
Vol.:(0123456789)

SN Computer Science (2022) 3:324
https://doi.org/10.1007/s42979-022-01203-z

SN Computer Science

ORIGINAL RESEARCH

Runtime Analysis of the (� + 1)‑EA on the Dynamic BinVal Function

Johannes Lengler1  · Simone Riedi1

Received: 14 July 2021 / Accepted: 13 May 2022 / Published online: 10 June 2022
© The Author(s) 2022

Abstract
We study evolutionary algorithms in a dynamic setting, where for each generation a different fitness function is chosen, and
selection is performed with respect to the current fitness function. Specifically, we consider Dynamic BinVal, in which the
fitness functions for each generation is given by the linear function BinVal, but in each generation the order of bits is randomly
permuted. For the (1 + 1)-EA it was known that there is an efficiency threshold c

0
 for the mutation parameter, at which the

runtime switches from quasilinear to exponential. Previous empirical evidence suggested that for larger population size � ,
the threshold may increase. We prove that this is at least the case in an �-neighborhood around the optimum: the threshold
of the (� + 1)-EA becomes arbitrarily large if the � is chosen large enough. However, the most surprising result is obtained
by a second-order analysis for � = 2 : the threshold increases with increasing proximity to the optimum. In particular, the
hardest region for optimization is not around the optimum.

Keywords  Evolutionary algorithm · Populations · Dynamic linear functions · Dynamic BinVal · DynBV · Mutation rate

Introduction

Evolutionary algorithms are optimization heuristics that
are based on the idea of maintaining a population of solu-
tions that evolves over time. This incremental nature is
an important advantage of population-based optimization
heuristics over non-incremental approaches. At any point
in time the population represents a set of solutions. This
makes population-based optimization heuristics very flex-
ible. For example, the heuristic can be stopped after any
time budget (predefined or chosen during execution), or
when some desired quality of the solutions is reached. For
the same reason, population-based algorithms are naturally
suited for dynamic environments, in which the optimization

goal (“fitness function”) may change over time. In such a set-
ting, it is not necessary to restart the algorithm from scratch
when the fitness function changes, but rather we can use the
current population as starting point for the new optimization
environment. If the fitness function changes slowly enough,
then population-based optimization heuristics may still find
the optimum, or track the optimum over time [2, 7, 11, 12,
22–24, 26–28]. We refrain from giving a detailed overview
over the literature, since an excellent review has recently
been given in [25]. All the settings have in common that
either the fitness function changes with very low frequency,
or it changes only by some small local differences, or both.

Recently, a new setting, called dynamic linear func-
tions was proposed by Lengler and Schaller [19]. They
argued that it might either be called noisy linear func-
tions or dynamic linear functions, but we prefer the
term dynamic. A class of dynamic linear functions is
determined by a distribution D on the positive reals ℝ+ .
For the � th generation, n weights W�

1
,… ,W�

n
 are cho-

sen independently identically distributed (i.i.d.) from D ,
and the fitness function for this generation is given by
f � ∶ {0, 1}n → ℝ

+; f �(x) =
∑n

i=1
W�

i
xi . Therefore, the fit-

ness in each generation is given by a linear function with
positive weights, but the weights are drawn randomly in
each generation. Note that for any fitness function, a one-bit
in the ith position will always yield a better fitness than a

This article is part of the topical collection “Bio-inspired
Algorithms for Combinatorial Optimization” guest edited by Aniko
Ekart, Christine Zarges and Sébastien Verel.

An extended abstract of the paper has appeared in the proceedings
of the EvoCOP conference [18]. The extended abstract was missing
many proofs, in particular the whole derivation of the second-order
expansion in Sect. 5.

 *	 Johannes Lengler
	 johannes.lengler@inf.ethz.ch

1	 Department of Computer Science, ETH Zürich,
Universitätsstrasse 6, 8092 Zürich, Switzerland

http://orcid.org/0000-0003-0004-7629
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01203-z&domain=pdf

	 SN Computer Science (2022) 3:324324  Page 2 of 18

SN Computer Science

zero-bit. In particular, all fitness functions share a common
global maximum, which is the string OPT = (1...1) . Hence,
the fitness function may change rapidly and strongly from
generation to generation, but the direction of the signal
remains unchanged: one-bits are preferred over zero-bits.

Crucially, by dynamic environments we mean that
selection is performed according to the current fitness
function as in [8]. That is, all individuals from parent and
offspring population are compared with respect to the
same fitness function. Other versions exist, e.g., [5] stud-
ies the same problem as [8] without re-evaluations, i.e.,
there algorithms would compare fitnesses such as f �(x)
and f �+1(y) with each other, which will never happen in
our setting.

Several applications of dynamic linear functions are
discussed in [19]. One of them is a chess engine that can
switch databases for different openings ON or OFF. The
databases strictly improve performance in all situations, but
if the engine is trained against varying opponents, then an
opening may be used more or less frequently; so the weight
of the corresponding bit may be high or low. Obviously, it
is desirable that an optimization heuristic manages to switch
all databases ON in such a situation. However, as we will
see, this is not automatically achieved by many simple opti-
mization heuristics. Rather, it depends on the parameter set-
tings whether the optimal configuration (all databases ON)
is found.

In [19], the runtime (measured as the number of itera-
tions until the optimum is found) of the well-known (1 + 1)

-EA on dynamic linear functions was studied. The (1 + 1)

-EA, or “ (1 + 1) Evolutionary Algorithm”, is a simple hill-
climbing algorithm for maximizing a pseudo-Boolean func-
tion f ∶ {0, 1}n → ℝ . It only maintains a population size
of � = 1 , so it maintains a single solution x� ∈ {0, 1}n . In
each round (also called generation), a randomized muta-
tion operator is applied to x� to generate an offspring y� .
Then the fitter of the two is maintained, so we set x�+1 ∶= x�
if f (x𝜏) > f (y𝜏) , and x�+1 ∶= y� if f (x𝜏) < f (y𝜏) . In case
of equality, we break ties randomly. The mutation opera-
tor of the (1 + 1)-EA is standard bit mutation, which flips
each bit of x� independently with probability c/n, where c
is called the mutation parameter. The authors of [19] gave
a full characterization of the optimization behavior of the
(1 + 1)-EA on dynamic linear functions in terms of the
mutation parameter c. It was shown that there is a thresh-
old c∗ = c∗(D) ∈ ℝ

+ ∪ {∞} such that for c < c∗ the (1 + 1)

-EA optimizes the dynamic linear function with weight
distribution D in time O(n log n) . On the other hand, for
c > c∗ , the algorithm needs exponential time to find the
optimum. The threshold c∗(D) was given by an explicit for-
mula. For example, if D is an exponential distribution then

c∗(D) = 2 , if it is a geometric distribution D = GEOM(p)
then c∗ = (2 − p)∕(1 − p) . Moreover, the authors in [19]
showed that there is c0 ≈ 1.59.. such that c∗(D) ≥ c0 for
every distribution D , but for any 𝜀 > 0 there is a distribu-
tion D with c∗(D) < c0 + 𝜀 . As a consequence, if c < c0
then the (1 + 1)-EA with mutation parameter c/n needs time
O(n log n) to optimize any dynamic linear function, while for
c > c0 there are dynamic linear functions on which it needs
exponential time.

While it was satisfying to have such a complete picture for
the (1 + 1)-EA, a severe limitation was that the (1 + 1)-EA is
very simplistic. In particular, it was unclear whether a non-
trivial population size 𝜇 > 1 would give a similar picture.
This question was considered in the experimental paper [16,
17] by Lengler and Meier. Instead of working with the
whole class of dynamic linear functions, they defined the
dynamic binary value function DynBV as a limiting case.
In DynBV, in each generation a uniformly random permu-
tation �� ∶ {1,… , n} → {1,… , n} of the bits is drawn, and
the fitness function is then given by f �(x) =

∑n

i=1
2n−ix

�� (i) .
Therefore, in each generation, DynBV evaluates the so-
called BinVal function with respect to a permutation of the
search space. Lengler and Meier observed that the proof
in [19] for the (1 + 1)-EA extends to DynBV with threshold
c∗ = c0 , i.e., the (1 + 1)-EA needs time O(n log n) for muta-
tion parameter c < c0 , and exponential time for c > c0 . In
this sense, DynBV is the hardest dynamic linear function,
although it is not formally a member of the class of dynamic
linear functions.

The papers [16, 17] performed experiments on DynBV
for two population-based algorithms, the (� + 1)-EA (using
only mutation) and the (� + 1)-GA (using randomly muta-
tion or crossover; GA stands for “Genetic Algorithm”). In
(� + 1) algorithms, a population of size � is maintained, see
also Algorithm 1. In each generation, a single offspring is
generated, and the least fit of the � + 1 search points is dis-
carded, breaking ties randomly. Thus they generalize the
(1 + 1)-EA. In the (� + 1)-EA, the offspring is generated by
picking a random parent from the population and perform-
ing standard bit mutation as in the (1 + 1)-EA. In the (� + 1)-
GA, it is also possible to generate the offspring by crossover:
two random parents x1, x2 are selected from the population,
and each bit is taken randomly either from x1 or x2 . In each
generation of the (� + 1)-GA, it is decided randomly with
probability 1/2 whether the offspring is produced by a muta-
tion or by a crossover.1

1  Other conventions are possible, e.g., that both crossover and
mutation are applied subsequently in the same generation. Here we
describe the version in [16] and [17].

SN Computer Science (2022) 3:324	 Page 3 of 18  324

SN Computer Science

Lengler and Meier ran experiments for � ∈ {1, 2, 3, 5}
on DynBV and found two main results. As they increased
the population size � from 1 to 5, the efficiency threshold
c0 increased moderately for the (� + 1)-EA (from 1.6 to 3.4,
and strongly for the (� + 1)-GA (from 1.6 to more than 20).
Therefore, with larger population size, the algorithms have
a larger range of feasible parameter settings, and even more
so when crossover is used.

