
Vol.:(0123456789)

SN Computer Science (2022) 3:293
https://doi.org/10.1007/s42979-022-01170-5

SN Computer Science

ORIGINAL RESEARCH

LISSU: Continuous Monitoring of SOA Communication
with Constraint‑Based Validation

Johannes Theissen‑Lipp1,4  · Moritz Kröger2 · Benedikt Heinrichs3 · Stefan Decker1,4

Received: 13 January 2022 / Accepted: 19 April 2022 / Published online: 17 May 2022
© The Author(s) 2022

Abstract
Service-oriented architectures (SOA) are becoming more widespread in the context of Industry 4.0, and their interface
descriptions enable modular and scalable communication systems. Since syntactic checks such as data types are solved
nowadays, the purpose of this work is to add semantic validation based on the idea of Semantic Web Services. This paper
proposes Lightweight Semantic Web Services for Units (LISSU) and integrates promising concepts from the Semantic Web
into SOA. We complement existing syntactic checks with semantic ones (e.g. for units), extend one-time initial checks with
continuous monitoring, and include expressive constrain-based validations. LISSU can be integrated into any SOA and
significantly increases the predictability of communications. Before components communicate, it checks their semantics
via ontology URIs and automatically converts units if possible. Continuous monitoring at runtime extracts sent messages
and guarantees flawless data quality via constraint-based validations. A real-world demonstrator setup in the manufacturing
domain proves effectiveness and practicality. We present LISSU, which integrates concepts from the Semantic Web into SOA
setups. It enables a wide range of semantic validations before and during communication, thereby increasing the quality and
predictability of SOA communication.

Keywords  Semantic web services · Data lifting · Service-oriented architecture · Semantic web

Introduction

In the last decades, the Semantic Web [1] has gained much
popularity. Its extension called Semantic Web Services [2],
or SWS in short, captures many types of information for
services, such as data, metadata, properties, capabilities,
interface, and pre- or post-conditions. Researchers proposed
a variety of challenges and solutions related to these goals
especially during its golden age starting around 2007. Most
of the solutions were never properly used in practice because
other challenges had to be solved there first. Service-oriented
architectures (SOA) and its sub-field remote procedure calls
(RPC) are promising application areas for SWS, but had to
tackle issues with connectivity, data availability, and syntax
validation at interfaces during that time. We argue on the one
hand that the SOA research community has overcome most
of these basic challenges and needs semantic information
now. On the other hand, the design of SWS is too complex
and needs to be simplified to be used in practice.

Our previous work [3] focused the area of SWS but in
a smaller scope, aiming for practicable and feasible solu-
tions. We particularly tackled real-world challenges in the

This article is part of the topical collection “Enterprise Information
Systems” guest edited by Michal Smialek, Slimane Hammoudi,
Alexander Brodsky and Joaquim Filipe.

 *	 Johannes Theissen‑Lipp
	 lipp@dbis.rwth-aachen.de

 *	 Moritz Kröger
	 moritz.kroeger@llt.rwth-aachen.de

 *	 Benedikt Heinrichs
	 heinrichs@itc.rwth-aachen.de

 *	 Stefan Decker
	 decker@dbis.rwth-aachen.de

1	 Chair of Information Systems, RWTH Aachen University,
Ahornstraße 55, 52074 Aachen, Germany

2	 Chair for Laser Technology, RWTH Aachen University,
Steinbachstraße 15, 52074 Aachen, Germany

3	 IT Center, RWTH Aachen University, Seffenter Weg 23,
52074 Aachen, Germany

4	 Fraunhofer Institute for Applied Information Technology
FIT, Schloss Birlinghoven 1, 53757 Sankt Augustin,
Germany

https://orcid.org/0000-0002-2639-1949
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01170-5&domain=pdf

	 SN Computer Science (2022) 3:293293  Page 2 of 15

SN Computer Science

engineering domain, where client and server have an a-priori
semantic mismatch (e.g., different units). Since state-of-the-
art solutions were not sufficient, we extended the syntax vali-
dations at service interfaces with machine-readable semantic
ones and thereby made communication more predictable.
We proposed a first version of Lightweight Integration of
Semantic Web Services for Units (LISSU) as a backwards-
compatible extension to RPC frameworks that, in addition
to syntactic details like datatypes, allows configuration of
semantic information including units. This extended valida-
tion workflow detects unit mismatches between client and
server and even corrects these via automatic conversions if
possible. LISSU finally provides an interoperable and con-
sistently predictable communication among components,
which we demonstrated in a real-world setup with machine
components of a laser system.

This paper continuous our research on LISSU and extends
it with novel approaches and implementations that tackle
two newly discovered challenges: First, we found that it
is insufficient to only validate the configurations of client
and server during the initialization phase of communica-
tion, because their actual implementation might misbehave
during runtime. We, therefore, extend our approach to a
continuous monitoring of the actual SOA communication,
which additionally verifies that sent messages comply to an
expected schema. Second, implementations of real-world
use-cases in the field show that LISSU’s basic validation
must be extended to a more sophisticated one, which covers
advanced expressiveness requested by domain experts. This
includes constraints on value ranges, complex datatypes,
cardinalities, cross-attribute relations, and many more. We
overcome this in our current work by expanding LISSU’s
basic URI-based validation with a proper constraint lan-
guage that enables the needed expressiveness.

The remainder of our paper is structured as follows. The
next section gives a motivating example for both seman-
tic mismatch and rule-based validation and lastly defines
our goals. “Related Work” investigates related work with a
special focus on ontologies, SWS, validation and data lift-
ing. “Proposed Approach” presents our base approach and
our two novel additions, namely monitoring a SOA com-
munication stream and using constraint-based validation,
and “Implementation of the Proposed Framework” shows
their implementation. We conduct an evaluation based on
this setup in “Demonstrator Setup” via a demonstrator and
finally conclude in “Conclusion and Future Work” with a
summary of our work and possible future work in this field.

Motivating Example

This section motivates the extension of SOA with semantic
capabilities based on SWS by presenting an example from
ultrashort pulse (USP) laser system development and show-
casing concrete challenges that we tackle in this work. This
work is based on prior work [3] about unit mismatches and
extends the idea of the validation by integrating a stream/
client call validation framework.

Semantic Mismatch (Units)

Within the research project “Internet of Production” [4],
Semantic Web experts and laser experts collaboratively build
a USP laser system based on SOA. This includes to assem-
ble machine parts from different manufacturers and subse-
quently achieve an interoperable communication between
these. The very basic idea of USP could be referred to as
“reverse 3D printing”, which incrementally removes mate-
rial with high amplitude laser pulses to form a final prod-
uct. A USP laser is divided into multiple components such
as scanner, movement system, and camera. Client applica-
tions (e.g., a central controller) call remote services on these
components to configure the laser and execute actions. The
syntax of service calls is validated with the help of Google’s
Protocol Buffers (Protobuf)1, but semantic mismatches are
not detected and, therefore, ignored.

A so-called scanner moves the laser to (x,y) coordi-
nates based on received float values for position.x and
position.y, but the interpretation of the units is left
to the respective implementation of that service. Figure 1
illustrates a dangerous scenario of a component change:
The former scanner hardware and its respective service
interprets position values as millimeter and thus moves the
laser to an x-position of 2 millimeters. A new component
and its respective new service, however, could interpret the
same data value as 2 centimeters and thus move the laser
wrongly or even damage the product. Other examples from

Fig. 1   Unit mismatch during a component swap at a USP laser sys-
tem, which we observed in our previous work on LISSU [3]. The new
server implementation internally uses different units and hence moves
the laser for 2 centimeters instead of 2 millimeters

1  https://​devel​opers.​google.​com/​proto​col-​buffe​rs/.

https://developers.google.com/protocol-buffers/

SN Computer Science (2022) 3:293	 Page 3 of 15  293

SN Computer Science

that use-case are laser heating temperatures (e.g., Celsius vs.
Fahrenheit) or laser speeds (e.g., millimeter per seconds vs.
kilometer per hour).

