

The rest of this article is structured as follows: in the next
section, we define our objectives and threat model. Based on
the objectives, related work is discussed in the subsequent
section. Thereafter, design details of Hydra are presented.
We evaluate Hydra in the penultimate section using an ana-
lytical model and call simulations. In the final section, we
conclude our article.

The article is an extended version of [14]. It adds sup-
port for voice calls by introducing a protocol to “upgrade”
circuits to a higher padding rate. Furthermore, path selection
is tuned to consider mix capacities and latencies between
mixes to meet the strict QoS requirements for interactive
voice calls. Our extended evaluation also reflects this addi-
tion, most importantly by studying the refined path selection.
Additionally, the protocol for contact discovery is improved
compared to the original version of our article. Further note
that the minimum cost flow problem we introduce for path
selection is a special case of the mixed integer linear pro-
gram (MILP) we defined in [13]. It is tailored for usage in
Hydra and is far more efficient to solve than the generic
version.

System Objectives and Threat Model

This section defines both the functional and non-functional
objectives for the Hydra system. Furthermore, we define our
threat model.

Functional Objectives

From a functional perspective, we want to provide the fol-
lowing applications, similar to popular messengers like Sig-
nal and WhatsApp.

1.	 Contact Discovery. Users must be able to discover con-
tacts that are also using Hydra. Contact discovery should
be based on long-term user pseudonyms.

2.	 Messaging. After contact discovery, users must be able
to send messages to their contacts. While we focus on
text-based messages, the transfer of small files like pic-
tures or voice messages should also be supported. When

SN Computer Science (2022) 3: 341	 Page 3 of 22  341

SN Computer Science

recipients are offline, the system must provide storage
for later delivery.

3.	 Voice Calls. Users must be able to initiate a voice call
with their contacts.

Non‑functional Objectives

In addition to the functional objectives, the following non-
functional objectives shall be achieved. Whenever objec-
tives are in conflict, suitable trade-offs have to be achieved.

1.	 Confidentiality and Integrity. Just like existing mes-
sengers, an anonymous messaging system must provide
end-to-end security for all messages and voice calls.
That is, the confidentiality and integrity of all end-to-
end packets must be protected by cryptographic mecha-
nisms.

2.	 Anonymity. First, relationship anonymity shall be pro-
vided. That is, communication relationships (including
more fine-grained metadata like frequency and duration)
shall be hidden from third parties. Moreover, some users
may also require location anonymity: Neither third par-
ties nor untrusted contacts shall be able to infer the map-
ping of user pseudonyms to their IP address.

3.	 QoS. When both sender and recipient of a message are
online at the same time, end-to-end latency for delivery
shall be in the order of seconds to enable interactive
chats. For voice calls, QoS requirements are more strict:
Mouth-to-ear latency should ideally not exceed 150 ms,
whereas a latency of more than 400 ms usually is not
acceptable for interactive voice calls [15]. Additionally,
packet loss shall be below 5% [16].

4.	 Efficiency and Scalability. The amount of system
resources (like number and capacity of mixes) to sup-
port a given number of active users with acceptable
QoS shall be low. Moreover, horizontal scalability is
required. That is, it should not only be possible to sup-
port more users by upgrading the capacity of existing
system entities like mixes (vertical scalability), but also
by adding more system entities. For users on mobile
devices, energy efficiency is important to not degrade
battery life.

5.	 Robustness. The system shall be robust in the presence
of node churn, which includes both users and system
entities like mixes.

Threat Model

We assume powerful external attackers according to the
Dolev–Yao model [17]. That is, they are able to observe,
drop, delay, manipulate, replay, and forge packets anywhere
in the network. However, they cannot bypass cryptographic
protections. Furthermore, we assume that a limited number
of system entities and users are malicious and cooperate with
external attackers.

Related Work

Basically, there are three different techniques that may be
used to implement anonymity systems, as depicted in Fig. 1:
Communication mixes [2], Dining Cryptographer networks
(DC-nets) [18], and private information retrieval (PIR)
[19]. However, existing anonymity systems that are based
on DC-nets or PIR have inherent scalability issues due to
intense usage of broadcast communication or computational
expensive operations. For example, Riposte [20] implements
text-based, anonymous broadcasting using PIR techniques,
but introduces end-to-end latencies in the order of hours for
one million users. Addra [21] introduces a more efficient
PIR scheme to implement anonymous voice calls, but only
supports a few thousand users with acceptable latency. There
also is an approach to use (DC-nets) for voice calls [22], but
it only supports a few hundred users.

In contrast, the concept of communication mixes is more
promising to implement interactive anonymous communica-
tions for millions of users. The main idea is to unlink sender
and recipient of a packet by relaying it via multiple mixes.
A fixed uniform size for all packets and layered encryption
(also called onion encryption throughout the article) defeats
correlation of packet size and content by external observers
and malicious mixes. To also defeat attacks that correlate
the timing of packets entering and leaving a mix, most sys-
tems use some sort of batch processing: Instead of forward-
ing packets as fast as possible, mixes collect many packets
in a batch before forwarding them in shuffled order. When

Fig. 1   Categorization of exist-
ing anonymous communication
techniques

Anonymous communication techniques

Communication mixes Dining Cryptographer networks Private information retrieval

Mix networks Circuit-based systems

	 SN Computer Science (2022) 3: 341341  Page 4 of 22

SN Computer Science

assuming a global observer, users also have to send dummy
packets to defeat or mitigate disclosure attacks [3, 4], which
analyze the sending/receiving behavior of users over time.
Based on these core principles, many anonymity systems
were proposed in recent years.

Mix Networks
To provide anonymity for (short) text messages, many

recent proposals share a core concept [5–7, 23, 24]: Onion-
encrypted packets are used to read and write messages from
and to mailboxes, providing location anonymity for all users.
For end-to-end delivery of messages, randomized mailbox
identifiers known by both sender and recipient are used.
To defeat disclosure attacks, the systems use periodic and
synchronized communication rounds. In each round, every
user is asked to send a packet, even if he is not in an active
conversation. In combination with using asymmetric cryp-
tography for onion encryption, this limits scalability: Sup-
porting millions of users with low end-to-end latency is only
possible by deploying many powerful mixes.

The referenced systems differ in path selection for onion-
encrypted packets, mailbox management, and defense
against active attacks: Whereas Vuvuzela [23] uses a fixed
mix cascade, which does not scale horizontally, others use
some sort of stratified topology. That is, mixes are organized
in ordered layers (not necessarily disjoint) and users select
one mix per layer at random.

Mailbox identifiers in Vuvuzela, Stadium [24], and Kara-
oke [5] are based on out-of-band key exchange and subse-
quently derived tokens that are valid for one round and one
pair of users. As a result, contacts may only exchange mes-
sages when both participate in the same round (no offline
storage). Furthermore, location anonymity with regard to
malicious contacts may slowly degrade: When attackers suc-
cessfully receive a message from a targeted user, they know
that he must have send a packet this round. Consequently,
disclosure attacks by a cooperating global observer are pos-
sible due to inevitable user churn. In contrast, AnonPoP [6]
uses one pseudo-random mailbox identifier for many rounds
and different contacts. XRD [7] uses static mailboxes,
addressed by the public key of users.

Different countermeasures are employed to defeat or
mitigate active attacks like dropping or manipulating pack-
ets. Additional cover traffic may be generated by mixes to
increase uncertainty of attackers [5, 23, 24]. Misbehaving
mixes may be detected by various techniques like verifi-
able shuffles [7, 24, 25] (strong guarantees, computationally
expensive), trap messages [25] or bloom filters [5] (weaker
guarantees, more efficient).

cMix [26] splits every communication round into a
pre-computation phase and a real-time phase. While the
real-time phase only requires symmetric cryptography,
the frequency of rounds is limited by the computational
expensive pre-computation. Consequently, the average

end-to-end latency is dictated by waiting for the next
round to start. Furthermore, cMix does not scale horizon-
tally because the protocol only works when using a fixed
mix cascade.

Riffle’s [27] design for sending messages to mailboxes
is able to reduce the number of asymmetric cryptographic
operations. After a setup phase, packets are onion-encrypted
with a symmetric cipher for multiple rounds. However,
receiving messages with location anonymity relies on broad-
cast or PIR, limiting scalability.

In contrast to previous systems, Loopix [28] does not
rely on synchronized rounds. Instead, users send packets
according to a Poisson process, injecting dummy packets
if no real message is available. Each user may set its own
trade-off between latency and overhead by adjusting the rate
of the process. However, sending less packets on average
also facilitates disclosure attacks [4]. Another drawback of
Loopix is that location anonymity requires a trusted service
to act as offline storage.

Apart from their extensive usage of asymmetric cryp-
tography, systems discussed so far share another limitation:
They conceptionally cannot support connection-oriented
applications like voice calls with strong anonymity. Because
mixes lack any connection context, they are not able to inject
dummy packets that are forwarded to connection endpoints.
Consequently, network flow watermarking attacks [8] based
on packet drop are possible.

Circuit-based Systems
Both problems can be solved by setting up so-called cir-

cuits beforehand. For this, users select a path of mixes that
will be used for the entire connection. At circuit setup, they
establish a connection context with each mix on the path,
including symmetric keys which may be used for onion
encryption of application data.

Tor [9] is the most prominent example for using cir-
cuits. Unfortunately, it deliberately does not provide strong
anonymity: Timing of circuit setup may be correlated in
different sections of the network and established circuits
do not employ countermeasures against network flow
watermarking.

TARANET [10] establishes circuits at network layer. Cir-
cuit setup uses batch processing at each hop and network
flow watermarking is defeated by padding every circuit to
a static rate. However, users only setup circuits when in an
active communication, facilitating disclosure attacks. Fur-
thermore, TARANET requires initiators of a connection to
know the network address of their communication partners
(no location anonymity).

Herd [11] and Aqua [29] use padded circuits to specifi-
cally provide anonymous voice calls and file sharing, respec-
tively. Furthermore, users are asked to send packets with a
constant rate, defeating disclosure attacks. However, timing
of circuit setup is not hidden from malicious mixes.

