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Abstract
The Internet-of-Things and ubiquitous cyber-physical systems increase the attack surface for cyber-physical attacks. They 
exploit technical vulnerabilities and human weaknesses to wreak havoc on organizations’ information systems, physical 
machines, or even humans. Taking a stand against these multi-dimensional attacks requires automated measures to be com-
bined with people as their knowledge has proven critical for security analytics. However, there is no uniform understanding 
of information security knowledge and its integration into security analytics activities. With this work, we structure and 
formalize the crucial notions of knowledge that we deem essential for holistic security analytics. A corresponding knowledge 
model is established based on the Incident Detection Lifecycle, which summarizes the security analytics activities. This idea 
of knowledge-based security analytics highlights a dichotomy in security analytics. Security experts can operate security 
mechanisms and thus contribute their knowledge. However, security novices often cannot operate security mechanisms and, 
therefore, cannot make their highly-specialized domain knowledge available for security analytics. This results in several 
severe knowledge gaps. We present a research prototype that shows how several of these knowledge gaps can be overcome 
by simplifying the interaction with automated security analytics techniques.

Keywords Security analytics · Domain knowledge · Visual analytics · Security awareness · Security operations

Introduction

Motivation

Although a lot of money and effort is invested into awareness 
campaigns and professional training, humans within cyber-
security are still widely considered the weakest link of an 
organization’s cyber defenses [1]. However, this simplifica-
tion in no way does justice to the role of humans in modern 
security analytics1 (SA), because their domain knowledge 
is invaluable for any effective and efficient SA operation 

[2, 3]. So far, SA approaches have essentially been limited 
to integrating the knowledge of security experts to decide, 
for example, whether identified indicators actually repre-
sent malicious incidents or just unusual but benign activi-
ties. From our point of view, this is a major shortcoming of 
existing SA approaches, as it is equally important to include 
the knowledge of non-security domains in SA processes.

This shortcoming becomes evident in the context of the 
ever-growing Internet-of-Things (IoT), Industry 4.0, and 
ubiquitous Cyber-Physical Systems (CPS) (e.g., [4]). All 
of these trends are leading to increased connectivity of a 
company’s internal and external physical assets. Quite apart 
from the already skyrocketing number of cyberattacks, the 
attack surface for cyber-physical attacks is significantly 
increasing due to this trend. The cyber-physical attacks spe-
cifically use the connection between information (cyber) sys-
tems and physical systems within CPSs or the IoT to cause 
actual physical harm to machines or people [5]. Detecting 
and averting, or mitigating, such multidimensional attacks 
poses a challenge to existing security measures. To achieve 
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comprehensive security, they must monitor all assets of an 
organization, which are connected in some way to cyber-
space. With the progressive implementation of the IoT and 
Industry 4.0, these systems range from firewalls or indi-
vidual sensors to cyber-physical systems, such as complete 
manufacturing lanes. The problem in the context of these 
CPS is that traditional security measures and systems, such 
as a Security Information and Event Management (SIEM) 
system used in a Security Operations Center (SOC), are not 
able to sufficiently protect the CPS due to a lack of knowl-
edge and capabilities [6, 7].

Security experts can make well-informed decisions in this 
context to identify incidents in cyberspace. However, they 
lack crucial knowledge about the physical domain [8]. For 
this reason, they often cannot effectively decide whether, for 
example, a turbine used to generate electricity is operating 
within its specification or may have a problem [9]. However, 
engineers and appropriately trained staff have that knowl-
edge of physical operations to decide whether or not the tur-
bine is behaving normally. In turn, however, these employees 
lack the know-how to contribute to effective SA [7].

This imbalance limits an organization’s ability to imple-
ment holistic SA methods that could reliably detect indica-
tors of both cyber and cyber-physical attacks. For this rea-
son, it is necessary to integrate the knowledge of engineers 
and the like into security operations, for example, to enable 
targeted collaboration between the different types of domain 
experts. Only then can incidents related to physical assets 
also be effectively detected and prevented [10]. Although 
initial approaches exist [6] that integrate data from CPS into 
a SOC and the importance of interdisciplinary communica-
tion has been recognized in other domains [11], to the best 
of our knowledge there are no efforts yet that attempt to 
integrate the knowledge of engineers and security experts 
in a common model.

Contribution and Approach

To the best of our knowledge there is no formal definition 
of knowledge within security analytics. With this work, 
we make a twofold contribution to address this problem. 
To establish a unified and fundamental vocabulary for this 
research domain, we first define different types of knowledge 
and knowledge conversions we deem relevant to cybersecu-
rity. We then step forward to provide a holistic view of where 
the different types of knowledge play a role in Security Ana-
lytics. To do so, we first introduce the Incident Detection 
Lifecycle, which summarizes a series of vital activities for 
SA. The model for knowledge-based SA is built by high-
lighting the steps within the Incident Detection Lifecycle, 
where the different forms of knowledge are necessary for 
comprehensive security measures. This is a valuable con-
tribution, as no security-specific definition of different 

knowledge aspects exists so far. Their formal definition can 
also build future research on a well-defined foundation. Our 
second contribution addresses quite explicitly the lack of 
integration of domain knowledge as an open issue within 
knowledge-based SA. Therefore, we present a research pro-
totype that allows experts to integrate their knowledge into 
active security measures. This prototype aims at facilitating 
the externalization of knowledge from non-security domain 
experts on the one hand and at enabling the collaboration of 
security experts and security novices on the other hand. This 
is achieved by applying visual programming approaches and 
appropriate visual abstractions.

The main contributions of this work are structured 
according to Fig. 1. The remainder of this paper is organ-
ized as follows. We formally describe relevant notions of 
knowledge and conversion processes for Security Analytics 
in section “Knowledge Within Security Analytics”. These 
formal definitions allow us and any future work to have 
a well-defined, precise vocabulary. In the next step, this 
vocabulary is integrated into an Incident Detection Lifecy-
cle for a cohesive picture of what we call knowledge-based 
SA within section “Knowledge-Based Security Analytics”. 
Besides several knowledge gaps, the resulting model reveals 
a significant dichotomy in current SA approaches, which is 
not yet appropriately addressed. Thus, we present a research 
prototype in section “ Research Prototype” showcasing a 
possible approach to integrate security novice’s domain 
knowledge into an exemplary SA solution, i.e., a signature-
based incident detection component. The prototype high-
lights that the implementation of knowledge-based SA 
requires innovative approaches but can improve cybersecu-
rity. Finally, section “Conclusion” concludes our work and 
points out possible directions for future work.

Extensions from Previous Work

This article is an extended version of our work presented at 
the 7th International Conference on Information Systems 
Security and Privacy 2021 (ICISSP, February 2021) [12], 
kindly invited for consideration in this journal. The first 
extension from our initial work is a largely extended dis-
cussion of the formal knowledge definitions and knowledge 
conversion processes in sections “Knowledge Types” and 
“Knowledge Conversion”, respectively. This allows for more 
in-depth and better-structured explanations of these concepts 
as a foundation for the following sections. The most fun-
damental extensions have been carried out within section 
“Knowledge-Based Security Analytics”. We first dedicate 
a newly introduced subsection to the Incident Detection 
Lifecycle (section “Incident Detection Lifecycle”). Section 
“Knowledge-Based Security Personas” is also an extension 
to our original work, which provides, based on feedback and 
new insights, definitions of the different personas within SA 
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concerning their different knowledge sets. All other subsec-
tions within section “Knowledge-Based Security Analyt-
ics” have been majorly re-worked to provide more detailed 
information. These subsections now make the model for 
knowledge-based Security Analytics (section “Knowledge 
Model”) and the inherent dichotomy (sections “Dichotomy 
of Security Analytics” and “Knowledge Gaps”) more com-
prehensible. Within section “Research Prototype”, we added 
section “Requirements Analysis”, which formally derives a 
set of requirements for a technical solution based on identi-
fied knowledge gaps. Thus, it improves the transparency of 
the aim we pursue with our research prototype. The develop-
ment of the prototype now follows a straightforward prob-
lem-oriented design approach.

Knowledge Within Security Analytics

In this section, we provide a detailed insight into the differ-
ent knowledge aspects that play a crucial role in the context 
of current SA operations. For this purpose, we establish a 
formal understanding of the types of knowledge and the pro-
cesses for knowledge conversion. While Sallos et al. [13] 
present the importance of cybersecurity-related knowledge 
on an abstract and management-oriented level, we aim at the 
implications of integrating knowledge into security measures 
in the following sections.

