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Abstract
Service-oriented architectures (SOA) are becoming more widespread in the context of Industry 4.0, and their interface 
descriptions enable modular and scalable communication systems. Since syntactic checks such as data types are solved 
nowadays, the purpose of this work is to add semantic validation based on the idea of Semantic Web Services. This paper 
proposes Lightweight Semantic Web Services for Units (LISSU) and integrates promising concepts from the Semantic Web 
into SOA. We complement existing syntactic checks with semantic ones (e.g. for units), extend one-time initial checks with 
continuous monitoring, and include expressive constrain-based validations. LISSU can be integrated into any SOA and 
significantly increases the predictability of communications. Before components communicate, it checks their semantics 
via ontology URIs and automatically converts units if possible. Continuous monitoring at runtime extracts sent messages 
and guarantees flawless data quality via constraint-based validations. A real-world demonstrator setup in the manufacturing 
domain proves effectiveness and practicality. We present LISSU, which integrates concepts from the Semantic Web into SOA 
setups. It enables a wide range of semantic validations before and during communication, thereby increasing the quality and 
predictability of SOA communication.

Keywords  Semantic web services · Data lifting · Service-oriented architecture · Semantic web

Introduction

In the last decades, the Semantic Web [1] has gained much 
popularity. Its extension called Semantic Web Services [2], 
or SWS in short, captures many types of information for 
services, such as data, metadata, properties, capabilities, 
interface, and pre- or post-conditions. Researchers proposed 
a variety of challenges and solutions related to these goals 
especially during its golden age starting around 2007. Most 
of the solutions were never properly used in practice because 
other challenges had to be solved there first. Service-oriented 
architectures (SOA) and its sub-field remote procedure calls 
(RPC) are promising application areas for SWS, but had to 
tackle issues with connectivity, data availability, and syntax 
validation at interfaces during that time. We argue on the one 
hand that the SOA research community has overcome most 
of these basic challenges and needs semantic information 
now. On the other hand, the design of SWS is too complex 
and needs to be simplified to be used in practice.

Our previous work [3] focused the area of SWS but in 
a smaller scope, aiming for practicable and feasible solu-
tions. We particularly tackled real-world challenges in the 
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engineering domain, where client and server have an a-priori 
semantic mismatch (e.g., different units). Since state-of-the-
art solutions were not sufficient, we extended the syntax vali-
dations at service interfaces with machine-readable semantic 
ones and thereby made communication more predictable. 
We proposed a first version of Lightweight Integration of 
Semantic Web Services for Units (LISSU) as a backwards-
compatible extension to RPC frameworks that, in addition 
to syntactic details like datatypes, allows configuration of 
semantic information including units. This extended valida-
tion workflow detects unit mismatches between client and 
server and even corrects these via automatic conversions if 
possible. LISSU finally provides an interoperable and con-
sistently predictable communication among components, 
which we demonstrated in a real-world setup with machine 
components of a laser system.

This paper continuous our research on LISSU and extends 
it with novel approaches and implementations that tackle 
two newly discovered challenges: First, we found that it 
is insufficient to only validate the configurations of client 
and server during the initialization phase of communica-
tion, because their actual implementation might misbehave 
during runtime. We, therefore, extend our approach to a 
continuous monitoring of the actual SOA communication, 
which additionally verifies that sent messages comply to an 
expected schema. Second, implementations of real-world 
use-cases in the field show that LISSU’s basic validation 
must be extended to a more sophisticated one, which covers 
advanced expressiveness requested by domain experts. This 
includes constraints on value ranges, complex datatypes, 
cardinalities, cross-attribute relations, and many more. We 
overcome this in our current work by expanding LISSU’s 
basic URI-based validation with a proper constraint lan-
guage that enables the needed expressiveness.

The remainder of our paper is structured as follows. The 
next section gives a motivating example for both seman-
tic mismatch and rule-based validation and lastly defines 
our goals. “Related Work” investigates related work with a 
special focus on ontologies, SWS, validation and data lift-
ing. “Proposed Approach” presents our base approach and 
our two novel additions, namely monitoring a SOA com-
munication stream and using constraint-based validation, 
and “Implementation of the Proposed Framework” shows 
their implementation. We conduct an evaluation based on 
this setup in “Demonstrator Setup” via a demonstrator and 
finally conclude in “Conclusion and Future Work” with a 
summary of our work and possible future work in this field.

Motivating Example

This section motivates the extension of SOA with semantic 
capabilities based on SWS by presenting an example from 
ultrashort pulse (USP) laser system development and show-
casing concrete challenges that we tackle in this work. This 
work is based on prior work [3] about unit mismatches and 
extends the idea of the validation by integrating a stream/
client call validation framework.

Semantic Mismatch (Units)

Within the research project “Internet of Production” [4], 
Semantic Web experts and laser experts collaboratively build 
a USP laser system based on SOA. This includes to assem-
ble machine parts from different manufacturers and subse-
quently achieve an interoperable communication between 
these. The very basic idea of USP could be referred to as 
“reverse 3D printing”, which incrementally removes mate-
rial with high amplitude laser pulses to form a final prod-
uct. A USP laser is divided into multiple components such 
as scanner, movement system, and camera. Client applica-
tions (e.g., a central controller) call remote services on these 
components to configure the laser and execute actions. The 
syntax of service calls is validated with the help of Google’s 
Protocol Buffers (Protobuf)1, but semantic mismatches are 
not detected and, therefore, ignored.

A so-called scanner moves the laser to (x,y) coordi-
nates based on received float values for position.x and 
position.y, but the interpretation of the units is left 
to the respective implementation of that service. Figure 1 
illustrates a dangerous scenario of a component change: 
The former scanner hardware and its respective service 
interprets position values as millimeter and thus moves the 
laser to an x-position of 2 millimeters. A new component 
and its respective new service, however, could interpret the 
same data value as 2 centimeters and thus move the laser 
wrongly or even damage the product. Other examples from 

Fig. 1   Unit mismatch during a component swap at a USP laser sys-
tem, which we observed in our previous work on LISSU [3]. The new 
server implementation internally uses different units and hence moves 
the laser for 2 centimeters instead of 2 millimeters

1  https://​devel​opers.​google.​com/​proto​col-​buffe​rs/.

https://developers.google.com/protocol-buffers/
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that use-case are laser heating temperatures (e.g., Celsius vs. 
Fahrenheit) or laser speeds (e.g., millimeter per seconds vs. 
kilometer per hour).