The details of that real-world motivating example are
the following. The currently existing project uses Google’s
implementation of RPC, called gRPC [5], for communica-
tion in the network. This allows the serialization of data with
Protobuf, a Data Description Language made by Google
[6]. Additionally, the system uses Bazel [7] as the utilized
build tool to manage dependencies, build the source files
and execute the code. The Protobuf files contain syntactical
descriptions for all the relevant service and messages for the
client server communication by strictly defining input and
output parameters of service calls and the data types of these
parameters in so called message definitions. In the process
of utilizing gRPC, these files will then be compiled into new
files in the desired programming language like Python or
Java for the corresponding application, allowing the client
and server to access the definitions made in Protobuf files.
There is currently no way to properly include semantics like
units into these definitions.

Developers in this research project have chosen comments
and variable names in their Protobuf files as temporary solu-
tions so that the units become visible to the reader. However,
this approach is error-prone and not machine-readable. The
above-mentioned motivating examples demonstrates the
need to avoid semantic mismatches by properly defining and
validating units at service interfaces.

Rule‑Based Message Validation

While the detection of semantic mismatches in an industrial
SOA Framework helps to prevent accidental errors when
integrating new machine components into the framework it
does not prevent runtime errors or malicious messages from
being sent to the server. Typically, these errors can be pre-
vented by formulating specific rule sets to validate the mes-
sages. An example of a hard runtime error is a MoveToPosi-
tion message, where the requested position is out of bounds
of the scanner system. Currently the system detects these
errors on the server side since it is physically not possi-
ble to move to that position. These system-specific rules,
therefore, prevent the system from internal damage. While
of course a domain-specific language for formulating these
rules can be advantageous, the definition of softer runtime
errors could hold much more potential. These soft runtime
errors are typically producible but might not be preferable
in a quality sense or long-term maintainability sense. These
rules are very often “cross-platform” and could, therefore,
be applied to multiple services implementing the same inter-
face. Additionally, the formulation of these constraints is
more complex than simple physical boundaries which raises
the need for an expressive constraint language.

In the USP Production domain a typical example for one
of these softer runtime errors would be ablation in the 0/0
Position of the scanner system. In this special point the laser
angle of incidence is perpendicular to the workpiece surface.
Laser light that get positioned on that point can, therefore,
be reflected back inside the optical path of the system and
damage the components due to overheating. [8] Another
soft constraint lies in the combination of the laser power in
Watt and the corresponding movement speed of the laser
beam resulting in the delivered energy per area or short flu-
ence. This constraint typically depends on the material used
in the process since the melting point and the absorption
rate changes. If the fluence is too low the material does not
vaporize. If it is too high the material might rise in tempera-
ture, which leads to thermal deformations [9].

While these errors should be avoided during a USP abla-
tion process, nothing inside the scanner component is limit-
ing this behavior. Including this rule inside of the scanner
microservice would also be disadvantageous since it would
tie the very general component service “scanner system”
which can be used in different manufacturing machines like
Laser Powder Bed Fusion or Battery welding directly to the
USP Process. At the moment these errors are mitigated by
the experience of the machine operator who knows these
rules by experience and, therefore, avoids them during the
design process of the manufactured part and the setup of the
machining process.

Requirements and Goals

The ultimate goal of this work is to overcome semantic
mismatches and flawed messages in SOA frameworks by
integrating Semantic Web components into these. We par-
ticularly aim to extend the existing syntax-only validation to
also cover semantics and units, as well as the validation of
specific message rules. Developers must be able to configure
this information for both clients and servers to make service
calls more predictable and errorfree. These need to auto-
matically validate the given semantic information before ini-
tiating the actual communication. The definition of semantic
message rules should also be extensible during the machine
life cycle to allow further updates and changes depending
on the state of the system (e.g., “material loaded” or “laser
used”). This additional verification must be backwards-com-
patible, because SOA frameworks are usually distributed
systems, and one developer can only modify some of the
services. The message validation should also be injected
during runtime into the process without interfering with the
process itself. For monitoring purposes, a sampling strategy
should be used while a possibility for blocking malformed
messages should also be present. All interactions with the
novel solution must be easily accessible for domain experts,
which are typically non-experts in the Semantic Web. The

	 SN Computer Science (2022) 3:293293  Page 4 of 15

SN Computer Science

manual effort should be minimized by automating as much
as possible, e.g., validation or correction of used units. Fol-
lowing the Semantic Web best practices, we should reuse
as much as possible, for example units from well-known
ontologies. The proposed solution should be field-proven
and easily adoptable to new use-cases.

Related Work

This section investigates and discusses related work in the
areas of ontologies, semantic service descriptions, data lift-
ing and mapping, and constrain-based validation. While the
first two are based on our earlier work [3], the latter two
extend it with completely new aspects.

Relevant Ontologies

A basic representation of units of measurement is already
a big step forward. We argue that this is an optimal trade-
off between semantic value and complexity overhead, and
analyze relevant ontologies on sensors, units, and measures.
Our analysis reuses existing concepts when possible, like
proposed in [10]. We aim for ontology terms that we can
reuse in a modular approach without unwanted side effects
as described in [11]. Table 1 presents the metrics we applied
and the final ranks for all ontologies we analyzed. The met-
rics are the following. Relevance determines how well the
ontology scope matches our work, and coverage rates the
applicability of the ontology’s concepts to our needs. The
metric evaluates available programmatic extensions such as
unit conversions. Flexibility rates how well one can tailor
the concepts from the ontology to specific applications, e.g.,
being able to build custom units with prefixes like “milli”.
Note that this rating is specific to our requirements and
should not be interpreted as a universal ontology rating.

Sensor Ontologies

The article [12] reviews existing sensor data ontologies to
decide if they can be reused for a manufacturing perception
sensor ontology. The outcome of their work is a review and
an ontology. Relevant ontologies mentioned are the Sen-
sor Data Ontology (SDO) [13], which uses the Suggested
Upper Merged Ontology (SUMO) [14], the OntoSensor
ontology [15] and especially the Semantic Sensor Network
(SSN) ontology [16]. The SSN ontology appears promis-
ing for our work and has multiple features: Data discovery
and linking, device discovery and selection, provenance and
diagnosis, and device operation, tasking, and programming
[16]. It allows focusing on sensors, observed data, system,
or feature and property. The SSN ontology describes sensor
networks well but needs to be combined with other ontolo-
gies for describing units, like the ontology Library for Quan-
tity Kinds and Units [17].

Unit Ontologies

The Ontology of Units of Measure (OM) [18, 19] allows
descriptions of units with all their details and relations to
each other and was developed during the development of the
Ontology of Quantitative Research [22]. It is based on exist-
ing standards for units of measure such as [23] and contains
units of measure, prefixes, quantities, measurement scales,
measures, system of units, and dimensions. Any quantities
are defined by a measurement scale, which is a mapping
from categories and points to quantities. Units can then be
further scaled with prefixes, making it easier to represent
values for a base unit. The unit millimetre for example is
defined as a prefixed unit with the unit metre and the prefix
milli. Quantities and units have dimensions and systems of
units for their organization. A system of units defines a set
of base dimensions, which can then be used to express every
other possible dimension as a combination of certain base
units, like the International System of Units [24]. All other
dimensions can then be computed from these base units.