Knowledge Types

Scientific literature describes a variety of different, 
sometimes even contradictory, definitions of the term 
“knowledge” and the different sub-aspects related to it. 
A frequently cited definition that provides a clear start-
ing point for opening up the concept of knowledge is the 
data-information-knowledge-wisdom (DIKW) hierarchy, 
which defines “knowledge” as the application of data 
and derived information to answer “how” questions [14]. 
However, information systems research often criticized 
the DIKW hierarchy as unsound and undesirable [15]. A 
more human-oriented definition by Davenport describes 
knowledge as a mixture of experience, intuition, values, 
contextual information, and expert insight [16].

This definition of Davenport appropriately explains 
the concept of knowledge from a human point of view; 
however, knowledge is not bound to humans. Instead, 
corresponding research emphasizes that knowledge can 
also be captured in documents, memos, and the like [17]. 
Following this route, it is only logical to conclude that 
knowledge can also be stored within IT. This knowledge 
within IT is different from human knowledge, especially if 
it is also generated by IT through some kind of automatic 
analysis [18, 19]. Based on this line of thought, it is an 
established and accepted procedure to distinguish between 
two basic types of knowledge: explicit knowledge and tacit 
(or implicit) knowledge [17].

All these aspects clearly show that the term “knowledge” 
is difficult to define in a generally valid way. Instead, differ-
ent facets of knowledge must be distinguished and embedded 

Fig. 1  Schematic of this work’s 
main contribution
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in the relevant context. This is because even the notions of 
explicit and tacit knowledge are still too abstract in their 
basic form to be incorporated into processes of SA. For this 
reason, we define and formalize below different notions 
of knowledge that are of central importance in the field of 
cybersecurity and even more specifically in the field of SA.

Explicit Knowledge

Explicit knowledge Ke is mainly referred to as machine-
based knowledge. Accordingly, this term denotes knowledge 
that machines can read, process and store [17]. In the context 
of SA, we distinguish three types of explicit knowledge in 
the further course of the work, which can be distinguished 
from each other by their intended use for SA. The transitions 
between these different types of explicit knowledge are fluid, 
i.e., a given machine-readable object can also be assigned to 
a different expression depending on the current context and 
use case. Equation (1) defines explicit knowledge formally 
as a union of the three sub-aspects defined in the following 
paragraphs.

Models (Ke
m

 ): Models for machine learning approaches, 
neural networks, and the like are primarily used for anom-
aly-based detection mechanisms. This knowledge allows 
a machine to detect outliers and evaluate them to some 
extent as to whether they indicate malicious or undesirable 
behavior.

Signatures & Rules ( Ke
s
 ): like models for machine learn-

ing approaches, signatures and rules are also to be valued as 
explicit knowledge, especially in signature-based security 
analytics methods. They are the basis for more traditional 
SA approaches such as SIEM systems and their correlation 
engines for detecting indicators of compromise (IoC).

Threat Intelligence & Forensic Evidence ( Ke
s
 ): Threat 

Intelligence and forensic evidence describe the results of 
primarily manual, in-depth analysis of suspected or actual 
incidents and include extensive information on the attack-
ers’ modus operandi, identifiable traces, suspect groups or 
individual perpetrators, and many other details. Because of 
their level of detail, Threat Intelligence and Forensic Reports 
allow answering “how” questions.

Implicit Knowledge

After contextualizing explicit knowledge in SA, we turn to 
so-called tacit knowledge in the following paragraphs. This 
kind of knowledge can only be possessed by humans and is 
very specific to each individual [20]. Although “tacit knowl-
edge” would be a more commonly used term, we will use 

(1)K
e = K

e
m
∪ K

e
s
∪ K

e

i

“implicit knowledge” Ki in this paper to clarify the distinc-
tion from the explicit knowledge of a machine.

Humans improve their Ki by combining new insights with 
existing knowledge. The existing knowledge itself can in turn 
be divided into, on the one hand, domain knowledge and, on 
the other hand, operational knowledge [21]. However, in the 
context of SA, we consider this differentiation too vague. To 
describe the problem at hand concisely, a more fine-granular 
and contextualized view on Ki is necessary. In the domain of 
SA, we also consider another new type of tacit knowledge 
to be highly relevant: situational knowledge. As for explicit 
knowledge, we also define implicit knowledge as a union 
of its three main facets (c.f. Eq. 2). We go into more detail 
about these three aspects of tacit knowledge in the following 
paragraphs.

Domain Knowledge 
(

K
i
d

)

 : Generally speaking, domain 
knowledge describes what people know about a particular 
context or on a specific topic (the “domain”) [2, 7]. For SA, 
we define Ki

d
 in Eq. 3 in a more detailed way as a combina-

tion of two disjoint subdomains Ki
d(sec)

 and Ki
d(nonSec)

 . Ki
d(sec)

 
comprises security-related domain knowledge, which is 
mainly part of the tacit knowledge of security experts. The 
components of Ki

d(sec)
 are all safety and security aspects con-

sidered from a cybersecurity perspective. For example, this 
includes knowledge about firewall rules in use, the ability to 
identify suspicious network connections or unauthorized 
access to classified information. This facet of domain knowl-
edge is to some extent already considered in several SA 
means [22]. In contrast, there is a lack of integration of 
K

i
d(nonSec)

 . Under this second aspect of general domain 
knowledge, we summarize non-security domain knowledge. 
This type includes domains, such as manufacturing or engi-
neering. The knowledge from these domains is of high 
importance to detect incidents on cyber-physical systems 
[6]. An example of domain knowledge not directly related 
to security is the expected Rounds per Minute (RPM) of a 
power turbine or the maximum temperature for a blast fur-
nace. However, in the context of SA, this knowledge is nec-
essary to assess the CPS’s security posture cohesively. For 
SA, both components of domain knowledge are necessary 
to build and operate comprehensive security operations. 
Especially in light of the challenges associated with CPS and 
the rise of cyber-physical attacks, the integration of 
K

i
d(nonSec)

 , in particular, is one of the biggest challenges cur-
rently faced by SA research.

Situational Knowledge 
(

Ki
s

)

 : Situational knowledge is a new 
type of knowledge previously not acknowledged, which we 

(2)k
i = K

i
d
∪ K

i
s
∪ K

i
o

(3)K
i
d
=Ki

d(sec)
∪ K

i
d(nonSec)
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consider crucial in the SA environment. In SA, this type 
mainly encompasses the concept of situational awareness, 
which also plays a vital role in cybersecurity in recent years, 
especially in the form of Cyber Situational Awareness [23, 
24]. Ki

s
 describes the ability of any employee of an organi-

zation to perceive unusual events or suspicious behavior. 
The relevant events range from receiving suspicious mail, 
which represents a possible phishing attempt, to identifying 
a private storage medium connected to a corporate device. 
With the appropriate situational security knowledge, which 
has been imparted, for example, through security awareness 
training or campaigns [25], employees can evaluate the 
e-mail or the storage medium from a security perspective 
and deduce that these events could pose a threat to the com-
pany. However, specific domain knowledge Ki

d
 about the SA 

of the enterprise is not required to make these inferences.
Operational Knowledge 

(

Ki
o

)

 : Operational knowledge in 
the context of SA refers to the ability of a human to operate 
specific systems. Specifically, employees with SA-related 
operational knowledge can adequately operate a company’s 
security systems. This ability can relate to a wide variety of 
systems. For example, employees may have the experience 
to define correlation rules for a SIEM, fine-tune models for 
anomaly- or behavior-based SA approaches, or create new 
threat intelligence. It is important to note here that Ki

o
 does 

not refer to expertise, such as the syntax of the threat intel-
ligence format used, but rather to the ability to deal with the 
corresponding IT system.

These three different subsets of tacit knowledge are nec-
essary to detect and resolve both cyber and cyber-physical 
attacks as completely as possible. Ki

d
 and Ki

s
 would, in a 

perfect world, need to be comprehensively integrated into 
an organization’s SA systems. They are the pre-requisite to 
cohesive security operations, especially in the context of 
CPS and IoT. However, operational knowledge Ki

o
 represents 

the barrier to entry for this integration. Only with the neces-
sary Ki

o
 can employees, for example, define an appropriate 

SIEM correlation rule based on their Ki
d
.

Knowledge Conversion

The different knowledge types can be converted into each 
other. Nonaka and Takeuchi define the knowledge conver-
sions between explicit and tacit knowledge in terms of four 
different knowledge conversion processes [17]. Various 
research directions have picked up upon this formalization 
to formally describe the exchange and interaction between 
humans and machines. Especially research in the field of 
information visualization and human–machine interaction 
work frequently and intensively with these concepts [22, 
26, 27]. In SA, corresponding knowledge exchange is also 
desirable in the underlying approaches, since effective secu-
rity operations require both automated discovery processes 

(involving explicit knowledge) and the expertise of differ-
ent human experts (and their tacit knowledge). To provide 
the necessary foundation and common vocabulary regarding 
knowledge conversion in SA after defining the aspects of 
knowledge, we formalize the four key knowledge conversion 
processes for SA in the following paragraphs.