The details of that real-world motivating example are 
the following. The currently existing project uses Google’s 
implementation of RPC, called gRPC [5], for communica-
tion in the network. This allows the serialization of data with 
Protobuf, a Data Description Language made by Google 
[6]. Additionally, the system uses Bazel [7] as the utilized 
build tool to manage dependencies, build the source files 
and execute the code. The Protobuf files contain syntactical 
descriptions for all the relevant service and messages for the 
client server communication by strictly defining input and 
output parameters of service calls and the data types of these 
parameters in so called message definitions. In the process 
of utilizing gRPC, these files will then be compiled into new 
files in the desired programming language like Python or 
Java for the corresponding application, allowing the client 
and server to access the definitions made in Protobuf files. 
There is currently no way to properly include semantics like 
units into these definitions.

Developers in this research project have chosen comments 
and variable names in their Protobuf files as temporary solu-
tions so that the units become visible to the reader. However, 
this approach is error-prone and not machine-readable. The 
above-mentioned motivating examples demonstrates the 
need to avoid semantic mismatches by properly defining and 
validating units at service interfaces.

Rule‑Based Message Validation

While the detection of semantic mismatches in an industrial 
SOA Framework helps to prevent accidental errors when 
integrating new machine components into the framework it 
does not prevent runtime errors or malicious messages from 
being sent to the server. Typically, these errors can be pre-
vented by formulating specific rule sets to validate the mes-
sages. An example of a hard runtime error is a MoveToPosi-
tion message, where the requested position is out of bounds 
of the scanner system. Currently the system detects these 
errors on the server side since it is physically not possi-
ble to move to that position. These system-specific rules, 
therefore, prevent the system from internal damage. While 
of course a domain-specific language for formulating these 
rules can be advantageous, the definition of softer runtime 
errors could hold much more potential. These soft runtime 
errors are typically producible but might not be preferable 
in a quality sense or long-term maintainability sense. These 
rules are very often “cross-platform” and could, therefore, 
be applied to multiple services implementing the same inter-
face. Additionally, the formulation of these constraints is 
more complex than simple physical boundaries which raises 
the need for an expressive constraint language.

In the USP Production domain a typical example for one 
of these softer runtime errors would be ablation in the 0/0 
Position of the scanner system. In this special point the laser 
angle of incidence is perpendicular to the workpiece surface. 
Laser light that get positioned on that point can, therefore, 
be reflected back inside the optical path of the system and 
damage the components due to overheating. [8] Another 
soft constraint lies in the combination of the laser power in 
Watt and the corresponding movement speed of the laser 
beam resulting in the delivered energy per area or short flu-
ence. This constraint typically depends on the material used 
in the process since the melting point and the absorption 
rate changes. If the fluence is too low the material does not 
vaporize. If it is too high the material might rise in tempera-
ture, which leads to thermal deformations [9].

While these errors should be avoided during a USP abla-
tion process, nothing inside the scanner component is limit-
ing this behavior. Including this rule inside of the scanner 
microservice would also be disadvantageous since it would 
tie the very general component service “scanner system” 
which can be used in different manufacturing machines like 
Laser Powder Bed Fusion or Battery welding directly to the 
USP Process. At the moment these errors are mitigated by 
the experience of the machine operator who knows these 
rules by experience and, therefore, avoids them during the 
design process of the manufactured part and the setup of the 
machining process.

Requirements and Goals

The ultimate goal of this work is to overcome semantic 
mismatches and flawed messages in SOA frameworks by 
integrating Semantic Web components into these. We par-
ticularly aim to extend the existing syntax-only validation to 
also cover semantics and units, as well as the validation of 
specific message rules. Developers must be able to configure 
this information for both clients and servers to make service 
calls more predictable and errorfree. These need to auto-
matically validate the given semantic information before ini-
tiating the actual communication. The definition of semantic 
message rules should also be extensible during the machine 
life cycle to allow further updates and changes depending 
on the state of the system (e.g., “material loaded” or “laser 
used”). This additional verification must be backwards-com-
patible, because SOA frameworks are usually distributed 
systems, and one developer can only modify some of the 
services. The message validation should also be injected 
during runtime into the process without interfering with the 
process itself. For monitoring purposes, a sampling strategy 
should be used while a possibility for blocking malformed 
messages should also be present. All interactions with the 
novel solution must be easily accessible for domain experts, 
which are typically non-experts in the Semantic Web. The 
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manual effort should be minimized by automating as much 
as possible, e.g., validation or correction of used units. Fol-
lowing the Semantic Web best practices, we should reuse 
as much as possible, for example units from well-known 
ontologies. The proposed solution should be field-proven 
and easily adoptable to new use-cases.

Related Work

This section investigates and discusses related work in the 
areas of ontologies, semantic service descriptions, data lift-
ing and mapping, and constrain-based validation. While the 
first two are based on our earlier work [3], the latter two 
extend it with completely new aspects.

Relevant Ontologies

A basic representation of units of measurement is already 
a big step forward. We argue that this is an optimal trade-
off between semantic value and complexity overhead, and 
analyze relevant ontologies on sensors, units, and measures. 
Our analysis reuses existing concepts when possible, like 
proposed in [10]. We aim for ontology terms that we can 
reuse in a modular approach without unwanted side effects 
as described in [11]. Table 1 presents the metrics we applied 
and the final ranks for all ontologies we analyzed. The met-
rics are the following. Relevance determines how well the 
ontology scope matches our work, and coverage rates the 
applicability of the ontology’s concepts to our needs. The 
metric evaluates available programmatic extensions such as 
unit conversions. Flexibility rates how well one can tailor 
the concepts from the ontology to specific applications, e.g., 
being able to build custom units with prefixes like “milli”. 
Note that this rating is specific to our requirements and 
should not be interpreted as a universal ontology rating.

Sensor Ontologies

The article [12] reviews existing sensor data ontologies to 
decide if they can be reused for a manufacturing perception 
sensor ontology. The outcome of their work is a review and 
an ontology. Relevant ontologies mentioned are the Sen-
sor Data Ontology (SDO) [13], which uses the Suggested 
Upper Merged Ontology (SUMO) [14], the OntoSensor 
ontology [15] and especially the Semantic Sensor Network 
(SSN) ontology [16]. The SSN ontology appears promis-
ing for our work and has multiple features: Data discovery 
and linking, device discovery and selection, provenance and 
diagnosis, and device operation, tasking, and programming 
[16]. It allows focusing on sensors, observed data, system, 
or feature and property. The SSN ontology describes sensor 
networks well but needs to be combined with other ontolo-
gies for describing units, like the ontology Library for Quan-
tity Kinds and Units [17].