The Quantities, Units, Dimensions, and Types Ontol-
ogy (QUDT) [20] follows a similar approach and modu-
larly builds on multiple ontologies. It covers fewer quantity
kinds and units per application area than OM, but it allows
more flexible conversion multipliers and offsets. The Uni-
fied Code for Units of Measure (UCUM) was published
in [13, 21] covers practically all units used in science and
engineering, while every unit has a unique identifier. It is
possible to validate and convert datatypes via the UCUM
web service https://​ucum.​nlm.​nih.​gov/​ucum-​servi​ce.​html#​
conve​rsion. UCUM unit codes are referenced in the above-
mentioned QUDT ontology and supports these unit conver-
sions. UCUM, however, specifies units and scales less com-
prehensive compared to OM.

Table 1   Evaluation of relevant ontologies based on the requirements
from “Requirements and Goals” with OM and QUDT ranked highest
[3]. The symbols (− / o / +) represent a low / medium / high value of
given metrics, respectively. Please note that this ranking is specific for
our requirements and, therefore, not universal

Ontology Relevance Coverage Features Flexibility

SDO [13] − o − −
OntoSensor [15] − o − −
SSN [16] o + + o
OM [18, 19] + + + o
QUDT [20] + + + +
UCUM [13, 21] + o + o

https://ucum.nlm.nih.gov/ucum-service.html#conversion
https://ucum.nlm.nih.gov/ucum-service.html#conversion

SN Computer Science (2022) 3:293	 Page 5 of 15  293

SN Computer Science

We conclude that many ontologies for units in scientific
applications exist. Following the rating depicted in Table 1,
QUDT and OM are both promising for work due to their
completeness and relevance. QUDT provides a mature
SPARQL Protocol and RDF Query Language (SPARQL)
integration and provides flexibility by linking to OM and
UCUM via additional identifiers within the ontology. OM
provides a more comprehensive structure and has potential
to flexibly adapt to future requirement changes, while the
SSN ontology primarily supports sensors and service calls
instead of units.

Communication and Service Description

SWS [2], their organized peer-to-peer extensions [25], and
similar approaches semantically enrich web services and
provide machine-readable markups. Needed descriptions
can be written in the Web Service Description Language,
which in [26] was extended with Semantic Annotations.
These annotations refer to ontologies and support lifting
and lowering mappings between XML messages. A complex
feature set including information, functional, behavioral,
and non-functional semantics, however, complicates light-
weight application, which we in fact aim for. Our approach
is even more lightweight than the lightweight Semantic Web
Service descriptions proposed in [27] and [28], which are
also available as W3C submission [29], as they still include
functional, non-functional, and behavioral semantics. [30]
introduces a so-called descriptor that adds operation, link,
non-functional, and service descriptions to RESTful services
via an ontology-based approach.

RPCs allow remotely calling services and passing param-
eters [31]. Note that this concept was introduced nearly four
decades ago but has become an active research topic again
recently. Google offers gRPC [5], an open-source high per-
formance RPC framework that has gained a lot of popularity.
Benefits include high scalability, low latency distributed sys-
tems, and developed programming languages support. It is
recommended to use Protobuf to describe the syntax of ser-
vices’ expected inputs and outputs [6]. One concrete exam-
ple is an extension of a closed-source platform for deploy-
ment, integration, and orchestration digital services with
semantic unit information [32]. Proposed features include
data contextualization by enriching data with (semantic)
information facilitating the understanding of the data and
its context.

We summarize that the SWS was a very active research
area between 2001 and around 2008 but lost some of its
drive. We argue that this is mainly due to very ambitious
goals that could not yet be applied in practice. Later devel-
opments based on RPC solved crucial basic problems and,
therefore, the chance to properly combine these research
fields is now.

Constraint‑Based Validation

The concept of validation of entities based on given con-
straints is not a new problem and can be tackled in many
ways. One option for validating data in the widely-used
JSON format is using JSON Schema [33] to define con-
straints for specific key-value pairs. The relevant use-case
here, however, goes beyond the standard constraint valida-
tion with the advent of using specific ontologies for describ-
ing units. Therefore, here a constraint-based validation
method must understand and be able to work in an environ-
ment, which is largely dependent on RDF data.

The Shapes Constraint Language (SHACL) [34] is a W3C
recommendation which fulfills the requirements of being
able to validate RDF data and formulate requirements based
on specific ontologies. It works by describing different con-
cepts as so-called shapes and enabling constraints on the
concepts itself and their properties. We, therefore, conclude
that SHACL is a promising candidate for our task of con-
straint-based validation of our produced data.

Semantic Data Lifting

We understand the term (semantic) data lifting as a syno-
nym to uplifting, which is the process of transforming data
sources into triples in the Resource Description Framework
(RDF) [1]. On the one hand, there is a wide range of data
formats for communication (cf. “Motivating Example”),
which mainly include binary formats and (semi-)structured
ones such as JSON, CSV, or XML. On the other hand, there
are expressive and convenient constraint languages such as
SHACL, which work on RDF. This raises the need for a
mapping from the different data formats to RDF, which we
call data lifting. We evaluate the RDF Mapping Language
(RML) [35, 36] as promising candidate as it allows express-
ing customized mapping rules from heterogeneous data
structures and serializations to RDF. Its reference imple-
mentation RMLMapper is an open-source Java library2 that
execute RML rules via the command line. Please refer to
their tool overview3 for a list of processors, graphical user
interfaces, wrappers, and supportive tools.

Proposed Approach

This section presents our concept to integrate ontology terms
into a microservice-based SOA system to handle unit mis-
matches and continuously validate the retrieved data. That
includes an extended architecture for SOA, novel semantic

2  https://​github.​com/​RMLio/​rmlma​pper-​java.
3  https://​rml.​io/​tools/.

https://github.com/RMLio/rmlmapper-java
https://rml.io/tools/

	 SN Computer Science (2022) 3:293293  Page 6 of 15

SN Computer Science

configurations, and an extended communication workflow.
Our approach is backwards-compatible and enables a mod-
ular system in which programmatic features and semantic
descriptions (e.g., units) can be implemented in parallel.

Figure 2 depicts a current state-of-the-art setup building
on gPRC on the left, which acts as communication technol-
ogy and interface definition, e.g., stored in Protobuf files.
In the baseline setup on the left, a client contacts a server
with a service call, which triggers the server to validate the
call’s syntax and finally execute the service if its checks
were successful. We overcome the lack of semantic valida-
tions presented in the previous sections by extending the
SOA framework, as shown on the right side of Fig. 2. We
add semantic units to both client and server, which link to
ontologies and use ontology URIs to specify units in their
configurations. Our extended pre-communication valida-
tion also includes a semantic check, which compares the
ontology URIs from both communication partners, and only
allow service execution if they match. Finally, the server
is extended by continuous validation of the provided data
based on defined constraints. The following sections present
further details on the architecture and workflow.

Adding Lightweight Semantic Components to SOA
Frameworks

This section explains more details on the components
depicted in Fig. 2, namely the semantic unit configuration,
ontology references, and novel semantic validations. “Ini-
tial Semantic Validation Workow in Detail” then gives even
more details on the initial semantic validation workflow and
“Continuous Semantic Validation Workow in Detail” then
discusses the continuous semantic validation workflow.

As we plan to validate semantic information such as
units between client and server, we add definitions to them,
which map each entry of their interface definitions (e.g.,
gRPC) to respective units in form of ontology terms (URIs).
The semantic units can later compare these URIs and only
initiate communication if they match. Note that different

other cases such as mismatches or partial matches exist.
Our approach in this work uses publicly accessible URIs
as ontology links, but one could easily adapt this design to
custom local unit references, too.