Internalization (int): internalization describes the process 
of making explicit knowledge available to users, who can 
then perceive this knowledge using the Ki

o
 available to them 

and convert it into Ki
d(sec)

 or Ki
s
 (Eq. 4). How efficient this 

process is and how significant the increase in implicit knowl-
edge is, depends strongly on the respective user’s level of 
Ki
o
 . We have implied this dependence in the formal definition 

in Equation 4 by defining operational knowledge as a cata-
lyst for the int conversion process. This notation is adopted 
from the formal descriptions of chemical reactions. Effective 
internalization int of Ke is supported primarily by any kind 
of visual representation of the Ke . For security-related 
domain knowledge, this includes examples like visualizing 
the raw data that led to the triggering of a SIEM rule, the 
rule itself, and the components of the data that were condu-
cive to the decision.

Externalization (ext): When tacit knowledge, especially Ki
d
 

or Ki
s
 , is transferred into a form that can be processed by 

computers, we refer to this as the process of externaliza-
tion (Eq. 5). Externalized tacit knowledge can thus be read, 
persisted, and eventually processed by computers. A variety 
of examples for externalization can be found in the con-
text of modern security analytics. For example, this process 
includes the direct adaptation of model parameters (i.e., Ke

m
 ) 

and the formulation of rules for signature-based analysis 
(i.e., Ke

s
 ). Structuring and formalizing indicators, incidents, 

and corresponding evidence into CTI (i.e., Ke

i
 ) also repre-

sents a form of externalization. Here, direct access to explicit 
knowledge and possibilities for active processing of the same 
are of primary importance. Thus, the corresponding opera-
tional knowledge Ki

o
 is again a fundamental prerequisite for 

enabling and performing externalization. Only if the human 
being can operate a system (e.g., SIEM system with the cor-
responding correlation rules), the possibility to externalize 
implicit knowledge can be retained. The process described 
here for translating tacit to explicit knowledge is also neces-
sary for avoiding the loss of any Ki due to, for example, the 
retirement of a security analyst from the company. If there is 
no possibility to keep the knowledge of this security analyst 
in the company, this poses a risk for the company [28].

(4)int ∶

(

K
e

Ki
o

↦ K
i
d(sec)

∩ K
i
s

)

(5)ext ∶

(

K
i
d
∩ K

i
s

Ki
o

↦ K
e

)
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Combination (comb): The conversion process of combina-
tion describes the exchange of knowledge from two or more 
explicit knowledge bases (Eq. 6). At the same time, it can 
also mean the exchange of knowledge between correspond-
ing Ke . Concerning the explicit knowledge types defined in 
section “Explicit Knowledge”, comb can describe both the 
exchange of knowledge within a constant knowledge type 
but also the transfer of knowledge from one type to another. 
An example of the first process is the exchange of cyber 
threat intelligence (CTI) and forensic evidence between dif-
ferent actors 

(

K
e

i
↦ K

e

i

)

 . The second process may be, for 
example, using CTI to define new or adapt existing rules for 
signature-based incident detection ( Ke

i
↦ Ke

s
).

Collaboration (coll): In the context of collaboration, multi-
ple individuals work together and combine their Ki (Eq. 7). 
Less formally, this knowledge conversion specifies that peo-
ple can learn from each other (i.e., increase their Ki ) by col-
laborating. This process is difficult to capture and formally 
define, because it is purely implicit without any direct indi-
cation that it is happening. Even a simple conversation 
between two people can correspond to a knowledge conver-
sion. However, we interpret collaboration in the context of 
SA as a process that is supported by technology. Accord-
ingly, operational knowledge of collaborators is again 
required to enable collaboration, as also indicated in Eq. (7) 
by Ki

o
 as the catalyst of collaboration. Collaborators can thus 

work together, for example, in correlating various indicators 
of compromise to determine which indicators genuinely rep-
resent a threat. To do this, they could use an appropriate 
analysis tool designed for just such a purpose. On the one 
hand, the tool support enables remote collaboration among 
the employees, but at the same time, they need the opera-
tional knowledge to be able to operate this tool. Collabora-
tion supported in this technological way enables users to 
share knowledge and learn from each other. With respect to 
SA and the need to involve Ki

d(sec)
 and Ki

d(nonSec)
 , appropriate 

knowledge sharing is vital between collaborators to enable 
the most comprehensive SA possible. In addition, for exam-
ple, tool-based training or workshops can be defined as a 
type of collaboration. These workshops often impart domain 
knowledge to improve the situational knowledge of other 
collaborators 

(

K
i
d
↦ Ki

s

)

.

(6)comb ∶Ke
↦ K

e

(7)coll ∶ K
i
Ki
o

↦ K
i

Knowledge‑Based Security Analytics

After a basic understanding of the formal knowledge types 
and the processes describing the conversion among these 
knowledge types is established in section “Knowledge 
Within Security Analytics”, the following section is dedi-
cated to embedding these concepts into the core activities of 
security analytics. In this context, we interpret the detection 
of security incidents, i.e., attacks on an organization’s assets, 
to be the the essential task of SA [29]. A cohesive approach 
to implementing this task requires comprehensive data col-
lection combined with powerful analytical capabilities and 
the integration of any available knowledge base. We summa-
rize these activities within the Incident Detection Lifecycle  
(IDL) as a general process containing the core activities of 
SA. Thus, we introduce our model for knowledge-based SA 
based on the IDL and the critical role that knowledge plays 
in its context. Based on this, we identify different personas 
of users that play a role in knowledge-based SA. Finally, 
we explain the central problem faced by SA in the context 
of current developments, such as the Internet of Things and 
Industry 4.0, which we refer to as the “Dichotomy of Secu-
rity Analytics”.

Incident Detection Lifecycle

The starting point for our model of knowledge-based secu-
rity analytics is the incident detection process defined by 
Menges and Pernul [30]. This process describes four basic 
steps involved in incident detection: Data, Observables, 
Indicators, and Incidents. Data of a system under consid-
eration are collected and normalized, resulting in so-called 
Observables. The authors refer to detected anomalies in 
these observables as Indicators of Compromise or just Indi-
cators. Only the combination of several indicators finally 
confirms a recognized textitIncident. While this simple 
model describes the core activities for detecting security 
incidents, it neglects two central aspects of modern security 
analytics. First, an incident detection is usually followed by 
a post-incident analysis to extract and secure forensic evi-
dence. Second, the subsequent analysis of an incident can 
also serve to generate threat intelligence, which can again be 
used to detect indicators or specific incidents. Incident detec-
tion is thus an iterative process in which the output (threat 
intelligence) can be used as an input in further detection 
runs. For this reason, we are extending the original Incident 
Detection Process to an Incident Detection Lifecycle, which 
more appropriately reflects the processes within modern 
security analytics.

Figure 2 represents this adapted and extended lifecy-
cle. The boxes highlighted in gray represent the central 
results of the activities. The SA activities themselves are 
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annotated at the edges of the model. The starting point 
of the Incident Detection Lifecycle is some real event 
within an organization—that is, something that “hap-
pens”—which can be physical or digital. Examples of 
such a situation are the authentication of a user at an IT 
system or the use of a private USB stick at company com-
puters. We refer to these events as situations in the further 
course. The Incident Detection Lifecycle is divided into 
three overarching phases, which are executed to detect, 
resolve, and understand incidents. Overall, the Incident 
Detection Lifycycle provides a more detailed view on 
the Detect and Respond phases of the established NIST 
Cybersecurity Framework [31].

The first of these phases is the Data Collection. Each 
situation produces raw data which could be relevant for 
the detection of possible attacks. These data are normal-
ized (and sometimes standardized) in the first phase of 
the lifecycle, producing so-called observables. Observa-
bles can thus be understood as normalized representations 
of the raw data available about the situation. They are 
not yet attributed and thus have no significance for why 
something happened or who might be responsible for it. 
Observables only serve as input for the second phase of 
the Incident Detection Lifecycle.

This second phase of the lifecycle can be summarized 
under the terms Incident Detection & Response. This 
phase aims to detect actual incidents, capture the impact, 
and contain the incident as quickly as possible. The first 
step is the detection of indicators, which are often also 
referred to as Indicators of Compromise (IoC). These 
indicate potentially suspicious activities and behaviors 
within the observables. However, IoCs can also indi-
cate unusual but not malicious behavior. For this reason, 
a further step is necessary to identify actual incidents 
from detected indicators. For this purpose, it is neces-
sary to correlate indicators with each other and possibly 
to include additional data or observables in the analysis 
process. However, if an incident is identified, direct meas-
ures for defense and containment must be initiated in this 
lifecycle phase.