Unit Ontologies

The Ontology of Units of Measure (OM) [18, 19] allows 
descriptions of units with all their details and relations to 
each other and was developed during the development of the 
Ontology of Quantitative Research [22]. It is based on exist-
ing standards for units of measure such as [23] and contains 
units of measure, prefixes, quantities, measurement scales, 
measures, system of units, and dimensions. Any quantities 
are defined by a measurement scale, which is a mapping 
from categories and points to quantities. Units can then be 
further scaled with prefixes, making it easier to represent 
values for a base unit. The unit millimetre for example is 
defined as a prefixed unit with the unit metre and the prefix 
milli. Quantities and units have dimensions and systems of 
units for their organization. A system of units defines a set 
of base dimensions, which can then be used to express every 
other possible dimension as a combination of certain base 
units, like the International System of Units [24]. All other 
dimensions can then be computed from these base units.

The Quantities, Units, Dimensions, and Types Ontol-
ogy (QUDT) [20] follows a similar approach and modu-
larly builds on multiple ontologies. It covers fewer quantity 
kinds and units per application area than OM, but it allows 
more flexible conversion multipliers and offsets. The Uni-
fied Code for Units of Measure (UCUM) was published 
in [13, 21] covers practically all units used in science and 
engineering, while every unit has a unique identifier. It is 
possible to validate and convert datatypes via the UCUM 
web service https://​ucum.​nlm.​nih.​gov/​ucum-​servi​ce.​html#​
conve​rsion. UCUM unit codes are referenced in the above-
mentioned QUDT ontology and supports these unit conver-
sions. UCUM, however, specifies units and scales less com-
prehensive compared to OM.

Table 1   Evaluation of relevant ontologies based on the requirements 
from “Requirements and Goals” with OM and QUDT ranked highest 
[3]. The symbols (− / o / +) represent a low / medium / high value of 
given metrics, respectively. Please note that this ranking is specific for 
our requirements and, therefore, not universal

Ontology Relevance Coverage Features Flexibility

SDO [13] − o − −
OntoSensor [15] − o − −
SSN [16] o + + o
OM [18, 19] + + + o
QUDT [20] + + + +
UCUM [13, 21] + o + o

https://ucum.nlm.nih.gov/ucum-service.html#conversion
https://ucum.nlm.nih.gov/ucum-service.html#conversion
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We conclude that many ontologies for units in scientific 
applications exist. Following the rating depicted in Table 1, 
QUDT and OM are both promising for work due to their 
completeness and relevance. QUDT provides a mature 
SPARQL Protocol and RDF Query Language (SPARQL) 
integration and provides flexibility by linking to OM and 
UCUM via additional identifiers within the ontology. OM 
provides a more comprehensive structure and has potential 
to flexibly adapt to future requirement changes, while the 
SSN ontology primarily supports sensors and service calls 
instead of units.

Communication and Service Description

SWS [2], their organized peer-to-peer extensions [25], and 
similar approaches semantically enrich web services and 
provide machine-readable markups. Needed descriptions 
can be written in the Web Service Description Language, 
which in [26] was extended with Semantic Annotations. 
These annotations refer to ontologies and support lifting 
and lowering mappings between XML messages. A complex 
feature set including information, functional, behavioral, 
and non-functional semantics, however, complicates light-
weight application, which we in fact aim for. Our approach 
is even more lightweight than the lightweight Semantic Web 
Service descriptions proposed in [27] and [28], which are 
also available as W3C submission [29], as they still include 
functional, non-functional, and behavioral semantics. [30] 
introduces a so-called descriptor that adds operation, link, 
non-functional, and service descriptions to RESTful services 
via an ontology-based approach.

RPCs allow remotely calling services and passing param-
eters [31]. Note that this concept was introduced nearly four 
decades ago but has become an active research topic again 
recently. Google offers gRPC [5], an open-source high per-
formance RPC framework that has gained a lot of popularity. 
Benefits include high scalability, low latency distributed sys-
tems, and developed programming languages support. It is 
recommended to use Protobuf to describe the syntax of ser-
vices’ expected inputs and outputs [6]. One concrete exam-
ple is an extension of a closed-source platform for deploy-
ment, integration, and orchestration digital services with 
semantic unit information [32]. Proposed features include 
data contextualization by enriching data with (semantic) 
information facilitating the understanding of the data and 
its context.

We summarize that the SWS was a very active research 
area between 2001 and around 2008 but lost some of its 
drive. We argue that this is mainly due to very ambitious 
goals that could not yet be applied in practice. Later devel-
opments based on RPC solved crucial basic problems and, 
therefore, the chance to properly combine these research 
fields is now.

Constraint‑Based Validation

The concept of validation of entities based on given con-
straints is not a new problem and can be tackled in many 
ways. One option for validating data in the widely-used 
JSON format is using JSON Schema [33] to define con-
straints for specific key-value pairs. The relevant use-case 
here, however, goes beyond the standard constraint valida-
tion with the advent of using specific ontologies for describ-
ing units. Therefore, here a constraint-based validation 
method must understand and be able to work in an environ-
ment, which is largely dependent on RDF data.

The Shapes Constraint Language (SHACL) [34] is a W3C 
recommendation which fulfills the requirements of being 
able to validate RDF data and formulate requirements based 
on specific ontologies. It works by describing different con-
cepts as so-called shapes and enabling constraints on the 
concepts itself and their properties. We, therefore, conclude 
that SHACL is a promising candidate for our task of con-
straint-based validation of our produced data.

Semantic Data Lifting

We understand the term (semantic) data lifting as a syno-
nym to uplifting, which is the process of transforming data 
sources into triples in the Resource Description Framework 
(RDF) [1]. On the one hand, there is a wide range of data 
formats for communication (cf. “Motivating Example”), 
which mainly include binary formats and (semi-)structured 
ones such as JSON, CSV, or XML. On the other hand, there 
are expressive and convenient constraint languages such as 
SHACL, which work on RDF. This raises the need for a 
mapping from the different data formats to RDF, which we 
call data lifting. We evaluate the RDF Mapping Language 
(RML) [35, 36] as promising candidate as it allows express-
ing customized mapping rules from heterogeneous data 
structures and serializations to RDF. Its reference imple-
mentation RMLMapper is an open-source Java library2 that 
execute RML rules via the command line. Please refer to 
their tool overview3 for a list of processors, graphical user 
interfaces, wrappers, and supportive tools.