We implement an additional step in the workflow of the
SOA communication, which is illustrated in Fig. 3. A client
initiating a service call first undergoes a semantic check,
which compares the client’s semantic specifications with
the server’s one. The client (1.1) requests validation at the
semantic check service by transmitting its semantic configu-
ration. That service (1.2) polls the respective configuration
from the server, matches these and (1.3) returns a validation
report to the client. The client subsequently interprets this
report, for details please see the next section. If the report
includes issues, the client needs to fix these or abort com-
munication. It can, for instance, (2) contact a unit conver-
sion service to correct unit mismatches. Additionally, (3)
the client starts the actual communication with the server.
Finally, (4) the server requests every n seconds validation of
the currently sent data by a continuous validation service.

Fig. 2   The prior communication
on the left only includes syntac-
tic validation via Protobuf. Our
contribution on the right adds
novel semantic components to
both client and server [3], and
extends the validation workflow

Fig. 3   SOA framework with communication parties named client and
server for easier differentiation, and our augmenting services added
as rounded rectangles. A client contacts up to three semantic services
to make the subsequent communication more predictable. We par-
ticularly extend our previous work [3] with step four

SN Computer Science (2022) 3:293	 Page 7 of 15  293

SN Computer Science

Initial Semantic Validation Workflow in Detail

A client receives a validation report from the semantic check
service while preparing communication. Depending on that
report, one or more of the following four actions can be
required at the client, as illustrated in Fig. 4:

•	 Client configuration incomplete: The provided configura-
tion is missing properties required from the server. The
client must correct it by adding missing definitions, usu-
ally manually.

•	 Unit dimension mismatch: Correct the dimensions and
units used, and try again. Hard mismatch, e.g., speed in
m/s used but temperature in Celsius expected. Usually
fix manually.

•	 Unit mismatch: Used the correct dimension but the
wrong unit, e.g., m/s instead of km/h. Use our proposed
unit conversion service to automatically convert units.

•	 All semantics match: Start the communication.

This workflow detects all relevant possible issues w.r.t.
semantic mismatches. While fatal issues such as incomplete
configurations or dimension mismatches usually need to be
solved manually, we can automatically resolve unit mis-
matches within the correct dimensions.

Continuous Semantic Validation Workflow in Detail

As illustrated in Fig. 5, a server sends a part of the continu-
ously read data stream to the continuous validation service
every n seconds. Since the targeted validation languages do

not support the native SOA format, the data must be trans-
formed by first representing it in a non-binary format and
then lifting it to a semantic representation. This semantic
representation can then be validated, and it is checked if the
defined constraints are fulfilled. The approach proposes a
handler implementation for when this is not the case, which
can be represented by a logging action, for example.

Implementation of the Proposed Framework

In this section, we demonstrate our realization of the con-
cept presented above. This includes justifying a selection of
concrete tools based on our requirements. We then present
in detail the implementation and evolution of two services
from [3] and two novel aspects: First, an initial semantic
validation service including a method to specify semantics at
both client and server. Second, a unit conversion service that
allows automatic correction for unit mismatches that only
reside in the same dimension. Third, a continuous semantic
validation service including a method to validate streaming
data against given requirements after lifting heterogeneous
(semi-)structured data. Finally, we suggest a user interaction
and workflow with the new system.

Tool Selection Based on Requirements

As discussed in previous sections, there are multiple ontolo-
gies, data description formats, and additional software avail-
able. For our realization, we choose the following tools.
We use Protocol Buffer and gRPC to model the interface

Fig. 4   Activity diagram of our proposed initial semantic validation workflow, which detects and recovers from semantic mismatches to finally
establish a predictable communication [3]. Empty rhombuses merge alternative paths

Fig. 5   Proposed continuous
semantic validation workflow,
which checks every n seconds
whether the data stream con-
tains valid data

	 SN Computer Science (2022) 3:293293  Page 8 of 15

SN Computer Science

of services syntactically, and introduce semantic descrip-
tions (e.g., for units) via additional JSON files stored at the
client and server. Reasons for choosing JSON include its
high expressiveness and increased human readability, plus
its easy integration into many programming languages. We
integrate Bazel to automate building and testing of these
descriptions.

We select QUDT as the main ontology for the semantic
representation of the units of measure, while keeping the
support for OM. We do not require SSN or any of the other
ontologies in our current use-case, since QUDT and OM
already cover all necessary concepts. However, the seman-
tic descriptions do link to additional ontologies for certain
types of data, for example the representation of a UNIX
timestamp. We chose QUDT, because it satisfies all relevant
units of measure we need and offers a good support for unit
conversions via SPARQL queries. This can be done using
the Python library rdflib [37] or via other programming lan-
guages like Java or Go.

We use the JSON data format to export SOA messages
from Protobuf. We choose RML to formulate data mappings
to RDF, and use its reference implementation RMLMap-
per as Java library (cf. “Semantic Data Lifting”) to execute
these. Its command-line usage makes integration easy and
modular. Automatic validation of generated RDF files can
be achieved by any SHACL validator.

Adding a Semantic Service to Real‑World Systems

This section introduces implementation details about the
semantic check. The main idea is it to write client applica-
tions with the semantic check in mind. The client establishes
a connection to the semantic server before it connects to the
server it actually plans to communicate with. The semantic
check receives the client’s configuration together with the
service call and then loads the server configuration file from
the respective server. All the above-mentioned service calls
and message types are defined through proto files while the
client and server configuration can be found in JSON files.

The configuration of client and server have both the same
unique format consisting of different levels. These levels
can be seen in lst. 1. The first level is the name of the proto
file which is being considered, an example for this would be
scannerservice. The next level within the scanner service is
then the name of the message. So far everything is structured
like the corresponding proto file. The next and final level
covers the variables within a message type with the variable
values being URIs linking to the according ontology and
describing the unit of measure belonging to that specific var-
iable. In case of OM this would be the URI om:millimetre.
In case of QUDT, however, we use qudt:MilliM, since this
is the unique identifier within the Resource Description
Framework (RDF) graph of QUDT and hence can be used
for SPARQL queries to access more details about that spe-
cific unit.

We validate all relevant fields in the configuration files
of the server and the client against each other and build our
response to the client accordingly. We include a new proto
file into the system for each implemented semantic capabil-
ity, including the semantic check and the later explained unit
conversion. The semantic check is a gRPC call and requires
the contents of the config file as a string as input and then
returns a response message consisting of multiple parts: A
server response with the results of the check in form of a
Boolean, a detailed description of what exactly went wrong
in form of a string, and additional lists containing the pre-
viously assigned units and the desired correct units by the
server.

Implementing a Unit Conversion Service

If the response of the semantic check includes a non-empty
conversion list, the client proceeds by calling the unit con-
version service. We implement the conversion service with
QUDT units by querying the ontology to extract various
properties of the units which were stored in the configuration
files. While libraries offering unit conversion functionalities
for OM are only available for Java and Python, we can query
data directly from QUDT via SPARQL with many more
programming languages, providing even more flexibility.

{
"scannerservice": {

"Position": {
"x": "qudt:MilliM",
"y": "qudt:MilliM"

},
"Time": {

"timestamp": "wiki:Q14654"
}

}
}

Listing 1 Sample of a server configuration that adds semantic information via ontology
URIs to Wikidata and QUDT, which we shortened to improve readability [3].

SN Computer Science (2022) 3:293	 Page 9 of 15  293

SN Computer Science

While the semantic check service only links to the uti-
lized ontologies, the new unit conversion service extensively
uses QUDT’s structure. We know from the related work
section that QUDT uses multiple concepts for the informa-
tion it provides. For the unit conversion, the conversion-
Multiplier as well as the conversionOffset form the most
important properties. A unit can only be converted from a
specific source unit to a destination unit if the dimensions
are the same. SI base units are used for the dimensions, like
in OM. Especially the dimension property is valuable, by
providing a mean to determine the base unit or to determine
if we are dealing with a measure or scale. This ensures that
conversions are both syntactically and semantically correct
and avoids, for example, conversions from pounds (force)
to kilograms (mass).

