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Abstract
We study evolutionary algorithms in a dynamic setting, where for each generation a different fitness function is chosen, and 
selection is performed with respect to the current fitness function. Specifically, we consider Dynamic BinVal, in which the 
fitness functions for each generation is given by the linear function BinVal, but in each generation the order of bits is randomly 
permuted. For the (1 + 1)-EA it was known that there is an efficiency threshold c

0
 for the mutation parameter, at which the 

runtime switches from quasilinear to exponential. Previous empirical evidence suggested that for larger population size � , 
the threshold may increase. We prove that this is at least the case in an �-neighborhood around the optimum: the threshold 
of the (� + 1)-EA becomes arbitrarily large if the � is chosen large enough. However, the most surprising result is obtained 
by a second-order analysis for � = 2 : the threshold increases with increasing proximity to the optimum. In particular, the 
hardest region for optimization is not around the optimum.

Keywords  Evolutionary algorithm · Populations · Dynamic linear functions · Dynamic BinVal · DynBV · Mutation rate

Introduction

Evolutionary algorithms are optimization heuristics that 
are based on the idea of maintaining a population of solu-
tions that evolves over time. This incremental nature is 
an important advantage of population-based optimization 
heuristics over non-incremental approaches. At any point 
in time the population represents a set of solutions. This 
makes population-based optimization heuristics very flex-
ible. For example, the heuristic can be stopped after any 
time budget (predefined or chosen during execution), or 
when some desired quality of the solutions is reached. For 
the same reason, population-based algorithms are naturally 
suited for dynamic environments, in which the optimization 

goal (“fitness function”) may change over time. In such a set-
ting, it is not necessary to restart the algorithm from scratch 
when the fitness function changes, but rather we can use the 
current population as starting point for the new optimization 
environment. If the fitness function changes slowly enough, 
then population-based optimization heuristics may still find 
the optimum, or track the optimum over time [2, 7, 11, 12, 
22–24, 26–28]. We refrain from giving a detailed overview 
over the literature, since an excellent review has recently 
been given in [25]. All the settings have in common that 
either the fitness function changes with very low frequency, 
or it changes only by some small local differences, or both.

Recently, a new setting, called dynamic linear func-
tions was proposed by Lengler and Schaller [19]. They 
argued that it might either be called noisy linear func-
tions or dynamic linear functions, but we prefer the 
term dynamic. A class of dynamic linear functions is 
determined by a distribution D on the positive reals ℝ+ . 
For the � th generation, n weights W�

1
,… ,W�

n
 are cho-

sen independently identically distributed (i.i.d.) from D , 
and the fitness function for this generation is given by 
f � ∶ {0, 1}n → ℝ

+; f �(x) =
∑n

i=1
W�

i
xi . Therefore, the fit-

ness in each generation is given by a linear function with 
positive weights, but the weights are drawn randomly in 
each generation. Note that for any fitness function, a one-bit 
in the ith position will always yield a better fitness than a 
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zero-bit. In particular, all fitness functions share a common 
global maximum, which is the string OPT = (1...1) . Hence, 
the fitness function may change rapidly and strongly from 
generation to generation, but the direction of the signal 
remains unchanged: one-bits are preferred over zero-bits.

Crucially, by dynamic environments we mean that 
selection is performed according to the current fitness 
function as in [8]. That is, all individuals from parent and 
offspring population are compared with respect to the 
same fitness function. Other versions exist, e.g., [5] stud-
ies the same problem as [8] without re-evaluations, i.e., 
there algorithms would compare fitnesses such as f �(x) 
and f �+1(y) with each other, which will never happen in 
our setting.

Several applications of dynamic linear functions are 
discussed in [19]. One of them is a chess engine that can 
switch databases for different openings ON or OFF. The 
databases strictly improve performance in all situations, but 
if the engine is trained against varying opponents, then an 
opening may be used more or less frequently; so the weight 
of the corresponding bit may be high or low. Obviously, it 
is desirable that an optimization heuristic manages to switch 
all databases ON in such a situation. However, as we will 
see, this is not automatically achieved by many simple opti-
mization heuristics. Rather, it depends on the parameter set-
tings whether the optimal configuration (all databases ON) 
is found.

In [19], the runtime (measured as the number of itera-
tions until the optimum is found) of the well-known (1 + 1)

-EA on dynamic linear functions was studied. The (1 + 1)

-EA, or “ (1 + 1) Evolutionary Algorithm”, is a simple hill-
climbing algorithm for maximizing a pseudo-Boolean func-
tion f ∶ {0, 1}n → ℝ . It only maintains a population size 
of � = 1 , so it maintains a single solution x� ∈ {0, 1}n . In 
each round (also called generation), a randomized muta-
tion operator is applied to x� to generate an offspring y� . 
Then the fitter of the two is maintained, so we set x�+1 ∶= x� 
if f (x𝜏) > f (y𝜏 ) , and x�+1 ∶= y� if f (x𝜏) < f (y𝜏 ) . In case 
of equality, we break ties randomly. The mutation opera-
tor of the (1 + 1)-EA is standard bit mutation, which flips 
each bit of x� independently with probability c/n, where c 
is called the mutation parameter. The authors of [19] gave 
a full characterization of the optimization behavior of the 
(1 + 1)-EA on dynamic linear functions in terms of the 
mutation parameter c. It was shown that there is a thresh-
old c∗ = c∗(D) ∈ ℝ

+ ∪ {∞} such that for c < c∗ the (1 + 1)

-EA optimizes the dynamic linear function with weight 
distribution D in time O(n log n) . On the other hand, for 
c > c∗ , the algorithm needs exponential time to find the 
optimum. The threshold c∗(D) was given by an explicit for-
mula. For example, if D is an exponential distribution then 

c∗(D) = 2 , if it is a geometric distribution D = GEOM(p) 
then c∗ = (2 − p)∕(1 − p) . Moreover, the authors in  [19] 
showed that there is c0 ≈ 1.59.. such that c∗(D) ≥ c0 for 
every distribution D , but for any 𝜀 > 0 there is a distribu-
tion D with c∗(D) < c0 + 𝜀 . As a consequence, if c < c0 
then the (1 + 1)-EA with mutation parameter c/n needs time 
O(n log n) to optimize any dynamic linear function, while for 
c > c0 there are dynamic linear functions on which it needs 
exponential time.

While it was satisfying to have such a complete picture for 
the (1 + 1)-EA, a severe limitation was that the (1 + 1)-EA is 
very simplistic. In particular, it was unclear whether a non-
trivial population size 𝜇 > 1 would give a similar picture. 
This question was considered in the experimental paper [16, 
17] by Lengler and Meier. Instead of working with the 
whole class of dynamic linear functions, they defined the 
dynamic binary value function DynBV as a limiting case. 
In DynBV, in each generation a uniformly random permu-
tation �� ∶ {1,… , n} → {1,… , n} of the bits is drawn, and 
the fitness function is then given by f �(x) =

∑n

i=1
2n−ix

�� (i) . 
Therefore, in each generation, DynBV evaluates the so-
called BinVal function with respect to a permutation of the 
search space. Lengler and Meier observed that the proof 
in [19] for the (1 + 1)-EA extends to DynBV with threshold 
c∗ = c0 , i.e., the (1 + 1)-EA needs time O(n log n) for muta-
tion parameter c < c0 , and exponential time for c > c0 . In 
this sense, DynBV is the hardest dynamic linear function, 
although it is not formally a member of the class of dynamic 
linear functions.

The papers [16, 17] performed experiments on DynBV 
for two population-based algorithms, the (� + 1)-EA (using 
only mutation) and the (� + 1)-GA (using randomly muta-
tion or crossover; GA stands for “Genetic Algorithm”). In 
(� + 1) algorithms, a population of size � is maintained, see 
also Algorithm 1. In each generation, a single offspring is 
generated, and the least fit of the � + 1 search points is dis-
carded, breaking ties randomly. Thus they generalize the 
(1 + 1)-EA. In the (� + 1)-EA, the offspring is generated by 
picking a random parent from the population and perform-
ing standard bit mutation as in the (1 + 1)-EA. In the (� + 1)-
GA, it is also possible to generate the offspring by crossover: 
two random parents x1, x2 are selected from the population, 
and each bit is taken randomly either from x1 or x2 . In each 
generation of the (� + 1)-GA, it is decided randomly with 
probability 1/2 whether the offspring is produced by a muta-
tion or by a crossover.1

1  Other conventions are possible, e.g., that both crossover and 
mutation are applied subsequently in the same generation. Here we 
describe the version in [16] and [17].
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Lengler and Meier ran experiments for � ∈ {1, 2, 3, 5} 
on DynBV and found two main results. As they increased 
the population size � from 1 to 5, the efficiency threshold 
c0 increased moderately for the (� + 1)-EA (from 1.6 to 3.4, 
and strongly for the (� + 1)-GA (from 1.6 to more than 20). 
Therefore, with larger population size, the algorithms have 
a larger range of feasible parameter settings, and even more 
so when crossover is used.