SN Computer Science (2022) 3: 341	 Page 5 of 22  341

SN Computer Science

Yodel [12] provides voice calls with strong anonymity.
Similar to mix networks, they use a round-based approach,
expecting users to create a circuit every round even when
not in an active call. To defeat network flow watermarking,
mixes use batch processing which is synchronized by sub-
rounds (dictated by the voice codec). If packets are lost or
arrive too late on a circuit for a sub-round, mixes inject
dummy packets. A drawback of Yodel is that users directly
attach to the circuit endpoint of their contacts when in
an active call. Consequently, malicious users can select a
cooperating mix as endpoint to break location anonymity.
Another drawback is the purely random path selection,
which does not work well together with batch process-
ing across all circuits: If only a single circuit uses a high
latency link, QoS of all voice calls is equally degraded.
Furthermore, bandwidth or processing bottlenecks are
introduced when not all mixes offer an identical capacity.

In [13], we show how to improve Yodel’s path selec-
tion by avoiding high latency links and considering mix
capacities. We further suggest an alternative technique to
defeat network flow watermarking for voice calls: Instead
of batch processing all circuits, mixes implement a de-
jitter buffer for each circuit individually. The drawback of
this approach is that it requires a randomly selected delay
for all packets on a circuit at each mix to still securely
mix packet flows of all circuits. However, our evaluation
shows that this delay can be compensated by preferring
low latency links during path selection. In comparison,
de-jitter buffers offer a better trade-off between end-to-
end latency and anonymity. Unfortunately, suitable path
selection probabilities are determined by solving MILPs,
which is not practical for hundreds of mixes.

Lessons Learned
The crucial points that can be learned from existing

approaches are:

1.	 Using synchronized communication rounds is promis-
ing to implement text-based messaging with strong ano-
nymity (defeating disclosure attacks). However, using
asymmetric cryptography for onion encryption of every
(dummy) packet is too inefficient.

2.	 Setting up circuits that can be used for many packets
greatly improves efficiency and allows to defeat network
flow watermarking attacks. However, circuit setup must
be synchronized to avoid timing correlation.

3.	 To implement anonymous voice calls with acceptable
QoS, path selection for circuits must consider mix
capacities and pairwise latencies.

4.	 Users must not directly attach to circuit endpoints of
their contacts. Otherwise, location anonymity can easily
be broken.

5.	 When using mailboxes for end-to-end delivery, mailbox
identifiers must be valid for more than one round to pro-
vide offline-storage.

To the best of our knowledge, Hydra is the first system that
considers all these aspects at the same time.

System Design

This section first gives an overview of Hydra’s functional-
ity. Subsequently, important details are defined in respective
subsections.

Overview

Hydra is organized into periodic communication epochs,
which in turn are divided into a setup and a communica-
tion phase. During epoch setup, all users are synchronized
to setup padded circuits. Available mixes for an epoch are
published by a directory service. After circuit setup, the
communication phase is further divided into multiple syn-
chronized communication rounds. In each round, every
circuit is used to both send (“upstream direction”) and
receive (“downstream direction”) one circuit cell to imple-
ment text-based messaging. For end-to-end delivery, cells
are forwarded between circuit endpoints (exit mixes) by a
distributed rendezvous service. Basically, the rendezvous
service implements a publish/subscribe protocol based on
special tokens as shown in Fig. 2. If a subscription is found,
the rendezvous service forwards the cell to the subscribed
exit mix. Otherwise, the cell is dropped. The exit mix in
turn injects the payload into the corresponding downstream
circuit. If multiple cells are received for a circuit in the same
round, they are queued and injected in subsequent rounds.

In addition to text-based messaging, users can update
their circuit at the end of each communication round. A cir-
cuit update either enables or disables the possibility to use
the circuit for voice calls in parallel to “normal” text-based
communication. We denote such “upgraded” circuits as
VoIP circuits. Nevertheless, such circuits may also be used

...
...

...
... ...

Mixes Rendezvous
service

Padded circuits
setup by users

Publish/subscribe
based on tokens

Fig. 2   Overview of Hydra’s design [14]

	 SN Computer Science (2022) 3: 341341  Page 6 of 22

SN Computer Science

to tunnel other applications, like an interactive chat session
or file transfers.

For synchronization of epochs and within communica-
tion rounds, we assume clock synchronization between all
users and mixes with an accuracy of ≈ 10ms . For example,
this may be implemented via NTP or GPS. Note that loss of
clock synchronization may increase packet loss, but does not
affect security. We further assume that all users setup cir-
cuits using the same circuit length l and denote the different
positions on a circuit as layers. To defeat any attacks based
on packet timing, forwarding of circuit setup packets, circuit
cells, and circuit update packets between adjacent layers is
synchronized by time as shown in Fig. 3. That is, mixes col-
lect all packets/cells from the previous layer, remove (or add
in downstream direction) one layer of onion encryption and
forward all in shuffled order at a fixed point in time. During
normal communication, mixes further use their circuit con-
text to detect packet loss and inject dummy cells accordingly.
This also includes exit mixes injecting dummy cells in the
downstream direction if a user does not receive a message.
When a circuit is used for VoIP in parallel, two (up- and
downstream) additional constant packet flows of ≈ 50 pps
each are sent—not shown in Fig. 3. However, forwarding of
voice packets is not synchronized between different circuits,
but instead uses a local de-jitter buffer.

In summary, four different packet types are involved:

1.	 Circuit setup packets establish the circuit context
(including shared keys) at mixes. Additionally, they
contain a set of tokens a user wants to subscribe to dur-
ing the epoch. It is the only packet type that requires
asymmetric cryptography for onion encryption.

2.	 Circuit cells are mainly used to transport text-based mes-
sages.

3.	 Circuit update packets are used to enable/disable the
parallel usage of a circuit as VoIP circuit.

4.	 VoIP cells are used to transport application data on VoIP
circuits (not restricted to voice data).

We simply write cell for brevity when it is clear from the
context whether its a circuit or VoIP cell.

Time synchronization and consequently the duration of
one epoch is further defined by the following parameters:

1.	 The intervals Δts , Δtc , and Δtu control the synchronized
forwarding between adjacent layers, for circuit setup
packets, circuit cells, and circuit update packets, respec-
tively. Ideally, they match the time that is necessary to
receive and process (onion encryption, random permuta-
tion) all packets at this layer. Then, latency to traverse
a complete circuit is minimized while avoiding packet
loss at the same time. Consequently, the parameters are
dynamically set by the directory service to react to a
varying number of circuits and potentially changing mix
resources in different epochs.

Fig. 3   Synchronization during
one epoch, showing circuit
setup and the first communica-
tion round for a circuit length of
l = 3 (extended from [14])

Rendezvous
service

v1 v2 v3

Mixing packets

Mixing cells

Mixing packets

Setup packet

Subscribe
Circuit cell

Publish

Receive
(optional)

Dropped cellDummy cell

Update packet

Setup
phase

End-to-end
communication

∆tw1

∆ts

∆tc

∆tuCircuit update
(optional)

∆tw2

...

SN Computer Science (2022) 3: 341	 Page 7 of 22  341

SN Computer Science

2.	 A waiting time Δtw1
 between normal communication and

circuit update. Its main purpose is to let users react on
incoming calls before potentially updating their circuit.

3.	 A waiting time Δtw2
 between circuit update and the next

communication round. In combination, the waiting
time Δtw = Δtw1

+ Δtw2
 in each round tunes a trade-off

between overhead and end-to-end latency: When Δtw
is high, less dummy cells have to be sent and users on
mobile devices potentially benefit from improved battery
management. However, average end-to-end latency is
increased because users have to wait for the next round
to send a message.

4.	 The number k of communication rounds during one
epoch. It tunes a trade-off between efficiency and robust-
ness to mix churn: While long epochs reduce the usage
of asymmetric cryptography, circuits can not be re-
established until the next epoch if mixes fail.

To allow seamless transitions between epochs, the total
waiting time k × Δtw during an epoch is used to process the
circuit setup of the next epoch. Consequently, k × Δtw has to
be long enough to establish all circuits in time and therefore
also is set dynamically by the directory service.

Directory Service

The directory service is responsible for collecting informa-
tion about the set V of mixes that are available for upcoming
epochs. The registration process for mixes is out-of-scope
for this article. For example, Hydra could be a voluntary-
based system like Tor.

Based on the mixes and their properties, the directory ser-
vice also determines suitable probabilities for path selection
and suitable values for the parameters of upcoming epochs.
The required properties for each mix v ∈ V are shown in
Table 1.

Note that both the capacity of mixes (especially transmis-
sion rates) and their pairwise latencies affect path selection.
Consequently, they have to be measured in a secure way by
the directory service. However, solutions are orthogonal to
the remaining design of Hydra and therefore out of scope
for this article. FlashFlow [30] (bandwidth measurements)
and Treeple [31] (latency measurements) are promising
approaches to consider in future work. Both are specifically
designed to use a decentralized approach. Consequently, the
directory service itself may be implemented in a decentral-
ized way, avoiding a centralized provider to be trusted for
distributing unbiased path selection probabilities.

We further assume the transmission rates to reflect full
duplex operation. The processing rates also reflect any
additional overhead, for example, key lookups and thread
synchronization.

Path Selection

We first explain our goals for probabilistic path selection and
subsequently define a minimum cost flow problem (MCFP).
The optimal flow of this problem can directly be mapped
to optimal (with regard to our model) probabilities for path
selection. As usual, we denote the first mix on a circuit as
entry mix and the last mix as exit mix. Note that path selec-
tion yields circuits of length l. However, it might be ben-
eficial to be able to use a different trade-off between ano-
nymity and latency for VoIP calls, compared to text-based
messaging. Therefore, when using a circuit as VoIP circuit
in parallel, only its prefix of length l′ ≤ l will be used for
voice calls, while text-based messaging still uses the full
circuit. We denote the last hop on the VoIP circuit (on layer
l′ ) as VoIP exit mix.

Goals
Our probabilistic path selection should achieve the fol-

lowing properties:

Table 1   Properties of mix v ∈ V Symbol Property

ip
v

Network address and port(s)
pk

e,v Ephemeral public key for epoch e
�s,v Transmission rate for setup packets in pps
�c,v Transmission rate for circuit cells in pps
�u,v Transmission rate for circuit update packets in pps
�s,v Processing rate for setup packets in pps
�c,v Processing rate for circuit cells in pps
�u,v Processing rate for circuit update packets in pps
��,v Fraction of total bandwidth that is utilized by one VoIP circuit
��,v Fraction of total processing power that is utilized by one VoIP circuit
w
v,u Transport network latency to all other mixes u ∈ V

	 SN Computer Science (2022) 3: 341341  Page 8 of 22

SN Computer Science

1.	 At each layer, the expected number of circuits nv a mix
v ∈ V has to handle should be proportional to its capac-
ity. Otherwise, synchronized forwarding between adja-
cent layers would result in “bottlenecks”: Mixes that
still have to process packets while other mixes are idle
already unnecessarily increase end-to-end latency.