Moreover, they studied which range of the search space
was hardest for the algorithms, by estimating the drift
towards the optimum with Monte Carlo simulations. For the
(� + 1)-GA, they found that the hardest region was around
the optimum, as one would expect. Surprisingly, for the
(� + 1)-EA with � ≥ 2 , this did not seem to be the case.
They gave empirical evidence that the hardest regime was
bounded away from the optimum. That is, there were param-
eters c for which the (� + 1)-EA had positive drift (towards
the optimum) in a region around the optimum. However, it
had negative drift in an intermediate region that was further
away from the optimum. This finding is remarkable, since it
contradicts the commonplace that optimization gets harder
closer to the optimum.2 Notably, a very similar phenom-
enon was proven by Lengler and Zou [21] for the (� + 1)

-EA on certain monotone functions (“HotTopic ”), see the
discussion below. Strikingly, such an effect was neither built
into the fitness environments (not for HotTopic, and not for
DynBV) nor into the algorithms. Rather, it seems to origi-
nate in a complex (and detrimental!) population dynamics
that unfolds only in a regime of weak selective pressure,
i.e., in a regime, where offspring are often accepted even
if they are less fit than the parent. If selective pressure is
strong, then the population often degenerates into copies of
the same search point. As a consequence, diversity is lost,
and the (� + 1)-EA degenerates into the (1 + 1)-EA. In these
regimes, diversity decreases the ability of the algorithms
to make progress. For HotTopic functions, these dynamics
are well-understood [13, 21]. For dynamic linear functions,

even though we can prove this behavior in this paper for the
(2 + 1)-EA (see below), we are still far from a real under-
standing of these dynamics. Most likely, they are different
from the dynamics for HotTopic functions.

Our Results

We complement the experiments in [16, 17] with rigorous
mathematical analysis. To this end, we study the degenerate
population drift (see Sect. 2) for the (� + 1)-EA with muta-
tion parameter c > 0 on DynBV in an �-neighbourhood of
the optimum. That is, we assume that the search points in
the current population have at least (1 − �)n one-bits, for
some sufficiently small constant 𝜀 > 0 . We find that for every
constant c > 0 there is a constant �0 such that for � ≥ �0 the
drift is positive (multiplicative drift towards the optimum).
This means that with high probability the (� + 1)-EA will
need time O(n log n) to improve from (1 − �)n one-bits to
the optimum, if � is large enough. This implies that larger
population sizes are helpful, since the drift of the (1 + 1)-EA
around the optimum is negative for all c > c0 ≈ 1.59.. (which
implies exponential optimization time). So for any c > c0 ,
increasing the population size to a large constant decreases
the runtime from exponential to quasi-linear, provided that
the algorithm starts in an �-neighbourhood of the optimum.
This is consistent with the experimental findings in [16] for
� = {1, 2, 3, 5} , and it proves that population size can com-
pensate for arbitrarily large mutation parameters.

For the (2 + 1)-EA, we perform a second-order analy-
sis (i.e., we determine not just the main order term of the
drift, but also the second-order term) and prove that in an �
-neighborhood of the optimum, the drift decreases with the
distance from the optimum. In particular, there are some
values of c for which the drift is positive around the opti-
mum, but negative in an intermediate distance. It follows
from standard arguments that there are 𝜀, c > 0 such that the
runtime is O(n log n) if the algorithm is started in an �-neigh-
borhood of the optimum, but that it takes exponential time
to reach this �-neighborhood. Thus we formally prove that
the hardest part of optimization is not around the optimum,

2  https://​en.​wikip​edia.​org/​wiki/​Pareto_​princ​iple.

https://en.wikipedia.org/wiki/Pareto_principle

	 SN Computer Science (2022) 3:324324  Page 4 of 18

SN Computer Science

as was already experimentally concluded from Monte Carlo
simulations in [16].

Related Work

Jansen [9] introduced a pessimistic model for analyzing the
(1 + 1)-EA on linear functions, later extended in [1], which
is also a pessimistic model for dynamic linear functions and
DynBV and for monotone functions. A monotone function
f ∶ {0, 1}n → ℝ is a function, where for every x ∈ {0, 1}n ,
the fitness of x strictly increases if we flip any zero-bit
of x into a one-bit. Thus, as for dynamic linear functions
and DynBV, a one-bit is always better than a zero-bit, the
optimum is always at (1,… , 1) , and there are short fitness-
increasing paths from any search point to the optimum.
Thus it is reasonable to call all these setting “easy” from
an optimization point of view, which makes it all the more
surprising that such a large number of standard optimization
heuristics fail so badly. Keep in mind that despite the superfi-
cial similarities between monotone functions and DynBV or
dynamic linear functions, the basic setting is rather different.
Monotone functions were studied in static settings, i.e., we
have only a single static function to optimize, and a search
point never changes its fitness. Nevertheless, the perfor-
mance of some algorithms is surprisingly similar on mono-
tone functions and on dynamic linear functions or DynBV.
In particular, the mutation parameter c plays a critical role in
both settings. It was shown in [6] that the (1 + 1)-EA needs
exponential time to optimize some monotone functions if
the mutation parameter c is too large, while it is efficient on
all monotone functions if c < 1.3 The construction of hard
monotone instances was simplied in [20] and later called
HotTopic functions. HotTopic functions were analyzed for
a large set of algorithms in [13]. For the (1 + �)-EA, the
(1 + (�, �))-GA, the (� + 1)-EA, and the (1 + �)-fEA, thresh-
olds for the mutation parameter c or related quantities were
determined such that a larger mutation rate leads to expo-
nential runtime, and a smaller mutation rate leads to runt-
ime O(n log n) . (For details on these algorithms, see [13].)
Interestingly, the population size � and offspring population
size � of the algorithms had no impact on the threshold. Cru-
cially, all these results were obtained for parameters of Hot-
Topic functions in which only the behavior in an �-neighbor-
hood around the optimum mattered. This dichotomy between
quasilinear and exponential runtime is very similar to the
situation for DynBV. However, for the (� + 1)-EA on Hot-
Topic functions the threshold c0 was independent of � , while
we show that on DynBV it becomes arbitrarily large as �
grows. Thus large population sizes help for DynBV, but not
for HotTopic.

As we prove, for the (2 + 1)-EA the region around the
optimum is not the hardest region for optimization, and there
are values of c for which there is a positive drift around
the optimum, but a negative drift in an intermediate region.
As Lengler and Zou showed [21], the same phenomenon
occurs for the (� + 1)-EA on HotTopic functions. In fact,
they showed that larger population size even hurts: for any
c > 0 there is a �0 such that the (� + 1)-EA with � ≥ �0 has
negative drift in some intermediate region (and thus expo-
nential runtime), even if c is much smaller than one! This
surprising effect is due to population dynamics in which it
is not the genes of the fittest individuals who survive in the
long terms. Rather, individuals which are strictly dominated
by others (and substantially less fit) serve as the seeds for
new generations. Importantly, the analysis of this dynamics
relies on the fact that for HotTopic functions, the weight of
the positions stay fixed for a rather long period of time (as
long as the algorithm stays in the same region/level of the
search space). Thus, the results do not transfer to DynBV
functions. Nevertheless, the picture looks similar insofar as
the hardest region for optimization is not around the opti-
mum in both cases. Since our analysis for DynBV is only
for � = 2 , we can’t say whether the efficiency threshold in c
is increasing or decreasing with � . The experiments in [16,
17] find increasing thresholds (so the opposite effect as for
HotTopic), but are only for � ≤ 5.

Preliminaries

Dynamic Optimization and the Dynamic Binary
Value Function DynBV

The general setting of a (� + �) algorithm in dynamic envi-
ronments on the hypercube {0, 1}n is as follows. A popula-
tion P� of � search points is maintained. In each genera-
tion � , � offspring are generated. Then a selection operator
selects the next population P�+1 from the � + � search points
according to the fitness function f � . A pseudocode descrip-
tion can be found in Algorithm 1.

In this paper, we will study the (� + 1)-Evolutionary
Algorithm ( (� + 1)-EA) with standard bit mutation and elit-
ist selection. Therefore, for offspring generation, a parent x
is chosen uniformly at random from P� , and the offspring is
generated by flipping each bit of x independently with prob-
ability c/n, where c is the mutation parameter. For selection,
we simply select the � individuals with largest f �-values to
form population P�+1.

For the dynamic binary value function DynBV,
for each � ≥ 0 a uniformly random permutation
�
� ∶ {1,… , n} → {1,… , n} is drawn, and the fitness func-

tion for generation � is then given by f �(x) =
∑n

i=1
2n−ix

�� (i).
3  This was later extended to c < 1 + 𝜀 in [15].

SN Computer Science (2022) 3:324	 Page 5 of 18  324

SN Computer Science

Notation and Setup

Throughout the paper, we will assume that the population
size � and the mutation parameter c are constants, whereas
n tends to ∞ . In particular, we will hide factors c and � in
Landau notation O(⋅) . On the other hand, we will frequently
describe the distance from the optimum in the form �n ,
where � = �(n) may depend on n. In particular, we never hide
the dependency on � in Landau notation. We will choose �0
to be constant for the main theorem in the end, but for the
analysis it is crucial to understand the asymptotics of � . We
will give more details on the role of � below.

We use the expression “with high probability” or whp
for events En such that Pr(En) → 1 for n → ∞ . We write
x = O(y) , where x and y may depend on n, if there is C > 0
such that |x| ≤ Cy for sufficiently large n. Note that we take
the absolute value of x. The statement x = O(y) does not
imply that x must be positive. Consequently, if we write an
expression, such as Δ = � + O(�2) , then we mean that there
is a constant C > 0 such that � − C�2 ≤ Δ ≤ � + C�2 for suf-
ficiently large n. It does not imply anything about the sign
of the error term O(�2) . We will sometimes use minus signs
or “±” to ease the flow of reading, e.g., we write 1 − o(1)
for probabilities. However, this is a cosmetic decision, and
is equivalent to 1 + o(1).

For two bit-strings x, y ∈ {0, 1}n , we say that x dominates
y if xi ≥ yi for all i ∈ {1,… , n}.

Our main tool will be drift theory. To apply this, we need
to identify states that we can adequately describe by a single
real value. Following the approach in [13] and [16], we call
a population degenerate if it consists of � copies of the same
individual. If the algorithm is in a degenerate population, we
will study how the next degenerate population looks like,
so we define

We will use the convention that � is the index of the � th gen-
eration, and t is the index of the tth degenerate population.
Therefore, the time between Φt and Φt+1 can span several
generations. Our main object of study will be the degenerate
population drift (or simply drift if the context is clear). For
0 ≤ � ≤ 1 , it is defined as

The expression is independent of t, since the considered
algorithms are time-homogeneous. If we want to stress
that Δ(�) depends on the parameters � and c, we also write
Δ(�, c, �) . Note that the number of generations to reach the
(t + 1) st degenerate population is itself a random variable.
Therefore, the number of generations to go from Φt to Φt+1

(1)
Φt: = {# of zero-bits in an individual

n the tth degenerate population}.

(2)Δ(�) ∶= Δt(�) ∶= � [Φt − Φt+1 ∣ Φt = ⌊�n⌋].

is random. As in [13], its expectation is O(1) if � and c are
constants, and it has an exponentially decaying tail bound,
see Lemma 1 below. In particular, the probability that during
the transition from one degenerate population to another the
same bit is touched by two different mutations is O(�2) , and
likewise the contribution of this case to the drift is O(�2) , as
we will prove formally in Lemma 2.