Moreover, they studied which range of the search space 
was hardest for the algorithms, by estimating the drift 
towards the optimum with Monte Carlo simulations. For the 
(� + 1)-GA, they found that the hardest region was around 
the optimum, as one would expect. Surprisingly, for the 
(� + 1)-EA with � ≥ 2 , this did not seem to be the case. 
They gave empirical evidence that the hardest regime was 
bounded away from the optimum. That is, there were param-
eters c for which the (� + 1)-EA had positive drift (towards 
the optimum) in a region around the optimum. However, it 
had negative drift in an intermediate region that was further 
away from the optimum. This finding is remarkable, since it 
contradicts the commonplace that optimization gets harder 
closer to the optimum.2 Notably, a very similar phenom-
enon was proven by Lengler and Zou [21] for the (� + 1)

-EA on certain monotone functions (“HotTopic ”), see the 
discussion below. Strikingly, such an effect was neither built 
into the fitness environments (not for HotTopic, and not for 
DynBV) nor into the algorithms. Rather, it seems to origi-
nate in a complex (and detrimental!) population dynamics 
that unfolds only in a regime of weak selective pressure, 
i.e., in a regime, where offspring are often accepted even 
if they are less fit than the parent. If selective pressure is 
strong, then the population often degenerates into copies of 
the same search point. As a consequence, diversity is lost, 
and the (� + 1)-EA degenerates into the (1 + 1)-EA. In these 
regimes, diversity decreases the ability of the algorithms 
to make progress. For HotTopic functions, these dynamics 
are well-understood [13, 21]. For dynamic linear functions, 

even though we can prove this behavior in this paper for the 
(2 + 1)-EA (see below), we are still far from a real under-
standing of these dynamics. Most likely, they are different 
from the dynamics for HotTopic functions.

Our Results

We complement the experiments in [16, 17] with rigorous 
mathematical analysis. To this end, we study the degenerate 
population drift (see Sect. 2) for the (� + 1)-EA with muta-
tion parameter c > 0 on DynBV in an �-neighbourhood of 
the optimum. That is, we assume that the search points in 
the current population have at least (1 − �)n one-bits, for 
some sufficiently small constant 𝜀 > 0 . We find that for every 
constant c > 0 there is a constant �0 such that for � ≥ �0 the 
drift is positive (multiplicative drift towards the optimum). 
This means that with high probability the (� + 1)-EA will 
need time O(n log n) to improve from (1 − �)n one-bits to 
the optimum, if � is large enough. This implies that larger 
population sizes are helpful, since the drift of the (1 + 1)-EA 
around the optimum is negative for all c > c0 ≈ 1.59.. (which 
implies exponential optimization time). So for any c > c0 , 
increasing the population size to a large constant decreases 
the runtime from exponential to quasi-linear, provided that 
the algorithm starts in an �-neighbourhood of the optimum. 
This is consistent with the experimental findings in [16] for 
� = {1, 2, 3, 5} , and it proves that population size can com-
pensate for arbitrarily large mutation parameters.

For the (2 + 1)-EA, we perform a second-order analy-
sis (i.e., we determine not just the main order term of the 
drift, but also the second-order term) and prove that in an �
-neighborhood of the optimum, the drift decreases with the 
distance from the optimum. In particular, there are some 
values of c for which the drift is positive around the opti-
mum, but negative in an intermediate distance. It follows 
from standard arguments that there are 𝜀, c > 0 such that the 
runtime is O(n log n) if the algorithm is started in an �-neigh-
borhood of the optimum, but that it takes exponential time 
to reach this �-neighborhood. Thus we formally prove that 
the hardest part of optimization is not around the optimum, 

2  https://​en.​wikip​edia.​org/​wiki/​Pareto_​princ​iple.

https://en.wikipedia.org/wiki/Pareto_principle
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as was already experimentally concluded from Monte Carlo 
simulations in [16].

Related Work

Jansen [9] introduced a pessimistic model for analyzing the 
(1 + 1)-EA on linear functions, later extended in [1], which 
is also a pessimistic model for dynamic linear functions and 
DynBV and for monotone functions. A monotone function 
f ∶ {0, 1}n → ℝ is a function, where for every x ∈ {0, 1}n , 
the fitness of x strictly increases if we flip any zero-bit 
of x into a one-bit. Thus, as for dynamic linear functions 
and DynBV, a one-bit is always better than a zero-bit, the 
optimum is always at (1,… , 1) , and there are short fitness-
increasing paths from any search point to the optimum. 
Thus it is reasonable to call all these setting “easy” from 
an optimization point of view, which makes it all the more 
surprising that such a large number of standard optimization 
heuristics fail so badly. Keep in mind that despite the superfi-
cial similarities between monotone functions and DynBV or 
dynamic linear functions, the basic setting is rather different. 
Monotone functions were studied in static settings, i.e., we 
have only a single static function to optimize, and a search 
point never changes its fitness. Nevertheless, the perfor-
mance of some algorithms is surprisingly similar on mono-
tone functions and on dynamic linear functions or DynBV. 
In particular, the mutation parameter c plays a critical role in 
both settings. It was shown in [6] that the (1 + 1)-EA needs 
exponential time to optimize some monotone functions if 
the mutation parameter c is too large, while it is efficient on 
all monotone functions if c < 1.3 The construction of hard 
monotone instances was simplied in [20] and later called 
HotTopic functions. HotTopic functions were analyzed for 
a large set of algorithms in [13]. For the (1 + �)-EA, the 
(1 + (�, �))-GA, the (� + 1)-EA, and the (1 + �)-fEA, thresh-
olds for the mutation parameter c or related quantities were 
determined such that a larger mutation rate leads to expo-
nential runtime, and a smaller mutation rate leads to runt-
ime O(n log n) . (For details on these algorithms, see [13].) 
Interestingly, the population size � and offspring population 
size � of the algorithms had no impact on the threshold. Cru-
cially, all these results were obtained for parameters of Hot-
Topic functions in which only the behavior in an �-neighbor-
hood around the optimum mattered. This dichotomy between 
quasilinear and exponential runtime is very similar to the 
situation for DynBV. However, for the (� + 1)-EA on Hot-
Topic functions the threshold c0 was independent of � , while 
we show that on DynBV it becomes arbitrarily large as � 
grows. Thus large population sizes help for DynBV, but not 
for HotTopic.

As we prove, for the (2 + 1)-EA the region around the 
optimum is not the hardest region for optimization, and there 
are values of c for which there is a positive drift around 
the optimum, but a negative drift in an intermediate region. 
As Lengler and Zou showed [21], the same phenomenon 
occurs for the (� + 1)-EA on HotTopic functions. In fact, 
they showed that larger population size even hurts: for any 
c > 0 there is a �0 such that the (� + 1)-EA with � ≥ �0 has 
negative drift in some intermediate region (and thus expo-
nential runtime), even if c is much smaller than one! This 
surprising effect is due to population dynamics in which it 
is not the genes of the fittest individuals who survive in the 
long terms. Rather, individuals which are strictly dominated 
by others (and substantially less fit) serve as the seeds for 
new generations. Importantly, the analysis of this dynamics 
relies on the fact that for HotTopic functions, the weight of 
the positions stay fixed for a rather long period of time (as 
long as the algorithm stays in the same region/level of the 
search space). Thus, the results do not transfer to DynBV 
functions. Nevertheless, the picture looks similar insofar as 
the hardest region for optimization is not around the opti-
mum in both cases. Since our analysis for DynBV is only 
for � = 2 , we can’t say whether the efficiency threshold in c 
is increasing or decreasing with � . The experiments in [16, 
17] find increasing thresholds (so the opposite effect as for 
HotTopic), but are only for � ≤ 5.

Preliminaries

Dynamic Optimization and the Dynamic Binary 
Value Function DynBV

The general setting of a (� + �) algorithm in dynamic envi-
ronments on the hypercube {0, 1}n is as follows. A popula-
tion P� of � search points is maintained. In each genera-
tion � , � offspring are generated. Then a selection operator 
selects the next population P�+1 from the � + � search points 
according to the fitness function f � . A pseudocode descrip-
tion can be found in Algorithm 1.

In this paper, we will study the (� + 1)-Evolutionary 
Algorithm ( (� + 1)-EA) with standard bit mutation and elit-
ist selection. Therefore, for offspring generation, a parent x 
is chosen uniformly at random from P� , and the offspring is 
generated by flipping each bit of x independently with prob-
ability c/n, where c is the mutation parameter. For selection, 
we simply select the � individuals with largest f �-values to 
form population P�+1.

For the dynamic binary value function DynBV, 
for each � ≥ 0 a uniformly random permutation 
�
� ∶ {1,… , n} → {1,… , n} is drawn, and the fitness func-

tion for generation � is then given by f �(x) =
∑n

i=1
2n−ix

�� (i).
3  This was later extended to c < 1 + 𝜀 in [15].
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Notation and Setup

Throughout the paper, we will assume that the population 
size � and the mutation parameter c are constants, whereas 
n tends to ∞ . In particular, we will hide factors c and � in 
Landau notation O(⋅) . On the other hand, we will frequently 
describe the distance from the optimum in the form �n , 
where � = �(n) may depend on n. In particular, we never hide 
the dependency on � in Landau notation. We will choose �0 
to be constant for the main theorem in the end, but for the 
analysis it is crucial to understand the asymptotics of � . We 
will give more details on the role of � below.

We use the expression “with high probability” or whp 
for events En such that Pr(En) → 1 for n → ∞ . We write 
x = O(y) , where x and y may depend on n, if there is C > 0 
such that |x| ≤ Cy for sufficiently large n. Note that we take 
the absolute value of x. The statement x = O(y) does not 
imply that x must be positive. Consequently, if we write an 
expression, such as Δ = � + O(�2) , then we mean that there 
is a constant C > 0 such that � − C�2 ≤ Δ ≤ � + C�2 for suf-
ficiently large n. It does not imply anything about the sign 
of the error term O(�2) . We will sometimes use minus signs 
or “±” to ease the flow of reading, e.g., we write 1 − o(1) 
for probabilities. However, this is a cosmetic decision, and 
is equivalent to 1 + o(1).