2.	 Links with a very high latency ( > wmax ) should be
avoided because they increase end-to-end latency of
text-based messaging.

3.	 There should be a good “mixing” of circuits. That is,
each (honest) mix on a path should maximize the uncer-
tainty about the next hop of a targeted circuit.

4.	 Mixes should not be used on adjacent layers for the same
circuit.

5.	 Given all other constraints, the average transport net-
work latency of a selected path should be minimized,
especially to provide acceptable QoS for voice calls.

Unfortunately, latency and anonymity are in conflict here.
To maximize uncertainty for attackers, path selection would
have to be uniform at random, excluding any possibilities
to optimize latency. Consequently, we aim for a reasonable
trade-off. For this, we focus on location anonymity because
it is only protected by a single circuit (compared to relation-
ship anonymity, which is protected by two circuits). When
attackers try to break location anonymity of a user, they try
to track its circuit in downstream direction. Therefore, when
looking at a mix v at layer i, we enforce that there should be
at least dmin possible previous hops in layer i − 1 . Further-
more, the posteriori probability distribution for selecting one
out of the ≥ dmin previous hops should be close to uniform.
Consequently, a trade-off between anonymity and latency
may be tuned by adjusting the parameter dmin.

To further specify our goal regarding mix capacities,
recapitulate that a mix actually has a total of eight values
that describe its capacity (transmission and processing rate
for four different packet types each). However, all transmis-
sion rates are proportional to each other. For example, if
a mix can transmit twice as much circuit cells per second
compared to another mix, the same proportion applies for
other packet types. Similar, we assume the same to be true
for processing rates (although there might be small differ-
ences in practice due to varying hardware support for sym-
metric/asymmetric cryptography on mixes). Consequently,
we focus on the transmission and processing of circuit cells
because this impacts achievable end-to-end latency of text-
based messaging the most (via Δtc ). That is, the effective
capacity av of mix v is the minimum of its transmission and
processing rate for circuit cells:

(1)av = min
{
�c,v,�c,v

}

We further denote its relative capacity (compared to the total
system capacity) as bv:

Minimum Cost Flow Problem
To achieve our goals, the probability distribution for select-

ing the entry mix v ∈ V of a circuit can be defined straight
forward to match its relative capacity (random variable X1):

To determine optimal probabilities for the second hop,
we model the situation as a MCFP in a bipartite graph
G = (L,R,E) as depicted in Fig. 4. There is one node for each
mix in L and R:

Furthermore, there is an edge (lu, rv) ∈ E for all pairs
of mixes u, v with u ≠ v . The cost (weight) of each edge
matches the latency of the corresponding link:

Next, the flow constraint is as follows: Each node lv ∈ L is a
source node with a supply of bv , its probability to be selected
as entry mix. On the other side, each node rv ∈ R is a sink
with a demand of bv . Then, we can map a feasible flow f to
path selection probabilities for the second hop (random vari-
able X2 ), given a fixed entry mix u:

In combination with the demand of bv for rv , the absolute
probability to select a mix v at layer 2 again matches its
relative capacity bv:

(2)bv =
av∑
u∈V au

.

(3)Pr
(
X1 = v

)
= bv.

(4)L =
{
lv | v ∈ V

}

(5)R =
{
rv | v ∈ V

}
.

(6)w(lu, rv) = wu,v

(7)Pr
(
X2 = v |X1 = u

)
=

f (lu, rv)

bu
.

Layer 1 Layer 2

lv1 rv1

lv2 rv2

lv3 rv3

Fig. 4   Example for the MCFP for determining optimal path selection
probabilities, mix set V =

{
v1, v2, v3

}

SN Computer Science (2022) 3: 341	 Page 9 of 22  341

SN Computer Science

The capacity of edges in the flow network can be used to
model our remaining constraints:

That is, edges may not be used if the corresponding link
latency is too high. Furthermore, the minimum in-degree
dmin for each node in R is enforced by limiting the flow on
each adjacent edge. In many cases, this is expected to also
result in a close to uniform distribution of the flow entering
rv ∈ R because using more than dmin edges would increase
the cost of the flow (but it might be necessary to some extend
due to capacity constraints).

In result, we can determine optimal path selection prob-
abilities by solving the MCFP and using the optimal flow f̂
in Equation (7). For example, the problem can be solved via
linear programming. To also determine optimal probabilities
for subsequent hops, we could model the situation between
other adjacent layers using the same idea. Luckily, all layers
yield the exact same MCFP, so that we can reuse the same
optimal flow f̂  . That is, given the previous hop ui−1 , the
next hop is selected according to the following probability
distribution (random variable Xi ) for 2 ≤ i ≤ l:

Note that the MCFP might not have a feasible solution in
two cases:

1.	 There exists a mix v with a very high capacity compared
to all other mixes:

 Then, we artificially decrease the capacity of v. While
this also reduces the total capacity of the system, it
increases anonymity if v is malicious.

2.	 The constraint wmax for the maximum link latency is
too low. In this case, we solve the MCFP with increased
values for wmax to find a feasible upper bound w�

max
.

Setting Parameters

The directory service has to dynamically set the parameters
Δtc , Δtu , Δts and k for upcoming epochs in an automated
way. For this, it first has to estimate the expected number
nv of circuits a mix v ∈ V has to handle per layer. Similar,

(8)Pr
(
X2 = v

)
=
∑

u∈U

bu ×
f (lu, rv)

bu
=
∑

u∈U

f (lu, rv) = bv.

(9)c(lu, rv) =

{
0 , if wu,v > wmax
1

dmin

× bv , else.

(10)Pr
(
Xi = v |Xi−1 = ui−1

)
=

f̂ (lui−1 , rv)

bui−1

(11)bv >
1

dmin

×
∑

u∈V⧵{v}

bu

the total number n′
v
 of VoIP circuits that v has to handle has

to be estimated. That is because VoIP circuits permanently
reduce the effective transmission rate and processing power
of mixes, regardless of their position on the VoIP circuit.
The estimation can be done as follows:

1.	 We expect all users of Hydra to establish a circuit in as
many epochs as possible. Consequently, the total num-
ber of circuits should only gradually change over time.
For example, this allows to use a moving average of the
number of circuits in recent epochs to estimate the load
in upcoming epochs.

2.	 Given our probabilistic path selection, nv can be mod-
elled as a random variable that follows a binomial distri-
bution (a user either selects mix v at layer i or not and all
n users select paths independently). Consequently, the
99.9% percentile of the resulting binomial distribution
can be used as an practical upper bound for nv.

3.	 Again using a moving average, the fraction f of all
circuits that are used for voice calls can be estimated,
yielding n�

v
= f × l� × nv . Note the additional factor of l′

because each VoIP circuit is handled by l′ mixes.

Setting Δtc
To recapitulate, Δtc is the interval between the forward-

ing of circuit cells on two adjacent layers. It must be large
enough to allow all mixes on a layer to receive and process
all cells from the previous layer. On the other side, it should
not significantly exceed this bound to minimize end-to-end
latency.

For layer i + 1 , we can now estimate the time it takes to
receive and process all cells from layer i using a simplified
model of the transmission process as shown in Fig. 5 (the
same model applies to the downstream direction from layer
i + 1 to i).

First, we have to compensate for the potentially inaccu-
rate clock synchronization between mixes. That is because
a mix in layer i could start sending its circuit cells too late
if its clock is behind in time. This time is bounded by the

Layer i Layer i + 1

σ

tx
ω

rx

∆tc

t

Fig. 5   Simplified model for the transmission of circuit cells from
layer i to layer i + 1

	 SN Computer Science (2022) 3: 341341  Page 10 of 22

SN Computer Science

(assumed) maximum clock offset � between any pair of
mixes.

Next, all mixes transmit their circuit cells in parallel and
the total transmission time can be determined:

Next, we assume that all circuit cells have the same propaga-
tion delay in the transport network. This propagation delay
is bounded by the maximum latency � across all links that
are selectable for a circuit. Consequently, mixes in layer
i + 1 start to receive and process the circuit cells after time
� + � . We assume that receiving new cells and processing
of already received cells can be done in parallel, so that the
total time at mix v is either dictated by v’s bandwidth or
processing power:

Because all mixes work in parallel again, the total time for
receiving and processing at layer i + 1 is

Note that this assumes that there is no (significant) idle time
at mixes during the receiving/processing phase. Especially,
mixes should send circuit cells in a “round robin” fashion to
next hops to avoid idle times at the beginning of this phase.
Further, note that tx ≤ rx.

In summary, we get the following lower bound for set-
ting Δtc:

Setting Δtu
Determining a suitable value for Δtu is analogous to Δtc .

However, not all users update their circuit every round. Con-
sequently, the estimation for the number of affected circuits
can be lower, for example, based on the moving average of
circuit updates per round in recent epochs.

Setting Δts and k
Setting Δts also is analogous to Δtc . For setting k, recapit-

ulate that the total waiting time Δtw during epoch e should be
long enough to run the setup phase of epoch e + 1 (dictated
by the circuit length l and Δts):

(12)tx = max
v∈V

{
nv

�c,v × (1 − n�
v
× ��,v)

}

(13)

rxv = max

{
nv

�c,v × (1 − n�
v
× ��,v)

,
nv

�c,v × (1 − n�
v
× ��,v)

}
.

(14)rx = max
v∈V

{
rxv

}
.

(15)Δtc ≥ � + � + rx.

(16)k × Δt
w
≥ (l − 1) × Δt

s

(17)⇔ k ≥

⌈
(l − 1) × Δts

Δtw

⌉
.

Rendezvous Service

The mixes in V also implement the distributed rendezvous
service. We call them rendezvous nodes when acting in
this role. The rendezvous service is a publish/subscribe
protocol based on tokens. That is, an exit mix can sub-
scribe to a token on behalf of a user and subsequently
receive all circuit cells that are addressed to this token.
Users may use both their setup packet and subsequent cir-
cuit cells to subscribe to tokens. As implementation of
tokens, we use unsigned 64 bit numbers.