As mentioned above, we do not assume constant � , i.e.,
� = �(n) may depend on n. For our main result we will
choose � to be a sufficiently small constant, but we need
to choose it such that we can determine the sign of terms,
such as � ± O(�2) ± o(1) . Note that this is possible: if 𝜀 > 0
is a sufficiently small constant then � ± O(�2) ≥ �∕2 , and
if afterwards we choose n to be sufficiently large then the
o(1) term is at most �∕4 . Since this is subtle point, we will
not treat � as a constant. In particular, all O-notation is with
respect to n → ∞ , and does not hide dependencies on � .
This is why we have to keep error terms, such as O(�2) and
o(1) separate.

To compute the degenerate population drift, we will fre-
quently need to compute the expected change of the poten-
tial provided that we visit an intermediate state S. Here, a
state S is simply given by a population of � search points.
We will call this change the drift from state S, and denote
it by Δ(S, �) . Formally, if E(S, t) is the event that the algo-
rithm visits state S between the tth and (t + 1) st degenerate
population,

This term is closely related to the contribution to the degen-
erate population drift from state S, which also contains the
probability to reach S as a factor:

We will study DynBV around the optimum, i.e., we consider
any � = �(n) → 0 , and we compute the asymptotic expansion
of Δ(�) for n → ∞ . As we will see, the drift is of the form
Δ(�) = a� + O(�2) + o(1) for some constant a ∈ ℝ , where
the o(1) term is independent of � . In the end, this will allow
us to prove existence of a constant � such that the sign of
Δ(�) equals the sign of a for sufficiently large n. Analogously
to [13] and [21], standard drift theorems imply that if a is
positive (multiplicative drift), then the algorithm starting
with at most �0n zero-bits for some suitable constant �0 whp
needs O(n log n) generations to find the optimum. On the
other hand, if a is negative (negative drift/updrift), then whp
the algorithm needs exponentially many generations to find
the optimum (regardless of whether it is initialized randomly
or with �0n zero-bits). These two cases are typical. There is
no term independent of � in the drift, since for a degenerate
population P� we have P�+1 = P� with probability 1 − O(�) .

(3)Δ(S, �) ∶= � [Φt − Φt+1 ∣ Φt = �n and E(S, t)].

(4)Δcon(S, �) ∶= Pr[E(S, t) ∣ Φt = �n] ⋅ Δ(S, �).

	 SN Computer Science (2022) 3:324324  Page 6 of 18

SN Computer Science

This happens whenever mutation does not touch any zero-
bit, since then the offspring is rejected.4

We will prove that, as long as we are only interested
in the first- order expansion (i.e., in a results of the form
a� + O(�2) + o(1) ), we may assume that between two
degenerate populations, the mutation operators always
flip different bits. In this case, we use the following nam-
ing convention for search points. The individuals of the tth
degenerate population are all called x0 . We call other indi-
viduals x(m1−m2) , where m1 stands for the extra number of
ones and m2 for the extra number of zeros compared to x0 .
Hence, if x0 has m zero-bits then x(m1−m2) has m + m2 − m1
zero-bits. Following the same convention, we will denote
by Xz

k
 a set of k copies of xz , where the index z may be 0

or (m1 − m2) . In particular, X0
�
 denotes the tth degenerate

population.

Duration Between Degenerate Populations

We formalize the assertions in Sect. 2.2 that the number
of steps between two degenerate populations satisfies expo-
nential tail bounds, and that it is unlikely to touch a bit by
two different mutations as we transition from one degenerate
population to the next. We give proofs for completeness, but
similar statements are well-known in the literature.

Lemma 1  For all constant �, c there is a constant a > 0 such
that the following holds for the (� + 1)-EA with mutation
parameter c in any population X on DynBV. Let K be the
number of generations until the algorithm reaches the next
degenerate population. Then for all k ∈ ℕ0:

Proof  Let x0 ∈ X be the individual with the least number of
zero-bits, and let p̂ be the probability to degenerate in the
next � steps. Clearly, p̂ is at least the probability that in each
step we copy x0 and accept it into the population. The prob-
ability of selecting x0 and mutating no bits is at least
1

�
(1 −

c

n
)n

n→∞
�������������������→ e−c∕� , so for sufficiently large n this prob-

ability is at least e−c∕(2�) . Since x0 is the individual with the
least number of zeros in the population, the probability that
it is not worst in the population and thus all copies are kept
is at least 1/2: any other individual y ≠ x0 will have at least
as many zeros as x and, therefore, will be ranked lower than
x0 with probability at least 1/2. Therefore, for sufficiently
large n:

Pr(K ≥ k ⋅ �) ≤ e−a⋅k.

(In fact, one could replace � by � − 1 and obtain a stronger
bound, since � − 1 rounds of inserting x0 already suffice,
but this would only make the final formula slightly more
complicated.) This bound works for any starting popula-
tion. Therefore, if we don’t degenerate in the first � steps of
the algorithm we again have probability p̂ to degenerate in
the successive � steps, and so on. Therefore, we can simply
bound the probability not to degenerate in the first k ⋅ � steps
by (1 − p̂)k ≤ e−p̂⋅k , where the last step uses the inequality
(1 + x) ≤ ex∀x ∈ ℝ [3].	� ◻

The next lemma formalizes the well-known phenomenon
that close to the optimum, the course of the algorithm is
dominated by events in which at most one zero-bits flips
at a time. Here we go slightly further. Even when we con-
sider the period in which the algorithm transitions from one
degenerate population to another, then the event that two or
more zero-bits are flipped in this period is negligible, and
contributes only an O(�2) term to the drift.

Lemma 2  Consider the (� + 1)-EA with mutation parameter
c on DynBV. Let Xt and Xt+1 denote the tth and (t + 1) st
degenerate population respectively. Let 𝜀 > 0 , and let X be
a degenerate population with at most �n zero-bits.

(a)	 Let E2 be the event that the mutations during the tran-
sition from Xt to Xt+1 flip at least two zero-bits. Then
Pr[E2 ∣ X

t = X] = O(�2) . Moreover, the contribution of
this case to the degenerate population drift Δ is

(b)	 Let S be any non-degenerate state such that there is at
most one position which is a one-bit in some individuals
in S, but a zero-bit in X. Let E(S, t) be the event that state
S is visited during the transition from Xt to Xt+1 , and let
E1 be the event that a zero-bit is flipped in the transition
from S to Xt+1 . Then Pr[E1 ∣ E(S, t) ∧ Xt = X] = O(�) ,
and the contribution to Δ(S, �) is

 The contribution of the case E(S, t) ∧ E1 to the degener-
ate population drift is

p̂ ≥

(
e−c

4𝜇

)𝜇

.

Δ∗(�): = Pr[2 ∣ Xt = X]⋅
�[Δt(�) ∣ 2 ∧ Xt = X] = O(�2).

(5)
Δ∗(S, �) ∶= Pr[E1 ∣ E(S, t) ∧ X

t = X]

⋅ �[Δt(�) ∣ E1 ∧ E(S, t) ∧ X
t = X]

= O(�).

Δ∗
con

(S, �) ∶= Pr[E(S, t)] ⋅ Δ∗(S, �) = O(�2).

4  Here and later we use the convention that if an offspring is identi-
cal to the parent, and they have lowest fitness in the population, then
the offspring is rejected. Since the outcome of ejecting offspring or
parent is the same, this convention does not change the course of the
algorithm.

SN Computer Science (2022) 3:324	 Page 7 of 18  324

SN Computer Science

In both parts, the hidden constants do not depend on S and X.
Proof  (a) If the offspring in the first iteration is not accepted
into the population or is identical to x0 , then the popula-
tion is immediately degenerate again, and there is nothing
to show. Therefore, let us consider the case that the offspring
is different and is accepted into the population. Then the
mutation needed to flip at least one zero-bit, since other-
wise the offspring is dominated by x0 and rejected. Thus the
probability of this case is O(�) . Moreover, the probability of
flipping at least two zero-bits in this mutation is O(�2) , so we
may assume that exactly one zero-bit is flipped.

Let k be such that the number of subsequent iterations
until the next degenerate population is in [�k,�(k + 1)] .
Conditioning on k, we have at most O(k) mutations until
the population degenerates, each with a probability of at
most �c of flipping a zero-bit. Using Lemma 1 we have for
some a > 0,

Recall from (1) the notion Φt for the number of zero-bits
in the tth degenerate population. To bound the contribu-
tion to the drift of the case, where an additional zero-bit
flip happens, we will bound the expectation of |Φt − Φt+1| ,
conditioned on being in this case. That difference is at most
the number of bit flips until the next degenerate population,
which is O(k) in expectation. Again, summing over all pos-
sible k and using Lemma 1 we get

(b) Analogously to (6) and (7), but without the factor O(�) ,
since we already start in state S, we have

and

The probability Pr[E(S, t)] is bounded by the probability that
the transition from Xt to Xt+1 visits any state different from
Xt at all, which is O(�) . This proves the last statement. 	
� ◻

Before we start to analyze the algorithms, we prove a
helpful lemma to classify how the population can degenerate

(6)Pr[E2 ∣ X
t = X] ≤ O(�) ⋅

∞∑

k=1

e−a⋅k ⋅O(� ⋅ k) = O(�2).

(7)

Δ∗(�) ≤ O(�) ⋅

∞∑

k=1

O(� ⋅ k) ⋅ e−a⋅k ⋅O(k)

= O

(
�
2

∞∑

k=1

k
2
e
−a⋅k

)
= O(�2).

Pr[E1 ∣ E(S, t) ∧ Xt = X] ≤

∞∑

k=1

e−a⋅k ⋅O(� ⋅ k) = O(�)

Δ∗(S, �) ≤

∞∑

k=1

O(� ⋅ k) ⋅ e−a⋅k ⋅O(k) = O(�).

if no zero-bit is flipped. As we have explained in Sect. 2.2
(and made formal in Lemma 1 and Lemma 2), this assump-
tion holds with high probability. In this case, the population
degenerates to copies of an individual which is not domi-
nated by any other search point.

Lemma 3  Consider the (� + 1)-EA in a non-degenerate pop-
ulation X. Let x1, x2, ..., xk be search points in X that domi-
nate all the rest of the population. Then either at least one
zero-bit is flipped until the next degenerate population, or
the next degenerate population consists of copies of one of
the search points x1, x2, ..., xk.