For two bit-strings x, y ∈ {0, 1}n , we say that x dominates 
y if xi ≥ yi for all i ∈ {1,… , n}.

Our main tool will be drift theory. To apply this, we need 
to identify states that we can adequately describe by a single 
real value. Following the approach in [13] and [16], we call 
a population degenerate if it consists of � copies of the same 
individual. If the algorithm is in a degenerate population, we 
will study how the next degenerate population looks like, 
so we define

We will use the convention that � is the index of the � th gen-
eration, and t is the index of the tth degenerate population. 
Therefore, the time between Φt and Φt+1 can span several 
generations. Our main object of study will be the degenerate 
population drift (or simply drift if the context is clear). For 
0 ≤ � ≤ 1 , it is defined as

The expression is independent of t, since the considered 
algorithms are time-homogeneous. If we want to stress 
that Δ(�) depends on the parameters � and c, we also write 
Δ(�, c, �) . Note that the number of generations to reach the 
(t + 1) st degenerate population is itself a random variable. 
Therefore, the number of generations to go from Φt to Φt+1 

(1)
Φt: = {# of zero-bits in an individual

n the tth degenerate population}.

(2)Δ(�) ∶= Δt(�) ∶= � [Φt − Φt+1 ∣ Φt = ⌊�n⌋].

is random. As in [13], its expectation is O(1) if � and c are 
constants, and it has an exponentially decaying tail bound, 
see Lemma 1 below. In particular, the probability that during 
the transition from one degenerate population to another the 
same bit is touched by two different mutations is O(�2) , and 
likewise the contribution of this case to the drift is O(�2) , as 
we will prove formally in Lemma 2.

As mentioned above, we do not assume constant � , i.e., 
� = �(n) may depend on n. For our main result we will 
choose � to be a sufficiently small constant, but we need 
to choose it such that we can determine the sign of terms, 
such as � ± O(�2) ± o(1) . Note that this is possible: if 𝜀 > 0 
is a sufficiently small constant then � ± O(�2) ≥ �∕2 , and 
if afterwards we choose n to be sufficiently large then the 
o(1) term is at most �∕4 . Since this is subtle point, we will 
not treat � as a constant. In particular, all O-notation is with 
respect to n → ∞ , and does not hide dependencies on � . 
This is why we have to keep error terms, such as O(�2) and 
o(1) separate.

To compute the degenerate population drift, we will fre-
quently need to compute the expected change of the poten-
tial provided that we visit an intermediate state S. Here, a 
state S is simply given by a population of � search points. 
We will call this change the drift from state S, and denote 
it by Δ(S, �) . Formally, if E(S, t) is the event that the algo-
rithm visits state S between the tth and (t + 1) st degenerate 
population,

This term is closely related to the contribution to the degen-
erate population drift from state S, which also contains the 
probability to reach S as a factor:

We will study DynBV around the optimum, i.e., we consider 
any � = �(n) → 0 , and we compute the asymptotic expansion 
of Δ(�) for n → ∞ . As we will see, the drift is of the form 
Δ(�) = a� + O(�2) + o(1) for some constant a ∈ ℝ , where 
the o(1) term is independent of � . In the end, this will allow 
us to prove existence of a constant � such that the sign of 
Δ(�) equals the sign of a for sufficiently large n. Analogously 
to [13] and [21], standard drift theorems imply that if a is 
positive (multiplicative drift), then the algorithm starting 
with at most �0n zero-bits for some suitable constant �0 whp 
needs O(n log n) generations to find the optimum. On the 
other hand, if a is negative (negative drift/updrift), then whp 
the algorithm needs exponentially many generations to find 
the optimum (regardless of whether it is initialized randomly 
or with �0n zero-bits). These two cases are typical. There is 
no term independent of � in the drift, since for a degenerate 
population P� we have P�+1 = P� with probability 1 − O(�) . 

(3)Δ(S, �) ∶= � [Φt − Φt+1 ∣ Φt = �n and E(S, t)].

(4)Δcon(S, �) ∶= Pr[E(S, t) ∣ Φt = �n] ⋅ Δ(S, �).
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This happens whenever mutation does not touch any zero-
bit, since then the offspring is rejected.4

We will prove that, as long as we are only interested 
in the first- order expansion (i.e., in a results of the form 
a� + O(�2) + o(1) ), we may assume that between two 
degenerate populations, the mutation operators always 
flip different bits. In this case, we use the following nam-
ing convention for search points. The individuals of the tth 
degenerate population are all called x0 . We call other indi-
viduals x(m1−m2) , where m1 stands for the extra number of 
ones and m2 for the extra number of zeros compared to x0 . 
Hence, if x0 has m zero-bits then x(m1−m2) has m + m2 − m1 
zero-bits. Following the same convention, we will denote 
by Xz

k
 a set of k copies of xz , where the index z may be 0 

or (m1 − m2) . In particular, X0
�
 denotes the tth degenerate 

population.

Duration Between Degenerate Populations

We formalize the assertions in Sect. 2.2 that the number 
of steps between two degenerate populations satisfies expo-
nential tail bounds, and that it is unlikely to touch a bit by 
two different mutations as we transition from one degenerate 
population to the next. We give proofs for completeness, but 
similar statements are well-known in the literature.

Lemma 1  For all constant �, c there is a constant a > 0 such 
that the following holds for the (� + 1)-EA with mutation 
parameter c in any population X on DynBV. Let K be the 
number of generations until the algorithm reaches the next 
degenerate population. Then for all k ∈ ℕ0:

Proof  Let x0 ∈ X be the individual with the least number of 
zero-bits, and let p̂ be the probability to degenerate in the 
next � steps. Clearly, p̂ is at least the probability that in each 
step we copy x0 and accept it into the population. The prob-
ability of selecting x0 and mutating no bits is at least 
1

�
(1 −

c

n
)n

n→∞
�������������������→ e−c∕� , so for sufficiently large n this prob-

ability is at least e−c∕(2�) . Since x0 is the individual with the 
least number of zeros in the population, the probability that 
it is not worst in the population and thus all copies are kept 
is at least 1/2: any other individual y ≠ x0 will have at least 
as many zeros as x and, therefore, will be ranked lower than 
x0 with probability at least 1/2. Therefore, for sufficiently 
large n:

Pr(K ≥ k ⋅ �) ≤ e−a⋅k.

(In fact, one could replace � by � − 1 and obtain a stronger 
bound, since � − 1 rounds of inserting x0 already suffice, 
but this would only make the final formula slightly more 
complicated.) This bound works for any starting popula-
tion. Therefore, if we don’t degenerate in the first � steps of 
the algorithm we again have probability p̂ to degenerate in 
the successive � steps, and so on. Therefore, we can simply 
bound the probability not to degenerate in the first k ⋅ � steps 
by (1 − p̂)k ≤ e−p̂⋅k , where the last step uses the inequality 
(1 + x) ≤ ex∀x ∈ ℝ [3].	�  ◻

The next lemma formalizes the well-known phenomenon 
that close to the optimum, the course of the algorithm is 
dominated by events in which at most one zero-bits flips 
at a time. Here we go slightly further. Even when we con-
sider the period in which the algorithm transitions from one 
degenerate population to another, then the event that two or 
more zero-bits are flipped in this period is negligible, and 
contributes only an O(�2) term to the drift.

Lemma 2  Consider the (� + 1)-EA with mutation parameter 
c on DynBV. Let Xt and Xt+1 denote the tth and (t + 1) st 
degenerate population respectively. Let 𝜀 > 0 , and let X be 
a degenerate population with at most �n zero-bits. 

(a)	 Let E2 be the event that the mutations during the tran-
sition from Xt to Xt+1 flip at least two zero-bits. Then 
Pr[E2 ∣ X

t = X] = O(�2) . Moreover, the contribution of 
this case to the degenerate population drift Δ is 

(b)	 Let S be any non-degenerate state such that there is at 
most one position which is a one-bit in some individuals 
in S, but a zero-bit in X. Let E(S, t) be the event that state 
S is visited during the transition from Xt to Xt+1 , and let 
E1 be the event that a zero-bit is flipped in the transition 
from S to Xt+1 . Then Pr[E1 ∣ E(S, t) ∧ Xt = X] = O(�) , 
and the contribution to Δ(S, �) is 

 The contribution of the case E(S, t) ∧ E1 to the degener-
ate population drift is 

p̂ ≥

(
e−c

4𝜇

)𝜇

.

Δ∗(�): = Pr[2 ∣ Xt = X]⋅
�[Δt(�) ∣ 2 ∧ Xt = X] = O(�2).

(5)
Δ∗(S, �) ∶= Pr[E1 ∣ E(S, t) ∧ X

t = X]

⋅ �[Δt(�) ∣ E1 ∧ E(S, t) ∧ X
t = X]

= O(�).

Δ∗
con

(S, �) ∶= Pr[E(S, t)] ⋅ Δ∗(S, �) = O(�2).

4  Here and later we use the convention that if an offspring is identi-
cal to the parent, and they have lowest fitness in the population, then 
the offspring is rejected. Since the outcome of ejecting offspring or 
parent is the same, this convention does not change the course of the 
algorithm.
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In both parts, the hidden constants do not depend on S and X.
Proof  (a) If the offspring in the first iteration is not accepted 
into the population or is identical to x0 , then the popula-
tion is immediately degenerate again, and there is nothing 
to show. Therefore, let us consider the case that the offspring 
is different and is accepted into the population. Then the 
mutation needed to flip at least one zero-bit, since other-
wise the offspring is dominated by x0 and rejected. Thus the 
probability of this case is O(�) . Moreover, the probability of 
flipping at least two zero-bits in this mutation is O(�2) , so we 
may assume that exactly one zero-bit is flipped.