The unit conversion service takes as its input the lists that
were returned with the semantic checks output. This includes
for each list entry its identifiers, the source to convert from,
and the destination to convert to. Additionally, the client
sends its initial values for these variables. The query extracts
the multiplier and offset of the previously assigned unit to its
corresponding base, converts the value to the base unit and
then converts the value from the base unit to the unit desired
by the server. The conversion service finally returns the same
input it got previously back to the client but this time with
the converted values. The client can then proceed to a new
semantic check or start the communication with the server.

Monitoring the Data Stream with a Continuous
Validation Service

The server calls the continuous validation service every n
seconds (can be freely configured). We implement the vali-
dation service by first proceeding with a conversion from the
binary data to a JSON format. This is necessary so that in the
next step, the data lifting can make the data readable for the
validation step by semantically enriching it. The validation
step then takes this data and checks the requirements. Based
on the result, the error is pushed forward to an implemented
handler, or the service returns positively. In the following,
the data lifting and constraint-based validation are discussed
in more detail.

Data Lifting

The data lifting in our scenario needs to transform Pro-
tobuf messages to RDF so that they can be validated via
SHACL. Protobuf’s built-in JsonFormatter4 is capable of
exporting Protobuf messages to JSON. Since the RMLMap-
per (cf. “Semantic Data Lifting”) supports JSON input files,

we apply it for our needs. A set of RML rules defines the
respective mappings from the Protobuf messages to RDF,
including valuable details about their unique identifiers (e.g.,
for units), properties, and structure. Note that one only needs
to create an RML rule file once and then can apply it to
every message from a given data stream. We integrate the
RMLMapper into via command-line calls to automatically
generate respective RDF files, which we then use for valida-
tion. An explicit call could look like java -jar rml-
mapper.jar -s turtle -m mapping.ttl -o
output.ttl, or one programmatically calls the respective
method from a Java program using the same arguments.

Constraint‑Based Validation

The constraint-based validation is set up by first establishing
SHACL shapes, which describe the necessary requirements.
These requirements can range and include the targeted
QUDT unit quantity kinds like length for meter or kilom-
eter and specific requirements for the values like ranges or
filters but are not limited by that. In the validation step, the
RDF data produced by the data lifting are combined with the
QUDT ontology as a data graph and then validated against
the described SHACL shapes. Such a validation method is
present in many programming languages like Java, JavaS-
cript, .NET or Python and can be, therefore, domain inde-
pendent. On error, an implementable handler is called which
in a simple case can just trigger a logging action for tracking
the data quality but is not limited to that and could further-
more act as a firewall for stopping erroneous clients.

User Interaction and Workflow

Adding these new services adds a certain workflow to the
system, when designing and implementing new applications.
First, the system needs a server configuration for each server
that is running available and on top of that every client that is
being added to the system needs its own client configuration
file. Whenever someone implements a new client, they also
need to fill out their configuration file and have a section in
their code where they load their own configuration and call
the semantic check service with it. The normal client func-
tionality is then be executed afterwards if no mismatches
occurred. If there were errors, however, the client aborts
communication and a developer needs to manually adjust the
configuration file and its values based on the respective error
message. Since our error messages show precise details, it
is easy to track down the error and correct it accordingly.
This process can be repeated until there are no errors or
mismatches left. Since all errors are shown immediately all
mismatches can be removed in one iteration.

4  https://​devel​opers.​google.​com/​proto​col-​buffe​rs/​docs/​proto3#​json.

https://developers.google.com/protocol-buffers/docs/proto3#json

	 SN Computer Science (2022) 3:293293  Page 10 of 15

SN Computer Science

Demonstrator Setup

This section evaluates the differences to the previous state
of the system after including the semantic components,
the practical usability of the extended architecture, and its
performance in form of a technical evaluation of the tools
we used. The benefits will be explained on demo scenarios,
showing the system’s behavior before and after including
semantic components. We finish this section with a conclu-
sion regarding the benefits of semantically enriching such
systems in general.

Implementation Evaluation

Above, we specified multiple requirements for extending
SOA systems. The semantic description of utilized data was
taken care of using ontologies like QUDT and linking to
them in the configuration files. QUDT and OM sufficiently
cover the support for units of measure. The only excep-
tion here are abstract values, for example the time values
utilizing the UNIX stamp instead of regular time measure-
ment. Hence, the first two points are already covered by the
inclusion of the configuration files. The unit conversion is
taken care of by adding the unit conversion service utilizing
SPARQL queries on QUDT to the USP system. The new
unit conversion service allows the conversion of units as
long as source and destination are both in the same dimen-
sion. Table 2 shows the information that can be found for
every variable after the inclusion of the semantic capabili-
ties. The unit of the position values being millimeter can
now be seen within the system.

In addition to these points, the human understanding of
the system is also increased. Someone with access to the
code will be able to much easier understand certain vari-
ables just by inspecting their definition, since everything is
linked to a semantic description within an ontology. While
this could have been covered in comments already, an ontol-
ogy provides much more in-depth knowledge about certain
concepts and even descriptive comments within the ontology
and additional links to other concepts or even full ontolo-
gies. To conclude we can state that the above-mentioned
requirements are fully satisfied by our implementation.

On the technical side of the implementation, however,
there are consequences of our approach. A general first con-
sequence of including semantics is the increase in data size
that must be dealt with and slower processing time. Semantic
data are included in text form and contains more data than
just telling the system that a variable has a certain data type.
A variable temperature does not just have a value such as 45
and the assigned datatype anymore but instead a link to an
ontology in form of an URI, stored in multiple configuration
files containing information about all the important variables
across the system. The distribution and management of these
configuration files, however, has still room for improvement
as mentioned in the previous sections and can still change in
the future. Even in the current form, however, the difference
in execution time and used space is barely noticeable. Que-
rying the ontology takes up most of the additional time and
can be improved by adjusting the ontology to just our needs
in the future. One final aspect of our technical evaluation is
backwards-compatibility. Since the usage of the services for
the semantic capabilities is not strictly required, one can still
develop applications without using any semantic services.

Demonstrating Semantic Functionalities in Demo
Scenarios

In the following, the results of applying the semantic func-
tionalities in demo scenarios are presented in the context
of the initial and continuous semantic validation workflow.

Initial Semantic Validation Workflow

The advantages of the extended system with the semantics
can be emphasized if we directly compare the previous state
of the system with the new one by creating and executing
a client application with the old standard and one with the
new workflow of going through a semantic check followed
by an automatic unit conversion. For this reason, we create
three client applications for a demonstration of the system
capabilities. All three applications have the same goal of
accessing the scanner service to call the JumpToPosition
function, which orders the scanner to move the laser beam
to the specified location on the scan field. For this purpose,
the service takes a position argument consisting of x and y
variables as input and returns the completion time when the
execution of the service is finished. The existing server now
has different understandings for the two components of this
communication. The first component is the position argu-
ment with its two values having the unit millimetre, while the
returned completion time is given in UNIX stamp. While all
three applications eventually do exactly this, their behavior
prior to the actual communication differs indeed.

Scenarios 1 and 2: Only syntax defined: The first
and second demo applications immediately connect to the

Table 2   Real-world variables with their corresponding units in ontol-
ogies [3]

Variable name Type Unit of measure

preheatingTemp double qudt:DEG_C
laserSpeed float qudt:MilliM-PER-SEC
position.x/y float qudt:MilliM
shotTime int64 wiki:Q14654

SN Computer Science (2022) 3:293	 Page 11 of 15  293

SN Computer Science

scanner server and request the JumpToPosition service. The
syntactic side is taken care of because of the strict definitions
of the variables in the proto files but for any kind of semantic
information the client must assume that the server uses the
same specifications. In our demo scenario the client sends
values with the knowledge of them being in centimetre and
this then results in the server still interpreting it as a milli-
metre value and hence, moving the laser beam by a smaller
amount than the user wanted.