For a distributed implementation, the responsible ren-
dezvous node for each possible token t must be determined
deterministically. We suggest that in each epoch e the
directory service sorts the mixes v ∈ V by their ephem-
eral public key pke,v . Since we use unsigned numbers as
tokens, the index of the responsible rendezvous mix in
the sorted list may be determined by tmod|V | . When a
circuit cell is published, the responsible rendezvous mix
checks if there are any subscriptions to the token contained
in the cell and forwards it to all subscribed exit mixes.
However, the cell will not be injected back on the circuit
that it originated from.

Applications

Using circuits for all communications, combined with the
distributed rendezvous service, Hydra is able to support a
wide variety of applications with strong anonymity. Similar
to popular messengers (which do not provide anonymity),
Hydra supports user registration, contact discovery, text-
based messaging, and voice calls. The following subsections
further define the implementation of these applications.

User Registration

We denote the set of users as U. Each user u ∈ U has a long-
term pseudonym nymu and a long-term key pair (pku, sku) .
For example, users may reuse PGP keys if available or gen-
erate a new key pair upon joining Hydra.

If desired by a user u, he may then upload the mapping
(nymu, pku) to a public contact service. To protect his loca-
tion anonymity while uploading, u may use his circuit cells,
addressed to a reserved token of the contact service. How-
ever, he should not do so in the first epoch he participates.
Otherwise, new uploads to the contact service can be cor-
related to users setting up a circuit for the first time, break-
ing location anonymity. Furthermore, he has to generate
(or request) and upload a cryptographic binding bindu of
nymu to pku to defeat impersonation. We enforce no specific
implementation, but assume that possible contacts of u can

SN Computer Science (2022) 3: 341	 Page 11 of 22  341

SN Computer Science

verify the binding. For example, a fingerprint of pku could
be used and verified by meeting in person.

Registration at the contact service is optional. Users may
also decide to publish their public key out-of-band (like on
their personal/professional website) or only by meeting in
person.

Contact Discovery

The objective of contact discovery is to establish a shared
secret between an initiator a ∈ U and a responder b ∈ U .
Similar to user registration, contact discovery is obsolete
if a and b meet in person. We start with some preliminary
thoughts for the responder of contact requests before defin-
ing the actual protocol.

Responder View
To be able to receive contact requests, each user b ∈ U

has a contact token ctb that is derived from pkb . Further-
more, b has to subscribe to ctb on a regular basis. How-
ever, care has to be taken to protect his location anonymity
while doing so. A straight forward approach would be to
(effectively) have a one-to-one mapping from pkb to ctb ,
for example, using a 64 bit hash value, and subscribe to ctb
every epoch. Unfortunately, attackers could then potentially
disclose the mapping of user b to his contact token (and con-
sequently to his public key and pseudonym) by blocking all
his network packets (and only his). If they further control the
responsible rendezvous node for ctb , they observe the miss-
ing subscription. Note that using a cryptographic hash func-
tion for deriving ctb does not help to keep pkb secret because
attackers could simply hash all public keys. We defeat the
attack by two mechanisms:

1.	 We artificially introduce collisions for contact tokens
using a hash function with x ≪ 64 bit of output (padding
with zeros to be used as token).

2.	 Users randomly decide whether they subscribe to their
contact token in an epoch, for example, with a probabil-
ity of 50%.

The parameter x should be small enough that with high prob-
ability, at least one other user will also subscribe to b’s token
even if b is blocked. Combined with random subscriptions,
attackers cannot reliable infer which contact token is missing
by counting subscriptions to different tokens.

However, there are two more aspects to consider for this
approach:

1.	 Unrelated users will also receive the contact requests for
b. Therefore, contact requests have to be encrypted using
pkb in such a way that only b will detect it as a valid
request. More problematic is the fact that users cannot
receive another circuit cell in the same round. Conse-

quently, x should not be too small either. For example, it
could dynamically be set (based on the expected number
of users for upcoming epochs) so that ≈ 100 users share
the same contact token on average.

2.	 Because b does not subscribe to ctb every epoch, contact
requests are also forwarded to the public contact service
for later delivery.

Initiator View
To be able to contact a user b via Hydra for the first time

in epoch ea , the initiator a has to know the public key pkb .
For example, a could download it from the public contact
service if the pseudonym nymb is known. To protect relation-
ship anonymity, a must use his circuit for this.

Next, a generates a secret s and encrypts it with pkb in a
way that b can validate it, for example by adding a Message
Authentication Code (MAC) generated with s. Furthermore,
he uses s as seed for a hash chain that is advanced every
epoch, starting at epoch ea as depicted in Fig. 6. The hash
chain is used to derive session keys and rendezvous tokens
for further communication with b. Each rendezvous token
rte,a,b is only valid for one epoch e and for one pair of users
a, b. Then, a sends the encrypted secret s and the epoch ea to
b using a circuit cell addressed to ctb . Furthermore, he starts
to subscribe to the generated rendezvous tokens.

As soon as b receives the request, he can initialize the
same hash chain and subscribe to the same rendezvous
tokens. Then, a and b could start normal communication by
sending circuit cells addressed to rte,a,b and using the session
keys for end-to-end protection. However, all session keys are
derived from s, which does not provide any forward secrecy
in case skb is compromised. Consequently, we suggest that
a and b first run a key exchange protocol that provides a new
shared key s′ with forward secrecy. Then, they can incorpo-
rate s′ into the hash chain (or setup a new one). And only
then, a should send his own pseudonym to b to also protect
relationship anonymity with forward secrecy.

Text‑Based Messaging

Text-based messaging between contacts a and b is straight
forward: Given the shared hash chain, they derive and

s7

k7 t7

hk ht

s8

k8 t8

hk ht

s9

k9 t9

hk ht

s . . .
hc hc hc hc

Fig. 6   Hash chain shared by users a and b, starting at epoch e
a
= 7 .

Three different hash functions/key derivation functions are involved
to advance the chain ( h

c
 ), to derive session keys ( h

k
 ), and to derive

rendezvous tokens t
e
= rt

e,a,b ( ht)

	 SN Computer Science (2022) 3: 341341  Page 12 of 22

SN Computer Science

subscribe to the same rendezvous tokens rte,a,b . Conse-
quently, circuit cells addressed to rte,a,b can be used to
tunnel messages. Furthermore, cells are encrypted and
authenticated end-to-end using session keys derived from
the hash chain. When users are temporarily offline, their
entry mix acts as offline storage.

While the baseline protocol is straight forward, there
are two aspects that may need special treatment if required
by a user:

1.	 While end-to-end latency is minimized when a circuit
cell sent by a is delivered to b in the exact same round,
it might slowly degrade a’s location anonymity. When b
is malicious, he could cooperate with a global observer
to track which users are online whenever he receives a
cell from a (anonymity set). Because of inevitable user
churn, intersection of anonymity sets weakens loca-
tion anonymity. To counter the attack, we allow users
to instruct an arbitrary mix on their circuit to delay the
next cell they send by a random number of rounds (and
insert a dummy cell instead).

2.	 Because all messages a user sends/receives are mul-
tiplexed over one circuit, users might experience
increased end-to-end latencies when they are in many
conversations. If users do not mind leaking that they
potentially have many contacts, they can setup multiple
circuits per epoch to increase throughput.

Voice Calls

When a user a wants to call his contact b in epoch e, sign-
aling can use the same protocol as text-based messaging:

1.	 The invitation to the call is sent using a circuit cell
addressed to rte,a,b . It includes the network address ipva
of a’s VoIP exit mix va and a fresh, random rendezvous
token t.

2.	 User a updates its circuit to be used for VoIP in parallel.
The update packet includes t.

3.	 If b accepts the call, he also updates his circuit and sends
both t and ipva to his VoIP exit mix vb.

4.	 Mix vb sends t to va to permanently connect the two
circuits. In result, voice packets do not have to use the
rendezvous service for end-to-end delivery.

5.	 During the call, users apply authenticated end-to-end
encryption using the session key from their shared hash
chain.

6.	 After the call, both users may disable their VoIP circuit
again or potentially reuse it to connect to a different call
(again by sending an update packet).

If b does decline the call (using text-based messaging) or
does not react in time, a aborts the protocol and updates its
circuit accordingly.

Note that using Hydra’s VoIP feature does not provide the
same strong anonymity as text-based messaging. First, VoIP
circuits potentially have a shorter length of l′ . This increases
the chance of attackers to narrow down possible endpoints
of VoIP circuits. Especially, the probability for a majority of
mixes on the circuit (or even all) to be malicious increases.
Second, churn for VoIP circuits is higher compared to “nor-
mal” circuits. In result, disclosure attacks on relationship
and location anonymity are facilitated.

To counter the latter and to make Hydra more user
friendly at the same time, other applications may be tun-
neled using VoIP circuits as well. For example, contacts may
setup a call to be used as an interactive chat session with
very low end-to-end latency or to transmit small files like
photos. For the latter, an untrusted offline storage could be
used as endpoint for the “call” in case the recipient is tem-
porarily offline. Further countermeasures, for example fake
calls, are out of scope for this article and have to be studied
in future work.

Circuit Design

This section presents details about our implementation of
circuits, especially regarding the structure of packets and
their onion encryption. Moreover, we show how dummy
circuits created by mixes may further strengthen anonymity.

The objective of circuits is to unlink users from packets
sent during one epoch. The main threats during an epoch
are malicious mixes and external attackers that control links
of circuits. We already discussed that network flow water-
marking attacks are defeated by synchronized forwarding
between layers and injecting dummy packets if necessary.
Additionally, mixes implement a de-jitter buffer for each
VoIP circuit. Nevertheless, circuit design has to consider
two more possible threats:

1.	 When attackers replay packets, they must not be for-
warded using the same cryptographic transformation as
the original packet. Otherwise, they can be tracked by
their recurrent ciphertext.

2.	 Attackers must not be able to manipulate (onion-
encrypted) packet content in a way that is detectable
even after the packet has passed an honest mix, often
called tagging attack.

Circuit Setup

The objective of circuit setup is to establish a shared
secret si with each mix vi, 1 ≤ i ≤ l on a selected path.
Furthermore, the exit mix subscribes to a set of tokens

SN Computer Science (2022) 3: 341	 Page 13 of 22  341

SN Computer Science

at the rendezvous service on behalf of the user. Because
the directory service publishes the ephemeral public keys
pkvi of each mix, users are able to pre-compute all secrets
si . For this, a user generates own ephemeral key pairs
(pki, ski), 1 ≤ i ≤ l . In result, he is able to prepare a single
onion encrypted setup packet to establish the circuit and
subscribe to tokens as depicted in Fig. 7.