After the initiation and implementation of counter-
measures and containment actions, the third phase of the 
Incident Detection Lifecycle, the Post-Incident Analysis, 
is carried out. In this phase, careful and intensive analyses 

of an incident produce further vital artifacts. On the one 
hand, evidence which can be used in possible judicial pro-
ceedings is collected in this step through forensic analy-
sis. On the other hand, threat intelligence is generated 
through the attribution of the identified incident. Since 
the gained intelligence can also be crucial to detect new 
indicators or identify similar incidents, it feeds into the 
previous phases, creating an iterative lifecycle.

Knowledge Model

The Incident Detection Lifecycle can now be extended to 
a model for knowledge-based SA in the next step. In the 
course of this extension, the knowledge terms and conver-
sion processes introduced in section “Knowledge Within 
Security Analytics” are integrated into the lifecycle to 
obtain a comprehensive picture of the stages in the lifecycle 
at which knowledge and knowledge exchange play a central 
role. The extended model is shown in Fig. 3. In the follow-
ing paragraphs, we will go through this knowledge model 
in detail to highlight the significant adjustments made com-
pared to the original Incident Detection Lifecycle.

To recognize indicators in a considerable amount of 
observables and, above all, to derive correct indicators is an 
enormously challenging task. Due to the sheer amount of 
observables that need to be monitored, this task is primarily 
automated in modern SA systems [29]. The corresponding 
processes in the Incident Detection & Response phase of the 
lifecycle use explicit knowledge Ke in the form of signatures 
or rules ( Ke

s
 ) for signature-based detection, but also models 

( Ke
m

 ) for behavior-based procedures. Thus, explicit knowl-
edge plays a central role, especially for incident detection. 
Nevertheless, a pure focus of incident detection on Ke is not 
purposeful and can even be associated with direct limita-
tions. First of all, with the use of Ke

s
 only indicators and 

incidents that were known apriori and whose signatures were 
integrated into the system, can be detected. Behavior-based 
methods are better at classifying unknown indicators but 
often tend to generate a large number of false positives. By 
incorporating human domain experts, these two fundamental 
problems can be eliminated or at least mitigated to some 
extent. On the one hand, experts can analyze parts of the 
available observables to discover new, previously unknown 
indicators. On the other hand, humans can use their domain 

Fig. 2  Incident detection lifecycle
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knowledge Ki
d
 to decide whether an indicator ultimately 

describes a destructive action or not. For this reason, inte-
grating Ki

d
 at this stage is highly beneficial and can even be 

considered inevitable for any approach of effective SA.
Within this phase of the Incident Detection Lifecycle, 

the next step is to identify incidents within the previously 
recognized indicators. In this step, the involvement of Ki is 
even more critical than for the detection of indicators. The 
main reason for this is that utilizing Ke in this step can only 
detect previously known attacks for which the corresponding 
Ke
s
 has already been defined. For new, unknown attack pro-

cedures, Ke
s
 cannot contribute, and also, Ke

m
 can hardly detect 

more than indicators that point to potentially malicious 
activity. In this context of actual attack detection, Ke cannot 
capture an incident to its full extent. Again, the involvement 
of human domain experts is necessary. Only this human 
component with Ki

d
 can analyze various indicators in their 

context, correlate them, and ultimately distinguish between 
malicious and regular activity. In summary, Ke in its various 
forms can contribute significantly to detecting indicators in 
the observables and thus reduce information overload. How-
ever, a final interpretation and classification of the indicators 
and the associated indicating of concrete incidents is not 
effectively possible in the vast majority of cases without 
direct integration of Ki

d
.

While automatic analysis using Ke plays a major role in 
the first two phases of the Incident Detection Lifecycle, this 
focus shifts in the final phase, the Post-Incident Analysis. In 
this step, almost exclusively manual work steps take place in 
the context of forensic investigations and the attribution of 
incidents. Thus, the influence of Ke is rather low compared 

to Ki and the integration of Ki into automated workflows is 
stronger.

In addition to the inclusion of both Ke and Ki in the Inci-
dent Detection Lifecycle, we have indicated several other 
knowledge conversion processes in Fig.  3. We identify 
all these additional processes as relevant and necessary 
for a comprehensive and effective implementation of SA, 
which covers both the cyber domain and the cyber-physical 
domain. Some of the processes plotted have already been 
presented in detail in section “Knowledge Conversion”: 
int(Ke) (Eq. 4), comb (Eq. 6), and coll (Eq. 7). For this 
reason, we focus on the two remaining processes: ext(Ki

s
) 

and ext(Ki
d
) . They are each an instance of ext, but require a 

closer, contextualized look.
Externalization of situational knowledge Ki

s
 ( ext(Ki

s
) ) fun-

damentally allows employees to feed events (i.e., situations) 
they have observed or experienced into the SA system as 
observables. This allows the semantic information trans-
formed from Ki

s
 into observables by ext(Ki

s
) to be used in 

the further steps of the Incident Detection Lifecycle. If this 
possibility is exploited efficiently, it significantly expands 
the availability of observables for SA, because many aspects 
of targeted attacks are not detected in automatically collected 
data. Examples are social engineering attacks or direct phys-
ical access attempts. Information about these and a mul-
titude of other attack vectors cannot be collected through 
automated data collection mechanisms. With the ability to 
externalize ext(Ki

s
) , virtually every employee turns into an 

extremely valuable source of observables for incident detec-
tion when, for example, the employee reports a phone call 

Fig. 3  Incident detection lifecycle extended with knowledge types and conversions
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attempting to discover critical access privileges. A unique 
feature of this conversion process is that it does not build on 
domain knowledge Ki

d
 , but a more general knowledge that 

comes primarily from situational awareness Ki
s
 . The exter-

nalization of situational knowledge is particularly relevant, 
because it is the only way to fully capture possible attack 
vectors involving the physical aspects of modern attacks.

It is also necessary, to take a closer look at the process 
ext

(

K
i
d

)

 . This activity basically comprises two processes: 
ext

(

K
i
d(sec)

)

 and ext
(

K
i
d(nonSec)

)

 . It thus describes the interac-
tion of humans with the analysis processes sustained by Ke . 
The fundamental goal of this interaction is to integrate Ki

d
 

into security analytics, thus making human domain knowl-
edge available to improve the overall incident detection life-
cycle. In the era of cyber-physical systems, domain knowl-
edge, specifically ext

(

K
i
d(nonSec)

)

 , is widely distributed 
across enterprises. At the same time, however, the entirety 
of domain knowledge is necessary for comprehensive and 
effective security analytics. For this reason, the ext

(

K
i
d

)

 pro-
cess is critical as it is the only way to translate human knowl-
edge into SIEM correlation rules, attack signatures, or 
improved behavior models for the organization’s assets.

Another aspect that stands out in Fig. 3 is the exclusion 
of the Utilize loop, which illustrates the iterative nature of 
the Incident Detection Lifecycle in Fig. 2. However, a closer 
look at Fig. 3 reveals that this process step is by no means 
missing but has only been made more precise by integrat-
ing Ke and the corresponding conversion processes into 
the representation. Through the bi-directional connections 
between the lifecycle phases Incident Detection & Response 
and Post-Incident Analysis as well as Ke , our knowledge 
model makes clear that in these phases, Ke can be used and 
at the same time also generated. The Ke generated in these 
phases can be defined more precisely as the Ke

i
 described in 

previous sections. Ke

i
 serves as input to the Data collection 

phase, thus preserving the iterative nature of the life cycle.

Knowledge‑Based Security Personas

Based on the various security-related knowledge types, dif-
ferent groups of users can be distinguished. As shown in 
Eq. (8) the knowledge of users can be seen in this context as 
different instances of Ki.

In an organizational context, employees can essentially be 
assigned to two roles from an SA perspective, which can 
be referred to as security personas: security novices Sn and 
security experts Se.