Proof  Assume that, starting from X, the algorithm does not
flip any additional zero-bits. We start by inductively show-
ing that for all subsequent time steps, every individual in
the population is still dominated by one of the search points
x1, x2, ..., xk . Suppose, for the sake of contradiction, that
eventually there are individuals which are not dominated by
any of the search points in {x1, x2, ..., xk} , and let x∗ be the
first such individual. Since we assumed that the algorithm
doesn’t flip any additional zero-bits, x∗ must have been gen-
erated by mutating an individual x̄ and only flipping one-
bits. Therefore, x̄ dominates x∗ . On the other hand, x̄ is domi-
nated by one of the search points x1, x2, ..., xk by our choice
of x∗ . This is a contradiction, since domination is transitive.
Therefore, using transitivity, the algorithm will not generate
any individual that is not dominated by any search point in
{x1, x2, ..., xk} . Furthermore, the population will never degen-
erate to any other individual x̃ ∉ {x1, x2, ..., xk} . In fact, let
xi be the search point in {x1, x2, ..., xk} that dominates x̃ . We
have that f (x̃) < f (xi) in all iterations and for all permuta-
tions; therefore, xi will never be discarded before x̃ , which
concludes the proof.	� ◻

Analysis of the Degenerate Population Drift

In this section, we will find a lower bound for the drift
Δ(�) = Δ(�, c, �) of the (� + 1)-EA close to the optimum,
when n → ∞ . The main result of this section will be the
following.

Theorem 1  For all constants c > 0 there exist constants
𝛿, 𝜀0 > 0 such that for all � ≤ �0 and � ≥ �0 ∶= ec + 2 , if n
is sufficiently large:

Lemma 3 allows us to describe the transition from one
degenerate population to the next by a relatively simple
Markov chain, provided that at most one zero-bit is flipped
during the transition. This zero-bit needs to be flipped to

Δ(c,�, �) ≥ � ⋅ �.

	 SN Computer Science (2022) 3:324324  Page 8 of 18

SN Computer Science

leave the starting state, so we assume for this chain that
no zero-bit is flipped afterwards. This assumption is justi-
fied by Lemma 2. The Markov chain (or rather, a part of it)
is shown in Fig. 1. The starting state, which is a degener-
ate population, is depicted in green. The yellow states S(k)
represent degenerate populations, where the number of
one-bits is exactly k larger than that of the starting state, so
Φt+1 − Φt = k . In later diagrams, we will also see negative
values of k. We have included intermediate states depicted
in gray, in which an offspring has been created, but selection
has not yet taken place. In other words, the gray states have
� + 1 search points, and it still needs to be decided which of
them should be discarded from the population. As we will
see in the analysis, it is quite helpful to separate offspring
creation from this selection step. The remaining states are
depicted in red. We denote by F�(r) the state reached from
X0
�
 by flipping one 0-bit and r ≥ 1 one-bits and accepting the

offspring, and we denote by S�(r, k) the state reached from
F�(r) by flipping k 1-bits from the new individual x(1−r) and
accepting the offspring. Note that we have only drawn part of
the Markov chain, since from the bottom-most state S�(r, k) ,
we have not drawn outgoing arrows or states.

Moreover, the states of the Markov chain do not corre-
spond one-to-one to the generations: we omit intermediate

states, where Lemma 3 allows us to do that. For example,
following the first arrow to the left we reach a state in which
one individual x(1) (the offspring) dominates all other indi-
viduals. By Lemma 3, such a situation must degenerate
into � copies of x(1) , so we immediately mark this state as a
degenerate state with Φt+1 − Φt = 1.

The key step will be to give a lower bound for the contri-
bution to the drift from state F�(r) . Once we have a bound on
this, it is straightforward to compute a bound on the degener-
ate population drift. Before we turn to the computations, we
first introduce a bit more auxiliary notation.

Definition 1  Consider the (� + 1)-EA in state F�(r) in
generation � − 1 . We re-sort the n positions of the search
points descendingly according to the next fitness function
f � . Therefore, by the “first” position we refer to the position
which has highest weight according to f � , and the jth bit of
a bitstring z is given by (��)−1(j) . Then, we define:

•	 Bz ∶= position of the first zero-bit inz;
•	 B

�

0
∶= position of the first flipped bit in

the mutation of the � − th generation;
•	 z�

1
∶= argmin {f � (z) ∣ z ∈ {X0

�−1
,X

(1−r)

1
}};

•	 z�
2
∶= argmax {f �(z) ∣ z ∈ {X0

�−1
,X

(1−r)

1
}}.

In particular, the search point to be discarded in generation
� is either z�

1
 or the offspring generated by the � th muta-

tion. We define B�

0
 to be ∞ if no bits are flipped in the � th

mutation.
Now we are ready to bound the drift of state F�(r) . We

remark that the statement for � = 2 was also proven in [17],
but the proof there was much longer and more involved,
since it did not make use of the hidden symmetry of the
selection process that we will use below.

Lemma 4  Consider the (� + 1)-EA on the DynBV function in
the state F�(r) for some r ≥ 1 , and let 𝜀 > 0 . Then the drift
from F�(r) is

For � = 2 , consider a state S = {x1, x2} that is reached from
some degenerate population with individual x. Assume that
x1 has i1 = O(1) additional one-bits and i2 = O(1) additional
zero-bits compared to x2 . Moreover, assume that the total
number of zero-bits in x is by j1 ∈ ℤ larger than in x1 and
by j2 ∈ ℤ larger than in x2 . Then

Δ(F�(r), �) ≥
1 − r

1 + (� − 1) ⋅ r
+O(�).

Δ(S, �) =
i1

i1 + i2
⋅ j1 +

i2

i1 + i2
⋅ j2 +O(�).

{X0
µ,

x(1−r)}

X0
µ

S(0)S(1)

Fµ(r)
{X0

µ−1,

x(1−r)}

{X0
µ−1,

x(1−r),
x(1−r−k)}

{X0
µ−1,

x(1−r),
x(−k)}

Sµ(r, k)
{X0

µ−2,

x(1−r),
x(1−r−k)}

flip
o
n
e

0
-b

it

a
n
d

r
≥

1
1
-b

its

fli
p
ex
ac
tl
y
on

e
0-
bi
t

an
d
no

1-
bi
ts

flip
nothing

or
only

1-bits

discard x(1−r)

a
c
c
e
p
t

x
(1−

r
)

fli
p
k
1-
bi
ts

fr
om

x
(1
−r)

di
sc
ar
d
x
(1
−r−

k)

flip
k
1-bits

from
x 0

discard
x (−

k)

discard x0
d
isc

a
rd

x
(1−

r
)

Fig. 1   State diagram for the (� + 1)-EA

SN Computer Science (2022) 3:324	 Page 9 of 18  324

SN Computer Science

Proof  We first consider the case of general � . Let us assume
that the algorithm will not flip an additional zero-bit through
mutation before it reaches the next degenerate population.
In fact, the contribution to the drift in case it does flip
another zero-bit can be summarized by O(�) due to Eq. (5)
in Lemma 2. So from now on, we assume that the algorithm
doesn’t flip an additional zero-bit until it reaches the next
degenerate population.

The idea is to follow the Markov chain as shown in Fig. 1.
We will compute the conditional probabilities of reaching
different states from F�(r) , conditional on actually leaving
F�(r) . More precisely, we will condition on the event that
an offspring x̄ is generated and accepted into the population.

Recall that F�(r) corresponds to the population of
{X0

�−1
,X

(1−r)

1
} , i.e., � − 1 copies of x0 and one copy of x(1−r) .

Therefore, if the offspring is accepted, one of these search
points must be ejected from the population. Let us first con-
sider the case that x(1−r) is ejected from the population. Then
the population is dominated by x0 afterwards, and will
degenerate into X0

�
 again by Lemma 3. The other case is that

one of the x0 individuals is ejected, which is described by
state S�(r, k) . It is complicated to compute the contribution
of this state precisely, but by Lemma 3 we know that this
population will degenerate either to copies of x0 or of x(1−r) .
For � = 2 , only the second case is possible, since there are
no copies of x0 left in S�(r, k) . Thus we either get
Δ(S�(r, k), �) = 0 or Δ(S�(r, k), �) = 1 − r . Since r ≥ 1 , in
both cases we can use the pessimistic bound
Δ(S�(r, k), �) ≥ 1 − r for the drift of S�(r, k) , with equality
for � = 2.5 Summarizing, once a new offspring is accepted,
if a copy of x0 is discarded we get a drift of at most 1 − r and
if x(1−r) is discarded we get a drift of 0. It only remains to
compute the conditional probabilities with which these cases
occur.

Computing the probabilities is not straightforward, but
we can use a rather surprising symmetry, using the termi-
nology from Definition 1. Assume that the algorithm is in
generation � . We make the following observation: an off-
spring is accepted if and only if it is mutated from z�

2
 and

B𝜏

0
> Bmin ∶= min{Bx0 ,Bx(1−r) } . Hence, we need to compute

the probability:

since then we can bound Δ(F𝜇(r), 𝜀) ≥ (1 − r)p̂ +O(𝜀) by
Lemma 2. For � = 2 , this lower bound is an equality.

Clearly, the events {f �(x(1−r)) ≥ f �(x0)} and {B𝜏

0
> Bmin}

are independent, since the position Bmin is independent on

p̂ ∶= Pr
(
f 𝜏(x(1−r)) ≥ f 𝜏(x0) ∣ {mutated z𝜏

2
} ∧ {B𝜏

0
> Bmin}

)
,

whether the one-bit at this position belongs to x(1−r) or to x0 .
We emphasize that this is a rather subtle symmetry of the
selection process that would not be easily visible without
describing the selection process in terms of Bmin . One way
to intuitively phrase it (but perhaps less obvious) is that in
the permutation �� , the internal ordering of the r + 1 bits in
which x(1−r) and x0 differ is independent of the set of absolute
positions that these r + 1 bits receive by �� . The former infor-
mation determines which of x(1−r), x0 has larger fitness, while
the latter determines whether the offspring is rejected. Using
the independence and conditional probability, p̂ simplifies to:

To compute the remaining probabilities, we remind the
reader that x(1−r) has exactly r more zero-bits and 1 more
one-bit than x0 . Hence, to compare them, we only need to
look at the relative positions of these r + 1 bits in which
they differ. In particular, x(1−r) = z�

2
 holds if and only if the

permutation �� places the one-bit from x(1−r) before the r
one-bits of x0 , and this happens with probability 1∕(r + 1) .
Moreover, recall that there are � − 1 copies of x0 and only
one x(1−r) , so the probability of picking them as parents is
(� − 1)∕� and 1∕� , respectively. Therefore, by using the law
of total probability,

Plugging this into (8) yields

Together with Lemma 2 and the lower bound
Δ(F𝜇(r), 𝜀) ≥ (1 − r)p̂ + O(𝜀) , this concludes the proof of
the first part.