Scenario 3: Syntax + matching semantics: The sec-
ond application now uses our semantic components. This
means the developer of the client application also provides
a configuration file with their understanding of the variable
semantic, which explicitly states their understanding of the
positional arguments being understood as centimetre on the
client side. Since now the first thing the client does is con-
necting to the semantic server and making a service call for
the semantic check service, the difference in the semantic
understanding will be spotted and the client notified to fix
this. However, since the problem here is a positional argu-
ment, taking a length unit, we identify this specific problem
within the configuration file as a problem that can be solved
with the unit conversion service and hence, proceed by call-
ing it with the position arguments as values to convert and
then proceed with the communication to the scanner with
the converted value. In this scenario, we did not just catch
the error but instead also corrected it and proceeded with the
execution of the initial goal without any problems. In this
ideal scenario, the developer of the client application does
not need much knowledge of the server-side semantics him-
self, instead they can just program their client by following
the workflow proposed in the previous section.

Scenario 4: Syntax + mismatching semantics: The
third scenario is created by a client application using the
semantic components but with an incomplete client configu-
ration file. Even in such a case the semantic check provides
its advantages by telling the user what exactly is wrong with
their configuration and what is missing, while the first case
would not even realize the error and just proceed with the
faulty values and cause a more vital error during the execu-
tion on the hardware, resulting in an error in the production.

Table 3 compares the different scenarios based on the
standards of the system. The first and second are the previ-
ous state of the system where only the syntax was taken
care of, and still work in every scenario, since our imple-
mentation does not change the Protobuf base of the system.
However, we improve feedback by warning the user that only
the syntax is validated, but there is no semantic information
to validate. The third represents configurations where the
system must check for both syntactic and semantic compat-
ibility of client and server before initiating a communication.
In the first case, we cannot give any information on this
and start the communication with a risk of errors caused
by a misunderstanding of the system semantics, while the
second case manages to identify these semantics as correct
and initiate the communication. The third case does give us
information by identifying the semantics in the system as
wrong and blocking the communication. The system should
only initiate a client-server communication when they have
a mutual understanding of the system. The results are here
the same as in our approach, further proving the advantages
of our implementation.

The semantic component mainly plays a role during two
critical scenarios. The first one is when a newly written cli-
ent application is introduced into the system. The developer
of the application might have insufficient knowledge of the
system, resulting in an incomplete configuration file or the
usage of the wrong units for the arguments within the code.
The semantic check would identify this and notify the devel-
oper. The second and more common scenario is a changed
hardware component within the system. The complications
of this were already explained with an example in the intro-
duction section of this work. If we change the hardware of
the scanner, we might have to write a new server code using
a different server semantic, suiting the new hardware. A
client code specifically written for the old server with no
semantics included like our first demo application would
fail in such a scenario but the second and third application
would in the worst case at least catch the error and notify the
user that something is wrong, and that the client must update
its definition to satisfy the new system requirements coming
with the new hardware.

To conclude this part of the evaluation, LISSU auto-
matically avoids and corrects unit mismatches, and, there-
fore, leads to a more predictable communication in a SOA
framework. Its backwards-compatibility allows a flexible
integration even into large existing systems. Unclear cases,
where only syntax but no semantic is defined, yield a warn-
ing but still operate. LISSU reports semantic mismatches
between client and server to the calling client and prevents
communication if needed. Although LISSU is completely
backwards-compatible, we recommend applying it to all
components of a SOA system to improve overall commu-
nication predictability.

Table 3   The scenarios compared to each other based on different
standards for the communication in the system [3]. Especially note
scenario 4 where LISSU prevents erroneous communication

Bold values indicate improvements of LISSU compared to the base-
line

Scenario Expected Baseline LISSU

1 (y / -) warn comm. warn
2 (n / -) block block block
3 (y / y) comm. comm. comm.
4 (y / n) block comm. block

	 SN Computer Science (2022) 3:293293  Page 12 of 15

SN Computer Science

Continuous Semantic Validation Workflow

The continuous semantic validation workflow first converts
the binary format into a non-binary form for making the
lifting possible. The resulting JSON file has a format which
can be seen in lst. 2 and contains especially the points and
the marking parameters, which all are implicitly defined as
certain units. The mapping approach, therefore, accounts for
the client configuration and implicit knowledge for lifting
the JSON data to semantic data.

Finally, the validation part is evaluated, and the advan-
tages of a continuous semantic validation workflow are
shown. For this, we inspect different requirements provided
by the use-case and evaluate if these are validated properly:

{
"workPlanes": [

{
"vectorBlocks": [

{
"hatches3d": {

"points": [
0.585648,
0.648475,
-0.05

]
},
"markingParamsKey": 1

}
],
"numBlocks": 1

}
],
"jobMetaData": {

"jobName": "Batsymbol_2mm"
},
"markingParamsMap": {

"0": {},
"1": {

"laserSpeedInMmPerS": 100.0,
"jumpSpeedInMmS": 1000.0,
"jumpDelayInUs": 100.0,
"laserOffDelayInUs": 100.0,
"laserOnDelayInUs": 100.0

}
},
"numWorkPlanes": 1

}

Listing 2 Sample of non-binary JSON data produced by our extraction.

A simple Java program based on the RMLMapper maps
the non-binary JSON data using an RML definition, which
is shown in lst. 3. The part shown is the mapping of the
points which are mapped into x, y and z coordinates and are
assigned the unit of millimeter in QUDT. The value itself
is furthermore defined in QUDT as well, completing the
lifting of the points. The other parts of the JSON are lifted
in similar manner.

:PointMap a rr:TriplesMap;
rml:logicalSource :PointSource;
rr:subjectMap [rr:class :Point; rr:termType rr:BlankNode];
rr:predicateObjectMap

[rr:predicate ex:x; rr:objectMap [rr:parentTriplesMap :PointXMap]],
[rr:predicate ex:y; rr:objectMap [rr:parentTriplesMap :PointYMap]],
[rr:predicate ex:z; rr:objectMap [rr:parentTriplesMap :PointZMap]].

:PointXMap a rr:TriplesMap;
rml:logicalSource :PointSource;
rr:subjectMap [rr:class qudt:Quantity; rr:termType rr:BlankNode];
rr:predicateObjectMap

[rr:predicate qudt:unit; rr:object unit:MilliM],
[rr:predicate qudt:value; rr:objectMap [rml:reference "x"; rr:datatype xsd:decimal]].

Listing 3 Example excerpt of an RML mapping definition for lifting JSON data to RDF.

Value Ranges: It is useful to compare the value ranges of
the provided data points. This is, therefore, described in lst.
4 as SHACL shapes and aims for a value range of -10 to 10.

SN Computer Science (2022) 3:293	 Page 13 of 15  293

SN Computer Science

ex:Position
a rdfs:Class , sh:NodeShape ;
sh:property

[
sh:path ex:x ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:node ex:XMeterQuantity ;

] .

ex:XMeterQuantity
a sh:NodeShape ;
Additionally references to quantitykind :Length
sh:property

[
sh:path qudt:value ;
sh:minExclusive -10 ;
sh:maxExclusive 10 ;
sh:datatype xsd:decimal ;

] .