For onion encryption, we require the use of an authenti-
cated encryption scheme. Consequently, users also add an
authentication �i (128 bit) after each layer of encryption.
We further recommend using a symmetric cipher based
on si , which usually requires an additional initialization
vector (IV) or nonce value ni (96 bit) that is also added to
the layer. Moreover, a user adds his own public key pki and
the address of the next hop vi to each layer. When aiming
for IPv6 support, network address and port require a total
of 144 bit and IPv4 addresses must be mapped to IPv6 to
achieve uniform packet sizes. Finally, the current epoch
number e and a random circuit id is added to the setup
packet before it is sent to the entry mix v1 . To keep setup
packet size uniform across users, we suggest to use 256
tokens for now, padding with dummy tokens if necessary.
If users have more contacts, they may also use circuit cells
to subscribe to more tokens. Furthermore, token order is
randomized to avoid rendezvous tokens of the same con-
tact to be correlated across epochs. Using 4 B epoch num-
bers, 8 B circuit ids, and public keys of size x, the total
size of the setup packet sent by a user is

When mix vi receives the packet, he first uses his secret key
skvi and the public key pki contained in the packet to derive
si . Together with ni , he is then able to remove one layer of
encryption, check the authentication tag �i and extract the
next hop vi+1 or the set of tokens in case of the exit mix.
Before forwarding, the circuit id is replaced by a new ran-
dom id and the mix stores the mapping of the two circuits ids
to si , previous hop, and next hop. Furthermore, vi removes
vi+1 , pki , ni , and �i from the packet. Padding is not necessary
because the size of all setup packets at this layer decreases
uniformly and a mix knows its layer i on the circuit because
of the timing anyway. If authentication fails, the mix drops

(18)2042B + l × (46B + x).

the packet and creates a dummy circuit instead, starting at
layer i. While the circuit is not utilizable by the user in this
case, it still gets padded with dummy circuit cells up to layer
i (and back). Similar, the dummy circuit created by the mix
is padded to the exit mix (and back).

Authenticated encryption naturally defeats tagging attacks.
Replay protection can be implemented efficiently using
a bloom filter on the authentication tags. If attackers try to
“hide” a replay by manipulating the tag, the packet still is
dropped because authentication fails. Furthermore, the bloom
filter may be cleared every epoch because replays from older
epochs also lead to failed authentication (mixes use a fresh key
pair every epoch).

Circuit Cells

The packet format of circuit cells is shown in Fig. 8. Most
importantly, they include an onion-encrypted payload and
token, which are used for end-to-end delivery of text mes-
sages. The payload size of 240B should be a reasonable trade-
off between overhead of dummy cells and usability for (com-
pressed) text messages. Of course, larger messages can be split
to multiple cells or transferred using a VoIP circuit.

Additionally, cells may indicate one of the following com-
mands, interpreted by the mixes (and rendezvous node) in
upstream direction:

1.	 Delay the next circuit cell in upstream direction by ����
rounds. This may increase location anonymity of users
as discussed previously.

2.	 The indication that the circuit cell contains a contact
request. Then, the responsible rendezvous node forwards
the circuit cell to the contact service for later delivery if
no subscription is found.

3.	 Subscribe to ���� more tokens stored in the payload.

For onion encryption, we use a symmetric cipher without
authentication. Consequently, mixes are able to inject rand-
omized dummy cells that are indistinguishable from real cells.
However, care has to be taken to not allow tagging attacks in
upstream direction: For example, when using a block cipher in
counter mode of operation, the cell is xor ed with a key stream.
Consequently, attackers would be able to flip specific bits in
the plaintext of ���, ����, ����� without detection. Then, mali-
cious exit mixes could check if they receive a valid ��� or
known contact token with the same bits flipped. We counter

tokens

v3 pk3 n3 τ3

v2 pk2 n2 τ2

pk1 n1 τ1circIde

AEnc(s3, n3)

AEnc(s2, n2)

AEnc(s1, n1)

Fig. 7   Authenticated onion encryption of a circuit setup packet on
path (v1, v2, v3) [14]

circId rndNo cmd args token payload

Onion-encrypted

8B 4B 7B 1B 8B 240B

Fig. 8   Packet format of circuit cells [14]

	 SN Computer Science (2022) 3: 341341  Page 14 of 22

SN Computer Science

this using a wide block cipher with a block size of 256 B. In
result, onion encryption works on a single block and the com-
plete cell changes in an unpredictable way at honest mixes if
only a single bit is flipped.

For replay protection, mixes use the communication round
number ����� and simply drop cells with an old one (inject-
ing a dummy cell instead). But again, care has to be taken
because cells are not authenticated: Attackers could simply
manipulate the round number to appear new. To counter this,
we also require the used block cipher to be tweakable. Simi-
lar to an IV/nonce, a tweak is an additional, non secret input
for the cipher. By using ����� as tweak, the complete cell
changes in an unpredictable way at honest mixes if the �����
is manipulated.

VoIP Cells

VoIP cells, shown in Fig. 9, are a stripped version of circuit
cells. All VoIP cells have a uniform size that depends on
the used VoIP codec. A payload size in the range of 32 B to
128 B seems like a reasonable trade-off between codec quality,
usability for file transfers and overhead. Because we expect
the payload to be end-to-end encrypted (or randomized for
dummy cells) at all times, tagging attacks are ruled out from
the start and we can use an arbitrary cipher that supports an IV
(nonce/tweak). Similar to circuit cells, replay protection uses a
sequence number ����� which is used as the IV for the cipher.
In contrast to round numbers in circuit cells, sequence numbers
are initially selected at random by each mix when establish-
ing a VoIP circuit. Afterwards, consecutive cells between two
mixes also use consecutive sequence numbers. Note that users
have to know which “offset” each mix on the circuit uses for
transforming the sequence number (one offset per direction).
Only then users can derive the correct IVs for onion encryp-
tion. For this, mixes use voice cells in downstream direction
to notify the user as further described in the next subsection.

Circuit Update

Update packets on a circuit prefix with mixes vi, 1 ≤ i ≤ l′ use
authenticated encryption similar to setup packets, shown in
Fig. 10. However, update packets do not include data for a key
exchange because mixes already know the shared secret si .
Furthermore, the round number is used as IV/nonce to allow
an easy replay protection similar to circuit cells (here, authen-
tication fails upon manipulation). One command per layer is

used to instruct mixes to either disable or enable the usage as
VoIP circuit. Additionally, the circuit update packet can be
used to optionally send a rendezvous token t and the VoIP
exit mix r of another user to the VoIP exit mix of the affected
circuit. This reflects our protocol for call signalling. For now,
we use 2 B to encode the command, resulting in a total update
packet size of 38B + l� × 18B.

When a mix vi at layer i is instructed to enable VoIP sup-
port (and it was not enabled before), he starts sending a con-
stant flow of VoIP cells to both the previous and next hop
on the circuit. The packet rate matches the rate of the VoIP
codec Hydra is configured to use, for example 50 pps . For
each direction, the mix waits a random time drawn uniformly
at random from the interval [0;Δtv] before sending the first
packet, with Δtv being the interval at which the voice codec
generates packets. He further selects the 4 B sequence num-
ber for the two first cells uniformly at random. Subsequently,
a deterministic sending interval of Δtv is enforced, increasing
the sequence number by one for each new packet. By the
time he starts sending both packet flows, he is also expected
to receive the first voice cells on the circuit from the previ-
ous hop. Then, he starts injecting the cells in his upstream
packet flow, including dummy cells if the cell with the next
expected sequence number does not arrive in time. Note that
for injecting cells to the deterministic sending schedule, a
random scheduling delay of Δtv /2 is introduced on average.
Using this algorithm, the mix effectively implements a de-
jitter buffer with a random offset in timing and sequence
number, unlinking ingress and egress flow. He further deter-
mines the offset in sequence numbers he uses when injecting
upstream cells. Later in time, he will also start receiving
cells from the next hop (or from another VoIP exit mix)
in downstream direction and also determines the offset in
sequence numbers for injecting downstream cells. Then, he
may send both offsets to the user via a downstream cell, pad-
ded with zeros for detectability at the user. Because all mixes
on previous layers j < i already did send their offsets by
this time, the user can derive the correct (egress) sequence
number that mix vi used, and successfully remove all layers
of onion encryption.

When a mix is instructed to disable VoIP support, it sim-
ply stops sending both packet flows.

circId seqNo payload

Onion-encrypted

8B 4B

Fig. 9   Packet format of VoIP cells

cmd, r, t

cmd τ3

cmd τ2

τ1rndNocircId

AEnc(s3, rndNo)

AEnc(s2, rndNo)

AEnc(s1, rndNo)

Fig. 10   Authenticated onion encryption of a circuit update packet on
path (v1, v2, v3)

SN Computer Science (2022) 3: 341	 Page 15 of 22  341

SN Computer Science

Dummy Circuits

Mixes create a dummy circuit whenever authentication of
a real setup packet fails. For this, they use the same path
selection as users, with a reduced path length depending
on their current layer. Additionally, mixes also proactively
create dummy circuits to increase uncertainty for attackers
when not many real circuits are established (for example,
when bootstrapping Hydra). To maximize uncertainty, mixes
create one additional dummy circuit for each possible link
(according to path selection) that is not used by any other cir-
cuit. To further defeat flooding attacks (all but a few circuits
are set up by attackers), mixes create at least one dummy
circuit at each layer. Mixes also use their dummy circuits to
send (fake) messages and contact requests to themselves to
add cover traffic to/from the rendezvous service.

Evaluation

To evaluate Hydra, we first qualitatively discuss to what
extend our objectives (section 2) are fulfilled. Subsequently,
we quantitatively evaluate the achievable end-to-end latency
and anonymity when using Hydra.

Qualitative Discussion

Note that our qualitative discussion concisely summarizes
many arguments that already guided our design.

Functional Objectives

Hydra implements user registration, contact discovery and
text-based messaging by tunneling all packets via circuits.
End-to-end delivery is realized by the distributed rendezvous
service via a publish/subscribe protocol. Offline storage is
provided by the contact service (for contact discovery) and
by entry mixes (text-based messages). Furthermore, voice
calls are supported by “upgrading” circuits accordingly and
by connecting the two circuit endpoints directly for end-
to-end delivery. While we define no protocol for arbitrary
message types, for example files and photos, larger messages
may also be tunneled via VoIP circuits. A limitation of this
approach is the limited bandwidth because VoIP circuits are
optimized for efficient VoIP codecs. An idea for future work
could be to introduce further circuit types similar to a VoIP
circuit, offering higher padding rates or larger cells. Unfor-
tunately, anonymity sets would be smaller for such circuits.