For � = 2 , the argument is similar. Again, by Lemma 2, we
may assume that no further zero-bit is flipped and none of the
i1 + i2 bits in which x1 and x2 differ is flipped, since these cases
only contribute a term O(�) . Then as soon as an offspring is
accepted, its parent dominates the population. (Recall that
we count it as rejection of the offspring if it is a copy of the
parent and one of the copies gets removed.) Afterwards, the
population will degenerate into copies of the surviving parent
by Lemma 3. Hence the change in Φt will either be j1 or j2 . To
compute the probability of the first case, we let

(8)p̂ =
Pr

(
f (x(1−r)) ≥ f (x0) ∧ {mutated z𝜏

2
}
)

Pr
(
{mutated z𝜏

2
}
) .

Pr
(
{mutated z

�

2
}
)

= Pr
(
{mutated z

�

2
} ∣ x(1−r) = z

�

2

)
⋅ Pr

(
x
(1−r) = z

�

2

)

+ Pr
(
{mutated z

�

2
} ∣ x0 = z

�

2

)
⋅ Pr

(
x
0 = z

�

2

)

=
1

�
⋅

1

r + 1
+

� − 1

�
⋅

r

r + 1

p̂ =
(

1
r + 1

⋅
1
�

)/(

1
�
⋅

1
r + 1

+
� − 1
�

⋅
r

r + 1

)

= 1
1 + (� − 1)r

.

p̂ ∶= Pr
(
f 𝜏(x1) > f 𝜏(x2) ∣ offspring accepted

)
.

5  The notation is slightly imprecise here, since we condition on the
event that no further zero-bit is flipped, which is not reflected in the
notation. But as argued above, this only adds an additive O(�) error
term to the final result.

	 SN Computer Science (2022) 3:324324  Page 10 of 18

SN Computer Science

As for the general case, we use the surprising symmetry that
the event “ f 𝜏(x1) > f 𝜏(x2) ” is independent of the event that
the offspring is accepted (under the assumption that none of
the bits is flipped in which x1 and x2 differ). Thus we again
get the analogous formula to (8), except that now both indi-
viduals have the same probability to be mutated, since both
exist only with one copy in the population. Hence

and therefore

	� ◻

Now we are ready to bound the degenerate population
drift and prove Theorem 1.

Proof of Theorem 1  To prove this theorem, we refer to Fig. 1.
By Lemma 2, the contribution of all states that involve flip-
ping more than one zero-bit is O(�2) . If we flip no zero-bits at
all, then the population degenerates to X0

�
 again, which con-

tributes zero to the drift. Therefore, we only need to consider
the case, where we flip exactly one zero-bit in the transition
from the tth to the (t + 1) st degenerate population. This zero-
bit needs to be flipped in the first mutation, since otherwise
the population does not change. We denote by pr the prob-
ability to flip exactly one zero-bit and r one-bits in x0 , thus
obtaining x(1−r) . If f 𝜏(x(1−r)) > f 𝜏(x0) then x(1−r) is accepted
into the population and we reach state F�(r) . This happens
if and only if among the r + 1 bits in which x(1−r) and x0 dif-
fer, the zero-bit of x0 is the most relevant one. Therefore,
Pr[f 𝜏(x(1−r)) > f 𝜏(x0)] = 1∕(r + 1) Finally, by Lemma 4, the
drift from F�(r) is at least −(r − 1)∕(1 + (� − 1)r) +O(�) .
Summarizing all this into a single formula, we obtain

For pr , we use the following standard estimate, which holds
for all r = o(

√
n).

p̂ = Pr
(
f 𝜏(x1) > f 𝜏(x2)

)
=

i1

i1 + i2
,

Δ(S, 𝜀) = p̂ ⋅ j
1
+ (1 − p̂) ⋅ j

2
+O(𝜀)

=
i
1

i
1
+ i

2

⋅ j
1
+

i
2

i
1
+ i

2

⋅ j
2
+O(𝜀).

(9)

Δ(𝜀) ≥ O(𝜀2) + p0 +

(1−𝜀)n∑

r=1

pr ⋅
[
Pr[f 𝜏(x(1−r)) > f 𝜏(x0)] ⋅ Δ(F𝜇(r), 𝜀)

]

≥ O(𝜀2) + p0 −

(1−𝜀)n∑

r=1

pr ⋅
1

r + 1
⋅

(
r − 1

1 + (𝜇 − 1)r
+O(𝜀)

)
.

pr =
(1 − �)n ⋅ ((1 − �)n − 1) ⋅… ⋅ ((1 − �)n − r + 1)

r!

(
�n

1

)(
c

n

)r+1(
1 −

c

n

)n−r

= (1 + o(1)) ⋅ cr+1∕r! ⋅ e−c ⋅ � ⋅ (1 − �)r,

w h e r e (1 − c∕n)n−r = (1 + o(1))e−c b y [3] a n d
(1 − �)n − i = (1 − �)n ⋅ (1 −

i

(1−�)n
) , with total error factor

∏r

i=1
(1 −

i

(1−�)n
) ≥ 1 −

∑r

i=1

i

(1−�)n
= 1 − O(r2∕n) . The sum-

mands for r = Ω(
√
n) (or r = �(1) , actually) in (9) are neg-

ligible, since pr decays exponentially in r. We plug p0 and
pr into (9), and note that we can absorb

∑
pr∕(r + 1) ⋅ O(�)

into the O(�2) error term. We obtain

To bound the inner sum, we use (r − 1)∕(r + 1) ≤ 1 and
obtain

We plug this bound into (10). Moreover, summing to ∞
instead of (1 − �)n only makes the expression in (10) smaller,
and allows us to use the identity

∑∞

r=1
cr∕r! = ec − 1 ≤ ec ,

yielding

If n is large enough and � ≤ �0 for a sufficiently small con-
stant �0 such that the O(�2) and o(1) error terms together
are at most half as large as the main term, then by picking
�0 = 2 + ec we get Δ(𝜀) ≥ 1

2
𝜀ce−c∕(ec + 1) > 0 , and there-

fore, we can set � =
1

2
ce−c∕(ec + 1) , which concludes the

proof.	� ◻

Runtime of the (� + 1)‑EA Close
to the Optimum

In the previous sections, we have shown that the (� + 1)

-EA has positive drift close to the optimum if the popula-
tion size is chosen accordingly. In this section, we explain
briefly what this result implies for the runtime of these
algorithms.

Theorem 2  Assume that the (� + 1)-EA runs on the DynBV
function with constant parameters c > 0 and � ≥ ec + 2 . Let

(10)

Δ(�) ≥ O(�2) + (1 + o(1))�ce−c
[
1 −

(1−�)n∑

r=1

cr

(r + 1)!
⋅

(1 − �)r(r − 1)

(1 + (� − 1)r)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶f (r,c,�)

]
.

f (r, c,�) ≤
c
r

(r + 1)!
⋅

r − 1

(1 + (� − 1) ⋅ r)

≤
c
r

r!
⋅

1

1 + (� − 1) ⋅ r
≤

c
r

r!
⋅

1

� − 1
.

Δ(�) ≥ O(�2) + (1 + o(1))�ce−c
(
1 −

ec

� − 1

)
.

SN Computer Science (2022) 3:324	 Page 11 of 18  324

SN Computer Science

�0 be as in Theorem 1 and let 𝜀 < 𝜀0 for some constant 𝜀 > 0 .
If the (� + 1)-EA is started with a population in which all
individuals have at most �n zero-bits, then whp it finds the
optimum in O(n log n) steps.

Proof  The proof is standard, e.g., [13]. First we note that
the number of generations between two degenerate popu-
lations satisfies a exponential tail bound by Lemma 1.
Therefore, since the number of bit flips in each generation
is binomially distributed, the total number of flipped bits
between two degenerate populations also satisfies an expo-
nential tail bound, and so does the difference |Φt − Φt+1| .
By Theorem 1 the drift of Φt is positive and multiplica-
tive, �[Φt − Φt+1 ∣ Φt] ≥ �Φt∕n for some 𝛿 > 0 , as long as
Φt ≤ �0n . In particular, the drift in the interval [�n, �0n] is
at least 𝜀𝛿 > 0 , pointing towards the optimum. Since the
interval has length �0n − �n = Ω(n) , by the negative drift
theorem [10, Theorem 10+16], whp Φt

< 𝜀0n for a super-
polynomial number of steps. Hence, the process remains in
a region, where the drift bound applies, and we have drift
�[Φt − Φt+1 ∣ Φt] ≥ �Φt∕n for a super-polynomial number
of steps. Therefore, by the multiplicative drift theorem with
tail bound [4, 14] whp the optimum appears among the
first 2n∕� ⋅ logΦ0 ≤ 2n log n∕� degenerate populations. By
Lemma 1, the number of generations between two degener-
ate populations is a random variable with a geometric tail
bound. Hence, by [3, Theorem 1.10.33], whp the number of
generations is O(n log n).	� ◻

Second‑Order Analysis of the Drift for � = 2

In this section, we investigate the (2 + 1)-EA. We
will compute a second- order approximation of
� [Φt − Φt+1 ∣ Φt = �n] , that is we will compute the drift up
to O(�3) error terms. This analysis will allow us to prove the
following main result.

Theorem 3  There are constants C > 0 , c∗ > 0 and 𝜀∗ > 0
such that the (2 + 1)-EA with mutation parameter c∗ has pos-
itive drift Δ(c∗, �) ≥ C� for all � ∈ (0,

1

2
�
∗) and has negative

drift Δ(c∗, �) ≤ −C for all � ∈ (
3

2
�
∗, 2�∗).

In a nutshell, Theorem 3 shows that the hardest part for
optimization is not around the optimum. In other words, it
shows that the range of efficient parameters settings is larger
close to the optimum. We remark that we “only” state the
result for one concrete parameter c∗ , but the same argument
could be extended to show that the “range of efficient param-
eter settings” becomes larger.

All this will follow from a second-order approximation of
the drift, and most of the section is devoted to this end. Let
us begin by referring to Fig. 2.

From the size of the diagram, one can notice how quickly
things get complicated further away from the optimum. On
a positive note, we can compute the contribution to the drift
from many of the states that the population reaches just
using Lemma 4, which is tight for � = 2 . As a reminder,
Lemma 4 states that, given a population of two individuals
for the (2 + 1)-EA, there is a closed formula for the drift, in
case there are no more zero-bit flips. The cases where there
happen further zero-bit flips can be summarized by O(�) . To
get a second- order approximation for the drift, we can only
apply this lemma once the population has already flipped
two zero-bits (each of which give a factor O(�) ), so that the
error term is O(�3) . In particular, in Fig. 2 we have colored
the states after two zero-bit flips in red. These are denoted
by Gi(r) for i ∈ {1, 2, .., 9}.