(8)k
i
d(nonSec)

, ki
d(sec)

∈ K
i
d
, k

s
∈ K

i
s
, ki

o
∈ K

i
o

• Security novices: In general, a novice is a user without 
profound knowledge and experience within a specific 
domain. In our case, Sn are employees without deeper 
knowledge in security. However, in practice, a clear dif-
ferentiation is not always easy, since almost everyone has 
a basic sense of security. It is easier to make a distinction 
by taking an employee’s areas of activity into account. 
Security novices can be defined as persons who do not 
deal with security in their daily activities, or only to a 
very limited extent (like for example gained from par-
ticipating in awareness programs). From a knowledge 
perspective, Sn have domain knowledge in a domain other 
than security: ki

d(nonSec)
 . This domain knowledge can be 

very individually pronounced from user to user. An 
example would be engineering knowledge, if a user is 
responsible for maintaining a turbine and thus knows 
precisely how it works. From a security perspective, 
situational knowledge ki

s
 of Sn is particularly relevant, as 

it enables them to judge a situation in combination with 
their unique ki

d(nonSec)
 . Thus, they can contribute to the 

Incident Detection Lifeccycle by observing and reporting 
possible attack vectors. As shown in Fig. 4a, however, Sn 
have very few connection points with the Incident Detec-
tion Lifecycle, which is mainly due to the lack of ki

o
 . 

ext(Ki
s
) is possible if the respective system is sufficiently 

simple to use, thus, this process is present in the figure 
but grayed out: 

• Security experts Se , in contrast, are employees with in-
depth security-related domain knowledge ki

d(sec)
 . This 

usually results from the significant involvement with 
security issues in their day-to-day business (for example 
as an employee within a Security Operations Center). 
Their ki

d(sec)
 in combination with ki

s
 enables them to iden-

tify security incidents at a high level of detail and to real-
istically assess its extent and severity. In addition, they 
have the necessary operational knowledge ki

o
 to operate 

security systems (such as SIEM systems) that are used 
for automated analyses within the Incident Detection 
Lifecycle. This results in a Se being the main gateway to 
the Incident Detection Lifecycle (see Fig.  4b). Both 
ext(Ki

s
) and ext(Ki

d(sec)
) are possible, since the expert has 

the necessary ki
o
 to comprehensively operate the systems 

involved. 

(9)Sn =

{

k
i
d(nonSec)

, ki
s

}

(10)Se =

{

k
i
d(sec)

, ki
s
, ki

o

}
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Dichotomy of Security Analytics

The previous breakdown of the two security personas 
already highlights the different types of knowledge that are 
divided between the two personas. It is particularly notice-
able here that neither of the two combines all knowledge and 
thus the knowledge required for the Incident Detection Life-
cycle in one person. This circumstance indicates what we 
call the dichotomy of SA. When comparing the knowledge 
sets of Sn and Se , it is noticeable that the differences can 
essentially be broken down to two knowledge types: Domain 
knowledge ki

d
 differs ( ki

d(sec)
 vs. ki

d(nonSec)
 ) and Sn has no or 

very little operational knowledge ki
o
.

As already defined in Eq. (5) the externalization of 
implicit knowledge is the intersection of ki

d
 and ki

s
 . However, 

when considering cohesive incident detection in the era of 
cyber-physical attacks, the necessary domain knowledge ki

d
 

is distributed between Sn and Se in the form of ki
d(sec)

 and 
k
i
d(nonSec)

 . Cyber-physical incidents are only detectable if 
knowledge about security incidents in general ( ki

d(sec)
 ) and 

knowledge about the physical aspects in particular ( 

Post-Incident

Analysis

Incident Detection

& Response
Data CollectionSituation

ki
ext(kis)

ki
s ki

d(nonSec)

(a) Perspective of Sn

Post-Incident

Analysis

Incident Detection

& Response
Data CollectionSituation

ki

ext( kid(sec) )ext( kid(sec) )

ki
oki

s ki
d(sec)

ext(kis)

(b) Perspective of Se

Fig. 4  Knowledge Model from the perspective of the two personas
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Fig. 5  Required knowledge types for incident detection
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k
i
d(nonSec)

 ) are combined. In addition, situational knowledge 
ki
s
 is necessary for the incident to be recognized in the first 

place. Therefore, only incidents for which all three types of 
knowledge are combined can be detected. Figure 5 shows 
this relationship as an intersection. All incidents that do not 
reside on the intersection cannot be detected by humans, 
which is why these areas potentially constitute a blind spot 
in the Incident Detection Lifecycle and thus have to be 
minimized.

Operational knowledge ki
o
 takes on a special role in the 

context of the dichotomy, since it is highly dependent on the 
security systems in use. Since these are usually expert sys-
tems, it is assumed that only security experts have the nec-
essary knowledge to operate them properly. However, these 
systems should aim to be so easy to use that they require 
only little operational knowledge to empower S

n
 to contrib-

ute to security operations. Therefore, operational knowledge 
ideally is kept to a minimum in practice, in contrast to the 
other types of knowledge.

Knowledge Gaps

The dichotomy in SA creates some knowledge gaps, some of 
which have already been alluded to in section “Dichotomy 
of Security Analytics”. Essentially, three knowledge gaps 
limit the Incident Detection Lifecycle or prevent security 
incidents from being detected. In the following, these gaps 
are described in detail to highlight a path to close them: 

1. ext(Ki
S
) : The first gap that can be identified is the lack of 

possibilities to externalize Ki
s
 . The main difficulty here is 

how Sn can be incorporated appropriately or to create the 
means to do so. For example, if an employee notices a 
security incident, they need to be able to contribute their 
observations to the Data Collection phase of the Incident 
Detection Lifecycle. Initial approaches to this already 
exist in the form of the human-as-a-security-sensor para-
digm [32, 33]. However, further research is needed in 
this direction to solve this problem in an applicable way.

2. K
i
d(nonSec)

 : The next gap stems from the aforementioned 
ki
o
 , which is not held by Sn in necessary amounts. There-

fore, it must be ensured that the required ki
o
 is reduced 

so that people without expert knowledge can operate 
security mechanisms. For example, it should be possible 
to involve engineers who know precisely how a turbine 
works and what security incidents can look like in the 
Incident Detection Lifecycle. However, it is unlikely that 
this problem will be solved entirely. For example, even 
with a great deal of effort, it will hardly be possible for 
engineers to create correlation rules for SIEM systems, 
as these are relatively complex by nature. Therefore, 

these systems must be simplified to the extent that Sn can 
at least contribute their knowledge in a simplified man-
ner to contribute to the definition of meaningful rules.

3. coll : Collaboration between the actors, especially 
between Sn and Se , within the Incident Detection Lifecy-
cle, is vital, because, as elaborated in section “Conclu-
sion”, knowledge is not concentrated on individual per-
sons but is distributed among several personas. 
Collaboration between the various personas can help 
create a central knowledge base in the Incident Detection 
Lifecycle in which as much relevant information as pos-
sible is brought together. The knowledge gaps mentioned 
in (1) 

(

ext(Ki
S
)
)

 and (2) 
(

K
i
d(nonSec)

)

 can help to enable or 
at least simplify collaboration. Collaboration has not yet 
been considered much in SA research, although it plays 
a significant role within the Incident Detection Lifecy-
cle.

Research Prototype

The gaps described in section “Knowledge Gaps” are not yet 
addressed explicitly in existing work. For this reason, in the 
following section of our paper, we present the second part of 
our contribution: a research prototype for a signature-based 
incident detection system that supports the two above-men-
tioned conversion processes. The concept and structure of 
the prototype are built according to the model of knowledge-
based SA (see Fig. 3). To detect indicators and identify inci-
dents from their context, we apply a Complex Event Process-
ing approach, which can be based on an arbitrarily complex 
pattern hierarchy. This hierarchical approach initially allows 
the detection of indicators based on observables. Additional 
and more advanced patterns are then used to identify actual 
incidents by correlating IoCs. The patterns, i.e., signatures 
needed for this purpose, correspond to Ke

s
 in the context of 

knowledge-based SA and are made accessible to humans by 
the prototype.

In the following sections, we first derive general require-
ments. We then present our prototype’s system architec-
ture and detail two essential components that are central to 
address the knowledge conversion processes. For the sake of 
clarity, we use the term “event” whenever it is not necessary 
to distinguish specifically between observable, indicator, or 
incident.

Requirements Analysis

In the age of CPS and IoT, one of the most pressing obstacles 
to overcome in the quest for holistic Security Analytics is to 
minimize the tremendous amount of Ki

o
 necessary to imple-

ment ext(Ki
d(nonSec)

) . This can be achieved by providing cen-
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tralized, interactive visual access to the Ke underlying the 
lifecycle. In addition, the next step is to provide better tech-
nical support for collaboration, or coll, between people. 
These two problems are summarized by the following para-
graphs in their immediate context: 

1. Reduce the needed Ki
o
 for ext(Ki

d
) : Ki

o
 is required for all 

sub-aspects of the int and ext processes. However, since 
it has no direct impact or purpose for cybersecurity 
itself, the Ki

o
 required to operate security systems should 

be reduced as much as possible, especially for Sn . 
Besides offering training for Sn , this is the only possible 
way towards better integration of Ki

d(nonSec)
 . Novices are 

not skilled in dealing with security solutions, such as a 
company’s SIEM system. Therefore, for the integration 
of their Ki

d(nonSec)
 , the entry barrier to these systems (i.e., 

K
i
d(nonSec)

 ) should be kept as low as possible. Thus, con-
cerning the chosen notation of Ki

o
 as a catalyst for knowl-

edge conversion, it is necessary to reduce the “need” for 
the catalyst as much as possible.