Non‑functional Objectives

Confidentiality and Integrity

After contact discovery (or out-of-band key exchange),
contacts initialized the same hash chain and can subse-
quently derive session keys for each epoch for authenticated
end-to-end encryption of all message types and voice calls.
Note that when the contact service is used to query public
keys, secure handling of cryptographic bindings to pseudo-
nyms is crucial to defeat impersonation.

Anonymity
The anonymity discussion is roughly sorted by the effort

for potential attacks, from least to most.
Regarding local attackers, honest mixes perfectly unlink

ingress packets from their corresponding egress packets:
Packet content can not be correlated because of onion
encryption of all packet types. Furthermore, circuit ids of
all packets and sequence numbers of VoIP cells randomly
change at every honest mix. Packet size cannot be corre-
lated because it is uniform across all circuits at any given
layer for each packet type. Timing information is removed
by batch processing and synchronized forwarding in the case
of setup packets, circuit cells, and circuit update packets.
Timing information of VoIP cells is removed by implement-
ing a de-jitter buffer for each VoIP circuit. Furthermore, the
sending times of the first VoIP cell in each direction as well
the “size” (in time) of each de-jitter buffer is randomized.
Consequently, VoIP circuits that are established in the same
round are perfectly mixed, even though each circuit uses
its own de-jitter buffer. Last but not least, all packet types
implement replay protection and protection from tagging
attacks.

When circuit cells or VoIP cells are dropped by attack-
ers, the resulting “gap” is padded by the next honest hop. In
contrast, dropping circuit update packets results in a possible
attack: If update packets on all but one circuit are dropped,
the remaining packet can be tracked to disclose the path of
the circuit because mixes do not send dummy update packets
in our current design. However, there still is some protection
for text-based messaging when VoIP circuits use a shorter
path length of l′ < l . Furthermore, it requires a global active
attack. And while this is not ruled out by our threat model,
we expect this to be very expensive for attackers (and most
likely detectable).

When only few circuits are established, attackers drop
setup packets or control a majority of circuits, “honest” cir-
cuits are still not distinguishable from the dummy circuit
each honest mix creates. Even when only two honest users
participate in Hydra (or all others are blocked), attackers
can not tell whether they are communicating or not. That
is because dummy circuits of mixes also create valid traffic
from/to the rendezvous service. However, in this artificial
case, the relationship of the two users is de-anonymized if
they successfully setup a voice call.

Malicious mixes naturally do not unlink ingress and
egress packets, because they can always share their internal

	 SN Computer Science (2022) 3: 341341  Page 16 of 22

SN Computer Science

mapping with external attackers. Therefore, we do not
implement any mechanisms to detect misbehaving mixes
(for example verifiable shuffles or trap messages). And while
misbehaving mixes may simply disrupt service, similar dis-
ruption by external attackers can not be defeated anyway. If
a majority of mixes on a circuit are malicious, they may be
able to narrow down possible circuit endpoints. For exam-
ple, if only the entry mix is honest, the anonymity set only
contains users that use this entry mix. In the worst case, all
mixes on a circuit are malicious and location anonymity is
broken. However, relationship anonymity is still protected
by the circuits of communication partners.

Disclosure attacks during text-based communication are
expected to not have a high chance of success because user
churn is expected to be low. Disclosure attacks on VoIP cir-
cuits are more promising and have to be studied in future
(together with countermeasures like fake calls).

While outside the scope of this article, the directory ser-
vice has to be implemented in a secure and decentralized
way to provide unbiased path selection probabilities.

QoS
End-to-end latency for text-based messages is expected

to be low because during one communication round, only
symmetric ciphers are used. However, the artificial waiting
time between rounds increases achievable latency. Unfortu-
nately, waiting times are inevitably for energy efficiency on
mobile devices and to run the setup phase of the next epoch.
Suitable trade-offs have to be studied by our quantitative
evaluation.

In contrast, VoIP calls (which may also be used for nor-
mal messaging) are expected to result in an end-to-end
latency below 400ms . While VoIP cells suffer an average
scheduling delay of Δtv /2 at each hop, for example, 10ms
for common codecs, path selection uses low latency links on
average. Again, a quantitative evaluation will yield further
insights. Packet loss is also expected to be low because our
path selection utilizes mixes proportionally to their capacity,
avoiding bandwidth and processing bottlenecks.

Efficiency and Scalability
Apart from circuit setup, which is only necessary once

per epoch, onion encryption may use efficient symmetric
ciphers. Furthermore, horizontal scalability is achieved
using constant path lengths l and l′ for circuits.

Robustness
While using long epochs increases efficiency (less asym-

metric cryptography), failing mixes disrupt the communi-
cation on all circuits they are part of. Then, affected users
cannot take part in any communication for up to two epochs.
That is because their circuit for the next epoch might also
use a failed mix, and the path cannot be changed anymore
because the setup phase is already in progress. Consequently,
the number of rounds during one epoch should not be longer
than necessary for the next setup phase to finish.

Quantitative Evaluation

We aim to answer the following research questions with our
quantitative evaluation:

1.	 How does Hydra’s performance for text-based mes-
saging compare to other systems that provide strong
anonymity? Especially, we want to compare Hydra to
Karaoke [5], one of the most efficient candidates today.

2.	 How long does one epoch have to be to allow the setup
of the next epoch to finish in time?

3.	 Does Hydra achieve an acceptable end-to-end latency
for voice calls, that is, below 400 ms?

4.	 Is anonymity degraded by latency-based path selection?
5.	 Is it efficient to solve the MCFP for determining path

selection probabilities, even for large deployments of
Hydra?

Default Parameters and Algorithms

If not stated otherwise, we use the default parameters and
algorithms as listed in Table 2.

Note that Karaoke uses very long paths of l = 14 mixes to
achieve a negligible probability for path compromise when
20% of mixes are malicious. For a practical deployment of
Hydra we envision a reduced circuit length of l ≈ 8 . Then,
the probability of selecting a completely malicious circuit
is still fairly low and relationship anonymity is protected by
≈ 16 mixes (two circuits). As tweakable wide block cipher
for circuit cells we use Threefish-1024 in combination
with 12 rounds of a Feistel network to double its block size
to 256B [32].

Comparison with Karaoke

The minimal and average end-to-end latency for text-based
messages in Hydra are determined by static and dynamic
parameters. The minimal end-to-end latency �min equals the
round-trip time for circuit cells (recapitulate Fig. 3):

For users, the average end-to-end latency 𝛿 is crucial. It addi-
tionally has to reflect the average waiting time for the next
round to start when a user wants to send a message, which is
half the duration of a complete round (normal communica-
tion, circuit update, and artificial waiting time):

We compare Hydra against Karaoke’s empirical results
obtained from a deployment of |V| = 100 Amazon AWS
c4.8xlarge instances as mixes [5]. Furthermore, we

(19)�min = 2(l + 1)Δtc.

(20)𝛿 = 𝛿min +
1

2

(
𝛿min + l� × Δtu + Δtw

)

SN Computer Science (2022) 3: 341	 Page 17 of 22  341

SN Computer Science

fit their empirical results into our model for setting Δtc ,
assuming that Hydra would have to use asymmetric cryp-
tography (x25519) for every circuit cell. Then, Karaoke’s
performance can be modelled by setting Δtw = 0 (they do
not require waiting times) and Δtu = 0 (they do not support
VoIP). Note that we also multiply their empirical results
(which correspond to the minimal end-to-end latency) by a
factor of 1.5 to compensate the fact that on average, Kara-
oke’s users have to wait half a round to be able to send their
message just like in Hydra.

The performance characteristics of all AWS instances
are assumed to be identical and are listed in Table 3. For
transmission rates, we multiplied the available bandwidth
( 10Gbit s−1 ) by a (conservative) factor of 0.5 to compen-
sate for transport protocol overhead. To approximate pro-
cessing power, we benchmarked single core performance
of all relevant cryptographic algorithms on an Intel Core
i7-7500U for one minute each, using Hydra’s prototype
code. We further multiplied the results by the thread count
(18 for c4.8xlarge) and by an additional factor of 0.36
to compensate overhead like key lookup and thread synchro-
nization, which fits the empirical results of Karaoke. Fur-
ther note that Karaoke’s experiment artificially introduced
a latency of 50 ms between any pair of mixes.

We further assumed that all circuits are updated every
round to get an upper bound for Δtu . But even then, Δtu is
negligible because of the very efficient onion encryption of
circuit update packets (AES-GCM-256).

The results of our comparison are shown in Fig. 11.
First note that our model for Karaoke is a good approxima-
tion for their empirical results and thus can be used as an
extrapolation of its performance. And as expected, using
symmetric ciphers for onion encryption of circuit cells
can significantly reduce the average end-to-end latency for
large user populations. However, the end-to-end latency is
comparatively high for small user populations due to the

inevitable waiting time between communication rounds.
Furthermore, when using 3.5% of all circuits for VoIP in
parallel, end-to-end latency drastically increases when the
user population approaches 50 million users. This can be
explained by the fact that for 50 million users, mixes then
have to use ≈ 25% of their bandwidth solely for sending/
receiving VoIP cells.

To compare anonymity, we further evaluate the “mixing
property” of path selection between Karaoke (uniformly at
random) and Hydra. For this, we simulated a varying num-
ber of circuit setups and measured the relative (to all cir-
cuits) location anonymity set size for each circuit. The loca-
tion anonymity set size includes all other circuits that are
successfully mixed with a targeted circuit. We further use
the 5% percentile across all circuits as the metric for path
selection as a whole. Following the evaluation of Karaoke,
we assume a global observer and 20% of mixes to be mali-
cious. Creation of dummy circuits is deliberately turned off
to solely compare path selection.