Let k be such that the number of subsequent iterations 
until the next degenerate population is in [�k,�(k + 1)] . 
Conditioning on k, we have at most O(k) mutations until 
the population degenerates, each with a probability of at 
most �c of flipping a zero-bit. Using Lemma 1 we have for 
some a > 0,

Recall from (1) the notion Φt for the number of zero-bits 
in the tth degenerate population. To bound the contribu-
tion to the drift of the case, where an additional zero-bit 
flip happens, we will bound the expectation of |Φt − Φt+1| , 
conditioned on being in this case. That difference is at most 
the number of bit flips until the next degenerate population, 
which is O(k) in expectation. Again, summing over all pos-
sible k and using Lemma 1 we get

(b) Analogously to (6) and (7), but without the factor O(�) , 
since we already start in state S, we have

and

The probability Pr[E(S, t)] is bounded by the probability that 
the transition from Xt to Xt+1 visits any state different from 
Xt at all, which is O(�) . This proves the last statement. 	
� ◻

Before we start to analyze the algorithms, we prove a 
helpful lemma to classify how the population can degenerate 

(6)Pr[E2 ∣ X
t = X] ≤ O(�) ⋅

∞∑

k=1

e−a⋅k ⋅O(� ⋅ k) = O(�2).

(7)

Δ∗(�) ≤ O(�) ⋅

∞∑

k=1

O(� ⋅ k) ⋅ e−a⋅k ⋅O(k)

= O

(
�
2

∞∑

k=1

k
2
e
−a⋅k

)
= O(�2).

Pr[E1 ∣ E(S, t) ∧ Xt = X] ≤

∞∑

k=1

e−a⋅k ⋅O(� ⋅ k) = O(�)

Δ∗(S, �) ≤

∞∑

k=1

O(� ⋅ k) ⋅ e−a⋅k ⋅O(k) = O(�).

if no zero-bit is flipped. As we have explained in Sect. 2.2 
(and made formal in Lemma 1 and Lemma 2), this assump-
tion holds with high probability. In this case, the population 
degenerates to copies of an individual which is not domi-
nated by any other search point.

Lemma 3  Consider the (� + 1)-EA in a non-degenerate pop-
ulation X. Let x1, x2, ..., xk be search points in X that domi-
nate all the rest of the population. Then either at least one 
zero-bit is flipped until the next degenerate population, or 
the next degenerate population consists of copies of one of 
the search points x1, x2, ..., xk.

Proof  Assume that, starting from X, the algorithm does not 
flip any additional zero-bits. We start by inductively show-
ing that for all subsequent time steps, every individual in 
the population is still dominated by one of the search points 
x1, x2, ..., xk . Suppose, for the sake of contradiction, that 
eventually there are individuals which are not dominated by 
any of the search points in {x1, x2, ..., xk} , and let x∗ be the 
first such individual. Since we assumed that the algorithm 
doesn’t flip any additional zero-bits, x∗ must have been gen-
erated by mutating an individual x̄ and only flipping one-
bits. Therefore, x̄ dominates x∗ . On the other hand, x̄ is domi-
nated by one of the search points x1, x2, ..., xk by our choice 
of x∗ . This is a contradiction, since domination is transitive. 
Therefore, using transitivity, the algorithm will not generate 
any individual that is not dominated by any search point in 
{x1, x2, ..., xk} . Furthermore, the population will never degen-
erate to any other individual x̃ ∉ {x1, x2, ..., xk} . In fact, let 
xi be the search point in {x1, x2, ..., xk} that dominates x̃ . We 
have that f (x̃) < f (xi) in all iterations and for all permuta-
tions; therefore, xi will never be discarded before x̃ , which 
concludes the proof.	�  ◻

Analysis of the Degenerate Population Drift

In this section, we will find a lower bound for the drift 
Δ(�) = Δ(�, c, �) of the (� + 1)-EA close to the optimum, 
when n → ∞ . The main result of this section will be the 
following.

Theorem 1  For all constants c > 0 there exist constants 
𝛿, 𝜀0 > 0 such that for all � ≤ �0 and � ≥ �0 ∶= ec + 2 , if n 
is sufficiently large:

Lemma 3 allows us to describe the transition from one 
degenerate population to the next by a relatively simple 
Markov chain, provided that at most one zero-bit is flipped 
during the transition. This zero-bit needs to be flipped to 

Δ(c,�, �) ≥ � ⋅ �.



	 SN Computer Science (2022) 3:324324  Page 8 of 18

SN Computer Science

leave the starting state, so we assume for this chain that 
no zero-bit is flipped afterwards. This assumption is justi-
fied by Lemma 2. The Markov chain (or rather, a part of it) 
is shown in Fig. 1. The starting state, which is a degener-
ate population, is depicted in green. The yellow states S(k) 
represent degenerate populations, where the number of 
one-bits is exactly k larger than that of the starting state, so 
Φt+1 − Φt = k . In later diagrams, we will also see negative 
values of k. We have included intermediate states depicted 
in gray, in which an offspring has been created, but selection 
has not yet taken place. In other words, the gray states have 
� + 1 search points, and it still needs to be decided which of 
them should be discarded from the population. As we will 
see in the analysis, it is quite helpful to separate offspring 
creation from this selection step. The remaining states are 
depicted in red. We denote by F�(r) the state reached from 
X0
�
 by flipping one 0-bit and r ≥ 1 one-bits and accepting the 

offspring, and we denote by S�(r, k) the state reached from 
F�(r) by flipping k 1-bits from the new individual x(1−r) and 
accepting the offspring. Note that we have only drawn part of 
the Markov chain, since from the bottom-most state S�(r, k) , 
we have not drawn outgoing arrows or states.

Moreover, the states of the Markov chain do not corre-
spond one-to-one to the generations: we omit intermediate 

states, where Lemma 3 allows us to do that. For example, 
following the first arrow to the left we reach a state in which 
one individual x(1) (the offspring) dominates all other indi-
viduals. By Lemma 3, such a situation must degenerate 
into � copies of x(1) , so we immediately mark this state as a 
degenerate state with Φt+1 − Φt = 1.

The key step will be to give a lower bound for the contri-
bution to the drift from state F�(r) . Once we have a bound on 
this, it is straightforward to compute a bound on the degener-
ate population drift. Before we turn to the computations, we 
first introduce a bit more auxiliary notation.

Definition 1  Consider the (� + 1)-EA in state F�(r) in 
generation � − 1 . We re-sort the n positions of the search 
points descendingly according to the next fitness function 
f � . Therefore, by the “first” position we refer to the position 
which has highest weight according to f � , and the jth bit of 
a bitstring z is given by (��)−1(j) . Then, we define:

•	 Bz ∶= position of the first zero-bit inz;
•	 B

�

0
∶= position of the first flipped bit in

the mutation of the � − th generation;
•	 z�

1
∶= argmin {f � (z) ∣ z ∈ {X0

�−1
,X

(1−r)

1
}};

•	 z�
2
∶= argmax {f �(z) ∣ z ∈ {X0

�−1
,X

(1−r)

1
}}.

In particular, the search point to be discarded in generation 
� is either z�

1
 or the offspring generated by the � th muta-

tion. We define B�

0
 to be ∞ if no bits are flipped in the � th 

mutation.
Now we are ready to bound the drift of state F�(r) . We 

remark that the statement for � = 2 was also proven in [17], 
but the proof there was much longer and more involved, 
since it did not make use of the hidden symmetry of the 
selection process that we will use below.

Lemma 4  Consider the (� + 1)-EA on the DynBV function in 
the state F�(r) for some r ≥ 1 , and let 𝜀 > 0 . Then the drift 
from F�(r) is

For � = 2 , consider a state S = {x1, x2} that is reached from 
some degenerate population with individual x. Assume that 
x1 has i1 = O(1) additional one-bits and i2 = O(1) additional 
zero-bits compared to x2 . Moreover, assume that the total 
number of zero-bits in x is by j1 ∈ ℤ larger than in x1 and 
by j2 ∈ ℤ larger than in x2 . Then

Δ(F�(r), �) ≥
1 − r

1 + (� − 1) ⋅ r
+O(�).

Δ(S, �) =
i1

i1 + i2
⋅ j1 +

i2

i1 + i2
⋅ j2 +O(�).

{X0
µ,

x(1−r)}

X0
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Fig. 1   State diagram for the (� + 1)-EA
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Proof  We first consider the case of general � . Let us assume 
that the algorithm will not flip an additional zero-bit through 
mutation before it reaches the next degenerate population. 
In fact, the contribution to the drift in case it does flip 
another zero-bit can be summarized by O(�) due to Eq. (5) 
in Lemma 2. So from now on, we assume that the algorithm 
doesn’t flip an additional zero-bit until it reaches the next 
degenerate population.

The idea is to follow the Markov chain as shown in Fig. 1. 
We will compute the conditional probabilities of reaching 
different states from F�(r) , conditional on actually leaving 
F�(r) . More precisely, we will condition on the event that 
an offspring x̄ is generated and accepted into the population.

Recall that F�(r) corresponds to the population of 
{X0

�−1
,X

(1−r)

1
} , i.e., � − 1 copies of x0 and one copy of x(1−r) . 