Proposed Approach

This section presents our concept to integrate ontology terms 
into a microservice-based SOA system to handle unit mis-
matches and continuously validate the retrieved data. That 
includes an extended architecture for SOA, novel semantic 

2  https://​github.​com/​RMLio/​rmlma​pper-​java.
3  https://​rml.​io/​tools/.

https://github.com/RMLio/rmlmapper-java
https://rml.io/tools/
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configurations, and an extended communication workflow. 
Our approach is backwards-compatible and enables a mod-
ular system in which programmatic features and semantic 
descriptions (e.g., units) can be implemented in parallel.

Figure 2 depicts a current state-of-the-art setup building 
on gPRC on the left, which acts as communication technol-
ogy and interface definition, e.g., stored in Protobuf files. 
In the baseline setup on the left, a client contacts a server 
with a service call, which triggers the server to validate the 
call’s syntax and finally execute the service if its checks 
were successful. We overcome the lack of semantic valida-
tions presented in the previous sections by extending the 
SOA framework, as shown on the right side of Fig. 2. We 
add semantic units to both client and server, which link to 
ontologies and use ontology URIs to specify units in their 
configurations. Our extended pre-communication valida-
tion also includes a semantic check, which compares the 
ontology URIs from both communication partners, and only 
allow service execution if they match. Finally, the server 
is extended by continuous validation of the provided data 
based on defined constraints. The following sections present 
further details on the architecture and workflow.

Adding Lightweight Semantic Components to SOA 
Frameworks

This section explains more details on the components 
depicted in Fig. 2, namely the semantic unit configuration, 
ontology references, and novel semantic validations. “Ini-
tial Semantic Validation Workow in Detail” then gives even 
more details on the initial semantic validation workflow and 
“Continuous Semantic Validation Workow in Detail” then 
discusses the continuous semantic validation workflow.

As we plan to validate semantic information such as 
units between client and server, we add definitions to them, 
which map each entry of their interface definitions (e.g., 
gRPC) to respective units in form of ontology terms (URIs). 
The semantic units can later compare these URIs and only 
initiate communication if they match. Note that different 

other cases such as mismatches or partial matches exist. 
Our approach in this work uses publicly accessible URIs 
as ontology links, but one could easily adapt this design to 
custom local unit references, too.

We implement an additional step in the workflow of the 
SOA communication, which is illustrated in Fig. 3. A client 
initiating a service call first undergoes a semantic check, 
which compares the client’s semantic specifications with 
the server’s one. The client (1.1) requests validation at the 
semantic check service by transmitting its semantic configu-
ration. That service (1.2) polls the respective configuration 
from the server, matches these and (1.3) returns a validation 
report to the client. The client subsequently interprets this 
report, for details please see the next section. If the report 
includes issues, the client needs to fix these or abort com-
munication. It can, for instance, (2) contact a unit conver-
sion service to correct unit mismatches. Additionally, (3) 
the client starts the actual communication with the server. 
Finally, (4) the server requests every n seconds validation of 
the currently sent data by a continuous validation service.

Fig. 2   The prior communication 
on the left only includes syntac-
tic validation via Protobuf. Our 
contribution on the right adds 
novel semantic components to 
both client and server [3], and 
extends the validation workflow

Fig. 3   SOA framework with communication parties named client and 
server for easier differentiation, and our augmenting services added 
as rounded rectangles. A client contacts up to three semantic services 
to make the subsequent communication more predictable. We par-
ticularly extend our previous work [3] with step four



SN Computer Science (2022) 3:293	 Page 7 of 15  293

SN Computer Science

Initial Semantic Validation Workflow in Detail

A client receives a validation report from the semantic check 
service while preparing communication. Depending on that 
report, one or more of the following four actions can be 
required at the client, as illustrated in Fig. 4:

•	 Client configuration incomplete: The provided configura-
tion is missing properties required from the server. The 
client must correct it by adding missing definitions, usu-
ally manually.

•	 Unit dimension mismatch: Correct the dimensions and 
units used, and try again. Hard mismatch, e.g., speed in 
m/s used but temperature in Celsius expected. Usually 
fix manually.

•	 Unit mismatch: Used the correct dimension but the 
wrong unit, e.g., m/s instead of km/h. Use our proposed 
unit conversion service to automatically convert units.

•	 All semantics match: Start the communication.

This workflow detects all relevant possible issues w.r.t. 
semantic mismatches. While fatal issues such as incomplete 
configurations or dimension mismatches usually need to be 
solved manually, we can automatically resolve unit mis-
matches within the correct dimensions.

Continuous Semantic Validation Workflow in Detail

As illustrated in Fig. 5, a server sends a part of the continu-
ously read data stream to the continuous validation service 
every n seconds. Since the targeted validation languages do 

not support the native SOA format, the data must be trans-
formed by first representing it in a non-binary format and 
then lifting it to a semantic representation. This semantic 
representation can then be validated, and it is checked if the 
defined constraints are fulfilled. The approach proposes a 
handler implementation for when this is not the case, which 
can be represented by a logging action, for example.

Implementation of the Proposed Framework

In this section, we demonstrate our realization of the con-
cept presented above. This includes justifying a selection of 
concrete tools based on our requirements. We then present 
in detail the implementation and evolution of two services 
from [3] and two novel aspects: First, an initial semantic 
validation service including a method to specify semantics at 
both client and server. Second, a unit conversion service that 
allows automatic correction for unit mismatches that only 
reside in the same dimension. Third, a continuous semantic 
validation service including a method to validate streaming 
data against given requirements after lifting heterogeneous 
(semi-)structured data. Finally, we suggest a user interaction 
and workflow with the new system.

Tool Selection Based on Requirements

As discussed in previous sections, there are multiple ontolo-
gies, data description formats, and additional software avail-
able. For our realization, we choose the following tools. 
We use Protocol Buffer and gRPC to model the interface 

Fig. 4   Activity diagram of our proposed initial semantic validation workflow, which detects and recovers from semantic mismatches to finally 
establish a predictable communication [3]. Empty rhombuses merge alternative paths

Fig. 5   Proposed continuous 
semantic validation workflow, 
which checks every n seconds 
whether the data stream con-
tains valid data
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of services syntactically, and introduce semantic descrip-
tions (e.g., for units) via additional JSON files stored at the 
client and server. Reasons for choosing JSON include its 
high expressiveness and increased human readability, plus 
its easy integration into many programming languages. We 
integrate Bazel to automate building and testing of these 
descriptions.