We begin by giving the intuition on how to compute some
of the more challenging transition probabilities. We will
often have to compute, given a population of 3 individuals,
the probability for each of them to be discarded, or more
precisely that it gives the least fitness value according to the
DynBV function in that iteration. To compute these proba-
bilities it is helpful to determine if any individual dominates
another one, since then it will not be discarded. To compare
the remaining ones, one only needs to consider all the bits

S(1) X0
2 S(0)

S(2)
{X0

2 ,

x(2−r)}

S(0)

G1(r)
{x0,

x(2−r)}

{X0
2 ,

x(1−r)}

{x0,

x(1−r)

x−k}

F (r)
{x0,

x(1−r)}

B(r, k)
{x0, x(1−r),
x(2−r−k)}

G7(r)
{x(1−r),

x(2−r−k)}

G8(r)
{x0,

x(2−r−k)}

G9(r)
{x0,

x(1−r)}

A(r, k)
{x0, x(1−r),

x(1−k)}

{x0, x(1−r),
x(1−r−k)}

{x0,

x(1−r),
x1}

{x0,

x(1−r),
x(2−r)}

S(1 − r)

G6(r)
{x(1−r),

x1}

G2(r)
{x0,

x(1−k)}

G3(r)
{x0,

x(1−r)}

G4(r)
{x(1−r),
x(1−k)} S(2 − r)

G5(r)
{x0,

x(2−r)}

S(1)

flip exactly one 0-bit

and no 1-bits

flip 1-bits only

fli
p

tw
o 0-b

its

an
d

no
1-b

its

flip
two

0-bits

and
r ≥

1-bits

di
sc
ar

d

of
fsp

rin
g

accept
offspring

flip
o
n
e

0
-b

it

a
n
d

r
≥

1
-b

its

discard offspring

ac
ce

p
t

of
fs
p
ri
n
g

discard offspringmutate x0flip
k 1-bits

a
cc

ep
t

o
ff
sp

ri
n
g

muta
te x

(1−
r) , flip

one
0-bi

t and
k 1-bi

ts

dis
ca

rd
x
0

discard x(1−r)

discard
x (2−

r−
k)

m
ut
at
e
x
0 ,

fl
ip

on
e

0-
bi
t
an

d
k
1-
bi
ts

d
isc

a
rd

x
(1−

r
)

d
isca

rd
x (1−

k
)

discard
x 0

m
u
ta

te
x
(1−

r
)

flip
k

1
-b

its

d
isc

a
rd

o
ffsp

rin
g

accept
offspring

m
utate

x (1−
r)

flip
one

0-bit

d
is
ca

rd
x
0

d
isca

rd
x
(1−

r
)

mutate x0flip one 0-bit

d
iscard

x 0

d
isc

a
rd

x
(1−

r
)

Fig. 2   State diagram for the (2 + 1)-EA up to second-order

	 SN Computer Science (2022) 3:324324  Page 12 of 18

SN Computer Science

in which the two or three individuals are different and do a
case distinction on which of these will be in the first relative
position after the permutation. Sometimes, it is not enough
to look at the first position only, as it could happen that two
individuals share the same value in that position and only
the third is different.

The first goal will be to compute the drift from state F(r) ,
depicted in light red in Fig. 2. This state corresponds to
F�(r) from Fig. 1 for � = 2 , but the continuation is more
complicated now. It is reached from a degenerate state if
exactly one one-bit and r ≥ 1 zero-bits are flipped, and the
offspring x(1−r) is accepted. From F(r) , we can reach two
states A(r, k) and B(r, k) by mutating x0 or x(1−r) , respec-
tively, and flipping one zero-bit and k ≥ 1 one-bits. We will
start our analysis by computing the contribution to the drift
once the population reaches states A(r, k) and B(r, k). For
brevity, we denote

To ease reading, we simply write the probability of discard-
ing an individual x as Pr(discardx) , without specifying the
rest of the population. From Fig. 2, it is clear that:

Δ
A
∶= Δ(A(r, k), �), Δ

B
∶= Δ(B(r, k), �),

Δ
i
∶= Δ(G

i
(r), �) for i = 1,… , 9

Δ
A
=Pr(discard x

(1−r)) ⋅ Δ2 + Pr(discard x
(1−k)) ⋅ Δ3

+ Pr(discard x
0) ⋅ Δ4

As discussed at the beginning of this section, we can simply
use Lemma 4 to compute:

Next up, are the probabilities to discard each individual. For
that, we will introduce some notation similar as in Defini-
tion 1. We sort the positions descendingly according to the
next fitness function f t . For i ∈ {r, k} , the following notation
applies to state A(r, k) and with respect to f t.

•	
F3 ∶= first among the r + k

+ 2 positions in which x
0, x(1−k) and x(1−r) differ.

•	
F
i

2
∶= first among the i

+ 1 positions in which x
0 and x

(1−i) differ.

•	
B
0
i
∶= set of the i positions, where x(1−i)

has additional zero-bits over the others .

•	
B
1
i
∶= position where x(1−i)

has the single additional one-bit over the others.

The probability that x(1−r) is discarded can be computed in
the same way as in the proof of Lemma 4:

Similarly, we have:

and

(11)

Δ
2
=

1 − k

k + 1
+O(�)

Δ
3
=

1 − r

r + 1
+O(�)

Δ
4
=

k + 1

k + r + 2
⋅ (1 − r)

+
r + 1

k + r + 2
⋅ (1 − k) +O(�)

=
2 − 2rk

k + r + 2
+O(�)

(12)
Pr(discard x(1−r)) = Pr(F3 ∈ B0

r
) + Pr(F3 = B1

k
) ⋅ Pr(Fr

2
∈ B0

r
∣ F3 = B1

k
)

=
r

r + k + 2
+

1

r + k + 2
⋅

r

r + 1
=

r(r + 2)

(r + k + 2)(r + 1)
.

(13)
Pr(discard x(1−k)) = Pr(F3 ∈ B0

k
) + Pr(F3 = B1

r
) ⋅ Pr(Fk

2
∈ B0

k
∣ F3 = B1

r
)

=
k

r + k + 2
+

1

r + k + 2
⋅

k

k + 1
=

k(k + 2)

(r + k + 2)(k + 1)

(14)

Pr(discard x0) = Pr(F3 = B1
k
) ⋅ Pr(Fr

2
= B1

r
∣ F3 = B1

k
)

+ Pr(F3 = B1
r
) ⋅ Pr(Fk

2
= B1

k
∣ F3 = B1

r
)

=
1

r + k + 2
⋅

1

r + 1
+

1

r + k + 2
⋅

1

k + 1
=

1

(r + 1)(k + 1)
.

SN Computer Science (2022) 3:324	 Page 13 of 18  324

SN Computer Science

Putting (11), (12), (13) and (14) together yields the drift ΔA:

Following the same exact procedures, we can compute ΔB .
In particular, we again have:

Note the abuse of notation, where we omitted the rest of the
population. In particular, the above probabilities are not the
same as in the previous part of the proof, since the underly-
ing population is different. We begin by applying Lemma 4,
which yields:

ΔA = Pr(discard x(1−r)) ⋅ Δ2 + Pr(discard x(1−k)) ⋅ Δ3 + Pr(discard x0) ⋅ Δ4

= O(�) +
r(r + 2)(1 − k) + k(k + 2)(1 − r) + 2 − 2rk

(r + k + 2)(r + 1)(k + 1)
.

ΔB = Pr(discard x0) ⋅ Δ7 + Pr(discard x(1−r)) ⋅ Δ8 + Pr(discard x(2−r−k)) ⋅ Δ9

(15)

Δ7 =
k

k + 1
⋅ (1 − r) +

1

k + 1
⋅ (2 − r − k) +O(�) =

2 − r − rk

k + 1
+O(�)

Δ8 =
2 ⋅ (2 − r − k)

r + k + 2
+O(�)

Δ9 =
1 − r

r + 1
+O(�)

Similarly as before, we sort the positions descendingly
according to the current fitness function f � . In the follow-
ing, the last three definitions are identical as above and are
only restated for convenience:

•	 F̂3 ∶= first among the r + k + 2 positions in which x0, x(1−r) and x(2−r−k) differ.

•	 F̂r+k
2

∶= first among the k + 1 positions in which x(1−r) and x(2−r−k) differ.

•	 B̂0
k
∶= set of the k positions, where x(2−r−k) has additional zero-bits over the others.

•	 B̂1
k
∶= position, where x(2−r−k) has the single additional one-bit over the others.

•	 Fr
2
∶= first among the r + 1 positions in which x0 and x(1−r) differ.

•	 B0
r
∶= set of the r positions, where x(1−r) has additional zero-bits over x0.

•	 B1
r
∶= position, where x(1−r) has the single additional one-bit over x0.

We can follow the same reasoning as before and compute:

(16)
Pr(discard x0) = Pr(F̂3 = B1

r
) + Pr(F̂3 = B̂1

k
) ⋅ Pr(Fr

2
= B1

r
∣ F̂3 = B̂1

k
)

=
1

r + k + 2
+

1

r + k + 2
⋅

1

r + 1
=

r + 2

(r + 1)(r + k + 2)
.

(17)

Pr(discard x(1−r)) = Pr(F̂3 ∈ B0

r
) ⋅ Pr(F̂r+k

2
= B̂1

k
∣ F̂3 ∈ B0

r
)

+ Pr(F̂3 = B̂1

k
) ⋅ Pr(Fr

2
∈ B0

r
∣ F̂3 = B̂1

k
)

=
r

r + k + 2
⋅

1

k + 1
+

1

r + k + 2
⋅

r

r + 1
=

r

(r + 1)(k + 1)
.

(18)
Pr(discard x(2−r−k)) = Pr(F̂3 ∈ B̂0

k
) + Pr(F̂3 ∈ B0

r
) ⋅ Pr(F̂r+k

2
∈ B̂0

k
∣ F̂3 ∈ B0

r
)

=
k

r + k + 2
+

r

r + k + 2
⋅

k

k + 1
=

k(r + k + 1)

(k + 1)(r + k + 2)
.

	 SN Computer Science (2022) 3:324324  Page 14 of 18

SN Computer Science

Combining (15), (16), (17) and (18), we obtain:

Next up, we compute the contribution to the drift
ΔF ∶= Δ(F(r), �) from state F(r). Using Lemma 4, we get:

ΔB = Pr(discard x0) ⋅ Δ7 + Pr(discard x(1−r)) ⋅ Δ8 + Pr(discard x(2−r−k)) ⋅ Δ9

= O(�) +
(r + 2)(2 − r − rk) + 2r(2 − r − k) + k(1 − r)(r + k + 1)

(k + 1)(r + 1)(k + r + 2)

= O(�) +
−2r2k − rk2 − 3r2 − 4rk + k2 + 4r + k + 4

(k + 1)(r + 1)(k + r + 2)
.

of following the subsequent arrows as depicted in Fig. 2. The

six summands correspond to the cases of flipping exactly
one zero-bit (in x0 or x(1−r) ), flipping k one-bits (in x0 or
x(1−r) ), and flipping one zero-bit and k one-bits (in x0 or
x(1−r) ), in this order.