Therefore, if the offspring is accepted, one of these search 
points must be ejected from the population. Let us first con-
sider the case that x(1−r) is ejected from the population. Then 
the population is dominated by x0 afterwards, and will 
degenerate into X0

�
 again by Lemma 3. The other case is that 

one of the x0 individuals is ejected, which is described by 
state S�(r, k) . It is complicated to compute the contribution 
of this state precisely, but by Lemma 3 we know that this 
population will degenerate either to copies of x0 or of x(1−r) . 
For � = 2 , only the second case is possible, since there are 
no copies of x0 left in  S�(r, k) . Thus we either get 
Δ(S�(r, k), �) = 0 or Δ(S�(r, k), �) = 1 − r . Since r ≥ 1 , in 
both cases we can use the pessimistic bound 
Δ(S�(r, k), �) ≥ 1 − r for the drift of S�(r, k) , with equality 
for � = 2.5 Summarizing, once a new offspring is accepted, 
if a copy of x0 is discarded we get a drift of at most 1 − r and 
if x(1−r) is discarded we get a drift of 0. It only remains to 
compute the conditional probabilities with which these cases 
occur.

Computing the probabilities is not straightforward, but 
we can use a rather surprising symmetry, using the termi-
nology from Definition 1. Assume that the algorithm is in 
generation � . We make the following observation: an off-
spring is accepted if and only if it is mutated from z�

2
 and 

B𝜏

0
> Bmin ∶= min{Bx0 ,Bx(1−r) } . Hence, we need to compute 

the probability:

since then we can bound Δ(F𝜇(r), 𝜀) ≥ (1 − r)p̂ +O(𝜀) by 
Lemma 2. For � = 2 , this lower bound is an equality.

Clearly, the events {f �(x(1−r)) ≥ f �(x0)} and {B𝜏

0
> Bmin} 

are independent, since the position Bmin is independent on 

p̂ ∶= Pr
(
f 𝜏(x(1−r)) ≥ f 𝜏(x0) ∣ {mutated z𝜏

2
} ∧ {B𝜏

0
> Bmin}

)
,

whether the one-bit at this position belongs to x(1−r) or to x0 . 
We emphasize that this is a rather subtle symmetry of the 
selection process that would not be easily visible without 
describing the selection process in terms of Bmin . One way 
to intuitively phrase it (but perhaps less obvious) is that in 
the permutation �� , the internal ordering of the r + 1 bits in 
which x(1−r) and x0 differ is independent of the set of absolute 
positions that these r + 1 bits receive by �� . The former infor-
mation determines which of x(1−r), x0 has larger fitness, while 
the latter determines whether the offspring is rejected. Using 
the independence and conditional probability, p̂ simplifies to:

To compute the remaining probabilities, we remind the 
reader that x(1−r) has exactly r more zero-bits and 1 more 
one-bit than x0 . Hence, to compare them, we only need to 
look at the relative positions of these r + 1 bits in which 
they differ. In particular, x(1−r) = z�

2
 holds if and only if the 

permutation �� places the one-bit from x(1−r) before the r 
one-bits of x0 , and this happens with probability 1∕(r + 1) . 
Moreover, recall that there are � − 1 copies of x0 and only 
one x(1−r) , so the probability of picking them as parents is 
(� − 1)∕� and 1∕� , respectively. Therefore, by using the law 
of total probability,

Plugging this into (8) yields

Together with Lemma  2 and the lower bound 
Δ(F𝜇(r), 𝜀) ≥ (1 − r)p̂ + O(𝜀) , this concludes the proof of 
the first part.

For � = 2 , the argument is similar. Again, by Lemma 2, we 
may assume that no further zero-bit is flipped and none of the 
i1 + i2 bits in which x1 and x2 differ is flipped, since these cases 
only contribute a term O(�) . Then as soon as an offspring is 
accepted, its parent dominates the population. (Recall that 
we count it as rejection of the offspring if it is a copy of the 
parent and one of the copies gets removed.) Afterwards, the 
population will degenerate into copies of the surviving parent 
by Lemma 3. Hence the change in Φt will either be j1 or j2 . To 
compute the probability of the first case, we let

(8)p̂ =
Pr

(
f (x(1−r)) ≥ f (x0) ∧ {mutated z𝜏

2
}
)

Pr
(
{mutated z𝜏

2
}
) .

Pr
(
{mutated z

�

2
}
)

= Pr
(
{mutated z

�

2
} ∣ x(1−r) = z

�

2

)
⋅ Pr

(
x
(1−r) = z

�

2

)

+ Pr
(
{mutated z

�

2
} ∣ x0 = z

�

2

)
⋅ Pr

(
x
0 = z

�

2

)

=
1

�
⋅

1

r + 1
+

� − 1

�
⋅

r

r + 1

p̂ =
(

1
r + 1

⋅
1
�

)/(

1
�
⋅

1
r + 1

+
� − 1
�

⋅
r

r + 1

)

= 1
1 + (� − 1)r

.

p̂ ∶= Pr
(
f 𝜏(x1) > f 𝜏(x2) ∣ offspring accepted

)
.

5  The notation is slightly imprecise here, since we condition on the 
event that no further zero-bit is flipped, which is not reflected in the 
notation. But as argued above, this only adds an additive O(�) error 
term to the final result.
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As for the general case, we use the surprising symmetry that 
the event “ f 𝜏(x1) > f 𝜏(x2) ” is independent of the event that 
the offspring is accepted (under the assumption that none of 
the bits is flipped in which x1 and x2 differ). Thus we again 
get the analogous formula to (8), except that now both indi-
viduals have the same probability to be mutated, since both 
exist only with one copy in the population. Hence

and therefore

	�  ◻

Now we are ready to bound the degenerate population 
drift and prove Theorem 1.

Proof of Theorem 1  To prove this theorem, we refer to Fig. 1. 
By Lemma 2, the contribution of all states that involve flip-
ping more than one zero-bit is O(�2) . If we flip no zero-bits at 
all, then the population degenerates to X0

�
 again, which con-

tributes zero to the drift. Therefore, we only need to consider 
the case, where we flip exactly one zero-bit in the transition 
from the tth to the (t + 1) st degenerate population. This zero-
bit needs to be flipped in the first mutation, since otherwise 
the population does not change. We denote by pr the prob-
ability to flip exactly one zero-bit and r one-bits in x0 , thus 
obtaining x(1−r) . If f 𝜏(x(1−r)) > f 𝜏(x0) then x(1−r) is accepted 
into the population and we reach state F�(r) . This happens 
if and only if among the r + 1 bits in which x(1−r) and x0 dif-
fer, the zero-bit of x0 is the most relevant one. Therefore, 
Pr[f 𝜏(x(1−r)) > f 𝜏(x0)] = 1∕(r + 1) Finally, by Lemma 4, the 
drift from F�(r) is at least −(r − 1)∕(1 + (� − 1)r) +O(�) . 
Summarizing all this into a single formula, we obtain

For pr , we use the following standard estimate, which holds 
for all r = o(

√
n).

p̂ = Pr
(
f 𝜏(x1) > f 𝜏(x2)

)
=

i1

i1 + i2
,

Δ(S, 𝜀) = p̂ ⋅ j
1
+ (1 − p̂) ⋅ j

2
+O(𝜀)

=
i
1

i
1
+ i

2

⋅ j
1
+

i
2

i
1
+ i

2

⋅ j
2
+O(𝜀).

(9)

Δ(𝜀) ≥ O(𝜀2) + p0 +

(1−𝜀)n∑

r=1

pr ⋅
[
Pr[f 𝜏(x(1−r)) > f 𝜏(x0)] ⋅ Δ(F𝜇(r), 𝜀)

]

≥ O(𝜀2) + p0 −

(1−𝜀)n∑

r=1

pr ⋅
1

r + 1
⋅

(
r − 1

1 + (𝜇 − 1)r
+O(𝜀)

)
.

pr =
(1 − �)n ⋅ ((1 − �)n − 1) ⋅… ⋅ ((1 − �)n − r + 1)

r!

(
�n

1

)(
c

n

)r+1(
1 −

c

n

)n−r

= (1 + o(1)) ⋅ cr+1∕r! ⋅ e−c ⋅ � ⋅ (1 − �)r,

w h e r e  (1 − c∕n)n−r = (1 + o(1))e−c  b y   [ 3 ]  a n d 
(1 − �)n − i = (1 − �)n ⋅ (1 −

i

(1−�)n
) , with total error factor 

∏r

i=1
(1 −

i

(1−�)n
) ≥ 1 −

∑r

i=1

i

(1−�)n
= 1 − O(r2∕n) . The sum-

mands for r = Ω(
√
n) (or r = �(1) , actually) in (9) are neg-

ligible, since pr decays exponentially in r. We plug p0 and 
pr into (9), and note that we can absorb 

∑
pr∕(r + 1) ⋅ O(�) 

into the O(�2) error term. We obtain

To bound the inner sum, we use (r − 1)∕(r + 1) ≤ 1 and 
obtain

We plug this bound into (10). Moreover, summing to ∞ 
instead of (1 − �)n only makes the expression in (10) smaller, 
and allows us to use the identity 

∑∞

r=1
cr∕r! = ec − 1 ≤ ec , 

yielding

If n is large enough and � ≤ �0 for a sufficiently small con-
stant �0 such that the O(�2) and o(1) error terms together 
are at most half as large as the main term, then by picking 
�0 = 2 + ec we get Δ(𝜀) ≥ 1

2
𝜀ce−c∕(ec + 1) > 0 , and there-

fore, we can set � =
1

2
ce−c∕(ec + 1) , which concludes the 

proof.	�  ◻

Runtime of the (� + 1)‑EA Close 
to the Optimum

In the previous sections, we have shown that the (� + 1)

-EA has positive drift close to the optimum if the popula-
tion size is chosen accordingly. In this section, we explain 
briefly what this result implies for the runtime of these 
algorithms.