We select QUDT as the main ontology for the semantic 
representation of the units of measure, while keeping the 
support for OM. We do not require SSN or any of the other 
ontologies in our current use-case, since QUDT and OM 
already cover all necessary concepts. However, the seman-
tic descriptions do link to additional ontologies for certain 
types of data, for example the representation of a UNIX 
timestamp. We chose QUDT, because it satisfies all relevant 
units of measure we need and offers a good support for unit 
conversions via SPARQL queries. This can be done using 
the Python library rdflib [37] or via other programming lan-
guages like Java or Go.

We use the JSON data format to export SOA messages 
from Protobuf. We choose RML to formulate data mappings 
to RDF, and use its reference implementation RMLMap-
per as Java library (cf. “Semantic Data Lifting”) to execute 
these. Its command-line usage makes integration easy and 
modular. Automatic validation of generated RDF files can 
be achieved by any SHACL validator.

Adding a Semantic Service to Real‑World Systems

This section introduces implementation details about the 
semantic check. The main idea is it to write client applica-
tions with the semantic check in mind. The client establishes 
a connection to the semantic server before it connects to the 
server it actually plans to communicate with. The semantic 
check receives the client’s configuration together with the 
service call and then loads the server configuration file from 
the respective server. All the above-mentioned service calls 
and message types are defined through proto files while the 
client and server configuration can be found in JSON files.

The configuration of client and server have both the same 
unique format consisting of different levels. These levels 
can be seen in lst. 1. The first level is the name of the proto 
file which is being considered, an example for this would be 
scannerservice. The next level within the scanner service is 
then the name of the message. So far everything is structured 
like the corresponding proto file. The next and final level 
covers the variables within a message type with the variable 
values being URIs linking to the according ontology and 
describing the unit of measure belonging to that specific var-
iable. In case of OM this would be the URI om:millimetre. 
In case of QUDT, however, we use qudt:MilliM, since this 
is the unique identifier within the Resource Description 
Framework (RDF) graph of QUDT and hence can be used 
for SPARQL queries to access more details about that spe-
cific unit.

We validate all relevant fields in the configuration files 
of the server and the client against each other and build our 
response to the client accordingly. We include a new proto 
file into the system for each implemented semantic capabil-
ity, including the semantic check and the later explained unit 
conversion. The semantic check is a gRPC call and requires 
the contents of the config file as a string as input and then 
returns a response message consisting of multiple parts: A 
server response with the results of the check in form of a 
Boolean, a detailed description of what exactly went wrong 
in form of a string, and additional lists containing the pre-
viously assigned units and the desired correct units by the 
server.

Implementing a Unit Conversion Service

If the response of the semantic check includes a non-empty 
conversion list, the client proceeds by calling the unit con-
version service. We implement the conversion service with 
QUDT units by querying the ontology to extract various 
properties of the units which were stored in the configuration 
files. While libraries offering unit conversion functionalities 
for OM are only available for Java and Python, we can query 
data directly from QUDT via SPARQL with many more 
programming languages, providing even more flexibility.

{
"scannerservice": {

"Position": {
"x": "qudt:MilliM",
"y": "qudt:MilliM"

},
"Time": {

"timestamp": "wiki:Q14654"
}

}
}

Listing 1 Sample of a server configuration that adds semantic information via ontology
URIs to Wikidata and QUDT, which we shortened to improve readability [3].
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While the semantic check service only links to the uti-
lized ontologies, the new unit conversion service extensively 
uses QUDT’s structure. We know from the related work 
section that QUDT uses multiple concepts for the informa-
tion it provides. For the unit conversion, the conversion-
Multiplier as well as the conversionOffset form the most 
important properties. A unit can only be converted from a 
specific source unit to a destination unit if the dimensions 
are the same. SI base units are used for the dimensions, like 
in OM. Especially the dimension property is valuable, by 
providing a mean to determine the base unit or to determine 
if we are dealing with a measure or scale. This ensures that 
conversions are both syntactically and semantically correct 
and avoids, for example, conversions from pounds (force) 
to kilograms (mass).

The unit conversion service takes as its input the lists that 
were returned with the semantic checks output. This includes 
for each list entry its identifiers, the source to convert from, 
and the destination to convert to. Additionally, the client 
sends its initial values for these variables. The query extracts 
the multiplier and offset of the previously assigned unit to its 
corresponding base, converts the value to the base unit and 
then converts the value from the base unit to the unit desired 
by the server. The conversion service finally returns the same 
input it got previously back to the client but this time with 
the converted values. The client can then proceed to a new 
semantic check or start the communication with the server.

Monitoring the Data Stream with a Continuous 
Validation Service

The server calls the continuous validation service every n 
seconds (can be freely configured). We implement the vali-
dation service by first proceeding with a conversion from the 
binary data to a JSON format. This is necessary so that in the 
next step, the data lifting can make the data readable for the 
validation step by semantically enriching it. The validation 
step then takes this data and checks the requirements. Based 
on the result, the error is pushed forward to an implemented 
handler, or the service returns positively. In the following, 
the data lifting and constraint-based validation are discussed 
in more detail.

Data Lifting

The data lifting in our scenario needs to transform Pro-
tobuf messages to RDF so that they can be validated via 
SHACL. Protobuf’s built-in JsonFormatter4 is capable of 
exporting Protobuf messages to JSON. Since the RMLMap-
per (cf. “Semantic Data Lifting”) supports JSON input files, 

we apply it for our needs. A set of RML rules defines the 
respective mappings from the Protobuf messages to RDF, 
including valuable details about their unique identifiers (e.g., 
for units), properties, and structure. Note that one only needs 
to create an RML rule file once and then can apply it to 
every message from a given data stream. We integrate the 
RMLMapper into via command-line calls to automatically 
generate respective RDF files, which we then use for valida-
tion. An explicit call could look like java -jar rml-
mapper.jar -s turtle -m mapping.ttl -o 
output.ttl, or one programmatically calls the respective 
method from a Java program using the same arguments.