We simplify and sort the expression:

Now we solve for ΔF by bringing all ΔF-terms on the left
hand side and dividing by its prefactor. We obtain:

For later reference we note that the pk⋅1 sum up to one, i.e., ∑(1−�)n

k=0
pk⋅1 = 1 . Thus we can rewrite 2 =

∑
k p

k⋅1 2r+2k+2

r+k+1
 ,

which allows us to rewrite the denominator as ∑(1−�)n

k=0
pk⋅1

r+1

r+k+1
 . This trick will allow us some cancellations

later. In particular, note that the probabilities p0 and pk⋅1
0

 are
in O(�) , so when we ignore those terms, then the compli-
cated sums cancel out and we recover the formula
ΔF = (1 − r)∕(r + 1) +O(�) from Lemma 8.

Finally, we can find the drift Δ(c, �) from the starting
population X0

2
 . To this end, we need two more probabilities:

•	 p2⋅0 ∶= Pr(flip two zero-bits) = (1 + o(1))
1

2
�
2c2e−c

•	 p
r⋅1
2⋅0

∶= Pr(flip two zero-bits and r one-bits) =

(1 + o(1))
1

2
�
2
e
−c c

r+2

r!

ΔF = O(�2) +
1

2
p0

[
1

r+1
⋅ Δ6 +

r

r+1
⋅ 1

]
+

1

2
pk⋅1

[
r

r+1
⋅ Δ5 +

1

r+1
⋅ (2 − r)

]

+

(1−�)n∑

k=0

(
1

2
pk⋅1

[
r

r+k+1
⋅ 0 +

k+1

r+k+1
⋅ ΔF

]

+
1

2
pk⋅1

[
1

r+k+1
⋅ (1 − r) +

k+r

r+k+1
⋅ ΔF

]
+

1

2
pk⋅1
0
ΔA(k) +

1

2
pk⋅1
0
ΔB(k)

)
.

ΔF = O(�2) +
1

2
p0

[
Δ6 + 2 − r

r + 1
+

r(1 + Δ5)

r + 1

]
+ ΔF

(
(1−�)n∑

k=0

1

2
pk⋅1

2k + r + 1

r + k + 1

)

+

(1−�)n∑

k=0

(
1

2
pk⋅1

(1 − r)

r + k + 1
+

1

2
pk⋅1
0

(
ΔA(k) + ΔB(k)

))
.

ΔF = O(�2)

+
p
0

2+Δ
6
+r⋅Δ

5

r+1
+
∑(1−�)n

k=0
pk⋅1

(1−r)

r+k+1
+ pk⋅1

0

�
ΔA(k) + ΔB(k)

�

2 −
∑(1−�)n

k=0
pk⋅1

2k+r+1

r+k+1

.

To compute ΔF , we first name and compute some probabili-
ties for the outcome of a mutation. In general, the probability
to flip i zero-bits and j one-bits for constant i and j is (
�n

i

)(
(1 − �)n

j

)
(c∕n)i+j(1 − c∕n)n−i−j = (1 + o(1))�i(1 − �)j∕(i!j!)e−c

by [3]. In particular

•	 p0 ∶= Pr(flip exactly one zero-bit) = (1 + o(1))c�e−c .
•	 pk⋅1 ∶= Pr(flipk one-bits) = (1 + o(1))

ck

k!
e−c.

•	 pk⋅1
0

∶= Pr(flip one zero-bit and k one-bits) = (1 + o(1))�
ck+1

k!
e−c.

We are finally ready to compute ΔF from Fig. 2. As usual,
Lemma 2 allows us to summarize the contribution of all
states that are not shown in Fig. 2 by O(�2) . The factor 1/2
comes from the choice of the parent x0 or x(1−r) , and the inner
factors 1∕(r + 1) , r∕(r + 1) etc. correspond the probabilities

(19)

Δ5 =
2 ⋅ (2 − r)

2 + r
+O(�).

Δ6 =
r + 1

r + 2
⋅ (1 − r) +

1

r + 2
⋅ 1 +O(�) =

2 − r2

r + 2
+O(�).

SN Computer Science (2022) 3:324	 Page 15 of 18  324

SN Computer Science

Again, Fig. 2, we can calculate Δ(c, �) . In the following cal-
culation, we use the full notation ΔF(r) = ΔF to make the
dependency on r explicit. Moreover, note that we already
have computed the drift from state G1(r) , since this is identi-
cal with G5(r) , so the drift is Δ5.

The last step is to plug in the formulas for the probabili-
ties and sort terms. In addition, letting the sums go to ∞
instead of (1 − �)n will only add another factor of (1 + o(1)) .
Thus we can rewrite the drift as:

where

Δ(c, �) = O(�3) + p0 ⋅ 1 + p2⋅0 ⋅ 2 +

(1−�)n∑

r=0

pr⋅1 ⋅ 0

+

(1−�)n∑

r=1

(
pr⋅1
0

(
1

r+1
⋅ ΔF(r) +

r

r+1
⋅ 0

)
+ pr⋅1

2⋅0

(
2

2+r
⋅ Δ5 +

r

r+2
⋅ 0

))

= O(�3) + p0 + 2p2⋅0 +

(1−�)n∑

r=1

pr⋅1
0

r + 1
ΔF(r) +

2pr⋅1
2⋅0

2 + r
Δ5.

(20)Δ(c, �) = �(1 + o(1))f0(c) + �
2(1 + o(1))f1(c) +O(�3),

and

After all this preliminary calculations, we are now ready
to prove Theorem 3. Moreover, we plot the second-order
approximation of the drift numerically with Wolfram Math-
ematica in Fig. 3.

Proof of Theorem 3  Recall that the second-order approxima-
tion of the drift is given by (20), (21) and (22). Inspect-
ing (21), we see that the sum goes over negative terms,
except for the term for r = 1 which is zero. Thus the fac-
tor in the bracket is strictly decreasing in c, ranging from
1 (for c = 0 ) to −∞ (for c → ∞ ). In particular, there is
exactly one c0 > 0 such that f0(c0) = 0 . Numerically we find
c0 = 2.4931… and f1(c0) = −0.4845… < 0.

In the following, we will fix some c∗ < c0 and set
�
∗ ∶= −f0(c

∗)∕f1(c
∗) . Note that by choosing c∗ sufficiently

close to c0 we can assume that f1(c∗) < 0 , since f1 is a con-
tinuous function. Due to the discussion of f0 above, the

choice c∗ < c0 also implies f0(c∗) > 0 . Thus 𝜀∗ > 0 . Moreo-
ver, since f0(c) → 0 for c → c∗ , if we choose c∗ close enough
to c0 then we can make �∗ as close to zero as we wish.

To add some intuition to these definitions, note that
Δ(c, �) = �(f0(c) + �f1(c) +O(�2)) , so the condit ion
� = −f0(c)∕f1(c) is a choice for � for which the drift is
approximately zero, up to the error term. We will indeed
prove that for fixed c∗ , the sign of the drift switches around
� ≈ �

∗ . More precisely, we will show that the sign switches

(21)

f0(c) = ce−c +

∞�

r=1

cr+1

r!
e−c ⋅

1

r + 1
⋅

∑∞

k=0
pk⋅1

(1−r)

r+k+1
∑∞

k=0
pk⋅1

r+1

r+k+1

= ce−c ⋅

�
1 +

∞�

r=1

cr

(r + 1)!
⋅

1 − r

r + 1

�

(22)

f
1
(c) = c2e−c +

∞�

r=1

(r + 1)e−c
cr+2

(r + 2)!
Δ

5

+
e−2⋅c

2

∞�

r=1

cr+2

(r + 1)!
⋅

2+Δ
6
+rΔ

5

r+1
+
∑∞

k=0

ck

k!

�
ΔA(k) + ΔB(k)

�

∑∞

k=0

ck

k!
e−c

r+1

r+k+1

.

Fig. 3   Plot of the second-order approximation (orange) for the drift
of the (2 + 1)-EA. The x-axis is the mutation parameter c, the y-axis
is the distance � from the optimum. The blue plane is the 0 plane.
The interesting part is the line of intersection between the blue and
orange surface, as this is boundary between positive and negative
drift. Looking closely, the intersection moves to the left (smaller c)
if we move to the front (larger � ). Thus the problem becomes harder
(smaller threshold for c) as we increase � . Hence, the hardest part is
not around the optimum. In particular, for some choices of the muta-
tion parameter c (e.g., c = 2.2 ) the drift of the (2 + 1)-EA is positive
in a region around the optimum, but is negative further away from the
optimum. We prove this surprising result below, and it is in line with
the experimental results found in [16]

	 SN Computer Science (2022) 3:324324  Page 16 of 18

SN Computer Science

from positive to negative as we go from Δ(c∗, �∗ − �
�) to

Δ(c∗, �∗ + �
�) , for �� ∈ (0, �∗) . Actually, we will constrict to

�
� ∈ (�∗∕2, �∗) so that we can handle the error terms. This

implies that the value c∗ yields positive drift close to the
optimum (in the range � ∈ (0,

1

2
�
∗) ), but yields negative drift

further away from the optimum (in the range � ∈ (
3

2
�
∗, 2�∗) ).

This implies Theorem 3.
To study the sign of the drift, we define

It is slightly more convenient to consider Δ∗ instead of
Δ , but note that both terms have the same sign. There-
fore, it remains to investigate the sign of Δ∗(c∗, �∗ − �

�)
and Δ∗(c∗, �∗ + �

�) for �� ∈ (�∗∕2, �∗) . We will show that
Δ∗(c∗, 𝜀∗ − 𝜀

�) > 0 , and the inequality Δ∗(c∗, 𝜀∗ − 𝜀
�) < 0

follows analogously. Recalling the definition of �∗ and that
f1(c

∗) < 0 , we have

Recall that we may choose the constant �∗ as small as we
want. In particular, we can choose it so small that the above
term has the same sign as the main term, which is positive
due to f1(c∗) < 0 . Hence Δ∗(c∗, 𝜀∗ − 𝜀

�) > 0 , as desired. In
addition, note that the lower bound is independent of �′ , i.e.,
it holds uniformly for all �� ∈ (�∗∕2, �∗) , which corresponds
to the argument �∗ − �

� of Δ∗ to be in the interval (0, �∗∕2) .
The inequality Δ∗(c∗, 𝜀∗ + 𝜀

�) < 0 follows analogously. This
concludes the proof.	� ◻

We conclude the section by a theorem stating that the
drift translates immediately into runtimes.

Theorem 4  Let c∗, �∗ be the constants from Theorem 3. Then
whp the (2 + 1)-EA with mutation parameter c∗ finds the opti-
mum in O(n log n) if it is started in distance at most �∗n∕4
zero-bits, but does not find the optimum in polynomial time
if it is started in distance at least 2�∗n from the optimum.