Listing 4 Sample of shapes defining the constraint that x-values of positions must be
within -10 and 10. Note that SHACL can model complex constraints including logical
operators and cross-attribute relations, too.

use-case occur: JumpToPosition often occur at 1–100 Hz,
but special products with many partial commands get over 1
kHz. Sensor reads possibly send around 100–300 Hz, while
camera images and other sensors can even reach multiple
kHz. We conclude from there time measurements that our

current approach with periodic sampling is well-suited, but
also hint that these execution times can be tuned in future
work (e.g., by caching the mapping file).

Shopfloor Integration of the Proposed Continuous
Semantic Validation System

The evaluated validation system can be used in multiple
ways to ensure a high quality and error free production
system. Depending on the “quality” of the defined rule set,
multiple scenarios can be implemented. These scenarios are:

•	 Online monitoring of production data streams
•	 Creation of manufacturing firewalls for industrial ser-

vices

Zero Checks: In a real-life scenario, there is the issue
that the x and y coordinates of a point are not allowed to
be zero. Therefore, the shapes in lst. 5 define this kind of
constraint.

ex:Position
a rdfs:Class , sh:NodeShape ;
sh:not [

sh:and (
[

sh:path ex:x ;
sh:node ex:ZeroValue ;

]
[

sh:path ex:y ;
sh:node ex:ZeroValue ;

]
)

] .

ex:ZeroValue
a sh:NodeShape ;
sh:property

[
sh:path qudt:value ;
sh:minInclusive 0 ;
sh:maxInclusive 0 ;
sh:datatype xsd:decimal ;

] .

Listing 5 Sample of shapes that fulfill the constraint that the x and y paths of a position
cannot both have values equal to 0.

We perform time measurements for the above-mentioned
full mapping scenario from practice, which yield the fol-
lowing results on a 64-bit Windows 10 Intel i7-8650U CPU
@ 1.90GHz with 32 GB RAM. The experimental mapping
file contains 18 triples maps that extract up to 24 different
predicates like constructions of xyz-points or unit assign-
ments. We conduct five runs for differently many input
files and take measurements via Java’s precise System.
nanoTime() method. The median runtime for 101 ms for
1 file, 366 for 10 files, and 2196 for 100 files. The standard
deviation is relatively high (360 / 278 / 830 ms), which we
explain by Java’s one-time class loading overhead, as the
first runs always take much longer. Putting these numbers
in the context of the real-world use-case, the mapping times
between 22 and 101 ms need to be improved further. That
is due to the high rate at which SOA messages in the USP

	 SN Computer Science (2022) 3:293293  Page 14 of 15

SN Computer Science

Online monitoring of production data streams allows the
continuous evaluation of the usage of a system. The traffic
towards the scanning microservice is mirrored to the valida-
tion system and analyzed independently. The original system
is not disturbed but a monitoring possibility is introduced.
In case of the laser scanning system violations of specific
rules can be tracked and counted. These analyses, therefore,
build the foundation for dashboards or other real-time visu-
alization systems which give the machine operator real-time
feedback on the state of his process. More advanced systems
which track the condition of the machine based on sophis-
ticated rules could be implemented since a breach of a rule
could lead to shorter expected lifetimes of components, for
instance due to thermal stress.

The creation of manufacturing firewalls for industrial
services takes the concept of continuous validation one step
further and blocks request that do not pass the validation
step. In this scenario every call to a service is analyzed and
forwarded if succeed, therefore, putting additional require-
ments on the validation software. Especially computing time
becomes a critical component since it directly influences
the production speed. The quality of the validation rule set
should be high to prevent machine stops that are unnecessary
and, therefore, costly. The defined rules could for example be
validated on example datasets to avoid false alerts.

The demonstrator discussed in this paper targets espe-
cially the first use-case in which a monitoring system is
implemented that analyzes data streams with Semantic Web
technologies regularly.

Conclusion and Future Work

The goal of this work was to handle semantic mismatches
between services in SOA frameworks. These mismatches
could occur during the initial set-up of the services or during
runtime. We fist focused on unit mismatches, as these can
already lead to critical results in practice during machine
setup. We proposed LISSU, lightweight Semantic Web Ser-
vices for units, which allows developers specify semantics
(e.g., units) for their services via URI ontology references.
In addition to existing syntactic validations, we added an
initial semantic validation workflow that detects and corrects
unit mismatches automatically. The correction can be done
via an automatic unit conversion service that we built on
top of the QUDT ontology in this work. The workflow was
then extended to also allow formulating message constraints
based on SHACL. These constraints built the foundation of
a continuous semantic validation framework which allows
the validation of individual messages send to a service. This
workflow introduced a data lifting process from Protobuf
messages to RDF.

We demonstrated our approach in a real-world use-case
based on gRPC in the USP laser domain. Core findings are
that our approach is backwards-compatible with existing
gRPC and other SOA solutions, and adds an additional vali-
dation layer based on semantics. We thereby avoid semantic
mismatches including unit mismatches and guarantee a more
predictable communication in SOA setups. It is also possible
to inject continuous semantic monitoring into existing mes-
sage streams which can be formulated by SHACL. We also
discussed possible integrations of LISSU into real-world
manufacturing.

There are possibilities to extend our results. The distri-
bution and management of configuration and constraints
files could be improved. Using external tools would enable
benefits including easier access to these files with possibly
even a graphical user interface that assists finding and edit-
ing. Storing these files in databases would, however, require
an adaption of the implementation regarding data access.
Another possibility is to inject configurations and constraints
into microservice orchestration systems like Kubernetes or
Openshift. Furthermore, the generation of these configura-
tions could be improved. Instead of manually creating the
semantic configuration files, a generator could guide devel-
opers while creating these, and instantly validate these. Plus,
one could add additional ontologies in the system, or even
introduce new domain ontologies to also cover other seman-
tic mismatches besides units. So far, we only utilize unit con-
version capabilities, but current solutions offer more features
that could be utilized. Finally, a more detailed evaluation of
our constrained-based validation’s performance with a focus
on benefits vs. added computation complexity would further
improve comparability with existing methods.

We conclude that LISSU provides a backwards-compati-
ble semantic extension for SOA frameworks that is based on
Semantic Web concepts and leads to a more predictable and
stable communication during setup and runtime.

Funding  Open Access funding enabled and organized by Projekt
DEAL. This study was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy – EXC-2023 Internet of Production – 390621612.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/

SN Computer Science (2022) 3:293	 Page 15 of 15  293

SN Computer Science

References

	 1.	 Berners-Lee T, Hendler J, Lassila O. The Semantic Web. Sci Am.
2001;284(5):34–43.

	 2.	 McIlraith SA, Son TC, Zeng H. Semantic web services. IEEE
Intell Syst. 2001;16(2):46–53.

	 3.	 Lipp J, Sakik S, Kröger M, Decker S. LISSU: Integrating
Semantic Web Concepts into SOA Frameworks. In: Pro-
ceedings of the 23rd International Conference on Enterprise
Information Systems - Volume 1: ICEIS, 2021; pp. 855–865.
10.5220/0010481408550865. INSTICC.

	 4.	 Pennekamp J, Glebke R, Henze M, Meisen T, Quix C, Hai R,
Gleim L, Niemietz P, Rudack M, Knape S, et al. Towards an
Infrastructure Enabling the Internet of Production. In: 2019 IEEE
International Conference on Industrial Cyber Physical Systems
(ICPS), 2019; pp. 31–37. IEEE.

	 5.	 Google: gRPC. https://​grpc.​io/ 2016.
	 6.	 Google: Protocol Buffers. https://​devel​opers.​google.​com/​proto​

col-​buffe​rs/ 2015.
	 7.	 Google: Bazel. https://​bazel.​build/ 2015.
	 8.	 Toesko G, Dehnert C. Femtosecond laser optics combat pulse

dispersion, color errors, and reflections. Pulse 1, 0 2016.
	 9.	 Byskov-Nielsen J, Savolainen J-M, Christensen MS, Ball-

ing P. Ultra-short pulse laser ablation of metals: threshold flu-
ence, incubation coefficient and ablation rates. Appl Phys A.
2010;101(1):97–101.