Constraint‑Based Validation

The constraint-based validation is set up by first establishing 
SHACL shapes, which describe the necessary requirements. 
These requirements can range and include the targeted 
QUDT unit quantity kinds like length for meter or kilom-
eter and specific requirements for the values like ranges or 
filters but are not limited by that. In the validation step, the 
RDF data produced by the data lifting are combined with the 
QUDT ontology as a data graph and then validated against 
the described SHACL shapes. Such a validation method is 
present in many programming languages like Java, JavaS-
cript, .NET or Python and can be, therefore, domain inde-
pendent. On error, an implementable handler is called which 
in a simple case can just trigger a logging action for tracking 
the data quality but is not limited to that and could further-
more act as a firewall for stopping erroneous clients.

User Interaction and Workflow

Adding these new services adds a certain workflow to the 
system, when designing and implementing new applications. 
First, the system needs a server configuration for each server 
that is running available and on top of that every client that is 
being added to the system needs its own client configuration 
file. Whenever someone implements a new client, they also 
need to fill out their configuration file and have a section in 
their code where they load their own configuration and call 
the semantic check service with it. The normal client func-
tionality is then be executed afterwards if no mismatches 
occurred. If there were errors, however, the client aborts 
communication and a developer needs to manually adjust the 
configuration file and its values based on the respective error 
message. Since our error messages show precise details, it 
is easy to track down the error and correct it accordingly. 
This process can be repeated until there are no errors or 
mismatches left. Since all errors are shown immediately all 
mismatches can be removed in one iteration.

4  https://​devel​opers.​google.​com/​proto​col-​buffe​rs/​docs/​proto3#​json.

https://developers.google.com/protocol-buffers/docs/proto3#json
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Demonstrator Setup

This section evaluates the differences to the previous state 
of the system after including the semantic components, 
the practical usability of the extended architecture, and its 
performance in form of a technical evaluation of the tools 
we used. The benefits will be explained on demo scenarios, 
showing the system’s behavior before and after including 
semantic components. We finish this section with a conclu-
sion regarding the benefits of semantically enriching such 
systems in general.

Implementation Evaluation

Above, we specified multiple requirements for extending 
SOA systems. The semantic description of utilized data was 
taken care of using ontologies like QUDT and linking to 
them in the configuration files. QUDT and OM sufficiently 
cover the support for units of measure. The only excep-
tion here are abstract values, for example the time values 
utilizing the UNIX stamp instead of regular time measure-
ment. Hence, the first two points are already covered by the 
inclusion of the configuration files. The unit conversion is 
taken care of by adding the unit conversion service utilizing 
SPARQL queries on QUDT to the USP system. The new 
unit conversion service allows the conversion of units as 
long as source and destination are both in the same dimen-
sion. Table 2 shows the information that can be found for 
every variable after the inclusion of the semantic capabili-
ties. The unit of the position values being millimeter can 
now be seen within the system.

In addition to these points, the human understanding of 
the system is also increased. Someone with access to the 
code will be able to much easier understand certain vari-
ables just by inspecting their definition, since everything is 
linked to a semantic description within an ontology. While 
this could have been covered in comments already, an ontol-
ogy provides much more in-depth knowledge about certain 
concepts and even descriptive comments within the ontology 
and additional links to other concepts or even full ontolo-
gies. To conclude we can state that the above-mentioned 
requirements are fully satisfied by our implementation.

On the technical side of the implementation, however, 
there are consequences of our approach. A general first con-
sequence of including semantics is the increase in data size 
that must be dealt with and slower processing time. Semantic 
data are included in text form and contains more data than 
just telling the system that a variable has a certain data type. 
A variable temperature does not just have a value such as 45 
and the assigned datatype anymore but instead a link to an 
ontology in form of an URI, stored in multiple configuration 
files containing information about all the important variables 
across the system. The distribution and management of these 
configuration files, however, has still room for improvement 
as mentioned in the previous sections and can still change in 
the future. Even in the current form, however, the difference 
in execution time and used space is barely noticeable. Que-
rying the ontology takes up most of the additional time and 
can be improved by adjusting the ontology to just our needs 
in the future. One final aspect of our technical evaluation is 
backwards-compatibility. Since the usage of the services for 
the semantic capabilities is not strictly required, one can still 
develop applications without using any semantic services.

Demonstrating Semantic Functionalities in Demo 
Scenarios

In the following, the results of applying the semantic func-
tionalities in demo scenarios are presented in the context 
of the initial and continuous semantic validation workflow.

Initial Semantic Validation Workflow

The advantages of the extended system with the semantics 
can be emphasized if we directly compare the previous state 
of the system with the new one by creating and executing 
a client application with the old standard and one with the 
new workflow of going through a semantic check followed 
by an automatic unit conversion. For this reason, we create 
three client applications for a demonstration of the system 
capabilities. All three applications have the same goal of 
accessing the scanner service to call the JumpToPosition 
function, which orders the scanner to move the laser beam 
to the specified location on the scan field. For this purpose, 
the service takes a position argument consisting of x and y 
variables as input and returns the completion time when the 
execution of the service is finished. The existing server now 
has different understandings for the two components of this 
communication. The first component is the position argu-
ment with its two values having the unit millimetre, while the 
returned completion time is given in UNIX stamp. While all 
three applications eventually do exactly this, their behavior 
prior to the actual communication differs indeed.

Scenarios 1 and 2: Only syntax defined: The first 
and second demo applications immediately connect to the 

Table 2   Real-world variables with their corresponding units in ontol-
ogies [3]

Variable name Type Unit of measure

preheatingTemp double qudt:DEG_C
laserSpeed float qudt:MilliM-PER-SEC
position.x/y float qudt:MilliM
shotTime int64 wiki:Q14654
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scanner server and request the JumpToPosition service. The 
syntactic side is taken care of because of the strict definitions 
of the variables in the proto files but for any kind of semantic 
information the client must assume that the server uses the 
same specifications. In our demo scenario the client sends 
values with the knowledge of them being in centimetre and 
this then results in the server still interpreting it as a milli-
metre value and hence, moving the laser beam by a smaller 
amount than the user wanted.

Scenario 3: Syntax + matching semantics: The sec-
ond application now uses our semantic components. This 
means the developer of the client application also provides 
a configuration file with their understanding of the variable 
semantic, which explicitly states their understanding of the 
positional arguments being understood as centimetre on the 
client side. Since now the first thing the client does is con-
necting to the semantic server and making a service call for 
the semantic check service, the difference in the semantic 
understanding will be spotted and the client notified to fix 
this. However, since the problem here is a positional argu-
ment, taking a length unit, we identify this specific problem 
within the configuration file as a problem that can be solved 
with the unit conversion service and hence, proceed by call-
ing it with the position arguments as values to convert and 
then proceed with the communication to the scanner with 
the converted value. In this scenario, we did not just catch 
the error but instead also corrected it and proceeded with the 
execution of the initial goal without any problems. In this 
ideal scenario, the developer of the client application does 
not need much knowledge of the server-side semantics him-
self, instead they can just program their client by following 
the workflow proposed in the previous section.