Table 2   Default parameters and
algorithms

Parameter Default value Comments

Circuit length l 14 Path length used in Karaoke
VoIP circuit length l′ 4
Min. node degree dmin 0.2 × |V| 20% of the number of mixes
Max. latency wmax on links 100 ms
Max. clock skew � 10 ms
Waiting time Δt

w1
10 s

Waiting time Δt
w2

0 s
VoIP codec interval Δt

v
20 ms Packet rate of 50 pps

VoIP cell payload 64 B
Key exchange x25519 Diffie Hellman on Curve25519
Authenticated encryption AES-GCM-256 For setup and update packets
Circuit cell encryption Threefish-1024 With doubled block size [32]
VoIP cell encryption AES-CTR-256

Table 3   (Approximated) performance characteristics of an AWS
c4.8xlarge instance (mix v) in the context of Hydra

Symbol Value Comment

�s,v 200000 pps Transmission rate for circuit setup packets
�c,v 2332000 pps Transmission rate for circuit cells
�u,v 5682000 pps Transmission rate for circuit update packets
�s,v 131000 pps Processing rate for setup packets
�c,v 2333000 pps Processing rate for circuit cells
�u,v 19440000 pps Processing rate for circuit update packets
��,v 1.216 × 10−5 Fraction of transmission rate for one VoIP

circuit
��,v 5.144 × 10−6 Fraction of processing power for one VoIP

circuit
w
v,u 50ms Latency to all other mixes u ∈ V ⧵ {v}

	 SN Computer Science (2022) 3: 341341  Page 18 of 22

SN Computer Science

The results are shown in Fig. 12. While Karaoke’s path
selection has slight advantages when there are only a few
circuits, both strategies approach a relative location anonym-
ity set size of 1 when the total number of circuits is large
enough. The advantage for fewer circuits may be explained
by the increased uncertainty due to higher node degrees for
path selection (99 versus 20).

Epoch Duration

The (minimum) duration de of one epoch is determined as
follows (using the lower bound for the number k of com-
munication rounds):

Note the factor of 2, which reflects the setup and commu-
nication phase.

With regard to mix capacities, we used the same scenario
as for the Karaoke comparison (100 AWS c4.8xlarge

(21)de = 2 × k ×
(
�min + l� × �u + Δtw

)

(22)≥ 2 ×

⌈
(l − 1) × Δts

Δtw

⌉
×
(
�min + l� × �u + Δtw

)
.

instances as mixes). We further assumed that 3.5% of all
circuits are used for VoIP again. Our results in Fig. 13 show
a similar characteristic as our results for end-to-end latency
with the same parameters: Epoch durations are practical for
up to ≈ 40 million users, but increase drastically for larger
user populations for the same reason as above.

VoIP Calls

To evaluate achievable end-to-end latency for VoIP calls in
a realistic scenario, we use a latency dataset that we gen-
erated by extensive measurements in the Tor network. As
bandwidth estimation in kbytes∕second , we used their con-
sensus weight [33]. We also published our dataset at [34]
to facilitate future research on anonymous communications
with strict latency requirements. Given the raw dataset, we
further filtered all Tor relays that are not able to relay at least
100 voice calls with 32 kbits∕second each. Furthermore, we
filtered relays for which we did not have latency measure-
ments to at least 90% of all other mixes. Missing latency
measurements were completed using the average latency of
the two corresponding relays. In summary, this results in
a dataset containing 924 relays with their bandwidth and

Fig. 11   Average end-to-end
latency for Karaoke, Hydra,
and an instantiation of Hydra
with x25519 for circuit cells to
extrapolate the empirical results
of Karaoke (updated from [14])

0

50

100

150

0 M 10 M 20 M 30 M 40 M 50 M

Number of users n (in millions)

E
nd

-t
o-

en
d

la
te

nc
y

[s
]

(a
ve

ra
ge

)

Karaoke, c4.8xlarge
Model, ∆ t_w = 0s, x25519 for circuit cells
Hydra, ∆ t_w = 30s with 3.5% VoIP
Hydra, ∆ t_w = 30s with 1% VoIP
Hydra, ∆ t_w = 10s with 1% VoIP

Fig. 12   Relative location
anonymity set size for a varying
number of circuits, comparing
Karaoke’s and Hydra’s path
selection

0.00

0.25

0.50

0.75

1.00

20 40 60 80 100 120 140 160 180 200

Number of circuits

R
el

at
iv

e
lo

ca
tio

n
an

on
ym

ity
se

t s
iz

e
(0

.0
5-

th
 q

ua
nt

ile
)

Karaoke

Hydra

SN Computer Science (2022) 3: 341	 Page 19 of 22  341

SN Computer Science

pairwise latencies. We further generated 32 subsets of size
100 uniformly at random to be used as mix set V for Hydra.
If not stated otherwise, charts show the average metrics
across the 32 subsets with 95% confidence intervals.

First, we simulated 1000 calls to get an overview of
achievable latency and anonymity. As latency metric, we
use the 95% percentile of the end-to-end latency across all
calls. As anonymity metric, we use the (static) probability
of selecting a completely malicious VoIP circuit (no loca-
tion anonymity). For this, we assume a strong threat model:
20% of the mixes with the lowest average latency to all other

mixes are compromised. Our results are shown in Figs. 14
and 15.

As expected, using a longer prefix of circuits for VoIP
increases anonymity but also end-to-end latency. The same
applies to the minimum node degree dmin for path selection.
A good trade-off in this scenario is to use a prefix length
l� = 5 combined with 20 ≤ dmin ≤ 25 . Then, acceptable QoS
is achieved for a large majority of calls and location anonym-
ity is reasonable when considering the strong threat model.
Naturally, relationship anonymity is better than location ano-
nymity, but not shown here for brevity.

Fig. 13   Minimum epoch
duration in Hydra, using 100
Amazon AWS c4.8xlarge
instances as mixes (updated
from [14])

0

1000

2000

0 M 10 M 20 M 30 M 40 M 50 M

Number of users n (in millions)

M
in

im
um

ep
oc

h
du

ra
tio

n
[s

] ∆ t_w = 10s
∆ t_w = 30s

Fig. 14   End-to-end latency of
voice calls for varying mini-
mum node degrees dmin for path
selection and a varying length l′
of VoIP circuits

0

100

200

300

400

5 10 15 20 25 30 35 40

Minimum node degree d_min

E
nd

-t
o-

en
d

la
te

nc
y

[s
]

(0
.9

5-
th

 q
ua

nt
ile

)

VoIP circuit length l' = 5

VoIP circuit length l' = 4

Fig. 15   Probability for selecting
a completely malicious VoIP
circuit (no location anonym-
ity) for varying minimum node
degrees dmin for path selection
and a varying length l′ of VoIP
circuits

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

5 10 15 20 25 30 35 40

Minimum node degree d_min

P
ro

ba
bi

lit
y

of
no

 lo
ca

tio
n

an
on

ym
ity VoIP circuit length l' = 4

VoIP circuit length l' = 5

	 SN Computer Science (2022) 3: 341341  Page 20 of 22

SN Computer Science

To further study the influence of latency-based path selec-
tion on anonymity, we compare two different attack strate-
gies to compromise 20% of all mixes: One is to compromise
the mixes with the best average latency to other mixes (as
above) and one is uniformly at random. We simulated a vary-
ing number of calls, assuming all of them to start and stop at
the same time to solely evaluate path selection. As metric,
we use the 5% percentile of the relative location anonymity
set sizes across all involved users. We fixed the VoIP circuit
length to l� = 5 and the minimum node degree to dmin = 25.

Our results in Fig. 16 (confidence intervals are too narrow
to be visible) only show a slight advantage for the latency-
based attack. Consequently, latency-based routing does not
significantly degrade anonymity.

MCFP Runtime

To solve the MCFP for determining optimal path selection
probabilities, we formulated the problem as linear program
and solved it with Gurobi [35] (version 9.11) on an Intel
Core i7-6700. Using the same base dataset as in the last
experiment, Fig. 17 shows the average solving time for up

to m = 900 (the maximum size for our base dataset) mixes
across 32 runs each, with the standard deviation as error
bars. We furthermore solved the problem on an artificial
dataset with m = 3000 . And while the latter took roughly 8
min to solve, we do not expect this to be a problem in prac-
tice because the MCFP only has to be solved once per epoch
and only if the mix set or mix properties changed compared
to the previous epoch. Nevertheless, in future work, we study
possible approximation algorithms to efficiently determine
path selection probabilities for even larger networks, for
example, at the scale of Tor ( m ≈ 5000).

Summary

Compared to a recent anonymity system for text-based mes-
saging with strong anonymity, Hydra is able to improve end-
to-end latencies by an order of magnitude without degrading
anonymity. At the same time, Hydra is able to support anon-
ymous voice calls with large anonymity sets and acceptable
QoS even in the presence of many malicious mixes. Further-
more, our novel approach to determine path selection prob-
abilities may efficiently be applied in real word scenarios.

Fig. 16   Relative location
anonymity set size for varying
number of concurrent calls and
two different attack strategies,
for l� = 5 and dmin = 25

0.00

0.25

0.50

0.75

1.00

200 400 600 800 1000 1200 1400 1600

Number of concurrent calls

R
el

at
iv

e
lo

ca
tio

n
an

on
ym

ity
se

t s
iz

e
(0

.0
5-

th
 q

ua
nt

ile
)

Random attack

Latency-based attack

Fig. 17   Average time to solve
the MCFP for determining path
selection probabilities

0

10

20

30

40

100 200 300 400 500 600 700 800 900

Number of mixes m

A
ve

ra
ge

 s
ol

vi
ng

 ti
m

e
[s

]

SN Computer Science (2022) 3: 341	 Page 21 of 22  341

SN Computer Science

Conclusion and Future Work

Using padded circuits in combination with latency-aware
path selection allows Hydra to implement metadata secu-
rity for a wide variety of applications. Compared to recent
anonymous messaging systems with strong anonymity,
Hydra is able to decrease end-to-end latencies for text-
based messages by an order of magnitude without degrad-
ing anonymity. Our rendezvous mechanism furthermore
avoids shortcomings of similar circuit-based designs. Most
importantly, Hydra is able to efficiently provide strong
location anonymity in addition to relationship anonym-
ity. Circuits may further be upgraded to be used for voice
calls, interactive chat sessions, or file transfers in parallel.

As future work, we plan to study the impact of disclo-
sure attacks on the anonymity of VoIP circuits. Due to a
higher churn of VoIP circuits, we expect disclosure attacks
to be successful in practical deployments if no further
countermeasures like fake calls are employed. We further
want to implement Hydra as an open source project. A
first prototype is available at https://​github.​com/​hydra-​acn.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Mayer J, Mutchler P, Mitchell JC. Evaluating the pri-
vacy properties of telephone metadata. Proc Nat Acad Sci.
2016;113(20):5536–41. https://​doi.​org/​10.​1073/​pnas.​15080​
81113.