Proof  The proof is almost identical to the proof of Theo-
rem 2. We again observe that the difference |Φt − Φt+1| sat-
isfies exponential tail bounds so that the negative drift theo-
rem [10, Theorem 16] is applicable by [10, Theorem 10].

Δ∗(c, �) ∶=
Δ(c, �)

�
= (1 + o(1)) ⋅

(
f0(c) + � ⋅ f1(c) + O(�2)

)
.

Δ∗(c∗, 𝜀∗ − 𝜀
�) = (1 + o(1))

(
f0(c

∗) + (𝜀∗ − 𝜀
�)f1(c

∗)
)
+O((𝜀∗)2)

= (1 + o(1))
(
f0(c

∗) + 𝜀
∗f1(c

∗)
�����������������

=0

)
− (1 + o(1))

(
𝜀
�f1(c

∗)
)

�������

<𝜀∗f1(c
∗)∕2

+O((𝜀∗)2)

> −(1 + o(1))
1

2
𝜀
∗f1(c

∗) +O((𝜀∗)2).

For the negative result, it suffices to observe that the drift
of Φt is negative by Theorem 3 and apply [10, Theorem 16].
For the positive result, by Theorem 3 the drift of Φt is posi-
tive as long as Φt ≤ �

∗n∕2 . As in the proof of Theorem 2,
starting from below �∗n∕4 , by the negative drift theorem
whp Φt stays below �∗n∕2 for a superpolynomial number of
steps. Hence the algorithm stays in a region, where we have
the drift bound �[Φt − Φt+1 ∣ Φt] ≥ CΦt∕n . By the multipli-
cative drift theorem with tail bound [4, 14], whp the opti-
mum appears among the first 2n∕C ⋅ logΦ0 ≤ 2n log n∕C
degenerate populations. By Lemma 1, the number of gen-
erations between two degenerate populations is a random
variable with a geometric tail bound. Hence, by [3, Theo-
rem 1.10.33], whp the number of generations is O(n log n).	
� ◻

Conclusions

We have explored the DynBV function, and we have found
that the (� + 1)-EA profits from large population size, close
to the optimum. In particular, for all choices of the mutation
parameter c, the (� + 1)-EA is efficient around the optimum
if � is large enough. However, surprisingly the region around
the optimum may not be the most difficult region. For � = 2 ,
we have proven that it is not.

This surprising result, in line with the experiments in
[16], raises much more questions than it answers. Does the
(� + 1)-EA with increasing � turn efficient for a larger and
larger range of c, as the behavior around the optimum sug-
gests? Or is the opposite true, that the range of efficient c
shrinks to zero as the population grows, as it is the case for
the (� + 1)-EA on HotTopic functions? Where is the hard-
est region for larger � ? Around the optimum or elsewhere?

For the (� + 1)-GA, the picture is even less complete.
Experiments in [16] indicated that the hardest region of
DynBV for the (� + 1)-GA is around the optimum, and
that the range of efficient c increases with � . However, the
experiments were only run for � ≤ 5 , and formal proofs are
missing. Should we expect that the discrepancy between
(� + 1)-GA (hardest region around optimum) and (� + 1)

-EA (hardest region elsewhere) remains if we increase the
population size, and possibly becomes stronger? Or does it

SN Computer Science (2022) 3:324	 Page 17 of 18  324

SN Computer Science

disappear? For HotTopic functions, we know that around the
optimum, the range of efficient c becomes arbitrarily large
as � grows (similarly as we have shown for the (� + 1)-EA
on DynBV), but we have no idea what the situation away
from the optimum is.

The similarities of results between DynBV and HotTopic
functions are striking, and we are pretty clueless, where they
come from. For example, the analysis of the (� + 1)-EA on
HotTopic away from the optimum in [21] clearly does not
generalize to DynBV, since the very heart of the proof is that
the weights do not change over long periods. In DynBV, they
change every round. Nevertheless, experiments and theoreti-
cal results indicate that the outcome is similar in both cases.
Perhaps one could gain insight from “interpolating” between
DynBV and HotTopic by re-drawing the weights not every
round, but only every kth round.

In general, the situation away from the optimum is gov-
erned by complex population dynamics, which is why the
(� + 1)-EA and the (� + 1)-GA might behave very differ-
ently. Currently, we lack the theoretic means to understand
population dynamics in which the internal population struc-
ture is complex and essential. The authors believe that devel-
oping tools for understanding such dynamics is one of the
most important projects for improving our understanding of
population-based search heuristics.

Funding  Open access funding provided by ETH Zürich.

Declarations 

Conflict of Interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Colin S, Doerr B, Férey G. Monotonic functions in EC: anything
but monotone! In: Genetic and evolutionary computation Confer-
ence (GECCO). ACM; 2014. pp. 753–760.

	 2.	 Dang-Nhu R, Dardinier T, Doerr B, Izacard G, Nogneng D. A new
analysis method for evolutionary optimization of dynamic and

noisy objective functions. In: Genetic and Evolutionary Computa-
tion Conference (GECCO). ACM; 2018. pp. 1467–1474.

	 3.	 Doerr B. Probabilistic tools for the analysis of randomized opti-
mization heuristics. In: Theory of evolutionary computation.
Springer; 2020. pp. 1–87.

	 4.	 Doerr B, Goldberg LA. Adaptive drift analysis. Algorithmica.
2013;65(1):224–50.

	 5.	 Doerr B, Hota A, Kötzing T. Ants easily solve stochastic shortest
path problems. In: Genetic and Evolutionary Computation Confer-
ence (GECCO). ACM; 2012. pp. 17–24.

	 6.	 Doerr B, Jansen T, Sudholt D, Winzen C, Zarges C. Mutation rate
matters even when optimizing monotonic functions. Evol Comput.
2013;21(1):1–27.

	 7.	 Droste S. Analysis of the (1 + 1) EA for a dynamically changing
ONEMAX-variant. In: Congress on Evolutionary Computation
(CEC), vol. 1, IEEE; 2002. pp. 55–60.

	 8.	 Horoba C, Sudholt D. Ant colony optimization for stochastic
shortest path problems. In: Genetic and Evolutionary Computa-
tion Conference (GECCO). ACM; 2010. pp. 1465–1472.

	 9.	 Jansen T. On the brittleness of evolutionary algorithms. In: Foun-
dations of genetic algorithms (FOGA). Springer; 2007. pp. 54–69.

	10.	 Kötzing T. Concentration of first hitting times under additive drift.
Algorithmica. 2016;75(3):490–506.

	11.	 Kötzing T, Lissovoi A, Witt C. (1+1) EA on generalized dynamic
OneMax. In: Foundations of genetic algorithms (FOGA).
Springer; 2015. pp. 40–51.

	12.	 Kötzing T, Molter H. ACO beats EA on a dynamic pseudo-
boolean function. In: Parallel problem solving from nature
(PPSN). Springer; 2012. pp. 113–122.

	13.	 Lengler J. A general dichotomy of evolutionary algo-
rithms on monotone functions. IEEE Trans Evol Comput.
2019;24(6):995–1009.

	14.	 Lengler J. Drift analysis. In: Theory of evolutionary computation.
Springer; 2020. pp. 89–131.

	15.	 Lengler J, Martinsson A, Steger A. When does hillclimbing fail on
monotone functions: an entropy compression argument. In: Ana-
lytic algorithmics and combinatorics (ANALCO). SIAM; 2019.
pp. 94–102.

	16.	 Lengler J, Meier J. Large population sizes and crossover help in
dynamic environments. In: Parallel problem solving from nature
(PPSN). Springer; 2020. pp. 610–622.

	17.	 Lengler J, Meier J. Large population sizes and crossover help in
dynamic environments, full version. arXiv preprint; 2020. http://​
arxiv.​org/​abs/​2004.​09949

	18.	 Lengler J, Riedi S. Runtime analysis of the (� + 1)-EA on
the Dynamic BinVal function. In: Evolutionary computation
in combinatorial optimization (EvoCOP). Springer; 2021 pp.
84–99.

	19.	 Lengler J, Schaller U. The (1+1)-EA on noisy linear functions
with random positive weights. In: Symposium Series on Compu-
tational Intelligence (SSCI). IEEE; 2018. pp. 712–719.

	20.	 Lengler J, Steger A. Drift analysis and evolutionary algorithms
revisited. Combinatorics Probab Comput. 2018;27(4):643–66.

	21.	 Lengler J, Zou X. Exponential slowdown for larger populations:
the ( �+1)-EA on monotone functions. In: Foundations of genetic
algorithms (FOGA). ACM; 2019. pp. 87–101.

	22.	 Lissovoi A, Witt C. MMAS versus population-based EA
on a family of dynamic fitness functions. Algorithmica.
2016;75(3):554–76.

	23.	 Lissovoi A, Witt C. A runtime analysis of parallel evolu-
tionary algorithms in dynamic optimization. Algorithmica.
2017;78(2):641–59.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2004.09949
http://arxiv.org/abs/2004.09949

	 SN Computer Science (2022) 3:324324  Page 18 of 18

SN Computer Science

	24.	 Lissovoi A, Witt C. The impact of a sparse migration topology on
the runtime of island models in dynamic optimization. Algorith-
mica. 2018;80(5):1634–57.

	25.	 Neumann F, Pourhassan M, Roostapour V. Analysis of evolution-
ary algorithms in dynamic and stochastic environments. In: The-
ory of evolutionary computation. Springer; 2020. pp. 323–357.

	26.	 Neumann F, Witt C. On the runtime of randomized local search
and simple evolutionary algorithms for dynamic makespan

scheduling. In: International Joint Conference on Artificial Intel-
ligence (IJCAI). AAAI Press; 2015 pp. 3742–3748.

	27.	 Pourhassan M, Gao W, Neumann F. Maintaining 2-approxima-
tions for the dynamic vertex cover problem using evolutionary
algorithms. In: Genetic and Evolutionary Computation Confer-
ence (GECCO). ACM; 2015. pp. 903–910.

	28.	 Shi F, Schirneck M, Friedrich T, Kötzing T, Neumann F. Reop-
timization time analysis of evolutionary algorithms on linear
functions under dynamic uniform constraints. Algorithmica.
2019;81(2):828–57.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Runtime Analysis of the -EA on the Dynamic BinVal Function
	Abstract
	Introduction
	Our Results
	Related Work

	Preliminaries
	Dynamic Optimization and the Dynamic Binary Value Function DynBV
	Notation and Setup
	Duration Between Degenerate Populations

	Analysis of the Degenerate Population Drift
	Runtime of the -EA Close to the Optimum
	Second-Order Analysis of the Drift for
	Conclusions
	References