2. Enable coll between Se and Sn : while security experts 
own knowledge of a variety of possible attack vectors, 
the knowledge of adapting these attack vectors for a par-
ticular context is often within the scope of activity and 
knowledge of non-security experts. To build up compre-
hensive security analytics from this perspective, techni-
cal support for collaboration should be improved. Only 
with a well-developed infrastructure for collaboration 
between experts from different domains can the broad-
est possible protection against a wide variety of attack 
vectors be successful.

These problems form the starting point for the basic idea 
of our prototype. We aim to simplify the creation and pro-
cessing of signatures (patterns), which can be used to detect 
attacks or at least indicators of compromise. This central 
concept is supported by an approach for visual program-
ming, which is already established in education. With the 

help of visual programming, the entry barriers for complex 
systems can be successfully lowered [34, 35]. The objective 
is to make a complex, text-based syntax for defining patterns 
for attack detection easier to understand and use. To achieve 
this goal, we define the following requirements:

R1—Overview of currently deployed patterns: For 
users to get a quick overview of patterns that are currently 
already in use, the prototype must enable a corresponding 
display. All essential functions (such as editing a pattern) 
should be directly accessible from this overview view.

R2—Visual abstraction for complex pattern definition 
syntax: A selected visual programming approach should 
make the complex syntactic structure more accessible to users 
with little operational knowledge. It is essential that users can 
externalize their knowledge in a semantically simplified way. 
At the same time, the prototype has to ensure the correct, nec-
essary syntax for the mechanism used for incident detection.

R3—Details for deployed patterns including situational 
context: If necessary, all details of a defined attack pattern 
should be available via the prototype. These details include 
the processing timestamps, the final pattern statement, and an 
insight into the activities or events associated with this pattern.

R4—Debugging mechanism for patterns: To promote 
an understanding of how the patterns work, the prototype 
should at least provide an easy way to debug the statements. 
Such debugging should clarify the relationships between 
individual events that have led to the triggering of the attack 
detection. In addition, it is also desirable that debugging can 
represent hierarchies of patterns of varying complexity.

R5—Centralized pattern storage and detection mech-
anism: To provide technical support for (remote) collabora-
tion between different users, the prototype must centrally 
store and manage the defined signatures. The detection 
mechanism that uses the patterns must also be located in 
the center. Accordingly, architectures corresponding to a 
client-server structure should be aimed for.

Fig. 6  Component diagram of the architecture for visual collaborative pattern definition [12]
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System Architecture

The prototype we developed is built on a client-server archi-
tecture, which is shown in Fig. 6. The server is the backend 
responsible for detecting indicators and identifying incidents 
based on predefined patterns and signatures. On the other 
hand, the frontend provides a user interface that enables the 
creation, editing, and debugging of these patterns. The entire 
system architecture of our prototype is based on open source 
technology. The source code of the application itself is also 
available as open source on GitHub2.

Back End

In the following, the individual components of the back 
end are outlined, whereby their interconnection is shown 
in Fig. 6. In the backend, the actual rule-based event cor-
relation takes place with the help of the Complex Event 
Processing Engine Esper3 The actual events are provided 
by various data sources that reflect the current situation of 
the Incident Detection Lifecycle. With the help of Apache 
Kafka4, a central message broker is provided that manages 
and passes on the events generated by the various backend 
components. Patterns created in the front end are persisted in 

the pattern storage (MongoDB5) to make them available to 
Esper on demand (cf. R5). An API Provider implements the 
connection between back end and front end using a modern 
GraphQL6 interface.

Front End

The front end of our prototype consists of three basic views, 
which are embedded in an overarching user interface (UI). 
The UI is based on Angular.7 The first view, the landing 
page, is divided into two components. These components are 
marked with two red boxes (A) and (B) in Fig. 7. The left 
component (A) provides an overview of all currently defined 
patterns and related details, such as the name of the pattern, 
the time of the last change of the pattern, and its current 
deployment mode (R1). This deployment mode indicates 
whether a pattern is still under development (i.e., whether 
work is currently being done on it) or whether it has already 
been integrated into the back end’s incident detection opera-
tions. In addition, the pattern overview in component (A) 
can be used to initialize the editing of a pattern or to delete 
the corresponding pattern. By clicking on the “pencil” icon 
(i.e., editing a pattern), a user opens the current definition of 
the pattern in the Visual Pattern Builder, which is described 
in more detail in section “Visual Pattern Builder”. A new 

Fig. 7  Screenshot of the front end’s landing page with a selected statement [12]

2  https:// github. com/ Knowl edge- based- Secur ity- Analy tics
3  http:// www. esper tech. com/ esper/.
4  https:// kafka. apache. org/.

5  https:// www. mongo db. com.
6  https:// graph ql. org/.
7  https:// angul ar. io/.

https://github.com/Knowledge-based-Security-Analytics
http://www.espertech.com/esper/
https://kafka.apache.org/
https://www.mongodb.com
https://graphql.org/
https://angular.io/
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pattern is created via the “New Statement” button in the 
navigation bar. This action opens the Visual Pattern Builder 
without an already existing pattern definition, only with an 
empty editing area. In addition to the patterns, the overview 
also contains a tab for schemas. The event types defined 
there can be used to use the pattern. However, since their 
structure is very straightforward and event types can also be 
defined using the Visual Pattern Builder, we will focus on 
defining the patterns in the remainder of this section.

Respective for R3, the second component (B) from Fig. 7 
of the landing page contains further information about a pat-
tern selected in component (A). This includes the ID and the 
EPL statement, which formally describes the pattern and 
which is used in the pattern matcher. In addition to this infor-
mation, component (B) presents a Live Event Chart, which 
provides a quick overview of the activities to be assigned to 
the pattern within the last 10 min. The bar chart in the lower 
part shows the entire time window (10 min) and the number 
of events registered to the pattern. The upper part of the 
event chart represents an interactively selectable time frame 
from the last minutes and the events generated by the pattern 
matcher after a match was identified within a set of source 
events and the source events themselves. Herein, circles with 
the same colors correspond to the same event type.

Visual Pattern Builder

This component of our prototype is used to create new 
statements or edit existing statements. For this purpose, 
we use the visual code editor Google Blockly8. Blockly has 
so far been used primarily in the educational environment, 
for example, to teach the basic principles and concepts of 

programming. The approach of Google Blockly is catchy 
and straightforward. It allows the definition of specific, logi-
cal building blocks, which the users can then assemble and 
parameterize. In the background, these blocks are compiled 
into executable source code. Blockly has proven its abil-
ity to lower entry barriers for novice users in many places. 
Therefore, we consider it suitable for abstracting the com-
plex syntax and logical flow of the EPL expressions used 
within the pattern matcher (R2).

In our prototype, we implemented building blocks based 
on Google Blockly to create and edit Esper EPL expres-
sions. Figure 8 shows a simple EPL statement defined 
with Blockly. The main components of these statements 
are event patterns (blue blocks), conditions (green blocks), 
and actions (yellow blocks). The pattern shown in Fig. 8 
instructs the Pattern Matcher to emit an “Alert_Event” with 
the corresponding attributes after detecting two consecutive 
“Log_Event” instances with matching “srcIp” and “targetIp” 
attributes. An example of an Esper EPL expression gener-
ated by corresponding Google Blockly modeling can be seen 
in the gray box in component (B) in Fig. 7.

Please refer to our open-source implementation linked 
above for the full range of different Esper EPL statements 
supported. Among others, our implementation includes a 
logical combination of event sequences (including “and”, 
“or”, “not”), counted event sequences, and logical condi-
tions. Although we cannot yet express all possible Esper 
EPL expressions as Blockly building blocks, the concept 
is promising so far. In subsequent iterations of our work, 
we expect to achieve near-complete coverage of Esper EPL.

Pattern Debugger

Using the arrow on the lower right side of component B, the 
Patter Debugger (Fig. 9) can be opened for the respective 
pattern. It allows testing of the created patterns by providing 
a detailed view of the event’s data and its relationships (R4). 
As mentioned before, observables are assigned to an indica-
tor and indicators to an incident in a hierarchical way. This 
hierarchy is visualized with the help of the pattern debug-
ger to make relations easily recognizable. For displaying 
the hierarchy in a structured way, observables, indicators, 
and incidents are arranged next to each other in columns. 
The elements above or below in the tree are highlighted 
when hovering over them with the cursor to highlight the 
elements’ hierarchical structure further.

The individual elements are represented as JSON. To 
maintain an overview, they are initially displayed in col-
lapsed form. Only by selecting an element the complete 
JSON tree expands, whereby besides the overview, the 
option for displaying details is provided.