	 2.	 Chaum D. Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun ACM. 1981;24(2):84–90. https://​
doi.​org/​10.​1145/​358549.​358563.

	 3.	 Pham DV, Wright J, Kesdogan D. A practical complexity-the-
oretic analysis of mix systems. In: European Symposium on

Research in Computer Security; 2011. pp. 508–527. https://​doi.​
org/​10.​1007/​978-3-​642-​23822-2_​28.

	 4.	 Oya S, Troncoso C, Pérez-González F. Do dummies pay off?
Limits of dummy traffic protection in anonymous communi-
cations. In: International Symposium on Privacy Enhancing
Technologies; 2014. pp. 204–223. https://​doi.​org/​10.​1007/​978-
3-​319-​08506-7_​11. Springer.

	 5.	 Lazar D, Gilad Y, Zeldovich N. Karaoke: distributed private
messaging immune to passive traffic analysis. In: 13th USENIX
OSDI; 2018. pp. 711–725.

	 6.	 Gelernter N, Herzberg A, Leibowitz H. Two cents for strong
anonymity: the anonymous post-office protocol. PETS.
2016;2016(2):1–20.

	 7.	 Kwon A, Lu D, Devadas S. XRD: Scalable messaging system
with cryptographic privacy. In: 17th USENIX NSDI; 2020. pp.
759–776.

	 8.	 Wang X, Chen S, Jajodia S. Tracking anonymous peer-to-peer
VoIP calls on the internet. In: ACM CCS; 2005. pp. 81–91.
https://​doi.​org/​10.​1145/​11021​20.​11021​33.

	 9.	 Dingledine R, Mathewson N, Syverson P. Tor: The second-
generation onion router. In: 13th USENIX Security; 2004.

	10.	 Chen C, Asoni DE, Perrig A, Barrera D, Danezis G, Troncoso
C. TARANET: Traffic-analysis resistant anonymity at the net-
work layer. In: IEEE EuroS &P; 2018. pp. 137–152. https://​doi.​
org/​10.​1109/​EuroSP.​2018.​00018.

	11.	 Le Blond S, Choffnes D, Caldwell W, Druschel P, Merritt N.
Herd: a scalable, traffic analysis resistant anonymity network for
VoIP systems. ACM SIGCOMM. 2015;45(4):639–52. https://​
doi.​org/​10.​1145/​28299​88.​27874​91.

	12.	 Lazar D, Gilad Y, Zeldovich N. Yodel: Strong metadata security
for voice calls. In: 27th ACM SOSP; 2019. pp. 211–224. https://​
doi.​org/​10.​1145/​33413​01.​33596​48.

	13.	 Schatz D, Rossberg M, Schaefer G. Optimizing packet schedul-
ing and path selection for anonymous voice calls. In: ARES;
2021. https://​doi.​org/​10.​1145/​34654​81.​34657​68.

	14.	 Schatz D, Rossberg M, Schaefer G. Hydra: Practical meta-
data security for contact discovery, messaging, and dialing.
In: ICISSP; 2021. pp. 191–203. https://​doi.​org/​10.​5220/​00102​
62201​910203.

	15.	 International Telecommunication Union. One-way Transmission
Time, ITU-T recommendation G.114 edn; 2003. International
Telecommunication Union.

	16.	 Jung Y, Manzano C. Burst packet loss and enhanced packet loss-
based quality model for mobile voice-over Internet protocol appli-
cations. IET Commun. 2014;8(1):41–9. https://​doi.​org/​10.​1049/​
iet-​com.​2011.​0701.

	17.	 Dolev D, Yao A. On the security of public key protocols. IEEE
Trans Info Theory. 1983;29(2):198–208. https://​doi.​org/​10.​1109/​
TIT.​1983.​10566​50.

	18.	 Chaum D. The dining cryptographers problem: unconditional
sender and recipient untraceability. J Cryptol. 1988;1(1):65–75.
https://​doi.​org/​10.​1007/​BF002​06326.

	19.	 Chor B, Goldreich O, Kushilevitz E, Sudan M. Private informa-
tion retrieval. In: Proceedings of IEEE 36th Annual Foundations
of Computer Science; 1995. pp. 41–50. IEEE

	20.	 Corrigan-Gibbs H, Boneh D, Mazière, D. Riposte: An anonymous
messaging system handling millions of users. In: IEEE SP; 2015.
pp. 321–338. https://​doi.​org/​10.​1109/​SP.​2015.​27.

	21.	 Ahmad I, Yang Y, Agrawal D, El Abbadi A, Gupta T. Addra:
Metadata-private voice communication over fully untrusted infra-
structure. In: 15th USENIX OSDI; 2021.

	22.	 Franck C, Sorger U. Untraceable voip communication based on
dc-nets. arXiv preprint arXiv:​1610.​06549; 2016.

	23.	 Van Den Hooff J, Lazar D, Zaharia M, Zeldovich N. Vuvuzela:
Scalable private messaging resistant to traffic analysis. In: 25th

https://github.com/hydra-acn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1073/pnas.1508081113
https://doi.org/10.1073/pnas.1508081113
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1007/978-3-642-23822-2_28
https://doi.org/10.1007/978-3-642-23822-2_28
https://doi.org/10.1007/978-3-319-08506-7_11
https://doi.org/10.1007/978-3-319-08506-7_11
https://doi.org/10.1145/1102120.1102133
https://doi.org/10.1109/EuroSP.2018.00018
https://doi.org/10.1109/EuroSP.2018.00018
https://doi.org/10.1145/2829988.2787491
https://doi.org/10.1145/2829988.2787491
https://doi.org/10.1145/3341301.3359648
https://doi.org/10.1145/3341301.3359648
https://doi.org/10.1145/3465481.3465768
https://doi.org/10.5220/0010262201910203
https://doi.org/10.5220/0010262201910203
https://doi.org/10.1049/iet-com.2011.0701
https://doi.org/10.1049/iet-com.2011.0701
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/BF00206326
https://doi.org/10.1109/SP.2015.27
http://arxiv.org/abs/1610.06549

	 SN Computer Science (2022) 3: 341341  Page 22 of 22

SN Computer Science

ACM SOSP; 2015. pp. 137–152. https://​doi.​org/​10.​1145/​28154​
00.​28154​17

	24.	 Tyagi N, Gilad Y, Leung D, Zaharia M, Zeldovich N. Stadium:
A distributed metadata-private messaging system. In: 26th ACM
SOSP; 2017. pp. 423–440. https://​doi.​org/​10.​1145/​31327​47.​
31327​83.

	25.	 Kwon A, Corrigan-Gibbs H, Devadas S, Ford B. Atom: Horizon-
tally scaling strong anonymity. In: 26th ACM SOSP; 2017. pp.
406–422. https://​doi.​org/​10.​1145/​31327​47.​31327​55.

	26.	 Chaum D, Das D, Javani F, Kate A, Krasnova A, De Ruiter J,
Sherman AT. cMix: Mixing with minimal real-time asymmetric
cryptographic operations. In: International Conference on Applied
Cryptography and Network Security; 2017. pp. 557–578. https://​
doi.​org/​10.​1007/​978-3-​319-​61204-1_​28.

	27.	 Kwon A, Lazar D, Devadas S, Ford B. Riffle: an effi-
cient communication system with strong anonymity. PETS.
2016;2016(2):115–34.

	28.	 Piotrowska AM, Hayes J, Elahi T, Meiser S, Danezis G. The
Loopix anonymity system. In: 26th USENIX Security; 2017. pp.
1199–1216.

	29.	 Le Blond S, Choffnes D, Zhou W, Druschel P, Ballani H, Francis
P. Towards efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM. 2013;43(4):303–14. https://​doi.​org/​10.​1145/​
25341​69.​24860​02.

	30.	 Traudt M, Jansen R, Johnson A. FlashFlow: A secure speed test
for Tor. arXiv preprint arXiv:​2004.​09583; 2020.

	31.	 Chan-Tin E, Hopper N. Accurate and provably secure latency esti-
mation with Treeple. In: NDSS; 2011.

	32.	 Patarin J, Gittins B, Treger J. Increasing Block Sizes Using Feistel
Networks: The Example of the AES. In: Cryptography and Secu-
rity: From Theory to Applications, Springer; 2012. pp. 67–82.
https://​doi.​org/​10.​1007/​978-3-​642-​28368-0_8.

	33.	 Tor Project. Tor Directory Protocol, Version 3. https://​gitweb.​torpr​
oject.​org/​torsp​ec.​git/​tree/​dir-​spec.​txt, Accessed 19 May 2022.

	34.	 Schatz D, Rossberg M, Schaefer G. Large-scale Latency Measure-
ments in the Tor Network (v1.0); 2021. https://​doi.​org/​10.​5281/​
zenodo.​49115​83.

	35.	 Gurobi Optimization, LLC. Gurobi Optimizer Homepage. https://​
www.​gurobi.​com, Accessed 19 May 2022.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/3132747.3132783
https://doi.org/10.1145/3132747.3132783
https://doi.org/10.1145/3132747.3132755
https://doi.org/10.1007/978-3-319-61204-1_28
https://doi.org/10.1007/978-3-319-61204-1_28
https://doi.org/10.1145/2534169.2486002
https://doi.org/10.1145/2534169.2486002
http://arxiv.org/abs/2004.09583
https://doi.org/10.1007/978-3-642-28368-0_8
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://doi.org/10.5281/zenodo.4911583
https://doi.org/10.5281/zenodo.4911583
https://www.gurobi.com
https://www.gurobi.com

	Hydra: Practical Metadata Security for Contact Discovery, Messaging, and Voice Calls
	Abstract
	Introduction
	System Objectives and Threat Model
	Functional Objectives
	Non-functional Objectives
	Threat Model

	Related Work
	System Design
	Overview
	Directory Service
	Path Selection
	Setting Parameters

	Rendezvous Service
	Applications
	User Registration
	Contact Discovery
	Text-Based Messaging
	Voice Calls

	Circuit Design
	Circuit Setup
	Circuit Cells
	VoIP Cells
	Circuit Update
	Dummy Circuits

	Evaluation
	Qualitative Discussion
	Functional Objectives
	Non-functional Objectives

	Quantitative Evaluation
	Default Parameters and Algorithms
	Comparison with Karaoke
	Epoch Duration
	VoIP Calls
	MCFP Runtime
	Summary

	Conclusion and Future Work
	References