Theorem 2  Assume that the (� + 1)-EA runs on the DynBV 
function with constant parameters c > 0 and � ≥ ec + 2 . Let 

(10)

Δ(�) ≥ O(�2) + (1 + o(1))�ce−c
[
1 −

(1−�)n∑

r=1

cr

(r + 1)!
⋅

(1 − �)r(r − 1)

(1 + (� − 1)r)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶f (r,c,�)

]
.

f (r, c,�) ≤
c
r

(r + 1)!
⋅

r − 1

(1 + (� − 1) ⋅ r)

≤
c
r

r!
⋅

1

1 + (� − 1) ⋅ r
≤

c
r

r!
⋅

1

� − 1
.

Δ(�) ≥ O(�2) + (1 + o(1))�ce−c
(
1 −

ec

� − 1

)
.
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�0 be as in Theorem 1 and let 𝜀 < 𝜀0 for some constant 𝜀 > 0 . 
If the (� + 1)-EA is started with a population in which all 
individuals have at most �n zero-bits, then whp it finds the 
optimum in O(n log n) steps.

Proof  The proof is standard, e.g., [13]. First we note that 
the number of generations between two degenerate popu-
lations satisfies a exponential tail bound by Lemma  1. 
Therefore, since the number of bit flips in each generation 
is binomially distributed, the total number of flipped bits 
between two degenerate populations also satisfies an expo-
nential tail bound, and so does the difference |Φt − Φt+1| . 
By Theorem 1 the drift of Φt is positive and multiplica-
tive, �[Φt − Φt+1 ∣ Φt] ≥ �Φt∕n for some 𝛿 > 0 , as long as 
Φt ≤ �0n . In particular, the drift in the interval [�n, �0n] is 
at least 𝜀𝛿 > 0 , pointing towards the optimum. Since the 
interval has length �0n − �n = Ω(n) , by the negative drift 
theorem [10, Theorem 10+16], whp Φt

< 𝜀0n for a super-
polynomial number of steps. Hence, the process remains in 
a region, where the drift bound applies, and we have drift 
�[Φt − Φt+1 ∣ Φt] ≥ �Φt∕n for a super-polynomial number 
of steps. Therefore, by the multiplicative drift theorem with 
tail bound [4, 14] whp the optimum appears among the 
first 2n∕� ⋅ logΦ0 ≤ 2n log n∕� degenerate populations. By 
Lemma 1, the number of generations between two degener-
ate populations is a random variable with a geometric tail 
bound. Hence, by [3, Theorem 1.10.33], whp the number of 
generations is O(n log n).	�  ◻

Second‑Order Analysis of the Drift for � = 2

In this section, we investigate the (2 + 1)-EA. We 
will compute a second- order approximation of 
� [Φt − Φt+1 ∣ Φt = �n] , that is we will compute the drift up 
to O(�3) error terms. This analysis will allow us to prove the 
following main result.

Theorem 3  There are constants C > 0 , c∗ > 0 and 𝜀∗ > 0 
such that the (2 + 1)-EA with mutation parameter c∗ has pos-
itive drift Δ(c∗, �) ≥ C� for all � ∈ (0,

1

2
�
∗) and has negative 

drift Δ(c∗, �) ≤ −C for all � ∈ (
3

2
�
∗, 2�∗).

In a nutshell, Theorem 3 shows that the hardest part for 
optimization is not around the optimum. In other words, it 
shows that the range of efficient parameters settings is larger 
close to the optimum. We remark that we “only” state the 
result for one concrete parameter c∗ , but the same argument 
could be extended to show that the “range of efficient param-
eter settings” becomes larger.

All this will follow from a second-order approximation of 
the drift, and most of the section is devoted to this end. Let 
us begin by referring to Fig. 2.

From the size of the diagram, one can notice how quickly 
things get complicated further away from the optimum. On 
a positive note, we can compute the contribution to the drift 
from many of the states that the population reaches just 
using Lemma 4, which is tight for � = 2 . As a reminder, 
Lemma 4 states that, given a population of two individuals 
for the (2 + 1)-EA, there is a closed formula for the drift, in 
case there are no more zero-bit flips. The cases where there 
happen further zero-bit flips can be summarized by O(�) . To 
get a second- order approximation for the drift, we can only 
apply this lemma once the population has already flipped 
two zero-bits (each of which give a factor O(�) ), so that the 
error term is O(�3) . In particular, in Fig. 2 we have colored 
the states after two zero-bit flips in red. These are denoted 
by Gi(r) for i ∈ {1, 2, .., 9}.

We begin by giving the intuition on how to compute some 
of the more challenging transition probabilities. We will 
often have to compute, given a population of 3 individuals, 
the probability for each of them to be discarded, or more 
precisely that it gives the least fitness value according to the 
DynBV function in that iteration. To compute these proba-
bilities it is helpful to determine if any individual dominates 
another one, since then it will not be discarded. To compare 
the remaining ones, one only needs to consider all the bits 
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Fig. 2   State diagram for the (2 + 1)-EA up to second-order
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in which the two or three individuals are different and do a 
case distinction on which of these will be in the first relative 
position after the permutation. Sometimes, it is not enough 
to look at the first position only, as it could happen that two 
individuals share the same value in that position and only 
the third is different.

The first goal will be to compute the drift from state F(r) , 
depicted in light red in Fig. 2. This state corresponds to 
F�(r) from Fig. 1 for � = 2 , but the continuation is more 
complicated now. It is reached from a degenerate state if 
exactly one one-bit and r ≥ 1 zero-bits are flipped, and the 
offspring x(1−r) is accepted. From F(r) , we can reach two 
states A(r, k) and B(r, k) by mutating x0 or x(1−r) , respec-
tively, and flipping one zero-bit and k ≥ 1 one-bits. We will 
start our analysis by computing the contribution to the drift 
once the population reaches states A(r, k) and B(r, k). For 
brevity, we denote

To ease reading, we simply write the probability of discard-
ing an individual x as Pr(discardx) , without specifying the 
rest of the population. From Fig. 2, it is clear that:

Δ
A
∶= Δ(A(r, k), �), Δ

B
∶= Δ(B(r, k), �),

Δ
i
∶= Δ(G

i
(r), �) for i = 1,… , 9

Δ
A
=Pr(discard x

(1−r)) ⋅ Δ2 + Pr(discard x
(1−k)) ⋅ Δ3

+ Pr(discard x
0) ⋅ Δ4

As discussed at the beginning of this section, we can simply 
use Lemma 4 to compute:

Next up, are the probabilities to discard each individual. For 
that, we will introduce some notation similar as in Defini-
tion 1. We sort the positions descendingly according to the 
next fitness function f t . For i ∈ {r, k} , the following notation 
applies to state A(r, k) and with respect to f t.

•	
F3 ∶= first among the r + k

+ 2 positions in which x
0, x(1−k) and x(1−r) differ.

•	
F
i

2
∶= first among the i

+ 1 positions in which x
0 and x

(1−i) differ.

•	
B
0
i
∶= set of the i positions, where x(1−i)

has additional zero-bits over the others .

•	
B
1
i
∶= position where x(1−i)

has the single additional one-bit over the others.

The probability that x(1−r) is discarded can be computed in 
the same way as in the proof of Lemma 4:

Similarly, we have:

and

(11)

Δ
2
=

1 − k

k + 1
+O(�)

Δ
3
=

1 − r

r + 1
+O(�)

Δ
4
=

k + 1

k + r + 2
⋅ (1 − r)

+
r + 1

k + r + 2
⋅ (1 − k) +O(�)

=
2 − 2rk

k + r + 2
+O(�)

(12)
Pr(discard x(1−r)) = Pr(F3 ∈ B0

r
) + Pr(F3 = B1

k
) ⋅ Pr(Fr

2
∈ B0

r
∣ F3 = B1

k
)

=
r

r + k + 2
+

1

r + k + 2
⋅

r

r + 1
=

r(r + 2)

(r + k + 2)(r + 1)
.

(13)
Pr(discard x(1−k)) = Pr(F3 ∈ B0

k
) + Pr(F3 = B1

r
) ⋅ Pr(Fk

2
∈ B0

k
∣ F3 = B1

r
)

=
k

r + k + 2
+

1

r + k + 2
⋅

k

k + 1
=

k(k + 2)

(r + k + 2)(k + 1)

(14)

Pr(discard x0) = Pr(F3 = B1
k
) ⋅ Pr(Fr

2
= B1

r
∣ F3 = B1

k
)

+ Pr(F3 = B1
r
) ⋅ Pr(Fk

2
= B1

k
∣ F3 = B1

r
)

=
1

r + k + 2
⋅

1

r + 1
+

1

r + k + 2
⋅

1

k + 1
=

1

(r + 1)(k + 1)
.
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Putting (11), (12), (13) and (14) together yields the drift ΔA:

Following the same exact procedures, we can compute ΔB . 
In particular, we again have:

Note the abuse of notation, where we omitted the rest of the 
population. In particular, the above probabilities are not the 
same as in the previous part of the proof, since the underly-
ing population is different. We begin by applying Lemma 4, 
which yields:

ΔA = Pr(discard x(1−r)) ⋅ Δ2 + Pr(discard x(1−k)) ⋅ Δ3 + Pr(discard x0) ⋅ Δ4

= O(�) +
r(r + 2)(1 − k) + k(k + 2)(1 − r) + 2 − 2rk

(r + k + 2)(r + 1)(k + 1)
.