Scenario 4: Syntax + mismatching semantics: The 
third scenario is created by a client application using the 
semantic components but with an incomplete client configu-
ration file. Even in such a case the semantic check provides 
its advantages by telling the user what exactly is wrong with 
their configuration and what is missing, while the first case 
would not even realize the error and just proceed with the 
faulty values and cause a more vital error during the execu-
tion on the hardware, resulting in an error in the production.

Table 3 compares the different scenarios based on the 
standards of the system. The first and second are the previ-
ous state of the system where only the syntax was taken 
care of, and still work in every scenario, since our imple-
mentation does not change the Protobuf base of the system. 
However, we improve feedback by warning the user that only 
the syntax is validated, but there is no semantic information 
to validate. The third represents configurations where the 
system must check for both syntactic and semantic compat-
ibility of client and server before initiating a communication. 
In the first case, we cannot give any information on this 
and start the communication with a risk of errors caused 
by a misunderstanding of the system semantics, while the 
second case manages to identify these semantics as correct 
and initiate the communication. The third case does give us 
information by identifying the semantics in the system as 
wrong and blocking the communication. The system should 
only initiate a client-server communication when they have 
a mutual understanding of the system. The results are here 
the same as in our approach, further proving the advantages 
of our implementation.

The semantic component mainly plays a role during two 
critical scenarios. The first one is when a newly written cli-
ent application is introduced into the system. The developer 
of the application might have insufficient knowledge of the 
system, resulting in an incomplete configuration file or the 
usage of the wrong units for the arguments within the code. 
The semantic check would identify this and notify the devel-
oper. The second and more common scenario is a changed 
hardware component within the system. The complications 
of this were already explained with an example in the intro-
duction section of this work. If we change the hardware of 
the scanner, we might have to write a new server code using 
a different server semantic, suiting the new hardware. A 
client code specifically written for the old server with no 
semantics included like our first demo application would 
fail in such a scenario but the second and third application 
would in the worst case at least catch the error and notify the 
user that something is wrong, and that the client must update 
its definition to satisfy the new system requirements coming 
with the new hardware.

To conclude this part of the evaluation, LISSU auto-
matically avoids and corrects unit mismatches, and, there-
fore, leads to a more predictable communication in a SOA 
framework. Its backwards-compatibility allows a flexible 
integration even into large existing systems. Unclear cases, 
where only syntax but no semantic is defined, yield a warn-
ing but still operate. LISSU reports semantic mismatches 
between client and server to the calling client and prevents 
communication if needed. Although LISSU is completely 
backwards-compatible, we recommend applying it to all 
components of a SOA system to improve overall commu-
nication predictability.

Table 3   The scenarios compared to each other based on different 
standards for the communication in the system [3].  Especially note 
scenario 4 where LISSU prevents erroneous communication

Bold values indicate improvements of LISSU compared to the base-
line

Scenario Expected Baseline LISSU

1 (y / -) warn comm. warn
2 (n / -) block block block
3 (y / y) comm. comm. comm.
4 (y / n) block comm. block
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Continuous Semantic Validation Workflow

The continuous semantic validation workflow first converts 
the binary format into a non-binary form for making the 
lifting possible. The resulting JSON file has a format which 
can be seen in lst. 2 and contains especially the points and 
the marking parameters, which all are implicitly defined as 
certain units. The mapping approach, therefore, accounts for 
the client configuration and implicit knowledge for lifting 
the JSON data to semantic data.

Finally, the validation part is evaluated, and the advan-
tages of a continuous semantic validation workflow are 
shown. For this, we inspect different requirements provided 
by the use-case and evaluate if these are validated properly: 

{
"workPlanes": [

{
"vectorBlocks": [

{
"hatches3d": {

"points": [
0.585648,
0.648475,
-0.05

]
},
"markingParamsKey": 1

}
],
"numBlocks": 1

}
],
"jobMetaData": {

"jobName": "Batsymbol_2mm"
},
"markingParamsMap": {

"0": {},
"1": {

"laserSpeedInMmPerS": 100.0,
"jumpSpeedInMmS": 1000.0,
"jumpDelayInUs": 100.0,
"laserOffDelayInUs": 100.0,
"laserOnDelayInUs": 100.0

}
},
"numWorkPlanes": 1

}

Listing 2 Sample of non-binary JSON data produced by our extraction.

A simple Java program based on the RMLMapper maps 
the non-binary JSON data using an RML definition, which 
is shown in lst. 3. The part shown is the mapping of the 
points which are mapped into x, y and z coordinates and are 
assigned the unit of millimeter in QUDT. The value itself 
is furthermore defined in QUDT as well, completing the 
lifting of the points. The other parts of the JSON are lifted 
in similar manner.

:PointMap a rr:TriplesMap;
rml:logicalSource :PointSource;
rr:subjectMap [rr:class :Point; rr:termType rr:BlankNode ];
rr:predicateObjectMap

[rr:predicate ex:x; rr:objectMap [rr:parentTriplesMap :PointXMap ]],
[rr:predicate ex:y; rr:objectMap [rr:parentTriplesMap :PointYMap ]],
[rr:predicate ex:z; rr:objectMap [rr:parentTriplesMap :PointZMap ]].

:PointXMap a rr:TriplesMap;
rml:logicalSource :PointSource;
rr:subjectMap [rr:class qudt:Quantity; rr:termType rr:BlankNode ];
rr:predicateObjectMap

[rr:predicate qudt:unit; rr:object unit:MilliM],
[rr:predicate qudt:value; rr:objectMap [rml:reference "x"; rr:datatype xsd:decimal ]].

Listing 3 Example excerpt of an RML mapping definition for lifting JSON data to RDF.

Value Ranges: It is useful to compare the value ranges of 
the provided data points. This is, therefore, described in lst. 
4 as SHACL shapes and aims for a value range of -10 to 10.
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ex:Position
a rdfs:Class , sh:NodeShape ;
sh:property

[
sh:path ex:x ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:node ex:XMeterQuantity ;

] .

ex:XMeterQuantity
a sh:NodeShape ;
# Additionally references to quantitykind :Length
sh:property

[
sh:path qudt:value ;
sh:minExclusive -10 ;
sh:maxExclusive 10 ;
sh:datatype xsd:decimal ;

] .