Fig. 8  Screenshot of EPL statement built with Blockly [12]

8  https:// devel opers. google. com/ block ly

https://developers.google.com/blockly
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Discussion

To conclude the description of the prototype, it is discussed 
subsequently, emphasizing the implementation of the 
requirements and the approach to the underlying problems.

R1 is implemented on the landing page. An overview 
of all patterns is given here. The direct accessibility of the 
activities for the patterns is also available here in the form 
of action icons.

R2 is implemented with the help of Google Blockly. 
Using this technology makes it possible to create patterns 
without having to use complex text-based syntax. The visual 
programming approach additionally ensures that no erro-
neous patterns can be created. In our implementation, the 
syntax of the pattern is abstracted by the visual program-
ming language while avoiding to cut the functionality of the 
pattern language. Additional research would be needed here 
to determine which level of abstraction is most appropriate.

R3 is implemented using a detailed view when a pattern 
was selected. The events that are affected by this pattern are 
visualized in the form of a live view to present the relation-
ships in a comprehensible way.

R4 is implemented with the help of the pattern debugger. 
Within the debugger, the user has the possibility to highlight 
the events that have led to the triggering of an alarm. The 
respective events are hierarchically divided into Observa-
bles, Indicators, and Incident.

R5 is mainly implemented on the backend side. There, all 
created patterns are stored in the pattern storage to enable 
multiple users to work on them collaboratively. Furthermore, 
with the help of the Esper-based pattern matcher, event cor-
relation is performed centrally.

The implemented requirements contribute to solving the 
two underlying problems, reducing the required Ki

o
 and ena-

bling coll between Sn and Se . The problem of reducing the 
needed Ki

o
 was solved with the help of the visual 

programming approach. This way, it is possible to create 
patterns without requiring in-depth expert knowledge of pat-
tern syntax. Above all Sn is enabled to contribute its 
K

i
d(nonSec)

 . In addition, the complexity of pattern debugging 
has been reduced. The user does not have to work through 
various log files but can visualize the events in an easy-to-
understand way. To not overwhelm the user, only a very 
abstract view of the events is given in the form of a life chart. 
However, if the user has the necessary expert knowledge, he 
can display the details of the events. If an even more com-
prehensive view is desired, the pattern debugger can be used, 
which shows the relationships between the individual events. 
The abstract representation of the events also facilitates int.

The reduction of the required Ki
o
 already contributes to 

enabling coll between Sn and Se , as it reduces entry barriers 
especially for Sn and thus enables him to participate in creat-
ing detection patterns. This, for example, gives Sn the pos-
sibility to adapt rules created by Se and enrich them with 
their Ki

d(nonSec)
 and thus refine them. In addition, this is 

achieved, because patterns are stored in a central location, 
and all actors have access to them. The combination of int 
and ext is thus combined to allow coll.

The novelty of the presented model is the formal con-
sideration of knowledge in the security analytics domain. 
Even though previous research certainly uses the concept 
of knowledge in this domain, there has not been a unified 
formal view of it. The formal definition thus creates a con-
sistent view that enables the delimitation of future research. 
The social implications of the presented model demand a 
brief discussion as well. Closer integration of different types 
of knowledge results in cybersecurity gaining importance 
in multiple areas, which should benefit society as a whole. 
However, closer collaboration also creates societal depend-
encies that can bring both advantages and disadvantages.

Fig. 9  Screenshot of the pattern debugger [12]
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Like any research work, the prototype presented has 
its limitations and points to future research potential. For 
example, it would be worth evaluating whether rule crea-
tion can be further simplified. Even if the underlying syn-
tax is much more accessible through our visual approach, 
rule creation could be even more straightforward. Debug-
ging can also be enhanced to provide even deeper insight 
into how the Pattern Matcher works. Furthermore, it needs 
to be empirically evaluated to what degree the prototype 
actually reduces the required Ki

o
 . This can be done in a 

user study that examines what effect coll has on detection 
rates.

Conclusions

This article presents and formalizes the concept of knowl-
edge, its facets, and the concept of knowledge conversion 
in the context of security analytics. Building on this for-
malization, we present a model for knowledge-based secu-
rity analytics based on the incident detection lifecycle. Our 
structuring and conceptualization makes it possible to raise 
the mostly inconsistent and informal descriptions to a for-
mal and consistent level. With this contribution, we lay a 
sound foundation for future research in the field of security 
analytics.

Several sub-areas and activities within the knowledge-
based SA model could be identified as not sufficiently 
considered in academic research. We presented a research 
prototype to demonstrate the first possible approach for 
externalizing human domain knowledge and collaboration 
between security experts and security novices. This proto-
type leverages the power of modern visual programming 
approaches to reduce the operational knowledge required to 
interact with security analytics systems, thereby lowering the 
barrier to entry for security novices. This also allows these 
domain experts to better provide their knowledge, which is 
especially important for incident detection in the CPS and 
IoT context in the form of signatures.

Although we were able to present a first research pro-
totype that addresses the first open challenges in security 
analytics, there is still room for future research. First, we 
need to develop further technical support for collaboration 
between security experts and security innovators. Our pro-
totype shows first possibilities here, but the approach needs 
to be improved together with users. A corresponding evalu-
ation of the prototype to empirically confirm its suitability is 
also necessary. Furthermore, approaches are needed to inte-
grate situational knowledge into SA better. Although initial 
approaches to this exist in the human-as-a-security-sensor 
environment, they must be improved and further developed.

Acknowledgements This research was partly supported by the Bavar-
ian Ministry of Economic Affairs, Regional Development and Energy 
(BayStMWi), as part of the INSIST project.

Funding Open Access funding enabled and organized by Projekt 
DEAL. Not applicable.

Availability of data and materials Not applicable.

Code availability Github Repositories: https:// github. com/ Knowl edge- 
based- Secur ity- Analy tics.

Declarations 

Conflicts of interest The authors declare that they have no conflict of 
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Schneier B. Secrets and lies: digital security in a networked 
world. 15th ed. Hoboken: Wiley; 2015.

 2. Ben-Asher N, Gonzalez C. Effects of cyber security knowl-
edge on attack detection. Comput Hum Behav. 2015;48:51–61. 
https:// doi. org/ 10. 1016/j. chb. 2015. 01. 039.

 3. Zimmermann V, Renaud K. Moving from a“human-as-
problem’’to a“human-as-solution’’cybersecurity mindset. Int J 
Hum Comput Stud. 2019;131:169–87. https:// doi. org/ 10. 1016/j. 
ijhcs. 2019. 05. 005.

 4. Kendrick C, Frohnmaier M, Georges M. Audio-visual recipe 
guidance for smart kitchen devices. In: Proceedings of the 
fourth international conference on natural language and speech 
processing (ICNLSP 2021); 2021. pp. 257–61.

 5. Loukas G. Cyber-physical attacks. Butterworth-Heinemann, 
Oxford. 2015. https:// doi. org/ 10. 1016/ C2013-0- 19393-2.

 6. Dietz M, Vielberth M, Pernul G. Integrating digital twin secu-
rity simulations in the security operations center. In: Proceed-
ings of the 15th international conference on availability, reli-
ability and security (ARES), pp. 1–9. ACM, New York. 2020. 
https:// doi. org/ 10. 1145/ 34070 23. 34070 39.

 7. Eckhart M, Ekelhart A. Towards security-aware virtual envi-
ronments for digital twins. In: Proceedings of the 4th ACM 
workshop on cyber-physical system security—CPSS ’18, pp. 
61–72. ACM, New York. 2018. https:// doi. org/ 10. 1145/ 31984 
58. 31984 64.

 8. Vielberth M, Bohm F, Fichtinger I, Pernul G. Security operations 
center: a systematic study and open challenges. IEEE Access. 
2020;8:227756–79. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30455 
14.

https://github.com/Knowledge-based-Security-Analytics
https://github.com/Knowledge-based-Security-Analytics
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.chb.2015.01.039
https://doi.org/10.1016/j.ijhcs.2019.05.005
https://doi.org/10.1016/j.ijhcs.2019.05.005
https://doi.org/10.1016/C2013-0-19393-2
https://doi.org/10.1145/3407023.3407039
https://doi.org/10.1145/3198458.3198464
https://doi.org/10.1145/3198458.3198464
https://doi.org/10.1109/ACCESS.2020.3045514
https://doi.org/10.1109/ACCESS.2020.3045514


SN Computer Science (2022) 3: 347 Page 17 of 17 347

SN Computer Science

 9. Schneier B. Click here to kill everybody: security and survival 
in a hyper-connected world. 1st ed. New York: W.W. Norton & 
Company; 2018.