ΔB = Pr(discard x0) ⋅ Δ7 + Pr(discard x(1−r)) ⋅ Δ8 + Pr(discard x(2−r−k)) ⋅ Δ9

(15)

Δ7 =
k

k + 1
⋅ (1 − r) +

1

k + 1
⋅ (2 − r − k) +O(�) =

2 − r − rk

k + 1
+O(�)

Δ8 =
2 ⋅ (2 − r − k)

r + k + 2
+O(�)

Δ9 =
1 − r

r + 1
+O(�)

Similarly as before, we sort the positions descendingly 
according to the current fitness function f � . In the follow-
ing, the last three definitions are identical as above and are 
only restated for convenience:

•	 F̂3 ∶= first among the r + k + 2 positions in which x0, x(1−r) and x(2−r−k) differ.

•	 F̂r+k
2

∶= first among the k + 1 positions in which x(1−r) and x(2−r−k) differ.

•	 B̂0
k
∶= set of the k positions, where x(2−r−k) has additional zero-bits over the others.

•	 B̂1
k
∶= position, where x(2−r−k) has the single additional one-bit over the others.

•	 Fr
2
∶= first among the r + 1 positions in which x0 and x(1−r) differ.

•	 B0
r
∶= set of the r positions, where x(1−r) has additional zero-bits over x0.

•	 B1
r
∶= position, where x(1−r) has the single additional one-bit over x0.

We can follow the same reasoning as before and compute:

(16)
Pr(discard x0) = Pr(F̂3 = B1

r
) + Pr(F̂3 = B̂1

k
) ⋅ Pr(Fr

2
= B1

r
∣ F̂3 = B̂1

k
)

=
1

r + k + 2
+

1

r + k + 2
⋅

1

r + 1
=

r + 2

(r + 1)(r + k + 2)
.

(17)

Pr(discard x(1−r)) = Pr(F̂3 ∈ B0

r
) ⋅ Pr(F̂r+k

2
= B̂1

k
∣ F̂3 ∈ B0

r
)

+ Pr(F̂3 = B̂1

k
) ⋅ Pr(Fr

2
∈ B0

r
∣ F̂3 = B̂1

k
)

=
r

r + k + 2
⋅

1

k + 1
+

1

r + k + 2
⋅

r

r + 1
=

r

(r + 1)(k + 1)
.

(18)
Pr(discard x(2−r−k)) = Pr(F̂3 ∈ B̂0

k
) + Pr(F̂3 ∈ B0

r
) ⋅ Pr(F̂r+k

2
∈ B̂0

k
∣ F̂3 ∈ B0

r
)

=
k

r + k + 2
+

r

r + k + 2
⋅

k

k + 1
=

k(r + k + 1)

(k + 1)(r + k + 2)
.
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Combining (15), (16), (17) and (18), we obtain:

Next up, we compute the contribution to the drift 
ΔF ∶= Δ(F(r), �) from state F(r). Using Lemma 4, we get:

ΔB = Pr(discard x0) ⋅ Δ7 + Pr(discard x(1−r)) ⋅ Δ8 + Pr(discard x(2−r−k)) ⋅ Δ9

= O(�) +
(r + 2)(2 − r − rk) + 2r(2 − r − k) + k(1 − r)(r + k + 1)

(k + 1)(r + 1)(k + r + 2)

= O(�) +
−2r2k − rk2 − 3r2 − 4rk + k2 + 4r + k + 4

(k + 1)(r + 1)(k + r + 2)
.

of following the subsequent arrows as depicted in Fig. 2. The 

six summands correspond to the cases of flipping exactly 
one zero-bit (in x0 or x(1−r) ), flipping k one-bits (in x0 or 
x(1−r) ), and flipping one zero-bit and k one-bits (in x0 or 
x(1−r) ), in this order.

We simplify and sort the expression:

Now we solve for ΔF by bringing all ΔF-terms on the left 
hand side and dividing by its prefactor. We obtain:

For later reference we note that the pk⋅1 sum up to one, i.e., ∑(1−�)n

k=0
pk⋅1 = 1 . Thus we can rewrite 2 =

∑
k p

k⋅1 2r+2k+2

r+k+1
 , 

which allows us to rewrite the denominator as ∑(1−�)n

k=0
pk⋅1

r+1

r+k+1
 . This trick will allow us some cancellations 

later. In particular, note that the probabilities p0 and pk⋅1
0

 are 
in O(�) , so when we ignore those terms, then the compli-
cated sums cancel out and we recover the formula 
ΔF = (1 − r)∕(r + 1) +O(�) from Lemma 8.

Finally, we can find the drift Δ(c, �) from the starting 
population X0

2
 . To this end, we need two more probabilities:

•	 p2⋅0 ∶= Pr(flip two zero-bits) = (1 + o(1))
1

2
�
2c2e−c

•	 p
r⋅1
2⋅0

∶= Pr(flip two zero-bits and r one-bits) =

(1 + o(1))
1

2
�
2
e
−c c

r+2

r!

ΔF = O(�2) +
1

2
p0

[
1

r+1
⋅ Δ6 +

r

r+1
⋅ 1

]
+

1

2
pk⋅1

[
r

r+1
⋅ Δ5 +

1

r+1
⋅ (2 − r)

]

+

(1−�)n∑

k=0

(
1

2
pk⋅1

[
r

r+k+1
⋅ 0 +

k+1

r+k+1
⋅ ΔF

]

+
1

2
pk⋅1

[
1

r+k+1
⋅ (1 − r) +

k+r

r+k+1
⋅ ΔF

]
+

1

2
pk⋅1
0
ΔA(k) +

1

2
pk⋅1
0
ΔB(k)

)
.

ΔF = O(�2) +
1

2
p0

[
Δ6 + 2 − r

r + 1
+

r(1 + Δ5)

r + 1

]
+ ΔF

(
(1−�)n∑

k=0

1

2
pk⋅1

2k + r + 1

r + k + 1

)

+

(1−�)n∑

k=0

(
1

2
pk⋅1

(1 − r)

r + k + 1
+

1

2
pk⋅1
0

(
ΔA(k) + ΔB(k)

))
.

ΔF = O(�2)

+
p
0

2+Δ
6
+r⋅Δ

5

r+1
+
∑(1−�)n

k=0
pk⋅1

(1−r)

r+k+1
+ pk⋅1

0

�
ΔA(k) + ΔB(k)

�

2 −
∑(1−�)n

k=0
pk⋅1

2k+r+1

r+k+1

.

To compute ΔF , we first name and compute some probabili-
ties for the outcome of a mutation. In general, the probability 
to flip i zero-bits and j one-bits for constant i and j is (
�n

i

)(
(1 − �)n

j

)
(c∕n)i+j(1 − c∕n)n−i−j = (1 + o(1))�i(1 − �)j∕(i!j!)e−c 

by [3]. In particular

•	 p0 ∶= Pr(flip exactly one zero-bit) = (1 + o(1))c�e−c .
•	 pk⋅1 ∶= Pr(flipk one-bits) = (1 + o(1))

ck

k!
e−c.

•	 pk⋅1
0

∶= Pr(flip one zero-bit and k one-bits) = (1 + o(1))�
ck+1

k!
e−c.

We are finally ready to compute ΔF from Fig. 2. As usual, 
Lemma 2 allows us to summarize the contribution of all 
states that are not shown in Fig. 2 by O(�2) . The factor 1/2 
comes from the choice of the parent x0 or x(1−r) , and the inner 
factors 1∕(r + 1) , r∕(r + 1) etc. correspond the probabilities 

(19)

Δ5 =
2 ⋅ (2 − r)

2 + r
+O(�).

Δ6 =
r + 1

r + 2
⋅ (1 − r) +

1

r + 2
⋅ 1 +O(�) =

2 − r2

r + 2
+O(�).
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Again, Fig. 2, we can calculate Δ(c, �) . In the following cal-
culation, we use the full notation ΔF(r) = ΔF to make the 
dependency on r explicit. Moreover, note that we already 
have computed the drift from state G1(r) , since this is identi-
cal with G5(r) , so the drift is Δ5.

The last step is to plug in the formulas for the probabili-
ties and sort terms. In addition, letting the sums go to ∞ 
instead of (1 − �)n will only add another factor of (1 + o(1)) . 
Thus we can rewrite the drift as:

where

Δ(c, �) = O(�3) + p0 ⋅ 1 + p2⋅0 ⋅ 2 +

(1−�)n∑

r=0

pr⋅1 ⋅ 0

+

(1−�)n∑

r=1

(
pr⋅1
0

(
1

r+1
⋅ ΔF(r) +

r

r+1
⋅ 0

)
+ pr⋅1

2⋅0

(
2

2+r
⋅ Δ5 +

r

r+2
⋅ 0

))

= O(�3) + p0 + 2p2⋅0 +

(1−�)n∑

r=1

pr⋅1
0

r + 1
ΔF(r) +

2pr⋅1
2⋅0

2 + r
Δ5.

(20)Δ(c, �) = �(1 + o(1))f0(c) + �
2(1 + o(1))f1(c) +O(�3),

and

After all this preliminary calculations, we are now ready 
to prove Theorem 3. Moreover, we plot the second-order 
approximation of the drift numerically with Wolfram Math-
ematica in Fig. 3.