Listing 4 Sample of shapes defining the constraint that x-values of positions must be
within -10 and 10. Note that SHACL can model complex constraints including logical
operators and cross-attribute relations, too.

use-case occur: JumpToPosition often occur at 1–100 Hz, 
but special products with many partial commands get over 1 
kHz. Sensor reads possibly send around 100–300 Hz, while 
camera images and other sensors can even reach multiple 
kHz. We conclude from there time measurements that our 

current approach with periodic sampling is well-suited, but 
also hint that these execution times can be tuned in future 
work (e.g., by caching the mapping file).

Shopfloor Integration of the Proposed Continuous 
Semantic Validation System

The evaluated validation system can be used in multiple 
ways to ensure a high quality and error free production 
system. Depending on the “quality” of the defined rule set, 
multiple scenarios can be implemented. These scenarios are:

•	 Online monitoring of production data streams
•	 Creation of manufacturing firewalls for industrial ser-

vices

Zero Checks: In a real-life scenario, there is the issue 
that the x and y coordinates of a point are not allowed to 
be zero. Therefore, the shapes in lst. 5 define this kind of 
constraint.

ex:Position
a rdfs:Class , sh:NodeShape ;
sh:not [

sh:and (
[

sh:path ex:x ;
sh:node ex:ZeroValue ;

]
[

sh:path ex:y ;
sh:node ex:ZeroValue ;

]
)

] .

ex:ZeroValue
a sh:NodeShape ;
sh:property

[
sh:path qudt:value ;
sh:minInclusive 0 ;
sh:maxInclusive 0 ;
sh:datatype xsd:decimal ;

] .

Listing 5 Sample of shapes that fulfill the constraint that the x and y paths of a position
cannot both have values equal to 0.

We perform time measurements for the above-mentioned 
full mapping scenario from practice, which yield the fol-
lowing results on a 64-bit Windows 10 Intel i7-8650U CPU 
@ 1.90GHz with 32 GB RAM. The experimental mapping 
file contains 18 triples maps that extract up to 24 different 
predicates like constructions of xyz-points or unit assign-
ments. We conduct five runs for differently many input 
files and take measurements via Java’s precise System.
nanoTime() method. The median runtime for 101 ms for 
1 file, 366 for 10 files, and 2196 for 100 files. The standard 
deviation is relatively high (360 / 278 / 830 ms), which we 
explain by Java’s one-time class loading overhead, as the 
first runs always take much longer. Putting these numbers 
in the context of the real-world use-case, the mapping times 
between 22 and 101 ms need to be improved further. That 
is due to the high rate at which SOA messages in the USP 
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Online monitoring of production data streams allows the 
continuous evaluation of the usage of a system. The traffic 
towards the scanning microservice is mirrored to the valida-
tion system and analyzed independently. The original system 
is not disturbed but a monitoring possibility is introduced. 
In case of the laser scanning system violations of specific 
rules can be tracked and counted. These analyses, therefore, 
build the foundation for dashboards or other real-time visu-
alization systems which give the machine operator real-time 
feedback on the state of his process. More advanced systems 
which track the condition of the machine based on sophis-
ticated rules could be implemented since a breach of a rule 
could lead to shorter expected lifetimes of components, for 
instance due to thermal stress.

The creation of manufacturing firewalls for industrial 
services takes the concept of continuous validation one step 
further and blocks request that do not pass the validation 
step. In this scenario every call to a service is analyzed and 
forwarded if succeed, therefore, putting additional require-
ments on the validation software. Especially computing time 
becomes a critical component since it directly influences 
the production speed. The quality of the validation rule set 
should be high to prevent machine stops that are unnecessary 
and, therefore, costly. The defined rules could for example be 
validated on example datasets to avoid false alerts.

The demonstrator discussed in this paper targets espe-
cially the first use-case in which a monitoring system is 
implemented that analyzes data streams with Semantic Web 
technologies regularly.

Conclusion and Future Work

The goal of this work was to handle semantic mismatches 
between services in SOA frameworks. These mismatches 
could occur during the initial set-up of the services or during 
runtime. We fist focused on unit mismatches, as these can 
already lead to critical results in practice during machine 
setup. We proposed LISSU, lightweight Semantic Web Ser-
vices for units, which allows developers specify semantics 
(e.g., units) for their services via URI ontology references. 
In addition to existing syntactic validations, we added an 
initial semantic validation workflow that detects and corrects 
unit mismatches automatically. The correction can be done 
via an automatic unit conversion service that we built on 
top of the QUDT ontology in this work. The workflow was 
then extended to also allow formulating message constraints 
based on SHACL. These constraints built the foundation of 
a continuous semantic validation framework which allows 
the validation of individual messages send to a service. This 
workflow introduced a data lifting process from Protobuf 
messages to RDF.

We demonstrated our approach in a real-world use-case 
based on gRPC in the USP laser domain. Core findings are 
that our approach is backwards-compatible with existing 
gRPC and other SOA solutions, and adds an additional vali-
dation layer based on semantics. We thereby avoid semantic 
mismatches including unit mismatches and guarantee a more 
predictable communication in SOA setups. It is also possible 
to inject continuous semantic monitoring into existing mes-
sage streams which can be formulated by SHACL. We also 
discussed possible integrations of LISSU into real-world 
manufacturing.

There are possibilities to extend our results. The distri-
bution and management of configuration and constraints 
files could be improved. Using external tools would enable 
benefits including easier access to these files with possibly 
even a graphical user interface that assists finding and edit-
ing. Storing these files in databases would, however, require 
an adaption of the implementation regarding data access. 
Another possibility is to inject configurations and constraints 
into microservice orchestration systems like Kubernetes or 
Openshift. Furthermore, the generation of these configura-
tions could be improved. Instead of manually creating the 
semantic configuration files, a generator could guide devel-
opers while creating these, and instantly validate these. Plus, 
one could add additional ontologies in the system, or even 
introduce new domain ontologies to also cover other seman-
tic mismatches besides units. So far, we only utilize unit con-
version capabilities, but current solutions offer more features 
that could be utilized. Finally, a more detailed evaluation of 
our constrained-based validation’s performance with a focus 
on benefits vs. added computation complexity would further 
improve comparability with existing methods.

We conclude that LISSU provides a backwards-compati-
ble semantic extension for SOA frameworks that is based on 
Semantic Web concepts and leads to a more predictable and 
stable communication during setup and runtime.
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