	10.	 Gyrard A, Serrano M, Atemezing GA. Semantic Web Methodolo-
gies, Best Practices and Ontology Engineering Applied to Internet
of Things. In: 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), 2015; pp. 412–417

	11.	 Lipp J, Gleim L, Decker S. Towards reusability in the seman-
tic web: decoupling naming, validation, and reasoning. In: 11th
Workshop on Ontology Design and Patterns (WOP2020) Co-
located with 19th International Semantic Web Conference (ISWC
2020), Virtual Conference, 2020; November 01–06, 2020.

	12.	 Schlenoff C, Hong T, Liu C, Eastman R, Foufou S. A literature
review of sensor ontologies for manufacturing applications, 2013;
pp. 96–101. https://​doi.​org/​10.​1109/​ROSE.​2013.​66984​25.

	13.	 Eid M, Liscano R, El Saddik A. A universal ontology for sensor
networks data. In: 2007 IEEE International Conference on Com-
putational Intelligence for Measurement Systems and Applica-
tions, 2007; pp. 59–62.

	14.	 Niles I, Pease A. Towards a standard upper ontology. In: Pro-
ceedings of the International Conference on Formal Ontology in
Information Systems-Vol. 2001, 2001; pp. 2–9.

	15.	 Russomanno DJ, Kothari C, Thomas O. Sensor ontologies: from
shallow to deep models. In: Proceedings of the Thirty-Seventh
Southeastern Symposium on System Theory, 2005. SSST’05.,
2005; pp. 107–112. IEEE.

	16.	 Compton M, Barnaghi P, Bermudez L, García-Castro R, Corcho
O, Cox S, Graybeal J, Hauswirth M, Henson C, Herzog A, et al.
The SSN ontology of the W3C semantic sensor network incubator
group. J Web Semant. 2012;17:25–32.

	17.	 de Koning HP. Library for quantity kinds and units: schema, based
on QUDV model OMG SysML(TM), Version 1.2. https://​www.​
w3.​org/​2005/​Incub​ator/​ssn/​ssnx/​qu/​qu 2005.

	18.	 Rijgersberg H, Wigham MLI, Top J. How semantics can improve
engineering processes: a case of units of measure and quantities.

Adv Eng Info. 2011;25:276–87. https://​doi.​org/​10.​1016/j.​aei.​
2010.​07.​008.

	19.	 Rijgersberg H, van Assem M, Top J. Ontology of units of measure
and related concepts. Semant Web. 2013;4(1):3–13.

	20.	 QUDT: QUDT. http://​www.​qudt.​org/ 2014.
	21.	 Schadow G, McDonald CJ. The unified code for units of measure.

Regenstrief Institute and UCUM Organization: Indianapolis, IN,
USA; 2009.

	22.	 Rijgersberg H, Top J, Meinders MBJ. Semantic support for quan-
titative research processes. IEEE Intell Syst. 2009;24(1):37–46.
https://​doi.​org/​10.​1109/​MIS.​2009.​17.

	23.	 Taylor B. Guide for the use of the International System of Units
(SI): The Metric System, 1995; DIANE Publishing.

	24.	 Thompson A, Taylor BN. Guide for the Use of the International
System of Units (SI). National Institute of Standards and Technol-
ogy: Technical report; 2008.

	25.	 Schlosser M, Sintek M, Decker S, Nejdl W. A scalable and
ontology-based P2P infrastructure for semantic web services. In:
Proceedings. Second International Conference on Peer-to-Peer
Computing, 2002; pp. 104–111. IEEE.

	26.	 Kopeckỳ J, Vitvar T, Bournez C, Farrell J. SAWSDL: semantic
annotations for WSDL and XML schema. IEEE Internet Comput.
2007;11(6):60–7.

	27.	 Fensel D, Facca FM, Simperl E, Toma I. Lightweight semantic
web service descriptions, pp. 279–295. Springer, Berlin, Heidel-
berg; 2011. https://​doi.​org/​10.​1007/​978-3-​642-​19193-0_​12.

	28.	 Roman D, Kopeckỳ J, Vitvar T, Domingue J, Fensel D. WSMO-
Lite and hRESTS: lightweight semantic annotations for Web ser-
vices and RESTful APIs. J Web Semant. 2015;31:39–58.

	29.	 Fensel D, Fischer F, Kopeckỳ J, Krummenacher R, Lambert D,
Vitvar T. WSMO-Lite: lightweight semantic descriptions for ser-
vices on the Web. W3C Member Submission August 2010.

	30.	 Bennara M. Linked service integration on the semantic web. PhD
thesis, Université de Lyon; 2019.

	31.	 Birrell AD, Nelson BJ. Implementing remote procedure calls.
ACM Trans Comput Syst. 1984;2(1):39–59. https://​doi.​org/​10.​
1145/​2080.​357392.

	32.	 Martín-Recuerda F, Walther D, Eisinger S, Moore G, Andersen
P, Opdahl PO, Hella L Revisiting Ontologies of Units of Measure
for Harmonising Quantity Values–A Use Case. In: International
Semantic Web Conference, Springer; 2020, pp. 551–567.

	33.	 JSON Schema: JSON Schema. https://​json-​schema.​org/ 2022
	34.	 Kontokostas D, Knublauch H. Shapes constraint language

(SHACL). W3C recommendation, W3C July 2017. https://​www.​
w3.​org/​TR/​2017/​REC-​shacl-​20170​720/

	35.	 Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens
E, Van de Walle R. RML: a generic language for integrated RDF
mappings of heterogeneous data. In: Ldow 2014.

	36.	 Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens E,
Van de Walle R. RDF Mapping Language (RML). W3C, Unof-
ficial Draft 2020;15.

	37.	 Krech, D.: RDFLib. https://​rdflib.​dev/ 2002.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://bazel.build/
https://doi.org/10.1109/ROSE.2013.6698425
https://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu
https://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu
https://doi.org/10.1016/j.aei.2010.07.008
https://doi.org/10.1016/j.aei.2010.07.008
http://www.qudt.org/
https://doi.org/10.1109/MIS.2009.17
https://doi.org/10.1007/978-3-642-19193-0_12
https://doi.org/10.1145/2080.357392
https://doi.org/10.1145/2080.357392
https://json-schema.org/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://rdflib.dev/

	LISSU: Continuous Monitoring of SOA Communication with Constraint-Based Validation
	Abstract
	Introduction
	Motivating Example
	Semantic Mismatch (Units)
	Rule-Based Message Validation
	Requirements and Goals

	Related Work
	Relevant Ontologies
	Sensor Ontologies
	Unit Ontologies

	Communication and Service Description
	Constraint-Based Validation
	Semantic Data Lifting

	Proposed Approach
	Adding Lightweight Semantic Components to SOA Frameworks
	Initial Semantic Validation Workflow in Detail
	Continuous Semantic Validation Workflow in Detail

	Implementation of the Proposed Framework
	Tool Selection Based on Requirements
	Adding a Semantic Service to Real-World Systems
	Implementing a Unit Conversion Service
	Monitoring the Data Stream with a Continuous Validation Service
	Data Lifting
	Constraint-Based Validation

	User Interaction and Workflow

	Demonstrator Setup
	Implementation Evaluation
	Demonstrating Semantic Functionalities in Demo Scenarios
	Initial Semantic Validation Workflow
	Continuous Semantic Validation Workflow

	Shopfloor Integration of the Proposed Continuous Semantic Validation System

	Conclusion and Future Work
	References