 10. Chen TM, Sanchez-Aarnoutse JC, Buford J. Petri net modeling 
of cyber-physical attacks on smart grid. IEEE Trans Smart Grid. 
2011;2(4):741–9. https:// doi. org/ 10. 1109/ TSG. 2011. 21600 00.

 11. Geyer T, Rübenthaler J, Marschner C, von Hake M, Fabritius MP, 
Froelich MF, Huber T, Nörenberg D, Rückel J, Weniger M, Mar-
tens C, Sabel L, Clevert D-A, Schwarze V. Structured reporting 
using ceus li-rads for the diagnosis of hepatocellular carcinoma 
(hcc)-impact and advantages on report integrity, quality and inter-
disciplinary communication. Cancers. 2021;13:3. https:// doi. org/ 
10. 3390/ cance rs130 30534.

 12. Böhm F, Vielberth M, Pernul G. Bridging knowledge gaps in 
security analytics. In: Proceedings of the 7th international con-
ference on information systems security and privacy, pp. 98–108. 
SCITEPRESS— cience and Technology Publications, Online 
Streaming. 2021. https:// doi. org/ 10. 5220/ 00102 25400 980108.

 13. Sallos MP, Garcia-Perez A, Bedford D, Orlando B. Strategy and 
organisational cybersecurity: a knowledge-problem perspective. 
J Intellect Cap. 2019;20(4):581–97. https:// doi. org/ 10. 1108/ 
JIC- 03- 2019- 0041.

 14. Ackoff RL. From data to wisdom. J Appl Syst Anal. 1989;16:3–9.
 15. Frické M. The knowledge pyramid: a critique of the dikw hierar-

chy. J Inf Sci. 2009;35(2):131–42. https:// doi. org/ 10. 1177/ 01655 
51508 094050.

 16. Davenport TH, Prusak L. Working Knowledge: how organizations 
manage what they know. Boston: Harvard Business School Press; 
2000.

 17. Nonaka I, Takeuchi H. The knowledge creating company. Oxford: 
Oxford University Press; 1995.

 18. Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to 
knowledge discovery in databases. AI Mag. 1996;17(3):37. 
https:// doi. org/ 10. 1609/ aimag. v17i3. 1230.

 19. Sacha D, Stoffel A, Stoffel F, Kwon BC, Ellis G, Keim D. Knowl-
edge generation model for visual analytics. IEEE Trans Visual 
Comput Graph. 2014;20(12):1604–13.

 20. Polanyi M. The tacit dimension. Chicago: University of Chicago 
Press; 2009.

 21. Chen M, Ebert D, Hagen H, Laramee RS, van Liere R, Ma 
K-L, Ribarsky W, Scheuermann G, Silver D. Data, informa-
tion, and knowledge in visualization. IEEE Comput Graph Appl. 
2009;1(29):12–9.

 22. Wagner M, Rind A, Thür N, Aigner W. A knowledge-assisted 
visual malware analysis system: design, validation, and reflection 
of kamas. Comput Secur. 2017;67:1–15. https:// doi. org/ 10. 1016/j. 
cose. 2017. 02. 003.

 23. Jaeger L. Information security awareness: literature review and 
integrative framework. In: Bui, T. (ed.) Proceedings of the 51st 
Hawaii International Conference on System Sciences. Hawaii 
International Conference on System Sciences, Honolulu. 2018. 
https:// doi. org/ 10. 24251/ HICSS. 2018. 593.

 24. Vasileiou I, Furnell S. Personalising security education: factors 
influencing individual awareness and compliance. In: Information 

systems security and privacy. communications in computer and 
information science, vol. 977, pp. 189–200. Springer, Cham. 
2019. https:// doi. org/ 10. 1007/ 978-3- 030- 25109-3_ 10.

 25. Ponsard C, Grandclaudon J. Guidelines and tool support for build-
ing a cybersecurity awareness program for smes. In: Information 
systems security and privacy. Communications in computer and 
information science, vol. 1221, pp. 335–357. Springer, Cham. 
2020. https:// doi. org/ 10. 1007/ 978-3- 030- 49443-8_ 16.

 26. Wang X, Jeong DH, Dou W, Lee S-W, Ribarsky W, Chang R. 
Defining and applying knowledge conversion processes to a visual 
analytics system. Comput Graph. 2009;33(5):616–23. https:// doi. 
org/ 10. 1016/j. cag. 2009. 06. 004.

 27. Federico P, Wagner M, Rind A, Amor-Amorós A, Miksch S, 
Aigner W. The role of explicit knowledge: a conceptual model of 
knowledge-assisted visual analytics. In: Proceedings of the IEEE 
conference on visual analytics science and technology (VAST). 
2017.

 28. Thalmann S, Ilvonen I. Why should we investigate knowledge 
risks incidents? Lessons from four cases. In: Bui, T. (ed.) Pro-
ceedings of the 53rd Hawaii International Conference on System 
Sciences. Hawaii International Conference on System Sciences, 
Honolulu. 2020. https:// doi. org/ 10. 24251/ HICSS. 2020. 607.

 29. Mahmood T, Afzal U. Security analytics: big data analytics for 
cybersecurity: a review of trends, techniques and tools. In: 2013 
2nd national conference on information assurance (NCIA), pp. 
129–134. IEEE, New York. 2013. https:// doi. org/ 10. 1109/ NCIA. 
2013. 67253 37.

 30. Menges F, Pernul G. A comparative analysis of incident report-
ing formats. Comput Secur. 2018;73:87–101. https:// doi. org/ 10. 
1016/j. cose. 2017. 10. 009.

 31. National institute of standards and technology: framework for 
improving critical infrastructure cybersecurity, Version 1.1 2018. 
2021. https:// nvlpu bs. nist. gov/ nistp ubs/ CSWP/ NIST. CSWP. 04162 
018. pdf. Accessed 14 Sep 2021.

 32. Vielberth M, Englbrecht L, Pernul G. Improving data quality for 
human-as-a-security-sensor, a process driven quality improve-
ment approach for user-provided incident information. Inf Comput 
Secur. 2021;2021:5.

 33. Vielberth M, Menges F, Pernul G. Human-as-a-security-sensor for 
harvesting threat intelligence. Cybersecurity. 2019;2:1. https:// doi. 
org/ 10. 1186/ s42400- 019- 0040-0.

 34. Chao P-Y. Exploring students’ computational practice, design and 
performance of problem-solving through a visual programming 
environment. Comput Educ. 2016;95:202–15. https:// doi. org/ 10. 
1016/j. compe du. 2016. 01. 010.

 35. Sáez-López J-M, Román-González M, Vázquez-Cano E. Visual 
programming languages integrated across the curriculum in ele-
mentary school. Comput Educ. 2016;97:129–41. https:// doi. org/ 
10. 1016/j. compe du. 2016. 03. 003.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TSG.2011.2160000
https://doi.org/10.3390/cancers13030534
https://doi.org/10.3390/cancers13030534
https://doi.org/10.5220/0010225400980108
https://doi.org/10.1108/JIC-03-2019-0041
https://doi.org/10.1108/JIC-03-2019-0041
https://doi.org/10.1177/0165551508094050
https://doi.org/10.1177/0165551508094050
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1016/j.cose.2017.02.003
https://doi.org/10.1016/j.cose.2017.02.003
https://doi.org/10.24251/HICSS.2018.593
https://doi.org/10.1007/978-3-030-25109-3_10
https://doi.org/10.1007/978-3-030-49443-8_16
https://doi.org/10.1016/j.cag.2009.06.004
https://doi.org/10.1016/j.cag.2009.06.004
https://doi.org/10.24251/HICSS.2020.607
https://doi.org/10.1109/NCIA.2013.6725337
https://doi.org/10.1109/NCIA.2013.6725337
https://doi.org/10.1016/j.cose.2017.10.009
https://doi.org/10.1016/j.cose.2017.10.009
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://doi.org/10.1186/s42400-019-0040-0
https://doi.org/10.1186/s42400-019-0040-0
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1016/j.compedu.2016.03.003

	Formalizing and Integrating User Knowledge into Security Analytics
	Abstract
	Introduction
	Motivation
	Contribution and Approach
	Extensions from Previous Work

	Knowledge Within Security Analytics
	Knowledge Types
	Explicit Knowledge
	Implicit Knowledge

	Knowledge Conversion

	Knowledge-Based Security Analytics
	Incident Detection Lifecycle
	Knowledge Model
	Knowledge-Based Security Personas
	Dichotomy of Security Analytics
	Knowledge Gaps

	Research Prototype
	Requirements Analysis
	System Architecture
	Back End
	Front End

	Visual Pattern Builder
	Pattern Debugger
	Discussion

	Conclusions
	Acknowledgements 
	References