Proof of Theorem 3  Recall that the second-order approxima-
tion of the drift is given by (20), (21) and (22). Inspect-
ing (21), we see that the sum goes over negative terms, 
except for the term for r = 1 which is zero. Thus the fac-
tor in the bracket is strictly decreasing in c, ranging from 
1 (for c = 0 ) to −∞ (for c → ∞ ). In particular, there is 
exactly one c0 > 0 such that f0(c0) = 0 . Numerically we find 
c0 = 2.4931… and f1(c0) = −0.4845… < 0.

In the following, we will fix some c∗ < c0 and set 
�
∗ ∶= −f0(c

∗)∕f1(c
∗) . Note that by choosing c∗ sufficiently 

close to c0 we can assume that f1(c∗) < 0 , since f1 is a con-
tinuous function. Due to the discussion of f0 above, the 

choice c∗ < c0 also implies f0(c∗) > 0 . Thus 𝜀∗ > 0 . Moreo-
ver, since f0(c) → 0 for c → c∗ , if we choose c∗ close enough 
to c0 then we can make �∗ as close to zero as we wish.

To add some intuition to these definitions, note that 
Δ(c, �) = �(f0(c) + �f1(c) +O(�2)) ,  so the condit ion 
� = −f0(c)∕f1(c) is a choice for � for which the drift is 
approximately zero, up to the error term. We will indeed 
prove that for fixed c∗ , the sign of the drift switches around 
� ≈ �

∗ . More precisely, we will show that the sign switches 

(21)

f0(c) = ce−c +

∞�

r=1

cr+1

r!
e−c ⋅

1

r + 1
⋅

∑∞

k=0
pk⋅1

(1−r)

r+k+1
∑∞

k=0
pk⋅1

r+1

r+k+1

= ce−c ⋅

�
1 +

∞�

r=1

cr

(r + 1)!
⋅

1 − r

r + 1

�

(22)

f
1
(c) = c2e−c +

∞�

r=1

(r + 1)e−c
cr+2

(r + 2)!
Δ

5

+
e−2⋅c

2

∞�

r=1

cr+2

(r + 1)!
⋅

2+Δ
6
+rΔ

5

r+1
+
∑∞

k=0

ck

k!

�
ΔA(k) + ΔB(k)

�

∑∞

k=0

ck

k!
e−c

r+1

r+k+1

.

Fig. 3   Plot of the second-order approximation (orange) for the drift 
of the (2 + 1)-EA. The x-axis is the mutation parameter c, the y-axis 
is the distance � from the optimum. The blue plane is the 0 plane. 
The interesting part is the line of intersection between the blue and 
orange surface, as this is boundary between positive and negative 
drift. Looking closely, the intersection moves to the left (smaller c) 
if we move to the front (larger � ). Thus the problem becomes harder 
(smaller threshold for c) as we increase � . Hence, the hardest part is 
not around the optimum. In particular, for some choices of the muta-
tion parameter c (e.g., c = 2.2 ) the drift of the (2 + 1)-EA is positive 
in a region around the optimum, but is negative further away from the 
optimum. We prove this surprising result below, and it is in line with 
the experimental results found in [16]
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from positive to negative as we go from Δ(c∗, �∗ − �
�) to 

Δ(c∗, �∗ + �
�) , for �� ∈ (0, �∗) . Actually, we will constrict to 

�
� ∈ (�∗∕2, �∗) so that we can handle the error terms. This 

implies that the value c∗ yields positive drift close to the 
optimum (in the range � ∈ (0,

1

2
�
∗) ), but yields negative drift 

further away from the optimum (in the range � ∈ (
3

2
�
∗, 2�∗) ). 

This implies Theorem 3.
To study the sign of the drift, we define

It is slightly more convenient to consider Δ∗ instead of 
Δ , but note that both terms have the same sign. There-
fore, it remains to investigate the sign of Δ∗(c∗, �∗ − �

�) 
and Δ∗(c∗, �∗ + �

�) for �� ∈ (�∗∕2, �∗) . We will show that 
Δ∗(c∗, 𝜀∗ − 𝜀

�) > 0 , and the inequality Δ∗(c∗, 𝜀∗ − 𝜀
�) < 0 

follows analogously. Recalling the definition of �∗ and that 
f1(c

∗) < 0 , we have

Recall that we may choose the constant �∗ as small as we 
want. In particular, we can choose it so small that the above 
term has the same sign as the main term, which is positive 
due to f1(c∗) < 0 . Hence Δ∗(c∗, 𝜀∗ − 𝜀

�) > 0 , as desired. In 
addition, note that the lower bound is independent of �′ , i.e., 
it holds uniformly for all �� ∈ (�∗∕2, �∗) , which corresponds 
to the argument �∗ − �

� of Δ∗ to be in the interval (0, �∗∕2) . 
The inequality Δ∗(c∗, 𝜀∗ + 𝜀

�) < 0 follows analogously. This 
concludes the proof.	�  ◻

We conclude the section by a theorem stating that the 
drift translates immediately into runtimes.

Theorem 4  Let c∗, �∗ be the constants from Theorem 3. Then 
whp the (2 + 1)-EA with mutation parameter c∗ finds the opti-
mum in O(n log n) if it is started in distance at most �∗n∕4 
zero-bits, but does not find the optimum in polynomial time 
if it is started in distance at least 2�∗n from the optimum.

Proof  The proof is almost identical to the proof of Theo-
rem 2. We again observe that the difference |Φt − Φt+1| sat-
isfies exponential tail bounds so that the negative drift theo-
rem [10, Theorem 16] is applicable by [10, Theorem 10]. 

Δ∗(c, �) ∶=
Δ(c, �)

�
= (1 + o(1)) ⋅

(
f0(c) + � ⋅ f1(c) + O(�2)

)
.

Δ∗(c∗, 𝜀∗ − 𝜀
�) = (1 + o(1))

(
f0(c

∗) + (𝜀∗ − 𝜀
�)f1(c

∗)
)
+O((𝜀∗)2)

= (1 + o(1))
(
f0(c

∗) + 𝜀
∗f1(c

∗)
�����������������

=0

)
− (1 + o(1))

(
𝜀
�f1(c

∗)
)

�������

<𝜀∗f1(c
∗)∕2

+O((𝜀∗)2)

> −(1 + o(1))
1

2
𝜀
∗f1(c

∗) +O((𝜀∗)2).

For the negative result, it suffices to observe that the drift 
of Φt is negative by Theorem 3 and apply [10, Theorem 16]. 
For the positive result, by Theorem 3 the drift of Φt is posi-
tive as long as Φt ≤ �

∗n∕2 . As in the proof of Theorem 2, 
starting from below �∗n∕4 , by the negative drift theorem 
whp Φt stays below �∗n∕2 for a superpolynomial number of 
steps. Hence the algorithm stays in a region, where we have 
the drift bound �[Φt − Φt+1 ∣ Φt] ≥ CΦt∕n . By the multipli-
cative drift theorem with tail bound [4, 14], whp the opti-
mum appears among the first 2n∕C ⋅ logΦ0 ≤ 2n log n∕C 
degenerate populations. By Lemma 1, the number of gen-
erations between two degenerate populations is a random 
variable with a geometric tail bound. Hence, by [3, Theo-
rem 1.10.33], whp the number of generations is O(n log n).	
� ◻

Conclusions

We have explored the DynBV function, and we have found 
that the (� + 1)-EA profits from large population size, close 
to the optimum. In particular, for all choices of the mutation 
parameter c, the (� + 1)-EA is efficient around the optimum 
if � is large enough. However, surprisingly the region around 
the optimum may not be the most difficult region. For � = 2 , 
we have proven that it is not.

This surprising result, in line with the experiments in 
[16], raises much more questions than it answers. Does the 
(� + 1)-EA with increasing � turn efficient for a larger and 
larger range of c, as the behavior around the optimum sug-
gests? Or is the opposite true, that the range of efficient c 
shrinks to zero as the population grows, as it is the case for 
the (� + 1)-EA on HotTopic functions? Where is the hard-
est region for larger � ? Around the optimum or elsewhere?

For the (� + 1)-GA, the picture is even less complete. 
Experiments in [16] indicated that the hardest region of 
DynBV for the (� + 1)-GA is around the optimum, and 
that the range of efficient c increases with � . However, the 
experiments were only run for � ≤ 5 , and formal proofs are 
missing. Should we expect that the discrepancy between 
(� + 1)-GA (hardest region around optimum) and (� + 1)

-EA (hardest region elsewhere) remains if we increase the 
population size, and possibly becomes stronger? Or does it 
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disappear? For HotTopic functions, we know that around the 
optimum, the range of efficient c becomes arbitrarily large 
as � grows (similarly as we have shown for the (� + 1)-EA 
on DynBV), but we have no idea what the situation away 
from the optimum is.

The similarities of results between DynBV and HotTopic 
functions are striking, and we are pretty clueless, where they 
come from. For example, the analysis of the (� + 1)-EA on 
HotTopic away from the optimum in [21] clearly does not 
generalize to DynBV, since the very heart of the proof is that 
the weights do not change over long periods. In DynBV, they 
change every round. Nevertheless, experiments and theoreti-
cal results indicate that the outcome is similar in both cases. 
Perhaps one could gain insight from “interpolating” between 
DynBV and HotTopic by re-drawing the weights not every 
round, but only every kth round.

In general, the situation away from the optimum is gov-
erned by complex population dynamics, which is why the 
(� + 1)-EA and the (� + 1)-GA might behave very differ-
ently. Currently, we lack the theoretic means to understand 
population dynamics in which the internal population struc-
ture is complex and essential. The authors believe that devel-
oping tools for understanding such dynamics is one of the 
most important projects for improving our understanding of 
population-based search heuristics.
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